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Abstract

The Leurre.com project  is  a  worldwide  network  of  honeypot  environments  that  collect  traces  of  malicious 
Internet traffic every day. Clustering techniques have been utilized to categorize and classify honeypot activities 
based  on  several  traffic  features.  While  such  clusters  of  traffic  provide  useful  information  about  different  
activities that are happening in the Internet, a new correlation approach is needed to automate the discovery of  
refined types of activities that share common features. This paper proposes the use of packet inter-arrival time  
(IAT) as a main feature in grouping clusters that exhibit commonalities in their IAT distributions. Our approach  
utilizes the cliquing algorithm for the automatic discovery of cliques of clusters. We demonstrate the usefulness  
of our methodology by providing several examples of IAT cliques and a discussion of the types of activity they 
represent. We also give some insight into the causes of these activities. In addition, we address the limitation of  
our  approach,  through the  manual  extraction of  what  we term supercliques,  and discuss  ideas for  further  
improvement.
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INTRODUCTION

The work described in this paper builds upon previous work by Pouget et al. (2006) in the use of data obtained in 
the Leurre.com environment for detecting anomalous Internet traffic. This distributed low interaction honeypot 
environment currently consists of 50 platforms located in 30 different countries. In the previous work we have 
shown that the analysis of the inter arrival times (IATs) between packets collected in this environment could 
provide a valuable contribution to network forensics.

In that work, we used the notion of attack clusters proposed in earlier work by some of the same authors and we 
introduced the notion of cliques of clusters as an automated knowledge discovery method. A clique is a group of 
clusters that share common characteristics related to one or maybe a few attack processes.This paper revisits the 
approach to identifying IAT-based cliques in an attempt to achieve the automatic derivation of cliques of clusters 
with common IAT characteristics to better identify the repeated use of commonly used tools, and also to identify 
spurts of activity by such commonly used tools. We present a systematic approach for building new cliques and 
provide an extensive validation of the approach over large datasets. Last but not least, by means of  classes of  
cliques, we show the usefulness of the approach as a result of the new knowledge they help to derive about the 
attack traces collected. 

The structure of the paper is as follows. First we define our old notion of clusters as well as our new definition of  
the cliques and the process to build them. We then validate the approach thanks to experimental results carried 
out over data obtained during a period of 3 months (March to May 2007) in the Leurre.com environment. Finally 
we provide conclusions and discussion about the results of the paper.

CLUSTERS AND CLIQUES

In this section we describe the techniques used to classify the traffic collected by the various honeypots.  We first 
introduce  the  basic  concepts  of  the  Leurre.com  traffic  analysis.   We then recall  the  Leurre.com clustering 
algorithm, and then present the novel cliquing algorithm introduced in this paper.

Terminology

A  platform is one of the many  Leurre.com honeypot sites.  Each platform contains three  virtual hosts, with 
distinct IP addresses, impersonating three different OS behaviours taking advantage of the honeyd software. The 



honeypots  are  configured  to  obtain  a  minimal  level  of  interaction,  replying  to  ICMP  echo  requests  and 
establishing TCP connections on their open ports.

All activity observed by the honeypots is attributed to a  source, meant to uniquely identify an attacker taking 
into consideration dynamic addressing. Two activities generated by a given IP address and separated by a period 
of more than 25 hours are attributed to two different sources.

A large session is a collection of packets exchanged between one source and one platform, while a tiny session 
groups the packets exchanged between one source and one virtual host. A large session is thus composed of up 
to three tiny sessions, ordered according to the virtual hosts�  IP addresses.

A port sequence is the sequence of (TCP or UDP) ports targeted on a virtual host, within a tiny session.

A packet  inter-arrival time or IAT, is the time difference (in seconds) between the arrival of two consecutive 
packets at a virtual host (i.e., within a tiny session).

Clustering Algorithm

The first step of the clustering algorithm consists in grouping large sessions into  bags. This grouping aims at 
differentiating between various classes of activity taking into consideration a set of preliminary discriminators, 
namely the number of targeted virtual hosts and the unsorted list of port sequences hitting them.

In order to further refine the bags, a set of continuous parameters is taken into consideration for each large 
session, namely: its duration, the total number of packets, the average IAT, and the number of packets per tiny 
session. These parameters can assume any value in the range [0, ], but some ranges of their values may be used∞  
to  define  bag  subclasses.  This  is  done  through  a  peak  picking  algorithm that  identifies  ranges  of  values 
considered  discriminating for  the bag refinement.  Large  sessions belonging  to  a  bag and  sharing the same 
matching intervals are grouped together in a cluster.

A very last  refinement  step is  the  payload validation.  The algorithm considers  the concatenation of  all  the 
payloads sent by the attacker within a large session ordered according to the arrival time.  If it identifies within a 
cluster multiple groups of large sessions sharing similar payloads, it further refines the cluster according to these 
groups.

Cliquing Algorithm

Due to the large quantity of data we collect, we need to rely on an automated methodology that is able to extract 
relevant information about the attack processes.  Our correlative analysis relies on concepts from graph and 
matrix theory. In this context, a clique (also called a complete graph) is an induced subgraph of an (un)directed 
graph in which the vertices are fully connected. In our case, each node represents a cluster,  while an edge 
between a pair of nodes represents a similarity measure between two clusters. The main focus of this work is on 
computing similarities between IAT distributions, but our methodology can be applied to any type of vector or 
time series.

Determining the largest clique in a graph is often called the maximal clique problem and it is a classical graph-
theoretical, NP-complete problem (Bron and Kerbosch, 1973). Although numerous exact algorithms (Kumlander 
2004a, 2004b, Bomze et al. 1999) and approximate methods (Bomze et al. 2000, Pavan and Pelillo 2003) have 
been  proposed  to  solve  this  problem,  we  address  the  computational  complexity  of  the  clique  problem by 
applying  our  own  heuristics  to  generate  sets  of  cliques  very  efficiently.  While  our  technique  is  relatively 
straightforward, it  possesses two significant features.  Firstly,  our  technique is  able  to deliver  very coherent 
results with respect to the analysed similarities. Secondly, regarding the computational speed, our technique 
outperforms other algorithms by several orders of magnitude. For example, we applied the approximate method 
proposed by Pavan and Pelillo (2003) which consists of iteratively extracting dominant sets of maximally similar 
nodes from a similarity matrix. On our dataset, the total computation was very expensive (several hours) whereas 
our custom cliquing algorithm only takes a few minutes to generate the same cliques of clusters with the same 
dataset. 

On  the  other  hand,  our  heuristic  imposes  a  constraint  on  the  similarity  measure,  namely  that  it  has  to  be 
transitive. With this restriction, it is sufficient to compute the correlation between one specific node and all other 
nodes in order to find a maximal clique of similar nodes. We achieve this transitive property by carefully setting 
a global threshold on the measurement of similarities between clusters (see next section).

Here are the different steps of our cliquing algorithm:

1. We define a quantitative representation for the feature to correlate (in this work: the IAT distribution 
within clusters). 



2. We choose a well-suited similarity measure for this characteristic.

3. Consider the list of all clusters. While this list is not empty:

•We  consider  the  next  cluster  in  the  list  and  we  take  the  corresponding 
characteristic vector;

•We compute the similarities with all other remaining vectors;

•If there are other similar clusters (with respect to the defined threshold), we 
put all of them in a new clique. We remove those clusters from the list and 
start the next iteration.

•If there is no other similar cluster, we remove the current cluster from the 
list, store it in a separate group, and start the next iteration.

Clearly, this algorithm takes advantage of the already created cliques to progressively decrease the search space; 
so in the average case the algorithmic complexity will  be less than  O(n2),  and we could expect  typically  a 
complexity order of O(n.log(n)). The exact complexity analysis of our algorithm is out of the scope of this paper.

Cluster Correlation using Packet Inter-arrival Times

The first step in our methodology is to construct the cluster characteristics. We represent the IAT distributions of 
the clusters with a vector in which every element corresponds to the IAT frequency of a pre-defined bin (range 
of time values). We end up with an IAT vector of 152 bins where the first bin groups IATs falling in the interval 
0-3 seconds, and the last bin corresponds to IATs of 25 hours or more. 

To circumvent the limitations of our previous work, we now rely on a similarity measure that is based on a 
recent technique called  symbolic aggregate approximation (SAX) (Lin et al. 2003). SAX aims at reducing a 
complex time series to a symbolic approximation without losing too much quality with respect to the � shape�  of 
the signals. It is a piecewise aggregation approximation (PAA) technique which tends to approximate time series 
by segmenting them into intervals of equal size and summarizing each of these intervals by its mean value.

SAX uses  predetermined  breakpoints  during the  quantization,  chosen  so as  to  maximize  the  energy of  the 
quantized representation of the time series, which are then interpreted as a string of symbols taken from a finite 
alphabet. Figure 1 gives an example of a time series converted to a SAX representation which has been mapped 
to  the string � eefeffeccbbabaab� .  A SAX representation of a  time series  T of  length N can be denoted by 
WT (N,w, ), where: α N is the number of elements in T; w is the number of elements in the SAX representation of 
T (i.e. the length of WT); and α is the alphabet size (number of quantization levels).  The ratio r = N/w is called 
the compression ratio. A value of r = 10 means that 10 elements of T are mapped to a single symbol in WT. 

One of the strong advantages of SAX resides in the fact that this technique allows a distance measure that lower 
bounds the original distance measure (e.g. the Euclidean distance, see Lin et al. (2003) for the proof).  SAX 
defines a MINDIST function that returns the minimum distance between the original time series of two words. 
Let T1 and T2 be two time series of same length N, then the minimum distance given by SAX can be calculated 
as follows:

MINDIST WT1
,WT2 = Nw⋅∑i=1

w
dist WT1

i  ,WT 2
 i 

2

The  dist() function returns the inter-symbol distance and can be implemented using a table lookup for better 
computational efficiency (see Lin et al. (2003) for more details). 



Figure 1.  Example of SAX representation of a time series WT(256, 16, 6).

In order to achieve a transitive similarity function, we set a global threshold on the distance computed with SAX. 
Only if the similarity measure exceeds 99% of the maximal theoretical value, do we assume that the two vectors 
are completely similar. This experimental heuristic gives fair results. A drawback of this approach, as for every 
method which relies upon a threshold, is that a good preliminary tuning is needed to fit it to the data.

SAX can also typically compress the time series, but we chose here not to compress the IAT vectors because we 
already defined packet IAT bins which regroup all values falling in those respective intervals.

EXPERIMENTAL RESULTS

We now describe our analysis of the IAT-based cliques obtained using the above approach when applied to the 
Leurre.com dataset.  We consider a dataset covering three months of traffic (March �  May 2007) collected from 
the Leurre.com environment.

For the sake of conciseness, in the analysis presented in this paper, we only consider clusters which have at least 
one bin, after the 21st bin (the 22nd bin corresponds to around five minutes), with a count of more than 10.  This 
means that we ignore clusters which do not have more than 10 occurrences of at least one IAT value greater than 
five minutes.

After this filtering, we obtained 1475 vectors representing the IAT frequency distributions of the corresponding 
clusters.   The clique algorithm described above was then applied to  these vectors,  yielding 111 IAT-based 
cliques comprising 875 clusters.  The remaining 600 clusters did not fall into any clique.  

Each clique contains a group of clusters which, based upon their IAT distribution (and the parameters of the 
cliquing algorithm) are similar. Prior to describing our detailed analysis of the cliques obtained we present three 
types of cliques that we expected would, inter alia, be represented in the results:

Type I: Cliques  which  contain clusters  of  large  sessions  targeting  the  same  port  sequences.   The 
difference  between the  various  clusters  contained  within such  a clique lies  in  the number  of 
packets sent to the targeted ports.  These cliques are mostly symptomatic of classes of attacks 
where the attacker repeatedly tries a given attack, a varying number of times.

Type II: Cliques composed of clusters of large sessions targeting different port sequences but exhibiting 
the same IAT profile.  These cliques are symptomatic of tools that send packets to their target 
according  to  a  very  specific  timing  and  that  have  been  used  in  several  distinct  campaigns 
targeting different ports.

Type III: Cliques which contain clusters grouped together based upon the presence of long IATs (longer 
than 25 hours), representing sources which are observed on one platform, then, within 25 hours, 
are detected on another platform, before again returning to the original platform.  Such behaviour 



would be indicative of a source which is scanning large numbers of devices across the internet, in 
a predictable manner, resulting in them repeatedly returning to the same platform.

We also found many similarities across the different cliques that were generated.  We identified a number of so-
called supercliques as a result which suggests that the IAT-based analysis we have focused on in this paper is 
good at automatically identifying very specific types of activity within a very large dataset.  Our analysis of 
these supercliques is presented below.

Type I Cliques

Type I cliques are expected to contain clusters which are very similar with respect to most traffic features, 
including port sequence, with one exception being that the large and tiny sessions within the clusters contain 
varying durations (both in terms of time, and the number of packets sent by the source).  The variation in the 
duration of the sessions will account for such traffic being arranged in different clusters.  Two particular cliques 
that are seen to fall clearly into the Type I category are Clique 7 and Clique 49 (summarised in Table 1).

Clique 7 is  composed of 8 clusters,  9 large sessions and a total  of 821 packets.  These clusters are mainly 
contained in one bag (corresponding to the very common port sequence of TCP/135).  In this clique, there are 5 
platforms targeted by 6 distinct IP addresses originating from 4 different countries (China, Germany, Japan, and 
France). The peak IAT bin is bin 32 with IAT values in the range 554-583 seconds, and the average duration is 
70491 seconds with a minimum duration of 4657 seconds, and a maximum of 236350 seconds.  

All three virtual hosts on each of the targeted platforms were hit with the same number of packets, with the 
average number of packets per session equal to 35.  Also, several IP addresses were found to occur in multiple 
clusters within the clique.  While these sources were grouped in different clusters due to their varying durations, 
there were strong similarities in terms of the IAT characteristics of the sessions, resulting in these clusters being 
grouped in the same clique. 
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49 11 285 3274 1 37 248 46 TCP/22 2703-3597 (49) 1035, 9922, 137528 3

Table 1: Type I Cliques

Clique 49 contains 11 clusters, 285 large sessions, and 3274 packets, and the targeted port sequence is TCP/22. 
There are 248 distinct IP addresses which attacked 37 different platforms. The sources of the IPs are widely 
spread among 46 different countries. Despite the widespread location of the sources of the traffic in this clique, 
there are a number of similarities in the observed behaviour.  Firstly, large sessions in this clique always targeted 
all three virtual hosts on each platform, and the number of packets sent to each virtual host was similar in each 
case (one packet for the Windows hosts and an average of 10 packets for the UNIX host). The average duration 
of attacks is 9922 seconds with minimum and maximum durations in the range of 1035 to 137528 seconds. The 
majority of the clusters in this clique belong to the same bag. The IAT sequences of these clusters are similar 
with all IATs in the session being short except one which belongs to bin 49 (2703-3597 seconds).

Cliques 7 and 49 were typical examples of Type I cliques where attack traffic ends up in different clusters due to 
the variations in either the duration of the attack or the number of packets sent. In each case the duration and 
number of  packets  varied significantly between the sessions,  while  the  IAT behaviour remained consistent. 



Also, a number of IP address were shared between clusters within each clique, with over 50 % of the clusters 
sharing IP addresses or class C networks. 

The identification of cliques of Type I addresses a weakness of the original clustering algorithm which was, by 
design, unable to group together activities that clearly were related to each other and should have, therefore, be 
analysed together.

Type II Cliques

Type II cliques are those which contain a large variety of targeted port sequences, yet each cluster exhibits 
similar IAT characteristics.  We hypothesise that clusters belonging to this type of clique correspond to the same 
attack tool using the same strategy to probe a variety of ports (such as a worm which targets multiple vulnerable 
services, or some other type of systematic scanner targeting a number of different ports).  Two cliques which 
exhibit this type of behaviour are Cliques 92 and 69 (see Table 2).
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1
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(all TCP)
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64783

933-1797 (46)

133, 
44163, 
22522

4

1

Table 2: Type II Cliques

Clique 92 consists of 40 clusters, 502 large sessions and 4234 packets in total. While a variety of ports are 
targeted by these clusters, traffic within each cluster only targets a single port.  The TCP ports targeted within 
this clique are: 6769, 7690, 12293, 18462, 29188, 64697, and 64783.  This clique is a result of 502 distinct 
source IP addresses originating from 25 different countries, and targeting only a single platform.  Additionally, 
only one virtual host was targeted on this platform.  The average number of packets per large session was 16 
(minimum 3 and maximum 103), and the average duration was 9278 seconds.  Clusters in this clique belong to 7 
different  bags  (corresponding  to  the  7  different  ports  targeted).  Clique  92  contains  peak  IAT  bins  of  46 
(933-1797 seconds) and 48 (1803-2702 seconds) where the IAT sequences are repeated patterns of short and 
long IATs.  A possible explanation for the traffic which constitutes this clique is that it corresponds to the same 
tool being used to scan for the existence of services which use a strange port (such as peer-to-peer related 
services) �  where the scan uses a regular (long) delay between retransmissions.



Clique 69 is similar to Clique 92 in that it also contains a variety of clusters where each cluster contains traffic  
targeting a single, unusual port.  This clique contains 64 clusters, 1336 large sessions and 17097 packets. It is a 
result of 1300 distinct attacking IP addresses, that originate from 37 different countries and target 2 platforms 
(all but one target the same platform as that targeted by the traffic in Clique 92). The targeted TCP ports are: 
4662, 6769, 7690, 12293, 29188, 38009, 64697, and 64783. Clusters in this clique belong to 8 different bags, 
and in each case only one virtual host was targeted per platform. The durations of attacks range from 133 to 
225224 seconds with an average of 44163 seconds. The number of packets sent in each large session is in the 
range 2 to 135 with an average of 25 packets. The IAT sequences are repeated patterns of short, short, and long 
IATs with a peak IAT bin of 46 (933-1797 seconds).

The traffic in Cliques 92 and 69 represent a large number of distinct sources from a variety of counties targeting 
a variety of ports, predominantly (with one cluster being the exception), targeting the same platform in China. 
These cliques represent very interesting activity which is difficult to characterise in further detail due to the lack 
of interactivity of the honeypots on these ports.  The significance of the ports being targeted is unclear, but might 
be easier to determine if packet payloads were available.  The fact that all of these sources exhibit a very distinct 
fingerprint in terms of their IAT characteristics makes the activity all the more unusual.

The identification of cliques of Type II enables us to highlight, in a systematic way, the existence of tools with a 
specific IAT profile that are reused to launch different attack campaigns against various targets. Without such 
analysis, the link that does exist between the IPs belonging to different clusters in a given clique would have 
remained hidden. 

Type III Cliques

Based upon our observation of the Leurre.com data over a long period of time, we found that there are a number 
of large sessions which continue for an extended duration (sometimes many weeks).  Of these there are a number 
which target multiple platforms within a 25 hour period, where the intervening time before returning to the same 
platform is more than 25 hours.  These very long IATs are placed into bin 152 during the cliquing process.  A 
number of cliques that resulted from the cliquing algorithm were characterised by these long IATs, and here we 
investigate two of them in detail �  Cliques 31 and 66 (see Table 3).

Clique 31 is a large clique of 150 clusters, 3456 large sessions, and a total of 21422 packets. The port sequence 
for  Clique  31  is  the  single  port  UDP/1434  (MS SQL).  In  Clique  31,  there  are  277  distinct  IP  addresses 
originating from 22 different countries which target 39 different platforms. Characteristics of clusters in this 
clique include: a varying number of hosts targeted, with the average number of packets sent per host equal to 12 
(minimum 2 and maximum 85) and an average duration equal to 1142131 seconds. Clusters in this clique belong 
to 7 different bags and have IAT values that exceed 25 hours (IAT peak bin 152). These sessions are indicative 
of  a  very  slow scanner  which is  seen  on  multiple  platforms,  returning  to  the  same platform only after  an 
extended delay of more than 25 hours.
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22 UDP/1434 >25 hours (152)

132, 
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7509849
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66 3 13 171 3 12 9 2
UDP/1026; 
UDP/1027
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1, 

381408, 
915002

3



Table 3: Type III Cliques

Clique 66 contains 3 clusters, 13 large sessions and 171 packets. These sessions are characterised by sending 
multiple packets, alternating between UDP ports 1026 and 1027 repeatedly.  In Clique 66, 12 platforms were 
targeted by 9 distinct IP addresses originating from 2 different countries. All clusters within this clique contain 
sessions which target all three virtual hosts on the target platforms, with only a small number of packets sent per 
session (on average 4, with a minimum of 3, and a maximum of 6). The average session duration is 381408 
seconds. Clusters in this clique belong to 3 different bags and, again, the IAT durations are very large. 

Cliques 31 and 66 represent examples of activities where a source IP is scanning the globe, targeting different 
honeypot platforms in less than 25 hours.  UDP port 1434 is used by the MS SQL Monitor service and is the 
target of several worms, such as W32.SQLExpWorm and Slammer.  It is likely that traffic targeting this port is 
result of worms that scan for vulnerable servers.  UDP ports 1026 and 1027 are common targets for Windows 
Messenger spammers, who have been repeatedly targeting these ports since June 20031.

Supercliques

We observed that the across all of the obtained cliques, only a relatively small number of peak IAT bin values 
were represented.  Indeed, from the point of view of the peak bin values, we found that a limited number of 
combinations existed.  This suggests that the cliques we obtained possess a high level of uniformity in terms of 
the activities  that  they represent.   Based  upon the  small  set  of  common peak bins,  and the  dominant  port 
sequences targeted within those cliques, we manually grouped the cliques together into 6 supercliques, which are 
summarised in Table 4.

Superclique Cliques Clusters
Large 

Sessions
Distinct IPs Peak Bins Port Sequence

1 7 166 3505 277 152 1434U

2 5 12 22 12 152 1026U1027U …

3 6 29 288 247 46, 48, 49 135T

4 4 21 541 429 46, 48, 49 22T

5 23 183 6313 6188 46, 48, 49 unusual TCP ports

6 23 74 164 152 31, 32 135T

Table 4: Supercliques and their representative properties.

As can be seen from the table, the supercliques account for just over half of the cliques generated.  The cliques 
not represented within the supercliques were not considered in the remaining analysis.

Representative examples of each of the first five supercliques have been presented in the previous three sections. 
The Type I Cliques 7 and 49 are examples of Supercliques 3 and 4, respectively.  Superclique 6 contains Type I 
cliques which target port TCP/135, similar to Superclique 3, with the difference being that the dominant IAT for 
cliques from Superclique 6 are in bins 31 and 32, rather than 46, 48, and 49 (for Superclique 3).  Cliques 92 and 
69 (Type II) are examples of cliques from Superclique 5.  The Type III Clique 31 is an example of a clique that 
belongs to Superclique 1; while Type III Clique 66 is an example of a clique from Superclique 2. 

DISCUSSION AND CONCLUSIONS

We have generated automatically a number of cliques that represent a variety of interesting activities which 
target  the  Leurre.com  environments.  We  have  shown  that  more  than  half  of  the  cliques  can  be  easily 
characterized as one of the three major types identified above.  Indeed, in accordance with the supercliques that 
we manually identified, there are six major classes of activity that the cliquing algorithm has extracted for the 
time period that we examined (the supercliques).  The strong similarities within the supercliques highlight the 
usefulness of the cliquing algorithm for identifying very particular kinds of traffic observed by the honeypots. 
Further fine-tuning of the cliquing algorithm may allow these (super)cliques to be automatically generated.

The automatic identification of  cliques  of  the different  types  outlined in  this  paper  represents  a  significant 
contribution to both addressing weaknesses in the original clustering algorithm, as well as highlighting, in a 
systematic way, the existence of tools with a specific IAT profile. While our analysis has focused only on the 
cleanest cliques (i.e., the ones that represent consistent behaviour in terms of the characteristics we investigated, 

1  For example, see http://www.secureworks.com/research/threats/popup-spam/.



such as port sequence, number of virtual hosts targeted, and the targeted platforms), there are many other cliques 
that contain potentially interesting activities that should be further investigated in the future.

Due to the low interaction nature of the honeypots used by the Leurre.com project the majority of the activities 
observed will relate to different types of scanning (or backscatter), such as that from automatically propagating 
malware, or scanners which may be cataloguing the existence of various servers around the world, for example. 
While it is difficult to reach accurate conclusions about the exact nature of the tools which generate the packets 
collected, we have shown that the cliquing approach adds useful detail to the existing clusters by automatically 
extracting significant classes of activity from an extremely large dataset.
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