
Edith Cowan University Edith Cowan University

Research Online Research Online

International Cyber Resilience conference Conferences, Symposia and Campus Events

8-23-2010

Malware Detection Based on Structural and Behavioural Features Malware Detection Based on Structural and Behavioural Features

of API Calls of API Calls

Manoun Alazab
University of Ballarat

Robert Layton
University of Ballarat

Sitalakshmi Venkataraman
University of Ballarat

Paul Watters
University of Ballarat

Follow this and additional works at: https://ro.ecu.edu.au/icr

 Part of the Information Security Commons

Originally published in the Proceedings of the 1st International Cyber Resilience Conference, Edith Cowan
University, Perth Western Australia, 23rd August 2010
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/icr/1

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/icr
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/icr?utm_source=ro.ecu.edu.au%2Ficr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Ficr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

1

MALWARE DETECTION BASED ON STRUCTURAL AND
BEHAVIOURAL FEATURES OF API CALLS

Mamoun Alazab1, Robert Layton2, Sitalakshmi Venkataraman1, Paul Watters1

Internet Commerce Security Laboratory ICSL

Graduate School of ITMS
University of Ballarat

m.alazab@ballarat.edu.au1

s.venkatraman@ballarat.edu.au1

p.watters@ballarat.edu.au1
r.layton@icsl.ballarat.edu.au2

Abstract

In this paper, we propose a five-step approach to detect obfuscated malware by investigating the structural and
behavioural features of API calls. We have developed a fully automated system to disassemble and extract API
call features effectively from executables. Using n-gram statistical analysis of binary content, we are able to
classify if an executable file is malicious or benign. Our experimental results with a dataset of 242 malwares
and 72 benign files have shown a promising accuracy of 96.5% for the unigram model. We also provide a
preliminary analysis by our approach using support vector machine (SVM) and by varying n-values from 1 to 5,
we have analysed the performance that include accuracy, false positives and false negatives. By applying SVM,
we propose to train the classifier and derive an optimum n-gram model for detecting both known and unknown
malware efficiently.

Keywords: Code obfuscation, Feature extraction, Malware, n-gram, SVM.

INTRODUCTION

Malicious software (Malware) (McGraw & Morrisett, 2000) affects the secrecy and integrity of data as well as
the control flow and functionality of a computer system (Alazab et al., 2009a; Sulaiman et al., 2005). Recent
attacks using obfuscated malicious codes (previously unknown malware) have resulted in disruption of services
leading towards huge financial and legal implications (Alazab et al., 2009a; Keizer, 2009) (Alazab et al., 2009b;
Sharif et al., 2008). Therefore, researchers and anti-malware vendors are faced with the challenge of how to
detect such zero day attacks (unknown malwares), which is also a major concern for various computer user
groups, including home, business and even government users. Literature studies (Christodorescu and Jha, 2003;
2004; Vinod et al., 2009) on malware detection have shown that there is no single technique that could detect all
types of malware. However, there are two techniques commonly used for malware detection, signature-based
detection and anomaly-based detection. Anti-malware engines use signatures or 'byte sequence' to detect known
malware. These signatures are created by disassembling the file and selecting some pieces of unique code.
Hence, signature-based detection is very effective for known malware but the major drawback is the inability to
detect new, unknown malicious code that result in zero day attacks (Sharif et al., 2008). On the other hand,
anomaly-based detection, which is a technique that uses the knowledge of what constitutes normal behaviour to
decide the maliciousness of a program code, has the key advantage and ability to detect zero day attacks.
Current anomaly-based techniques use heuristics approach of detection that is inefficient and usually resulting in
false positives (Vinod et al., 2009). In this paper, we propose a novel approach to extract the structural and
behavioural features from program codes to detect both known and unknown malware.

Windows API calling sequence reflects the behaviour of a particular piece of code (Wang et al., 2009). API
enables the programs to exploit the power of the operating system and the malware authors are taking this
advantage to make use of the API calls as a vehicle to perform malicious actions. However, Malware writers
make use of Application Program Interface (API) calls as a vehicle to inflict systems and to evade from anti-
virus (AV) scanners through code obfuscation. Our novel technique of extracting the structural and behavioural
features of API calls with the aid of statistical n-gram analysis has resulted in effective malware detection. An n-
gram is an n-contiguous sequence the main used is for pattern recognition. It has been used and applied
successfully in many areas of computer science applications such as Computer Speech Recognition (Lee and
Kawahara, 2009), Language Identification (Choong et al., 2009), Spelling Correction (Bergsma et al., 2009),

2

Optical Character Recognition (OCR) (Schambach, 2009), Authorship Analysis (Layton et al., 2009) etc. An n-
gram method of feature extraction and analysis is quite thorough but time consuming as the size of n increases.
To overcome this constraint, we propose an intelligent machine learning technique of feature recognition to train
a classifier for identifying malicious code. Literature studies indicate that a predominantly used machine
learning technique called, Support Vector Machines (SVMs) for pattern recognition has been applied
successfully to classify text, handwritings (Bergsma et al., 2009; Choong et al., 2009) and the like. Since
malwares also exhibit the behaviour patterns in the form of a fileprint or feature, this work applies SVM for
effectively classifying the program code as either malicious or benign.

CURRENT MALWARE DETECTORS

Malware detectors are used to scan a computer system to identify malware, with the main purpose of preventing
it from adversely affecting the system. The current malware detection methods usually rely on existing malware
signatures with limited heuristics and are unable to detect those malware that can hide itself during the scanning
process (Venkatraman, 2009) and those malware that apply spohisticated obfuscation techniques. An anti-virus
(AV) engine must perform 3 main tasks to protect computers: Scanning, Detection, Removal (Microsoft, 2007).
A Malware detector D is defined as a function whose determine the exactable program (p) which program is
malicious or benign D: P → {malicious, benign}. Modern and traditional anti-malwares scan the programs (p) in
a system for a byte sequence or malware signature (s) which it stored in the database engine. If the signature is
found in the program (p), it will be identified as a malware, otherwise it is declared as benign, and this is
represented in the equation below.

(1)

The malware signature is a byte sequence that uniquely identifies a specific malware (Vinod et al., 2009).
Typically, a malware detector uses the malware signature to identify the malware like a fingerprint. Most AV
engines are supplied with a database containing information of existing malware to identify maliciousness, by
looking for code signatures or byte sequences while scanning the system. A malware detector scans the system
in various locations for characteristic byte sequences or signature (s) that match with the one in the database and
declares existence of malware blocking its access to the system. The signature matching process is called
signature-based detection and most traditional AV engines use this method. It is a very efficient and effective
method to detect known malware. But, the major drawback is the inability to detect new or unknown malicious
code and zero day attacks. Therefore, updating the detection engine or AV software daily with latest malware
signatures is essential so as to protect the computer system against all known malware. Hence, the more
malware signatures (s) are fed into the AV engine, the more effective it is in detecting latest known malwares.

The new threat for computers is that the malware writers are recycling existence malware like w32.Parite
(Microsoft, 2010) with different signatures (‘byte sequence') by using obfuscation techniques such as packing,
polymorphic transformations and metamorphic obfuscations, instead of creating an entirely new malware. This
means that the AV scanners will not be able to detect these new malware due to the non-existence of their
fingerprints in the signature database. Hence, there is a need to capture the behaviour of malware based on
anomalies or behavioural patterns exhibited by such hidden malware, which is the main focus of this research
work.

The results of the following recent studies have been the prime motivation for this research:

1) malware authors are able to easily fool the detection engine by applying obfuscation techniques on known

malwares (Sharif et al., 2008),
2) identifying benign files as malware is becoming very high (Keizer, 2009) (Yegneswaran et al., 2005) (false

positive),
3) failing to detect obfuscated malware is high (false negative) (Paul, 2008),
4) the current detection rate is decreasing (Symantec, 1997), and
5) current malware detectors are unable to detect zero day attacks (McGraw & Morrisett, 2000).

�
�
� �

�
otherwiseBenign

psifMalware
PD

)(

3

Code obfuscation is a challenge for digital forensic examiners (Alazab et al., 2009a) with the limitations of
signature based detection (Christodorescu and Jha, 2003). As a first step to address these issues, in this paper,
we propose a five-step approach of anomaly based detection that captures and analyses the structural and
behavioural features of application programming interface (API) calls from program codes or executables using
n-gram and SVM to detect and classify even unknown malware. In our previous work (Alazab et al., 2010), we
have automated the entire process of effectively extracting the behaviour features of application programming
interface (API) calls of the core of Windows operating system. The fully-automated system processes both
packed and unpacked portable execution (PE) files and performs reverse obfuscation. This paper is an
enhancement to the previous work. We further extract the n-gram distributions of all the API call features from
the malicious and benign executables and apply SVM for machine learning. We first extract the most frequently
occurring n-grams in each file and collate that list into an overall list for the entire dataset. and then collect the
n-gram distribution for each executable for each n-gram in the larger list. We apply principle component
analysis (PCA) approach to the result to account for 95% of the variation and for an effective feature reduction
process. With the extracted features, our main goal of detecting unknown malware is now possible if our
approach caters to all possible code obfuscations techniques that could be adopted by the malware authors. The
next section describes the commonly used code obfuscation techniques that are addressed in this research work.

CODE OBFUSCATION TECHNIQUES

In order to evade detection by AV engines, malware authors are applying obfuscating techniques (Alazab, 2009)
such as packing (Guo et al., 2008), polymorphism (Stepan, 2005) and metamorphism (Bruschi et al., 2006) in
order to transform existing malware. Metamorphic and polymorphic malware transformed malcode into a new
code without affecting the original functionality or purpose so that the AV engine’s scanning process skips the
detection of the signature.

Malware authors are continually developing new techniques for creating and applying obfuscation techniques
T(P) on a malware program (p) to produce an obfuscated program (p'), thereby making it very difficult to
reserve engineer and decipher the signature successfully, even though the two programs, p and p' are having the
same functionality and exhibit the same affect. On the other hand, since p and p' have different byte sequence,
AV engines and reverse engineers are applying deobfuscation techniques D(p') on the obfuscated program (p')
in order to analyse the malware and to detect the malware as shown in figure 1.

Packers are commonly used today for code obfuscation or compression. Packers are software programs that
could be used to compress and encrypt the PE in secondary memory and to restore the original executable image
when loaded into main memory (RAM). Malware authors do not need to change several lines of code to change
the malware signature mainly because, changing any byte sequence in the PE results in a new different byte
sequence in the newly produced packed PE.

Polymorphic malware uses encryption and data appending/ data pre-pending in order to change the body of the
malware, and further, it changes decryption routines from infection to infection as long as the encryption keys
change. This has led AV experts to develop different scanning techniques, from simple byte sequence matching
to more complex techniques such as X-RAYING scanning (Perriot & Ferrie, 2004). In 2006 Symantec Internet
Security Threat Report stated the detecting polymorphic Malware such as w32.Polip and w32.Detnat is much
more difficult and complex than the other type of Malware (Turner, 2006).

Metamorphic malware changes the code itself without the need of using encryption. In general, there are four
techniques commonly used for metamorphic obfuscation. These are, i) Dead-code Insertion which is mean do
nothing such as a sequence of NOPs (No Operation Performed), ii) Code Transposition that changing the
instructions such as using JMPs instructions so that the order of instructions is different than the original one,
iii) Register Reassignment such as replacing push ebx with push eax to exchange register names, and iv)
Instruction Substitution which is replace the instructions in to different instructions with the same result some
authors uses a database dictionary of equivalent instruction sequences to make it easier and faster.

In a nutshell, malware authors are continually developing such new techniques for creating malware that cannot
be detected by AV engines, and their level of sophistication is continuing to grow. Through our experimental
tests, we have found that all above techniques can be used to fool the current detection engines by obfuscating
the malware signature. Hence, in order to cater to all the above mentioned obfuscation techniques, our research
focuses on unpacking and extracting the behaviour of the malware through API call analysis rather than the
typical "pattern matching" detection process that are evaded by obfuscations of the byte sequence through
packing, metamorphic and polymorphic techniques. We identify the features of the extracted API calls in the

4

unpacked executable binary using the n-gram statistical analysis that is described in the next section.

N-GRAMS

An n-gram model, in simple terms, uses the statistical properties of n-grams for predicting the next item in a
sequence. It is a subsequence of ‘n’ items from a given sequence. For this research, the items refer to the list of
API calls within an executable file. An n-gram could be of different sizes: 'unigram' referred when the size is
n=1; 'bigram' where the size is n= 2; size n=3 referred to "trigram; size (n−1) is termed “Markov model” and
size n=4 or more is generally called 'n-gram'. Many disciplines have applied n-gram analysis as the model is
efficient and successful in solving classification problems. In this paper, we apply n-grams to the problem of
malware detection; by extracting the list of API calls contained within both packed the unpacked malware. A
classifier is trained on the differences in n-gram distributions between malicious and benign executable files.

Some studies have analysed 1-gram and 2-gram of ASCII byte values (Stolfo et al.,2006) and computed the
frequency and variance of each gram. They observed that applying 'unigram' analysis to Portable Document
Format (PDF) files embedded with malcode are pretty effective in malware detection when compared to the
COTS AV scanners. However, such studies are limited to document files types and do not have sufficient
resolution to include all class of file types. As the number of n-grams is going to be very large, feature selection
measures such as ASCII, UNICODE, API and others are being adopted to yield better results. For the
obfuscated malware detection problem, this work applies n-gram on API call based features. We propose a five-
step approach that results in an effective n-gram feature extraction from API call sequences for classifying
executables as malicious or benign with the use of Support Vector Machines (SVM) as the machine learning
classifier.

CONTRIBUTIONS

This paper’s main contributions are four-fold as given below:

� We have developed a fully-automated system to unpack, de-obfuscate and reverse engineer the program

codes and apply feature extraction techniques effectively.

� We have successfully used the system to extract behaviour features of API calls that relate to i) hooking of

the system services, ii) creating or modifying files, iii) getting information from the file for changing
information about the DLLs loaded by the malware (Alazab et al., 2010), and have extended the previous
work done by the authors.

� We have applied the n-gram statistical model to obtain the distribution of the executables for n-values

ranging from 1 to 5. We have measured the model based on factors such as accuracy, false positives and
false negatives.

� Our proposed approach also includes the use of SVM to train the classifier for machine learning and robust

identification of malicious code as against benign code.

Figure 1 Obfuscation transformation

5

PROPOSED APPROACH AND IMPLEMENTATION

Since majority of malware change their byte sequence or 'Signature' by applying obfuscation techniques to
evade detection by virus scanners, we first unpack and de-obfuscate the executable using our fully-automated
system (programmed in Python programming language). The system uses existing tools such as SQLite (2010)
plug-in with IDA pro Dissasembler (2009) to generate eight tables of information, namely Blocks, Functions,
Instructions, Names, Maps, Stacks, Segments, TargetBinaries. Each of these tables contains different
information about the binary content. Our premise is that Malware files and benign files have different uses and
distributions for their of API function calls. Hence, we extract behaviour features from n-gram distributions.
For the analysis of the features, we have also considered the machine opcodes that include direct and indirect
calls such as Jump and Call operations as well as the function types (e.g. import). Sample SQL command code
snippets for feature extraction used the Python program are as shown below.

As shown in figure 2, we initially extract the n-gram distribution from the dataset, train the SVM classifier with
benign files and then test for malicious files for accurate identification of malware. We present the approach in
the form of five steps given below:

Step 1: Unpack the malware and disassemble the binary executable to retrieve the assembly program.

For our implementation, we have used PEiD (2010) to unpack the binary executable. PEiD is commonly used
for most common packers, cryptors, compilers and even signature-based packer detection in PE files. We then
disassembled the code using Interactive Disassembler Pro (IDA Pro) as it automatically recognizes API calls for
various compilers.

Step 2: Extract API calls and important machine-code features from the assembly program.

Our fully-automated system processes the outputs from Step 1 with the aid of SQLite and IDA pro to generate
the database containing the application programming interface (API) calls (.idb) automatically from the entire
dataset of malware and benign programs. API call features are extracted from the assembly code of the
executables so that the generated information could be used for effective analysis.

SELECT function_address,src_block_address,name
from Maps, Names"
Where (op='call' or op='jmp') and (type='import' or type='function')

Figure 2 Fully-automated architecture to distribute the API function calls

6

Step 3: Map the API calls with MSDN library and analyse.

Using the downloaded Windows API from Microsoft Developer Network (MSDN) (2010) our automated
system compares and matches API calls outputted from Step 2 with the look-up table of API libraries from
MSDN.

For the analysis, we consider extracted features such as frequency of call, call sequence pattern and actions
immediately preceding or after the call. We considered specific actions that lead to invalid memory references
or undefined registers or invalid target jumps for refining the extracted API call features.

Step 4: Extract binary N-gram features.

To extract the n-gram distributions of all of the malicious and benign executables, we first count the frequency
of each n-gram within the entire corpus. Once that has been completed, we reduce this list to the top 100 most
frequent n-grams. The above procedure is replicated for n values between 1 and 5 inclusive.

Step 5: Train a classifier and build a model using support vector machine (SVM).

SVMs have performed well on traditional text classification tasks, and on executable files. The supervised
learning SVM method is a reliable and popular technique for data classification (Cortes and Vapnik, 1995).
SVM is considered easier to use than many machine learning approaches such as Neural Networks (NN).
Hence, in this step, SVM classification technique is used to construct an N-dimensional hyperplane separates the
dataset into two groups, namely, ‘Malware’ and ‘Benign’. For addressing the zero day malware detection, we
focus on the n-gram feature extraction from API sequences using SVM as the training algorithm. Initially, in
this step, we separated the data into two: training and testing data sets. We then applied SVM to the training data
with the goal to produce a model, which is then used to predict the target of the test data. In order to achieve a
higher accuracy of the predictive model for generalisation, we have used the K-fold cross-validation approach
for the test data. With the experimental data set, we have adopted a 10-fold cross-validation approach (Swets
and Pickett, 1982), which is commonly used to estimate how well the trained SVM model is going to perform in
the future.

For the experiment in this research work, we have used the LIBSVM tool (Chang and Lin, 2001). Both benign
files and known malicious files are used to train the SVM classifier so that the model could be used to test for
new obfuscated malware that evades detection from AV scanners. We performed the verification and validation
of our proposed method for malware detection based on the following standard measures:

1. False Positives (FP): Number of wrongly identified benign code, when the model detects benign file as

malware.
2. False Negatives (FN): Number of wrongly identified malicious code, when the model fails to detect the

malware.

Among the four basic types of kernels used by SVM to map the training vectors to the N-dimensional space, we
have applied the Radial Basic Function (RBF) kernel. This is because it can handle the nonlinear cases. We

have tested the classification performance based on
2/1 � and C parameters from the equation given below,

where 0�C is the penalty parameter of error term.

EXPERIMENTAL RESULTS

In order to conduct an experimental investigation, we have applied our methodology described in Section VI to
the dataset collected from honeypots, honeynet project and other sources between July 2009 and November
2009. We have used 314 executable files in total with 72 benign files and 242 malware infected files that have
been uniquely named according to their MD5 value. From our experimental study, we observe that the overall

	
 ��
�

��
�

� �
�� 2

2||||exp,
�

yxyxK

 (2)

7

accuracy of our classifier decreases as n increases, as shown in table 1. The trend observed here could be due to
the specific dataset that was used for the experimental testing. However, any generalisation of the observed
trend could only be emphatically determined with larger and wider range of datasets. The initial experimental
result of 96.5% accuracy for unigrams is still very promising as a benchmark for improvements in our future
research work. Further to this, there are clear trends in both the false positive and false negative values with
increasing values of n. While unigrams create the better n-gram models for the values shown in table 1, the high
false negative rate indicates that there is still work to be done on improving this value.

LIMITATIONS OF THE STUDY AND FUTURE WORK

Our automated system makes use of existing unpacking tools, such as PolyUnpack (Royal et al., 2006), Renovo
(Kang et al., 2007), OmniUnpack (Martignoni et al., 2007), Ether (Dinaburg et al., 2008), and Eureka (Sharif et
al., 2008) that are still under research and development. If the existing tools are unable to unpack a packed
malware that uses an unknown packing algorithm, this would pose a limitation for Step 1 of our automated
system. However, our approach from Step 2 onwards would still work in this case by conducting a manual
unpacking in Step 1. Another limitation of our system is that Step 3 is based on the latest updates of Microsoft
with the MSDN library of API call list. We believe this is done up-to-date, as MSDN library forms the main
reference for the mapping of the API calls in both malware and benign files.

Future work in this area includes techniques to increase the accuracy of the system. The FP rate increases while
the FN rate decreases as n increases, indicating that it could be possible to use a boosting technique to apply a
classifier model derived from a higher n value to first determine if a file appears to be malicious, then using a
model derived from a lower n value so as to more accurately determine if this suspected file is in fact malicious.

CONCLUSION

In this research work, the behavioural and structural features based on API calls are automatically extracted
from the binary of a program. The extracted features are subjected to a statistical n-gram analysis to classify a
program as either malicious or benign effectively with the aid of a supervised SVM machine learning technique.
In a nutshell, this research provides four main contributions. The first and foremost contribution is, outlining of
a methodology to extract behaviour features of API calls that relate to various malware behaviour such as i)
hooking of the system services, ii) creating or modifying files, iii) getting information from the file for making
changes about the DLLs loaded by the malware. The second contribution is, providing a statistical analysis of
the API calls from the programs using n-gram model. In our model, the n-gram analyses the similarities and the
distance of unknown malware with known behaviour so that obfuscated malware could be detected efficiently.
The third contribution is, developing a fully-automated tool to unpack, de-obfuscate and reverse engineer the
program codes without any need for manual inspection of assembly codes. The last contribution is, applying
SVM machine learning to train the classifier for a robust identification of known as well as unknown malware.

ACKNOWLEDGMENT

This research was conducted at the Internet Commerce Security Laboratory and was funded by the State
Government of Victoria, IBM, Westpac, the Australian Federal Police and the University of Ballarat.

Table 1
Experimental results from SVM classifier by applying n-grams

n-value Accuracy False Positives False Negatives

1 96.50% 1.91% 1.56%
2 92.99% 6.36% 0.63%
3 88.22% 11.46% 0.03%

4 85.99% 14.01% 0.00%

5 85.03% 14.97% 0.00%

8

REFERENCES

Alazab, M. (2009). “Investigation techniques for static analysis of NTFS file system images”, Annual Research
Conference, Internet Security, University of Ballarat.

Alazab, M.; Venkatraman, S. & Watters, P. (2009a) “Effective digital forensic analysis of the NTFS disk
image”, Ubiquitous Computing and Communication Journal, 4, 1.

Alazab, M., Venkatraman, S. & Watters, P. (2009b), "Digital Forensic Techniques for Static Analysis of NTFS
Images", Proceedings of International Conference on Information Technology (ICIT2009). IEEE Computer
Society, ISBN 9957-8583-0-0.

Alazab, M.; Venkataraman, S. & Watters, P. (2010). "Towards Understanding Malware Behaviour by the
Extraction of API calls", Accepted to the IEEE 2nd Cybercrime and Trustworthy Computing Workshop (CTC-
2010), 2010.

Bergsma, S.; Edmonton, A.; Lin, D.; View, M. & Goebel, R. (2009,). "Web-scale N-gram models for lexical
disambiguation", Proceedings of the 21st international joint conference on Artificial intelligence, 1507-1512.

Bruschi, D.; Martignoni, L. & Monga, M. (2006). “Detecting self-mutating malware using control-flow graph
matching”, Lecture Notes in Computer Science, Springer, 4064, 129.

Chang C.C. and Lin C.J. (2001). LIBSVM: a library for support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Christodorescu, M. & Jha, S. (2003). “Static analysis of executables to detect malicious patterns”, Proceedings
of the 12th conference on USENIX Security Symposium, 12, 169-186.

Christodorescu M. and Jha S. (2004). “Testing malware detectors”, In Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2004), Boston, MA, USA, ACM Press, 34–
44.

Choong, C.; Mikami, Y.; Marasinghe, C. & Nandasara, S. (2009). "Optimizing n-gram Order of an n-gram
Based Language Identification Algorithm for 68 Written Languages", International Journal on Advances in ICT
for Emerging Regions (ICTer), 2, 21.

Cortes C. and Vapnik V. (1995). “Support-vector network”, Machine Learning, 20, 273-297.

Dinaburg, A.; Royal, P.; Sharif, M. & Lee, W. (2008). "Ether: Malware analysis via hardware virtualization
extensions", Proceedings of the 15th ACM conference on Computer and communications security, 51-62.

Guo, F.; Ferrie, P. & Chiueh, T. (2008). "A study of the packer problem and its solutions", Recent Advances in
Intrusion Detection, 98-115.

IDA Pro Dissasember (2009). DataRescue, An Advanced Interactive Multi-processor Disassembler,
http://www.datarescue.com, October, 2009.

Kang, M.; Poosankam, P. & Yin, H. (2007). " Renovo: A hidden code extractor for packed executables",
Workshop On Rapid Malcode WORM'07 Proceedings of the 2007 ACM workshop on Recurring malcode, 46 –
53.

Keizer, G. (2009). “Symantec false positive cripples thousands of Chinese PCs”
http://www.computerworld.com/s/article/9019958/Symantec_false_positive_cripples_thousands_of_Chinese_P
Cs?intsrc=hm_list, August 2009.

Layton, R.; Brown, S. & Watters, P. (2009), " Using Differencing to Increase Distinctiveness for Phishing
Website Clustering", Proceedings of the 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted
Computing, 488-492

9

Lee, A. & Kawahara, T. (2009). "Recent Development of Open-Source Speech Recognition Engine Julius",
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).

Martignoni, L.; Christodorescu, M. & Jha, S. (2007). "OmniUnpack: Fast, Generic, and Safe Unpacking of
Malware", Proceedings of the Annual Computer Security Applications Conference (ACSAC).

McGraw, G & Morrisett. G (2000). “Attacking malicious code: A report to the infosec research council”, IEEE
Software, 17(5), 33–44.

Microsoft, (2007). “Understanding Anti-Malware Technologies”,
http://download.microsoft.com/download/0/c/0/0c040c8f-2109-4760-a750-96443fd14ef2/Understanding
Malware Research and Response at Microsoft.pdf, August 2009 .

Microsoft, (2010). Win32/Parite, http://www.microsoft.com/security/p-
ortal/Threat/Encyclopedia/Entry.aspx?name=Win32%2fParite, Feb 2010.

Microsoft Developer Network (MSDN). (2010). Windows API Functions, http://msdn.microsoft.com/en-
us/library/aa383749%28VS.85%29.aspx. January 2010.

Paul, N. (2008). “Disk-Level Behavioral Malware Detection”, University of Virginia, Citeseer, Doctor of
Philosophy Dissertation, Chapter 2.

PEiD. (2010). Snaker, Qwerton, Jibz & xineohP, http://www.peid.info/, Jan 2010.

Perriot, F. & Ferrie, P. (2004). "Principles and practise of X-RAYING", Virus Bulletin Conference (VB 2004), ,
51-66.

Royal, P.; Halpin, M.; Dagon, D.; Edmonds, R. & Lee, W. (2006). "PolyUnpack: Automating the Hidden-Code
Extraction of Unpack-Executing Malware", IEEE Computer Society, the 22nd Annual Computer Security
Applications Conference (ACSAC'06), 289-300.

Schambach, M. (2009). "Recurrent HMMs and Cursive Handwriting Recognition Graphs", 2009 10th
International Conference on Document Analysis and Recognition, 1146-1150.

Sharif, M.; Yegneswaran, V.; Saidi, H.; Porras, P. & Lee, W. (2008). "Eureka: A framework for enabling static
malware analysis", Computer Security - ESORICS, Lecture Notes in Computer Science LNCS, Springer,
5283/2008, 481-500.

SQLite, www.sqlite.org/, February 2010.

Stepan, A. (2005). "Defeating polymorphism: Beyond emulation", Proceedings of the Virus Bulletin
International Conference.

Stolfo, S.; Wang, K. & Li, W. (2006). "Towards stealthy malware detection", Malware Detection, Advances in
Information Security, Springer, 27, 231-249.

Sulaiman, A.; Ramamoorthy, K.; Mukkamala, S. & Sung, A. (2005). " Disassembled code analyzer for malware
(DCAM)", Information Reuse and Integration IRI-2005 IEEE International Conference on., 398-403.

Swets J. and Pickett. R. (1982). “Evaluation of diagnostic system: Methods from signal detection theory”.
Academic Press.

Symantec. (1997).“Understanding Heuristics: Symantec's Bloodhound Technology”, Symantec White Paper
Series, XXXIV, 1-14.

Turner, D. (2006). “Semantic internet security, threat report",
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_-
symantec_internet_security_threat_report_x_09_2006.en-us.pdf, Trends for Jan 2006 - jun 2006, X.

10

Venkatraman, S. (2009). "Autonomic Context-Dependent Architecture for Malware Detection", Proceedings of
International Conference on e-Technology (e-Tech2009), International Business Academics Consortium, ISBN
978-986-83038-3-6, 8-10 January, Singapore, 2927-2947.

Vinod, P.; Jaipur, R.; Laxmi, V. & Gaur, M. (2009). “Survey on Malware Detection Methods”, Hack. 74.

Wang, C.; Pang, J.; Zhao, R. & Liu, X. (2009). "Using API Sequence and Bayes Algorithm to Detect Suspicious
Behavior", 2009 International Conference on Communication Software and Networks, 544-548.

Yegneswaran, V.; Giffin, J.; Barford, P. & Jha, S. (2005). " An architecture for generating semantics-aware
signatures", Proceedings of the 14th USENIX Security Symposium, 97-112.

	Malware Detection Based on Structural and Behavioural Features of API Calls
	ICR Conference Proceedings_2010.pdf

