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Abstract

Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds.
These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication,
causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia,
and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact
seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a
quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which
attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin)
influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high
variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger
negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than
‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather
intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this
category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and
metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent
simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited
number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general
predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from
detrimental competition from seaweeds.
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Introduction

Seagrasses are ubiquitous coastal plants in many tropical to cold

water regions [1,2]. Seagrasses increase habitat complexity,

attenuate waves to protect coastlines, stabilize sediments, filter

terrestrial run-off, bind and sequester carbon and nutrients, and

provide food and shelter for invertebrates and fishes [1,2]. These

ecosystem services are currently diminishing as seagrass beds are in

rapid decline around the world [1,3,4]. Conservation and active

management of seagrass beds is therefore becoming increasingly

important [5]. Current anthropogenic threats to seagrass beds

include destruction of, and alterations to, coastal habitats, climate

change including sea level rise and global warming, invasion by

non-native species, enhanced sedimentation, and nutrient pollu-

tion [1,3,4,6]. In many cases, these threats cause increasing growth

of, and therefore competition from, seaweeds (macroalgae), which

accelerate the degradation of seagrass habitats [7,8,9]. Thus,

seaweeds have increasingly been implicated in the destruction of

seagrass beds, particularly where nutrient pollution is high [9,10],

where fishing has reduced top-down control of seaweeds [11], or

where invasive seaweeds have been introduced [12,13]. In these

cases, small patches of seaweeds can proliferate into massive mats,

and ultimately convert stable seagrass meadows into less stable

seaweed beds [14,15]. During such ‘regime shifts’, habitats that are

characterized by sediment stability, high water transparency, an

oxic water-column, and stable standing crop, productivity and
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nursery function, can be replaced by habitats characterized by

sediment instability, turbid waters, localized hypoxia, and greatly

fluctuating macrophyte biomass, productivity and nursery function

[9].

A high-priority goal in coastal zones around the world is to

retain intact seagrass beds and the ecosystem services they provide

[1,3,4,5,6,8,9]. To avoid regional regime shifts, which are difficult

to manage and reverse, it is important to identify if and how small

scale seaweed patches (, a few m2, reflecting the initial seaweed

accumulation) impact seagrasses before irreversible large-scale losses

occur on entire meadows. Manipulative experiments are partic-

ularly useful to address this small-scale impact issue. Manipulative

experiments are also important to supplement mensurative studies

that document subsequent larger-scale impacts, but provide poor

mechanistic insights and may even identify misleading correlations

(e.g. positive correlations between seaweed and seagrass abun-

dances caused by physical entrapment of seaweed by the seagrass

leaves) [16]. During the last few decades, a growing number of

experimental case studies have documented impacts of seaweeds

on seagrasses at the patch-scale (Appendix S1), but effects have

varied greatly depending on the spatio-temporal and biogeo-

graphical context. For example, Hauxwell et al. [15] documented

detrimental effects, whereas Ceccherelli et al. [17] found no

effects, of seaweeds on seagrasses. Such discrepancies have

hindered the development of a general predictive framework,

and could make it more difficult to manage scenarios of increasing

seagrass stress from seaweeds, for example, where coastal areas

experience rapid urbanization. A few reviews have discussed

general mechanisms whereby seaweeds impact seagrasses [8,9,18],

but these qualitative approaches have no standardized methodol-

ogy to compare and rank impacts between studies, seaweeds and

impacted seagrasses. Meta-analysis provides a statistically rigorous

method to compare impacts quantitatively across disparate studies,

and thereby identify if generalities of impacts exist over and

beyond the large variability that characterize ecological experi-

ments [19,20].

We collated experiments that tested for effects of seaweeds on

seagrasses to identify which attributes might explain impacts. We

aimed to provide background information for managers and

scientists to approach growing problems of seaweed proliferation

in coastal and estuarine areas. More specifically, based on a meta-

analysis of seaweed impact experiments, we tested if the direction

and magnitude of impact depended on key attributes of the

seaweeds and/or seagrasses, including their abundance, size,

origin, attachment type, morphology, and taxonomy. The

identification of impact attributes that are simple to identify in

situ, and that are important across studies and biogeographical

regions provides a starting point for scientists and managers to

address a particular bloom in progress, and from where to build

advanced context-dependent models. This review also provided an

opportunity to identify key research gaps in studies of seaweed

impacts on seagrasses.

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Diagram S1. We generally followed the procedures used in many

ecological meta-analyses [20,21,22,23,24]. We located published

experiments, where the abundance of seaweeds was manipulated

to test for impacts on seagrasses, by searching in ISI Web of

Science and Current Contents using various combinations of key

words like ‘experiment*’, ‘seaweed*’, ‘macroalga*’, ‘epiphyt*’,

‘drift alga*’, ‘effects of’, ‘blooms’, ‘mats’, ‘Caulerpa’, and ‘seagrass*’

in ‘title’ and ‘abstract’ sections. We also identified relevant

experiments by back-tracking references in previous reviews

[e.g., 8,9,22]. We read .400 abstracts from potentially relevant

papers. However, only 22 published papers (4 of which were our

own) reported seaweed impacts on seagrasses from manipulative experiments

(Appendix S1). We consider this to be a near-exhaustive list of

studies describing seaweed impacts on seagrasses. The 22 studies

reported impacts on seagrasses in 59 experiments. For each

experiment we extracted information about attributes associated

with the seaweeds and the seagrasses that potentially could

influence the impact [21]. For the seaweeds, we extracted data on

(1) abundance (dry weight per area; in some cases wet weight or

frond density was converted to dry weight using conversion ratios;

a few experiments did not report any abundance and were

therefore excluded from this analysis), (2) experimental duration

(months), (3) experimental plot-size (m2; note that duration and

plot size can be considered simple proxies, at least in press-type

experiments, for the temporal and spatial extent of seaweed

associated stress), (4) origin (native vs. non-native), (5) attachment

mode (unattached/drift-seaweed vs. rooted with rhizoids and

stolons in the sediment vs. epiphytic attached with holdfasts to

seagrass), (6) morphology, following Littler [25], except Caulerpa

spp. were not included in this classification; rather, we treated their

unique modular morphology and coenocytic cell structure as a

separate morphological category, and (7) taxonomic identity (here

genus). Of the 59 experiments, 17 tested specifically for impacts of

seaweed abundance, i.e. they applied at least two levels of seaweed

abundances [26]. From this subset of experiments, we could

conduct a more detailed abundance-test, only using the data

published specifically to test this impact attribute (i.e., this test does

not suffer from potential co-variation issues, see discussion for

details). For the seagrasses, we extracted data on (1) abundance

(shoot density; some studies did not report this and these studies

were excluded from the analysis), (2) maximum leaf size (small-

sized species = Halodule wrigthii, Halophila ovalis; medium-sized

species = Cymodocea nodosa, Zostera noltii; large-sized species = Amphi-

bolis sp., Enhalus acoroides, Thalassia hemprichii, T. testudinum, Z.

marina) [2], and (3) taxonomic identity (genus). Supplementary tests

of modifying effects of habitat/methodological conditions are

shown in Appendix S2 and Figure S1.

We extracted corresponding means, measures of dispersion (SD,

SE, or CL) and replication levels for all reported seagrass responses

reported on the individual or population level (e.g., leaf length,

survival, growth, reproduction, density, biomass) from all exper-

iments. For repeated measures designs, we only included the last

reported data point, a standard practice in ecological meta-

analysis [23]. Thus, we extracted all seagrass responses where plots

without the seaweeds were compared to plots with seaweeds,

including multiple seaweed abundance levels, seagrass responses,

and orthogonal and nested designs.

Hedge’s effect size d, corrected for small sample sizes, was used

to calculate standardized impacts [27]. This metric allows, in

contrast to the response-ratio metric, the usage of reported zero-

value responses [23,24]. ‘Treatments’ were defined as plots with

seaweeds, and ‘controls’ as plots without seaweeds; d values are

therefore negative if the seaweed causes a reduction in seagrass

responses. First, we calculated individual values of d ( = dindividual)

for each reported response within any given experiment. For

example, an experiment could report impact on both seagrass

biomass and growth ( = 2 dindividual). These within-experimental d-

values are strongly auto-correlated [10]. Second, we calculated

average effect sizes for each experiment (dexperiment), using equal

weight for all the dindividual that were reported per experiment (i.e.,

we assumed biomass and growth were equally important in our

Impacts of Seaweeds on Seagrasses
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example above). Cumulative meta-analyses were conducted on

these ‘independent’ effect sizes. Continuous (e.g., experimental

run-time) attributes were analyzed with meta-analytical linear

regression (dexperiment against predictor values). Categorical (e.g.,

attachment type) attributes were analyzed with categorical

analysis, by averaging multiple dexperiment into a single dcummulative

for each treatment [27]. We used random-effect models because

these models assume that summary statistics have both sampling

error and a true random component of variation in effect sizes

between studies. We report results calculated as 95% bias

corrected confidence limits (from 999 iterations), but results were

generally similar for both standard and bootstrap calculated

confidence limits (see Appendix S3). For the extra categorical

analysis on seaweed abundance effects, we tested if the difference

between paired dexperiment values (Ddexperiment = dhigh-abundance2

dlow abundance within a specific experiment) was significantly

different from zero [28], were Dd is negative if abundant seaweed

have larger negative effect than sparse seaweeds. If a test was

significant, the individual treatments were compared graphically;

i.e., treatments were interpreted conservatively to be significantly

different from zero or each other, if confidence limits did not

overlap zero or each other. All tests were conducted both as

weighted and un-weighted analyses; experiments with low

replication and/or high data variability were considered less

important in the former case, whereas all experiments were

considered of equal importance in the latter. Results were

generally similar between analyses and we here present the

weighted case (the un-weighted results are shown in Appendix S3).

Analyses of publication bias are presented in Appendix S4 and

Figure S2. All meta-analyses were conducted in MetaWin 2.0 [27].

We had a priori simple expectations about the direction and

relative magnitude of effect sizes between treatments for several of

the impact attributes (beyond the notion that seaweed have

negative impact on seagrass performance). We expected larger

negative effect sizes when there was more of the seaweed (in space

or time) and/or less of the impacted seagrass (e.g., in density or

size). We had no similar expectation about differences in effect

sizes between different attachment types, morphologies or

taxonomies (see Table 1 for details).

Results

We calculated 381 dindividual from the 59 experiments published

in 22 studies; most studies were conducted in the Atlantic Ocean; 9

in the Northeast (including 3 in the Mediterranean Sea) and 7 in

the Northwest (including 1 in Gulf of Mexico and 1 in the

Caribbean Sea). By contrast, only three studies were conducted in

the Pacific Ocean – two in the Northeast and one in the

Southwest. Similarly, three studies were conducted in the Indian

Ocean - two in the East and one in the West (Appendix S1). Of the

22 studies, 13 were conducted in relatively warm waters (including

Mediterranean studies) and 9 in relatively cool waters (including

Portuguese Atlantic studies). The cumulative effect size calculated

from all 59 average dexperiment was 20.96 (95% bias corrected

CL = 21.28 to 20.65, Qtotal = 83.34, p = 0.01) documenting that,

overall and across all studies, species and abiotic conditions,

seaweeds have negative impact on seagrasses.

The regression analysis on continuous seaweed abundances was

not significant (pslope = 0.98, Fig. 1A). However, the categorical

analysis on paired effects showed that, in those experiments that

explicitly tested for abundance effects, impact was significantly

more negative at high, compared to low, seaweed abundances

(confidence limits of Dd did not overlap zero, Fig. 1B). We found

positive effects of both increasing experimental duration

(pslope,0.01, Fig. 1C) and plot size (pslope,0.01, Fig. 1D). There

was a significant effect of seaweed origin (p = 0.02) with native

seaweeds having larger negative effects than invasive seaweeds

(Fig. 1E). We also found significant effects of seaweed attachment

types (p = 0.049), where drift algae and epiphytes caused more

negative effects that rooted algae (Fig. 1F). Seaweed morphology

also influenced impact (p = 0.02); sheet-forming, filamentous and

coarsely-branched seaweeds had larger negative effect than the

coenocytic/clonal morphologies (Fig. 1G, coenocytic seaweeds

were not different from zero). Finally, we also found significant

effects of seaweed taxonomy (p,0.0l), with large negative effects of

Ulva species, intermediate negative effects of Gracilaria, and small,

but still significant, negative effects of Laurencia. By contrast, effects

of Caulerpa were not significantly different from zero (Fig. 1H).

For the seagrass attributes, we found no effects of seagrass

abundance (pslope = 0.24, Fig. 2A). However, the size of seagrass

species influenced impact (p = 0.035) with small species being

significantly more negatively affected than large species (Fig. 2B,

note that the large error bars of intermediate sizes species

overlapped zero). Seagrass taxonomy also influenced impact

(p,0.01) with large negative effects observed on Halophila species,

intermediate negative effects on Halodule and Zostera species and

small, but still significant, negative effect on Thalassia species

(Fig. 2C). There were no significant effects on Cymodocea or

Amphibolis species (confidence limits overlapping zero).

Discussion

Seaweeds have been argued to be a significant cause of seagrass

declines around the world [7,8,9,18]. However, experimental

evidence for impacts on seagrasses only exists from 22 published

studies. We reviewed these studies using standardized and

quantitative methods (meta-analysis). These analyses confirmed

that seaweeds have negative impacts on seagrasses at the scale of

patches (here,5 m2). More specifically, we documented that the

abundance of the seaweeds and their attachment type, and the size

of the seagrass, are particular important attributes that determine

the magnitude of negative impact. Our quantitative review of

published studies, also allowed us, indirectly, to list significant

research gaps. Below we discuss our findings.

Hypotheses about directionality of effect sizes
Only two of our directional hypotheses (Table 1) were

supported; impacts were large when seaweeds were abundant

and when seagrasses were small (short leaves). Several studies have

tested for effects of abundance [10,26,29], and this allowed us to

conduct an un-confounded impact analysis (comparing effects of

abundant vs. sparse treatments, Fig. 1B). While intuitively simple,

this result provides rigorous quantitative support to the qualitative

notion that seaweed abundance, no matter the species, abiotic

conditions or resource levels, is a critical parameter to consider to

understand impacts on seagrasses.

In contrast to the seaweed abundance test, no experimental

studies have tested if seagrass size per se modifies how seaweeds

impact seagrasses. It is therefore possible that the large impact

observed on small seagrasses co-vary with other seagrass-

attributes, such as their longevity, clonal integrity, shoot density

or taxonomic identity (i.e., small species are generally ephemeral,

have low clonal integration, high shoot density and belong to the

genera Halophila and Halodule). Future studies should conduct un-

confounded experiments on how seagrass size (leaf length) modifies

seaweed impact; for example, by comparing seaweed impact on

small vs. large leaves and on seedlings vs. established leaves of the

same species or ecotype (e.g. as in [30] - although this test is

Impacts of Seaweeds on Seagrasses
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Table 1. Attributes of seaweeds and seagrasses that may influence seaweed impact on seagrass.

Attribute1
Seaweed
hypotheses

Seaweed
Results

Seagrass
hypotheses

Seagrass
results

Abundance (per area): High vs. Low H.L H.L (CL?0)2 H,L3 H = L (p = 0.254)

Size (per individual): Large vs. Small L.S NT L,S L,S (p = 0.035)

Extent (plot size): Large vs. Small L.S S.L (p,0.01) L,S NT

Duration (run time): Long vs. Short L.S S.L (p,0.01) L,S NT

Origin4: Native vs. Invasive N,I N.I (p = 0.02) I,N NT

‘Condition’: Healthy vs. Decomposing D.H5 NT H,D NT

Clonal/Modular: Integrated vs. Solitary I.S NT I,S6 NT

Attachment ? Dri = Epi . Roo (p = 0.049)7 ? NT8

Morphology ? She$Coa$Fil.Coe9 (p = 0.02) ? NT

Taxonomy (genus) ? Ulv$Gra$Lau$Cau10 (p,0.01) ? Amp,Cym = Tha#Zos#Had,Hap11 (p,0.01)

We had a priori expectations about the direction of impact for the first seven attributes (above the dotted line). These directional hypotheses are based on simple rules;
we expect a large impact when there is (a) more of a stressor (the seaweed) in either space or time, or (b) less of the impacted organism (the seagrass). Summary of tests-
results are shown in the table (significant values in bold, see also Fig. 1, 2 and Appendix S3; NT = not tested because data were inadequate).
1Impact of seaweeds on seagrasses may also be modified by habitat attributes, including the resource levels (e.g., nutrients, light, O2, space), abiotic conditions (e.g.,
temperature, salinity, desiccation, sedimentation, substrate conditions, day-length) and resident animals living in and around the seagrass habitat [21].

2The categorical test based on experiments that explicitly tested for abundance effect was significant, but the correlation conducted across all experiments was not
significant.

3We assume that abundant seagrasses have more resources to withstand stress. Alternatively, abundant seagrass may suffer from intra-specific competition resulting in
abundant seagrass being more susceptible to stress (i.e. the opposite expectation may be equally valid).

4We assume that invaders have superior impact (seaweeds) and resistance (seagrass), e.g., as novel weapons [44].
5Poor ‘condition/health’ of the seaweed results in decomposition and production of anoxia, sulphide and ammonia. Unattached mats often decompose when lower
layers are shaded by higher layers.

6For seagrasses, integration is a continuous attribute that encompasses below ground storage products and ability to translocate products between ramets.
7Dri = Drift/unattached, Epi = epiphytic to seagrass leaves, Roo = rooted in sediment with rhizoids and rhizomes.
8A few seagrasses can attach to rocks, but no studies have quantified seaweed impacts on attached seagrass.
9Adapted from Littler and Littler (1980); She = sheets, Coa = Coarsely branches, Fil = filaments, Coe = coenocytic.
10Ulv = Ulva, Gra = Gracilaria, Lau = Laurencia, Cau = Caulerpa.
11Amp = Amphibolis, Tha = Thalassia, Cym = Cymodocea, Zos = Zostera, Had = Halodule, Hap = Halophila.
doi:10.1371/journal.pone.0028595.t001

Figure 1. Effects of seaweed attributes on seagrass performance. Hedges d represent dexperiment for continuous data and dcumulative 695% CL
for categorical data. Data were extracted from up to 59 experiments. Fig. B is based on 17 experiments that tested explicitly for abundance effects.
Effects are here reported as Dd = dhigh2dlow; if Dd is negative then high abundance cause larger negative effect than low abundance. Fig. G:
coenocytic = single celled seaweed with modular growth of interconnected fronds. For meta-analytical test results and sample sizes, see Appendix S3.
doi:10.1371/journal.pone.0028595.g001
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confounded by ontogeny), or by comparing impacts on small and

large seagrass species using a random subset of species or ecotypes

as a nested factor within each size class. Despite co-variation

issues, we believe that seaweed abundance and seagrass size reflect

fundamental first-order attributes of seaweed-seagrass interactions

that affect the impact (Fig. 3). For example, low Gracilaria density

had virtually no effects on the relatively large Zostera marina

seagrass [13], whereas high Gracilaria density had detrimental

effects on the smaller Halophila ovalis seagrass [10].

We found that duration and spatial extent of seaweed stress (by

proxy of experimental run-time and plot size, respectively)

correlated positively with hedges d effect sizes, not negatively as

expected (Table 1). Except from a single experiment that explicitly

quantified impact over different independent time intervals [31;

this study did not find effect of duration of stress], our results were

evaluated from studies designed to test for other attributes, such as

seaweed abundance or modifying effects of nutrient or tempera-

ture [10,13,32]. Positive slopes may therefore be caused by co-

varying attributes. For example, it may be difficult to maintain

seaweed densities in long experiments, e.g. due to increased

likelihood of encountering storms [33,34,35,36,37], and seaweed

sizes may decrease over time due to phenological changes [38].

Experiments conducted on short time-scales, on the other hand,

are more often conducted in the laboratory, where seaweed

densities are easier to maintain and where impacts are measured

on seagrass planting units with limited storage-reserves to resist

stress [10,26]. Similar co-variation is likely to occur with plot-size;

small-plot experiments are more often conducted in the laboratory

and measured on short time-scales on physiological performances

(e.g., photosynthesis of leaves) [39], compared to large-plot

experiments that are conducted in the field with intact clonal

integration and impact measured on whole-plot performances

(e.g., total above ground biomass) [37]. In short, the reported

positive slope is most likely a combined result of logistical problems

(it is difficult to maintain high densities over long time and in large

plots in field experiments) and co-variation issues (small and large

plot experiments are relatively more often conducted in the

laboratory and field, respectively, see also Appendix S2).

Non-native seaweeds can arrive to seagrass beds through

different transport vectors. Most seaweed introductions stems

from unintentional arrivals to the new regions attached to

imported oysters, on ship hulls, as accidental releases from

aquaria, or via canals, like the Suez canal [12]. However, a few

introductions are intentional, e.g., Gracilaria and Eucheuma have

been introduced for aquaculture (used to produce phycocolloids)

[40]. These farmed seaweeds can have negative impact on the

seagrass [40,41], but we are not aware of studies that link transport

vectors and impact on seagrass. This could be an important future

research topic; for example, intentional introduced seaweeds may

have strongest impact on seagrass if they are ‘nursed’ by humans.

We found, unexpectedly, that invasive seaweeds had lower

negative effects than native species. Importantly, co-evolution

between seaweeds and seagrasses may be weaker than anticipated,

i.e., there may not be any reason to expect why non-native species

should have stronger impact than native species. Instead, co-

varying impact attributes can cause the reversed pattern as

observed, because many experiments with invasive seaweeds have

been conducted using rooted Caulerpa species (Fig. 1F, G, I). Thus,

it may be that the low invasion impact reported here reflects the

relatively small effects sizes observed for Caulerpa, rather than

where seaweeds originate from (for more detail on co-variation

issues, see discussion on attachment type and taxonomy, below).

So far, no experiments have tested if invasive seaweeds per se have

larger impacts than native seaweeds (e.g., by testing if a particular

seaweed have different effects in its native or introduced region),

even though this test is repeatedly called for in the invasion

literature [21,42]. Alternatively, it has been suggested that invasive

species can be more susceptible to native enemies and local abiotic

stressors, compared to native species [43,44], and this could

perhaps translate into smaller impacts reported from manipulative

experiments using non-native seaweeds. It is of course also possible

that some of the seaweeds that have been classified as native could,

in fact, be invasive (e.g. Gracilariopsis, Enteromorpha), as it has been

documented through biogeographic and molecular analyses of

other seaweed blooms [45]. Finally, we did not find support for

our expectation that high seagrass densities resulted in higher

resistance to seaweed stress (i.e., a lowered impact). Only a single

study has specifically tested this, finding a weak modifying effect

[46]. Again, co-variation between attributes may influence results;

species with high densities are typically small species (Halophila,

Halodule) that are susceptible to seaweed impact (Fig. 3B).

Hypotheses about non-directional effect sizes
All tests without a priori directional expectations (Table 1) were

significant; the attachment type, morphology and taxonomy of the

seaweed and the taxonomy of the seagrass all predict impacts.

Figure 2. Modifying effects of seagrass attributes on seaweed impacts. Hedges d represent dexperiment for continuous and dcumulative 695%
CL for categorical data. Data were extracted from up to 59 experiments. For meta-analytical test results and sample sizes, see Appendix S3.
doi:10.1371/journal.pone.0028595.g002
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Again, these attributes co-vary. For example, rooted seaweeds

(Fig. 1F) are coenocytic species (Fig. 1G) that belong to the genera

Caulerpa and Halimeda (Fig. 1I). Similarly, unattached seaweeds are

generally sheet-forming or coarsely branched algae, belonging to

the genera Ulva and Gracilaria, respectively. Epiphytic algae are

typically represented by a mixture of filamentous species and very

few species-specific impact data exists (Appendix S1). These co-

variation issues are difficult to disentangle because of the lack of

independence among the studied attributes, i.e., they depend

inherently on genetic traits in contrast to abundance, density and

size attributes that, at least in theory, can be similar between

different species.

Impacts by sheet-forming and coarsely-branched unattached

algae were more negative than coenocytic rooted seaweeds

(Fig. 1G). Differences in allelochemical interactions seems an

unlikely cause because species belonging to Caulerpa and Halimeda

(with reported low impact) often contain high levels of toxins

[47,48]. Instead, we suggest that the horizontal position at the

sediment surface of unattached seaweeds shade small seagrasses

and seedlings, and - more importantly - reduce gas exchange

compared to the upright position of rooted seaweeds. Unattached

horizontal seaweeds thereby create short and strong vertical

gradients in light, oxygen and (toxic) ammonia and sulphide

[26,49,50,51,52], resulting in adverse conditions for the sensitive

seagrass meristem positioned basally near the sediment surface

[53,54]. It is also possible that impacts of unattached seaweeds

have been tested with higher biomass than rooted seaweeds, a

confounding effect that is difficult to quantify because the

abundance of the rooted seaweeds typically is reported as frond

densities instead of biomass [17,32,55,56]. Perhaps genetic

constraints pose physical limitations to the length and density of

rooted fronds. Genetic limitations ultimately define how efficiently

rooted seaweeds can use up resources; rooted seaweeds typically

grow fronds,30 cm long and many have open space between

Figure 3. Seaweed impacts on seagrasses can be partially predicted from basic impact attributes. Plot 3A: Key meta-analytical results
schematized (Fig. 1–2, Table 1). Impact depends on seaweed abundance (low vs. high, cf. y-axis), seaweed attachment (unattached vs. epiphytic vs.
rooted, cf. long x-axis) and seagrass size (large vs. small, cf. short x-axis). The impact mechanisms associated with seaweed abundance and seagrass
size are simple; the more of the stressor (seaweed) and less of the impacted organism (seagrass) the larger the impact. The mechanisms that cause
different effects between attachment types are less obvious; we suggest that oxygen and light reduction and sulphide production cause large
negative impact of unattached and epiphytic seaweeds, whereas allelochemicals cause smaller impacts of rooted seaweeds (listed in bullets). Our
analysis addressed impact attributes in isolation. Future tests should use factorial designs to identify interactions between attributes. Plot 3B: Figure
legend. Standardized seagrass = three green leaves connected with rhizomes; leaves can be large or small. Standardized seaweed = brown frond; can
be sparse or abundant (1 vs. 3 fronds), positioned vertical (attached vs. rooted) or horizontal (unattached), and with (rooted) or without (unattached,
attached) inter-connecting rhizome. Plot 3C: Non-impacted controls. The impact treatments shown in plot 3A should always be compared to non-
impacted seagrass controls, here to ‘large and small seagrass without seaweed stress’.
doi:10.1371/journal.pone.0028595.g003
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interconnected frond (Fig. 3). There are less constraints to the size

and compactness for unattached seaweeds. Unattached seaweeds

may continue to accumulate (e.g., transported by currents) into

thicker and denser mats, creating high biomass per area, resulting

in efficient space occupation, light interception, nutrient filtering

and, most importantly, high production of anoxia and sulphide

levels [26,49,50]. It is vital that future tests compare impacts

between different attachment types, morphologies and taxonomic

identities using similar abundances and experimental conditions

(Fig. 3).

Research gaps
In our review so far, we have outlined some important research

gaps; for example, future experiments should test for effects of

seagrass size (within an ecotype), for duration and plot size (within

a single experiment) and attachment types and morphology of the

seaweeds, explicitly aiming to reduce co-varying/confounding

issues. These examples are included in a more comprehensive list

of studies that are needed to be able to predict precisely how

seaweed impacts seagrass (Appendix S5). Rather than addressing

each gap in detail, we simply highlight that targeting these gaps

does not necessarily require sophisticated equipment, or highly

advanced methodologies, but rather reflects an urgent need for

labour-intensive ‘simple-but-hard-work’. For example, we only

found a few studies which manipulated seagrass epiphytes

[31,46,57] (using simple but efficient hand-picking), even though

the problem of seagrasses being covered by epiphytes has been

known around the world for decades [57,58]. Thus, most of the

proposed research gaps can be addressed with relatively limited

means. In short, we argue here that not a single impact attribute

(research gaps 1–5), their interactions (gap 6) or the broader

ecological context of seaweed-seagrass interactions (gaps 7–12)

have yet been studied in adequate detail to provide the necessary

background information that allows managers and scientists to

model and predict seaweed impacts on seagrasses at the local

patch scale. However, we also believe that rapid progress is

possible if the necessary logistic and labour-intensive resources are

allocated.

Conclusion
We detected large variability of impacts of seaweeds on

seagrasses in the reviewed experiments, and many types of co-

variation between which makes it difficult to pinpoint what

attributes drive impacts. Hence, only the most robust and general

attributes could be confirmed to influence impact across the

reviewed studies; seaweed abundance and attachment type (which

co-vary strongly with seaweed morphology and taxonomy) and

seagrass size (which co-vary strongly with seagrass taxonomy)

modify the magnitude of stress impact. These attributes, therefore,

provide baseline models for how seaweeds impact seagrasses

(Table 1, Fig. 1, 2, 3). We also suggest that impact attributes

should be tested in much more detail and with factorial

approaches to develop more realistic impact models and to

prioritize and evaluate their relative importance (Appendix S5).

Finally, we hope that this review will stimulate progress in

seaweed-impact ecology, ultimately providing managers and

scientists with improved tools to conserve rapidly deteriorating

seagrass beds around the world.
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