Edith Cowan University Research Online

ECU Presentations

2011

Nano-engineered high-performance magneto-optic garnet materials

Mohammad Nur-E-Alam Edith Cowan University

Mikhail Vasiliev Edith Cowan University

Viacheslav Kotov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Kamal Alameh Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecupres

Part of the Electromagnetics and Photonics Commons, and the Nanotechnology Fabrication Commons

Presented at the 2011 International Conference on Materials for Advanced Technologies (ICMAT), 26th June-1st July, 2011, Suntec, Singapore.

This Presentation is posted at Research Online. https://ro.ecu.edu.au/ecupres/8

Nano-engineered high-performance magneto-optic garnet materials

<u>Mohammad Nur-E-Alam</u>¹, Mikhail Vasiliev¹, Viacheslav Kotov² and Kamal Alameh¹

¹Electron Science Research Institute, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia ²Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11 Mohovaya St, Moscow 125009, Russia

OUTLINE

Introduction

- Introduction to Bismuth- and rare-earth-substituted iron garnets and application examples
- Material synthesis and characterization
 - RF magnetron sputtering technology
 - Conventional oven annealing for crystallizing the amorphous layers
- Thin-film engineered garnet materials, properties & applications
 - $\bigstar (Bi, Dy)_3(Fe, Ga)_5O_{12} \text{ and }$
 - ✤ (Bi, Lu)₃(Fe, Al)₅O₁₂

Rare-earth iron garnets: $R_3Fe_5O_{12}$ where R is a rare earth atom

 Commonly known garnet materials are: Yttrium Iron garnet (YIG = Y₃Fe₅O₁₂), Gadolinium Gallium garnet (GGG= Gd₃Ga₅O₁₂) and Bismuth Iron garnet (BIG = Bi₃Fe₅O₁₂)

Crystal structure of magnetic garnets

• The two very important subclasses of garnets for use in magneto-optic (MO) applications are described by:

 $(Bi, Dy)_3(Fe, Ga)_5O_{12}$ and $(Bi, Lu)_3(Fe, Al)_5O_{12}$

- Bismuth-substituted rare-earth iron garnets doped with Ga or Al, of importance due to the strong Faraday effect and a large variety of possible properties adjustable through material composition
 - magnetic recording media
 magnetic field sensors
 MO imaging media
 MO planar waveguides
 magnetically-tunable photonic crystal structures

Background theory: Faraday effect

Extraordinary magneto-optical properties of Bi-substituted iron garnets first reported in 1969 (C. F. Buhrer, J. Appl. Phys. 40(11), 4500–4502, 1969).
Highest specific Faraday rotation in the visible and near-IR regions (of all semi-transparent dielectric materials)

Thin film materials synthesis & characterization

- The parameters of importance are: film thickness, absorption spectra, specific Faraday rotation, coercive force, switching field, saturation field, and magnetization direction
- Optimization of magnetic properties is crucial for the development of new functional materials and for many emerging technologies in integrated optics and photonics

MO thin films & process parameters

Photographs of a correctly annealed garnet-Bi₂O₃ nanocomposite thin film and of two other nanocomposite films of similar type, but over-annealed

- Amorphous films: High optical absorption + no magnetism \Rightarrow Zero Faraday rotation
- Crystallized films: Low optical loss + magnetization ⇒ High MO figures of merit are possible Q [°] = 2 * |Θ_F| [°/μm] / α [μm⁻¹]
 The optimized annealing regimes for highly Bi-substituted garnet materials are strongly dependent on the film composition

Bi₂Dy₁Fe_{5-x}Ga_xO₁₂ : Bi₂O₃ thin film materials and engineering of their optical properties

 The parameters of importance are: absorption coefficient and specific Faraday rotation spectra. Co-deposition from a garnet-stoichiometric target + Bi₂O₃ target reduces absorption significantly (M. Vasiliev, M. N. Alam et al, Opt. Express 17(22), 19519–19535, 2009).

• Correctly annealed films with optimized Bi₂O₃ content also show increased Faraday rotation (M. Vasiliev, M. Nur-E-Alam, K. Alameh et al, J. Phys. D Appl. Phys. 44(7), 075002, 2011).

Bi₂Dy₁Fe_{5-x}Ga_xO₁₂ : Bi₂O₃ thin film materials and their properties – Faraday rotation

Crystal structure properties of Bi₂Dy₁Fe_{5-x}Ga_xO₁₂ thin film materials

Stronger garnet-phase reflection peaks and weaker iron oxide peaks observed in high-performance oxide-mixed composites

- Garnet phase with bcc cubic lattice type
- Crystal lattice parameters have been calculated from XRD data
- Average grain size 37 nm (agrees with TEM imaging results)

- Control over the magnetic hysteresis loop properties of garnet layers an area of our ongoing research; crucial for the design of integrated optic devices using Faraday effect
- Multiple remnant magnetization levels demonstrated in films with perpendicular magnetization (M. Nur-E-Alam, M. Vasiliev, and K. Alameh, Opt. Quantum Electron. 41(9), 661–669, 2009).

Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O₁₂ Magneto-soft thin films 20000 20 Low absorption A (upper limit) merit (degs) ---A (fitted) coefficients observed A (lower limit) 15 Error due to all sources High specific Faraday rotation 15000 Absorption coefficient (cm⁻¹) of 10 5.9 deg/µm at 532 nm ed figure Q (532 nm) = (13.9 ±1.6)° ◆532 nm figure of merit ✤ 1.6 deg/µm at 635 nm 5 ♦635 nm figure of merit Measur 0000 ✤ 1.07 deg/µm at 660 nm 660 nm figure of merit 0 700 500 550 600 650 Measured MO quality Wavelength (nm) $Q(635,nm) = (15.7 \pm 2)^{\circ}$ factors ($2\Theta_{\rm F}/A$) 5000 Q (660 nm) = (12.7 ± 0.7)° ✤13.9° (±1.6°) at 532 nm **◆15.7° (±2°)** at 635 nm

⁷⁵⁰ *****12.7° (±0.7°) at 660 nm

RF sputtered Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O₁₂ magnetically-soft thin films are very attractive for different magneto-optic applications and for designing novel magnetically-controlled photonic components

700

500

550

600

650

Wavelength (nm)

Faraday-effect hysteresis loops

Strong substrate dependency of coercive force observed
H_c ~ 45 Oe for the films on GGG substrates deposited at 250 °C and H_c below 10 Oe obtained in films deposited at high substrate temperatures (680 °C).

Measured Faraday-effect magnetic field sensitivity at
532 nm: > 100 °/(cm·Oe)

•Low coercive force ⇒ lower external magnetic field required to control light through polarisation

Hysteresis loop of Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O₁₂ MO films deposited onto (GGG) substrates

Domain structures observed in the absence of external magnetic fields using transmission-mode polarization microscopy

Regular maze-type domains were observed in sputtered Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O₁₂ films deposited onto GGG at (a) 250 °C and (b) 680 °C substrate temperature

□ Films deposited at high T(sub) are almost domain-free \Rightarrow almost in-plane magnetization Good crystalline quality, low coercive force values and high magnetic sensitivity achieved in our magnetically-soft garnet materials which are attractive for the development of reconfigurable nanophotonic devices and garnet waveguides

Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O₁₂ : Bi₂O₃ nanocomposites and engineering of the material properties

 $(BiLu)_{3}(FeAl)_{5}O_{12} + 4.5 \text{ vol}\% Bi_{2}O_{3}$ annealed for 3 hrs @ 620 °C

 $(BiLu)_3(FeAl)_5O_{12} + 4.5 \text{ vol}\% Bi_2O_3$ annealed for 20 hrs @ 615 °C

 $\label{eq:bill} \begin{array}{l} (BiLu)_3(FeAl)_5O_{12} + 4.5 \mbox{ vol}\% \ Bi_2O_3 \\ annealed \ for \ 5 \ hrs \ @ \ 615 \ ^\circ C \end{array}$

 $\begin{array}{l} (BiLu)_{3}(FeAl)_{5}O_{12} + 4.5 \ vol\% \ Bi_{2}O_{3} \\ annealed \ for \ 10 \ hrs \ @ \ 610 \ ^{\circ}C \end{array}$

 $(BiLu)_3 (FeAl)_5 O_{12} + 4.5 \text{ vol\% Bi}_2 O_3$ annealed for 5 hrs @ 610 °C

 $Bi_{1.8}Lu_{1.2}Fe_{3.6}AI_{1.4}O_{12}$ deposited at $T_{sub} = 680 \ ^{\circ}C$, annealed for 3 hrs @ 630 $^{\circ}C$

 $Bi_{1.8}Lu_{1.2}Fe_{3.6}AI_{1.4}O_{12}$ deposited at T_{sub} = 250 °C, annealed for 1 hr @ 650 °C

MO figure of merit (degrees)

MO figures of merit measured in garnet and garnet-oxide composite films of type $Bi_{1.8}Lu_{1.2}Fe_{3.6}AI_{1.4}O_{12}$: Bi_2O_3

The effects of adjusting the garnet stoichiometry by cosputtering extra Bi₂O₃ have been studied; significantly improved material properties were achieved

High Faraday rotations observed

- Very low absorption coefficients measured (below 1000 cm⁻¹ at 635 nm).
- High MO figures of merit measured at 635 nm (more than 50°)

Improved optical transparency achieved in nanocomposites

Left: 650 nm-thick film of $Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O_{12}$ on a $Gd_3Ga_5O_{12}$ (GGG) substrate;

Right: 1150 nm-thick film of ($Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O_{12} + 20$ vol.% co-sputtered Bi_2O_3) on a GGG substrate <u>- both films are as-</u> <u>deposited</u>

Annealed (crystallized) films:

Left: 1030 nm-thick ($Bi_2Dy_1Fe_4Ga_1O_{12}$ +24 vol.% Bi_2O_3) on glass;

Right: 1080 nm-thick $Bi_2Dy_1Fe_{4.3}Ga_{0.7}O_{12}$ on GGG.

Surface morphology and magnetic properties of Bi_{1.8}Lu_{1.2}Fe_{3.6}Al_{1.4}O₁₂: Bi₂O₃ nanocomposite thin films

2D image of garnet-oxide composite film

 Comparatively lower coercive force has been achieved for nanocomposite oxide-mixed films
 Nano-crystalline structure of garnet materials has been observed

> The garnet and garnet-oxide thin film materials possess an excellent combination of optical, magnetic and MO properties.

Suitable for use in a wide range of emerging application areas

- Nano-structured magnetic photonic crystals (MPC) for magneto-optic polarization controllers in a wide angular range (up to $\pm \Theta_{\text{Emax}}$)
- Ultrafast spatial or temporal modulators of light intensity
- Non-reciprocal waveguide components
- Dielectric permanent magnets with adjustable magnetic field landscapes over the film surface
- Nano-engineered high-contrast magnetic field sensors and visualisers
- Potential applications in biology (cell manipulation)

Magnetic lattices for trapping ultra-cold atoms

High resolution images of magnetic data tracks have been acquired using visible and UV polarisation microscopy

Asymmetrical 2D magnetic lattice formed using a film of $Bi_2Dy_1Fe_4Ga_1O_{12}$ sputtered onto a Si substrate (A. Abdelrahman et al, Phys. Rev. A 82(1), 012320, 2010).

Ultra-fast spatial light modulators and image recognition systems

- Bi-substituted MO garnet thin-film materials (both magnetically-soft and hard) with excellent optical and record-high MO quality have been demonstrated
- Sputter-deposition and oven annealing processes required for the manufacture of high-quality garnet films have been studied and the process parameters were optimized
- The combination of material properties achieved is of interest for the development of different emerging types of reconfigurable nano-photonic devices
- Our research work will be continued to further optimize the material properties and demonstrate the potential of garnets in a range of new applications

Thank you

Electron Science Research Institute, Edith Cowan University

