Developing the Anker Bilateral Spatial System

Janet Richmond

Edith Cowan University, j.richmond@ecu.edu.au

Follow this and additional works at: http://ro.ecu.edu.au/ecuposters

Part of the Cognition and Perception Commons, and the Occupational Therapy Commons


Recommended Citation

http://ro.ecu.edu.au/ecuposters/6
DEVELOPING THE ANKER BILATERAL SPATIAL SYSTEM FOR INTERVENTION

JANET RICHMOND

AIM

The purpose of this research was to determine the effect of using the Anker Bilateral Spatial System (ABSS) to enhance the development of bilateral and spatial functioning of individuals with visual perceptual or sensory processing difficulties.

BACKGROUND

Restricted visual spatial perception and bilateral concepts impact on the individual person’s ability to function successfully in many activities of daily living. The ABSS was developed along the theme of space to enhance the person’s ability to grasp the concept of depth, space and symmetry/bilaterality in nature. Many children diagnosed with learning disabilities, developmental delays, and neurological impairment present with visual spatial dysfunction and poor bilateral integration, thus this new intervention strategy had to be evaluated for the effectiveness in improving these difficulties. According to Stimmer (1984), “Young children must have a good understanding of their own body imagery as a necessary condition for discrimination of mirror images. If a child can’t differentiate between left and right, he can’t be expected to differentiate between b and d.” The basic principle of the ABSS is built on the bilateral person and symmetry.

METHOD

A Pretest-posttest experimental design was selected to assess the usability of the ABSS in a case study as this provided opportunities to demonstrate change within the individual. A pretest-posttest design is also appropriate for measuring clinical applications of treatment. The participant had some visual perceptual difficulty as identified on the “Developmental Test of Visual Motor Integration” (VMI) or the “Spatial Awareness Skills Program Test” (SASP) and the bilateral motor co-ordination subscale of the “Bruijninks-Oseretsky Test of Motor Proficiency” which were used as the pre and post test measures.

The ABSS was used with the child for 10 sessions once a week for 20 minutes between the pre and post test.

ETHICS

Granted by Edith Cowan University

RESULTS

Case Study 1:

Male 7 year old. Initial SASP score of 7 and post score of 10. Subjective observations by parent: some improvement with using a knife and fork and improved organisational skills.

Case Study 2:

Male 7 year old. Initial & post test score 8. Poorly motivated to participate in test.

SUBJECTIVE RESULTS — NON-ASSESSED SUBJECTS.

Case Study 3:

Male 9 year old. Subjective comments from parents related to improved motivation and improved confidence in school projects. No Pre and post test were conducted on this boy.

Case Study 4:

Male 73 year old. Assessed as having Dyspraxia, poor spatial perception, poor Figure Ground perception, poor visual memory and poor visual sequential memory. No spatial difficulties identifiable after sessions on the ABSS over a two week period.

CONCLUSIONS

Three of the case studies indicate clear benefit for clients using the ABSS to improve inherent or acquired spatial difficulties.

The ABSS is a valuable tool for inclusion in therapy related to visual bilateral spatial difficulties.

REFERENCES


