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Fuzzy Inference System in  
Energy Demand Prediction 

Thair Mahmoud, Daryoush Habibi,  
Octavian Bass and Stefan Lachowics 

School of Engineering, Edith Cowan University,  
Australia 

1. Introduction 

Fuzzy Inference Systems (FIS) have been widely used in many applications including image 
processing, optimization, control and system identification. Among these applications, we 
would like to investigate energy demand modelling. Generally, developing an energy 
demand model is the challenge of interpreting the historical use of energy in an electric 
power network into equations which approximate the future use of energy. The developed 
model’s equations are coded and embedded into a processor based system, which predicts 
the output when a certain type of input occurs. However, the range and quality of 
prediction is still limited within the knowledge supplied to the model. The major concern 
about the energy demand modelling is to categorize the type of prediction in short or long-
term prediction. In addition, it is crucial to categorize the type of the power network to be 
modelled. Since identifying the useful historical operation data for setting the model 
parameters is crucial in modelling, the operation history of the modelled systems must to be 
analysed. In simple terms, modelling energy demand is the art of identifying the right 
modelling technique and system’s operation parameters. The operation parameters differ 
based on the type and size of the modelled system. So, taking into consideration why the 
system is modelled will justify the selection of modelling techniques. Among the reasons for 
modelling energy demand is managing the use of energy through an Energy Management 
System (EMS).  

For EMS, most of the Artificial Intelligence (AI) methods will lack robustness in terms of 
their programming and their required computation resources, especially when the EMS is 
designed to perform on-line quick response tasks. Artificial Neural Network (ANN) might 
be good candidate among modelling techniques, as there has to be a compromise between 
robustness of the method and its required computation resources for a specific type of 
modelling. However, there are a few reasons why ANNs are not suitable for our proposed 
discussion: their limited adaptability within limited computation resources, their training 
time and their models’ complexity, especially when we deal with highly non-linear systems. 
Looking at our case study and the reasons this scenario is modelled, we have found that 
Fuzzy Inference Systems (FIS) are the most appropriate for modelling the energy demand in 
this specific system, since model development, model parameters, model adaptation 
capability and computation resources requirements are met. The reason behind choosing FIS 
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to model the energy demand is the flexibility to control the prediction performance and the 
complexity of the model. Fuzzy modelling and reasoning systems have been widely utilised 
in literature because of their applicability and modelling performance. The use of Adaptive 
Neuro Fuzzy Inference Systems (ANFIS) gives the fuzzy modelling two extra valuable 
advantages: the training time and prediction accuracy compared to other modelling 
techniques. Fuzzy modelling has been successfully applied in different types of applications 
including electricity and gas demands, economics and finance, weather and meteorology 
studies, health and population growth, geographic information systems, traffic and 
transport systems, etc. 

In the recent years, energy demand prediction modelling has been widely investigated, 
especially when its smartgrid applications have been rapidly grown, and energy price 
change has been rapidly correlated to the energy demand prediction. Different smart 
prediction mechanisms have been introduced in literature. (McSharry 2007) has developed a 
day-ahead demand prediction models, and (Alireza Khotanzad 2002) has introduced a new 
short-term energy demand prediction modelling technique which integrates the real-time 
energy price change in the prediction models. (Amir-Hamed Mohsenian-Rad 2010) have 
also introduced the real-time price environment modelling to perform an optimised 
residential load control, where a fundamental bid-based stochastic model is presented to 
predict electricity hourly prices and average price in a given period by (Mazumdar 2008). 
Among the prediction mechanisms we aim at addressing the use of Fuzzy Inference systems 
in developing short-term demand prediction models, which can be applied in SmartGrid 
and electronic market applications. 

The objective of this chapter is to review the use of fuzzy logic in modelling the energy 
demand in a specific electric network after analysing its demand characteristics. This 
chapter will also discuss the use of FIS to improve the prediction performance and adapt the 
prediction to the real time effects. We consider a real electric power system by modelling its 
energy demand and verifying the prediction output results. The next section will consider 
the system’s operation data while selecting the most effective modelling parameters, 
highlighting the use of FIS in modelling, choosing the suitable data clustering method and 
detailing learning, training and verification for different type of demand patterns.   

2. Fuzzy modelling 

Fuzzy modelling is a widely utilised and targeted modelling method. It attracts attention from 
academic and industrial research sectors because of its applicability and flexibility in 
interpreting the human decision in many complex computer controlled applications. Despite 
that its complexity has been mainly considered in modelling, as the number of developed 
fuzzy rules affects the modelling performance, fuzzy modelling is still one of the most efficient 
modelling techniques. Its main modelling concept is the same as that used in other modelling 
techniques, which is building mathematical expressions based on historical operation data for 
the modelled system. It is considered an effective technique to establish an FIS from a given 
nonlinear input-output set of data, when in fuzzy modelling, the data is partitioned in the 
input space and an optimal fuzzy rule table and membership functions are developed.  

The data partition is performed using data clustering methods. A data clustering method is 
applied to partition the input-output set of data into a set of clusters. Depending on the type 
of clustering method, different type and number of clusters can be identified.  
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A range of data clustering methods have been illustrated in literature such as the nearest 
neighbourhood clustering method (Wang 1994), Gustafson-Kessel clustering 
method(Donald and William 1978), Gath-Geva clustering method (Gath and Geva 1989), 
fuzzy c-means (FCM) clustering method (Frank Höppner 1999), the mountain clustering 
method (Yager and Filev 1994) (Yager and Filev 1994), and Fuzzy Subtractive Clustering 
Method (FSCM) (Chiu 1994). However, the main problem of fuzzy modelling comes from 
the difficulties of choosing the right range of parameters which leads to the number of rules. 
In other words, the inaccurate parameter settings would deteriorate the prediction accuracy. 
Good fuzzy modelling parameter settings come from a good understanding of the modelled 
system and its modelling problems. The main justification for this problem is that when the 
number of clusters is increased, the prediction output will have strong alignment with the 
modelled data. As when the number of clusters equals to the number of data, the developed 
clusters will specifically resemble the training data characteristics, and lose the generality of 
resembling the system operation characteristics. Consequently, the clusters will mostly 
resemble a part of the operation data. Therefore, the prediction will miss other kind of 
operation data that differ from data modelled despite their availability within the modelled 
data range, which will result in a high prediction error. In contrast, when the number of 
clusters is reasonable, the prediction will cover the training data regions, as well as any 
other types of operation data, as far as they are located within the range of the training data. 
The prediction however will result in an acceptable range of error, which is fairly accepted 
by all research communities. 

In other terms, a suitable parameters choice is the key solution for a successful fuzzy 
modelling, which will be based on an optimized number of rules and prediction accuracy 
level. This problem can be solved by analysing the modelled system operation history and 
indentifying suitable modelling parameters. In addition, having experience about fuzzy 
modelling will help the modelling process. However, trial and error may be applied for 
output tuning in most of the modelling cases.  

In comparing fuzzy modelling with ANN, it has been concluded that to select the right 
modelling method, it is crucial to consider the type and the size of the system, the amount of 
system’s historical operation data and the required computation resources. Regarding the 
type and the size of our case study, it has been found that fuzzy modelling will suit the 
modelling process. More details about the case study and data analysis are explained in the 
case study section in this chapter. Full details about the fuzzy modelling process are also 
explained in modelling methodology section in this chapter. In this chapter we aim at 
discussing the use FIS as a tuner fuzzy system. The next section describes the main 
operation principles of Self-Tuning Fuzzy Systems STFS and the use of FIS to improve the 
prediction accuracy or to adapt the prediction to the external effects. 

3. Self tuning fuzzy systems 

In modern automation, adaptability has become crucial in implementing smart 
applications. In the way, that they resemble the human sense of adaptive thinking. 
Usually, ANN is highly utilised in implementing adaptive systems. However, self tuning 
and adaptive algorithms are not restricted to ANN, they can also be implemented through 
fuzzy logic and other optimization techniques. The specific tuning mechanism 
implementation is subject to the type of the problem or the system to be processed. The 
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tuner and main systems may share the same input parameters, or they may receive two 
different types of inputs from external sources depending on nature of operation. Self-
tuning systems have practically unlimited applications, and they have been widely 
utilised in academic and industrial applications. 

Basically, a STFS is an on-line adaptive output fuzzy system, where its output is changed 
depending on the type of input and the pre-defined knowledge in the fuzzy tuning 
system. Generally speaking, a fuzzy system is called tuneable when any of its parameters 
(input/output scaling factors, membership functions shape and type or fuzzy rules) are 
changed instantly. It is a combination of general and tuner fuzzy, where the tuner FIS 
tunes the general system’ parameters. Although sometimes both systems have the same 
input parameters, but they still perform different independent jobs. The main reason 
using STFS in modelling is to perform a short term prediction and  to add the safe 
prediction estimations to the predicted output. This can be achieved  by adapting the 
prediction to the external effects through a pre-defined knowledge based system.  

By looking at our modelled case study, it has been noticed that the model has highly non-
linear characteristics. So, developing a model for a high precision prediction is a major 
challenge. Hence it is required to focus on the model prediction accuracy to consider its 
weak-points. By considering the energy demand in the targeted case study, modelling 
knowledge could be added regardless of its availability in the supplied operation data. 
Using the self-tuning fuzzy system will help in adding the missing knowledge to the 
operation history data. For such kind of systems, a possible design with external input 
parameters from external data sources to tune the main fuzzy model output based on a 
knowledge base could be implemented. In this chapter we aim at utilising the real-time 
demand change measure to investigate the FIS ability to adapt the prediction output to the 
actual demand change. Alternatively, in our modelling discussion we also use the main 
fuzzy system’s input parameters to tune the prediction based on a knowledge base system. 
Similarly, the tuning part may use different mechanisms, e.g. rules, membership functions 
or output scale tuning. The Weights Adjusting Method (WAM), which is the method that 
adjusts the output of the main system, is derived from the process needs for adaptation. 
WAM is set to adjust the weights of the output of the main system and its tuner based on 
the needed amount of adaptation. Depending on the tuner’s fuzzy rule base, a suitable 
WAM can be derived. Although even when different types of models are discussed in our 
modelled electric network, only one WAM is applied. For simplicity, we aim at utilising an 
output scale adaptation design. The full design details are explained in the Modelling 
Methodology section, whereas the results will be discussed from the prediction 
improvement point of view and the adaptation performance in the Summary section. In the 
next two sections, the details about modelling twelve-month load patterns in a real electric 
network are presented. Additionally, the twelve models are equipped with twelve different 
tuner fuzzy systems to improve their prediction accuracy or to adapt their prediction to the 
external effects, depending on the purpose of the modelling.   

4. Case study 

The electrical energy use of the power network of the Joondalup campus of Edith Cowan 
University (ECU) in Western Australia has been selected in this study to evaluate the 
robustness of the proposed modelling technique. Just like most commercial buildings that 
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the energy demand may depend on several independent variables, each having different 
weightings. Accept when it comes to a university type load profile, a few extra variables 
may affect the load change patterns. So, it is highly advantageous to analyse the historical 
operation data of the modelled system to indentify the effective variables. The ECU’s  
electric network has nine substations serving 32 buildings. The minimum daily demand in 
this university does not drop below 500 kWh at any time, while the maximum daily demand 
may go up to 3500 kWh in summer daytime. Identifying the critical issues in the network is 
very important before proceeding in modelling. Fig. 1 shows Load changes in the ECU’s 
Joondalup campus in January 2009.  

 

Fig. 1. Load changes in the ECU’s Joondalup campus in January 2009. 

By monitoring the load change in Fig.1, several load change patterns have been indentified 

including the weekdays, weekends and hours correlation. In addition, we can identify other 

important modelling factors e.g. weather, date, hours, order of the day (Monday, 

Tuesday,...,etc.) and type of the day (working day or weekends/holidays). It has also been 

noticed that big load changes are infrequent. In this modelling strategy, these big load 

change events are ignored. It is assumed that such big load changes need to be predefined or 

have warning settings assigned in order to avoid system overloads. From analysing these 

effective factors, we could draw a correlation picture about the load change in the ECU’s 

Joondalup Campus and other effective parameters. For more details about load change 

analysis, Fig. 2 shows the correlation between a 30 minutes interval load change and other 

identified factors in the ECU’s Joondalup campus in January 2009. Fig.2 includes 1500 entry 

of the correlated information data. 
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Fig. 2. Load change correlation with the effective factors for ECU’s Joondalup campus in 
January 2009. 

By spotting at the critical load change correlation among the identified parameters in Fig.2, 
several ideas about the energy use scenarios can be obtained. It is also noticeable that there 
is a big correlation between the daylight time, temperature, type of the day and the monthly 
order of the day. In Fig.2, only the effective load change parameters mentioned previously 
are illustrated. Theoretically, other load change parameters could be identified by analysing 
the university work hours, the nature of activities and the weekly time table in the 
university. From analysing the university weekly time-table, we could introduce another 
variable, which is the weekly order of the day. Although this parameter would have an 
effective load change contribution to the university’s energy usage for a certain time of the 
year, namely the teaching period, but it rarely affects the load change in the remaining times 
of the year. On an average, it would require higher computation resources and would not 
indicate the load change effectively throughout the whole year. Therefore, it has been 
concluded not to consider this parameter among the modelling parameters. The next section 
details the modelling process and illustrates some hints about the fuzzy modelling. 

5. Modelling methodology 

This section covers the methodology to model the energy demand measured at 30 minute 
intervals in the ECU's Joondalup Campus. Basically, the model is developed by combining 

www.intechopen.com



 
Fuzzy Inference System in Energy Demand Forecasting 361 

two modelling systems: the main FIS which is developed from modelling the input-output 
data using FSCM and ANFIS, and the second FIS system which is either developed by using 
the correlation between the energy demand and the temperature throughout the day, or by 
using the knowledge about the real-time demand change with its ability to achieve safe 
adaptation to the main model’s output. 

To improve the prediction accuracy and reduce the model complexity, the annual energy 
demand of the ECU’s Joondalup Campus has been proposed to be split into twelve monthly 
models, represented by twelve different demand pattern models. Each model represents a 
one month demand model. Fig. 3 illustrates the proposed annual energy demand prediction 
structure for ECU's Joondalup campus,  it also illustrates the possible extra added input to 
improve the prediction accuracy when possible.  

 

Fig. 3. The energy annual demand prediction structure of ECU's Joondalup campus 

Splitting the annual demand model into twelve spilt sub-models gives the prediction the 
ability to cope with the twelve different load change patterns. In addition, it reduces the 
computation resources, when only one month model is active at a time. Thus the modelling 
uses twelve separate modelling methodologies depending on the load change analyses for 
the individual months. Regarding building the two FIS, their methodology is explained in 
the following subsections: 
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5.1 Main fuzzy system 

In this subsection, we discuss the use of FIS in modelling. In this investigation, we aim at 
utilising data clustering methods to perform the fuzzy modelling. Data clustering methods 
divide the supplied data into different groups based on identified common characteristics in 
each group. However, these characteristics are identified based on the type of data 
clustering method. In literature, several types of data clustering methods have been 
discussed including the on-line and off-line methods. In our investigation, we aim at 
utilising off-line data clustering methods in modelling.  

We aim at clustering the historical operation data of the targeted electric network to develop 
the demand prediction models. At the end of clustering, a fuzzy reasoning system will be 
developed. We aim at using ANFIS for developing our targeted fuzzy models. The complete 
modelling process is illustrated in Fig. 4. 

In our modelling example, we use Fuzzy Subtractive Clustering Method (FSCM) (Chiu 
1994). It is a method where each of the supplied data is tested under the condition that it has 
the highest density among the tested individuals. Every individual data is considered to be 
a candidate for the cluster centring. The individual density is evaluated as follow: 

 ܲ ൌ ∑ ݁ିఈฮ௫ି௫ೕฮమୀଵ                    (1) 

where 

ߙ   ൌ ସೌమ                                       (2) 

The data density for a specific cluster centre candidate is evaluated from the number of 
nearer individuals that contribute to the cluster centre. The highest density is identified to 
become a first cluster centre. The cluster size is decided when FSCM parameters are set to 
cover a range of data individuals in the cluster’s neighbourhood. The radius ݎ , which is 
also referred by Range of Influence (ROI), defines the range of neighbourhood for the 
clusters extraction. Each of the developed clusters is a basis of a fuzzy rule that describes the 
system attitude, when the number of these clusters is the number of the fuzzy rules in the 
modelled network. When the first cluster centre is found, the next highest density is 
evaluated. Let the new investigated cluster centre to be ݔ, and ܲ be its density measure. 
When every data individuals is ݔ, the next cluster centre is identified as follow: 

  ܲ ൌ ܲ െ ܲଵ݁ିఉ‖௫ି௫భ‖మ                              (3)                          

ߚ       ൌ ସ್మ                             (4) 

ݎ    ൌ                             (5)ݎ1.5

Where Pୡଵ is the next density point to be examined, and xୡଵis the next data point to be 
examined. where rୠ is a constant, which has the influence of reducing the density measure. rୠ is 
defined based on the experience of data clustering. Usually, it is larger than rୟ to avoid closely 
placed clusters. Sometimes, trial and error is used to select the best value of rୠ. However, the 
value of rୠ is set to 1.5rୟ as illustrated in literature (Chiu 1994), and rୟ is set based on the 
experience about the data clustering. In our investigated cases different values were applied 
depending on the type of the problem. It is clearly noticed that ROI value decides the number of 
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membership functions, thus influencing the complexity of the developed network. Table 1 
illustrates the full details about rୟ settings for the investigated cases. 

 

Fig. 4. Selecting suitable FSCM parameters in ANFIS modelling 
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The next stage is to repeat the above estimation process to identify other cluster centres. The 

process of indentifying clusters is repeated until the amount of new identified density is 

equal of less to 0.15 of the highest identified density. More information about FSCM 

parameters details is found in (Chiu 1994). 

The identified data clusters can be easily utilised as fuzzy rules’ centres in the zero-order 

Sugeno fuzzy models. When a data individual is located within the cluster range, a 

membership function between that particular data individual and its cluster centre is 

derived. Data affiliation to the cluster centres is derived as follow: 

ߤ    ൌ exp	ሺെ ‖௫ି‖మሺೌ /ଶሻమ ሻ         (6) 

where x is the cluster centre and p୧ is the input set of data.  

By clustering temperature, hour, day and load change data, random FSCM parameters 

values e.g. Influence Range, Squash, Accept Ratio and Reject Ratio are applied.  

These values selection may have strong effects on the complexity of the developed models. 
Table 1 shows the number of membership functions and the selected ROI values for each of 
the twelve month models.  

 

Months\Membership 
Functions ranges 

ROI Rules Membership Fctn. 

January 0.35 28 112 

February 0.4 23 92 

March 0.5 14 56 

April 0.33 40 160 

May 0.44 17 68 

June 0.4 25 100 

July 0.45 20 80 

August 0.48 19 76 

September 0.43 18 72 

October 0.5 11 44 

November 0.5 16 64 

December 0.41 20 80 

Table 1. ROI Values and Complexity of the 12 Month Models 

After clustering is made, the developed membership functions are trained. Then, when the 

developed network is being trained, a simple test will be carried to verify the prediction 

accuracy of the developed models. To increase the range of prediction in the developed 

models, the historical operation of three years set of data (2007, 2008 and 2009) is used. The 

three years data has been divided into three different groups. The first set of data is used to 

extract the clusters, which is taken as a 90% of the 2007 and 2008 historical data. The second 

set of data, which is used to train the developed fuzzy systems, has been taken as a whole 

set of 2007 and 2008 data. Finally, the third set of data, which is used to verify the success of 

the developed model, has been taken as the 2009 operation data. Fig. 5 shows the data 

utilization in developing the demand models in this work. 
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Fig. 5. Modelling data utilization for the ECU’s Joondalup Campus energy consumption 

After the rules which relate the input-output data have been developed, the developed clusters 
have been utilised in neuro-fuzzy networks to develop a zero-order Sugeno FIS, which will 
perform a 30 minutes ahead short-term prediction. In conventional fuzzy systems, trial and 
error is applied to tune the developed membership functions of the input-output universe of 
discourse of the fuzzy system. When ANN is used to tune the membership functions, an 
automated selection process based on the performance index is performed. The membership 
functions are trained to resemble the training data characteristics. In neuro-fuzzy networks, 
their networks structure is changed accordingly with the operation scenarios. Neuro-fuzzy 
networks however utilise the ability of learning of the neural networks to get the best tuning 
process with better performance and less time (Kandel 1993). Since the fuzzy systems have the 
property of universal approximation, it is expected that the equivalent neuro-fuzzy networks 
representation have the same property as well.  

Adaptive Neuro Fuzzy Inference System (ANFIS) is another candidate to perform the fuzzy 
membership functions tuning. ANFIS structure was firstly proposed by (Jang 1993), where 
other models of ANFIS were proposed by (Chin-Teng Lin 1996) and (Wang and Mendel 
1992). Fig. 6 illustrates the ANFIS structure with its learning mechanism. 

 

Fig. 6. ANFIS structure with its learning mechanism 
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where f is the output of the net,  x and y are the inputs to this net. The weights of layer 3 are 
represented by (wഥଵ, wഥଶ), and the weights of layer 4 are represented by (wഥଵfଵ,wഥଵfଶ), where the 
used rules of Sugeno ANFIS in this model are expressed in the following form: 

1 1 1 1 1 1If x is A and y is B THEN f p x q y r    

2 2 2 2 2 2If x is A and y is B THEN f p x q y r    

Where ( , ,i i ip q r ) are the parameters that are determined and referred to as the consequent 

parameters. More details about ANFIS parameters can be found in (Jang 1993). 

In conventional neuro-fuzzy networks, back-propagation algorithm is used to adjust the 
network parameters, while in ANFIS the adjusting mechanism is performed by the Hybrid 
Learning Algorithm (HLA). HLA is basically combined of two identification methods, the 
least-squares method to identify consequent parameters for the forward pass in layer 4 and 
the back-propagation method for the backward pass to identify the premise parameters by 
the gradient descent in layer 2. This combination achieves faster convergence than that of 
the original back-propagation method. Table 2 illustrates the hybrid learning passes with 
their identified parameters: 

 

Parameters\Direction Forward pass Backward Pass 

Premise parameters Fixed Gradient descent 

Consequent parameters Least-square estimator Fixed 

Signals Node outputs Error signals 

Table 2. Two passes in the hybrid learning procedure for ANFIS (J. S. R. Jang 1997). 

Finally, when verification result is within an acceptable error bound, the modelling 

procedure is concluded. Fig. 7 illustrates the developed input membership functions for the 

four inputs zero-order Sugeno fuzzy system of January’s operation of the ECU's Joondalup 

Campus power network. 

From Fig 7, and from the developed Sugeno-fuzzy system for January demand prediction, 
the developed rules are explained as following: 

If (Temperature is Temperature in Cluster n) and (Hour is Hour in Cluster n) and (Day is Day in 
Cluster n) and (Day-type is Day-type in Cluster n) Then (Demand is Demand in Cluster n) 

Where 0 <n ≤ number of developed rules. 

Finally, for the other 11 months of the year, their developed models have different input-

output ranges based on the pattern of operation and weather change throughout the four 

seasons of the year in city of Joondalup. Although other effective modelling parameters 

have been nominated for the proposed models, experimental investigations have been 

applied to use three-, four- and five-input modelling parameters for the demand prediction 

performance improvement, we stick to choosing the four-input modelling parameters, 

which has been successfully approved to be an optimal selection, from the prediction 

complexity and prediction improvement point of view, for the developing demand 

prediction models for the targeted power network. 
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Fig. 7. The developed input membership functions for the four inputs zero-order Sugeno 

fuzzy system of January’s operation of the ECU's Joondalup Campus power network. 
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5.2 The self-tuning fuzzy system 

In this subsection, we aim at discussing two tuning mechanisms which have the ability to  
improve the prediction accuracy and adapt the prediction to the external effects such as the 
real-time demand change: 

5.2.1 Parallel self tuning fuzzy system 

First, we will look at improving our prediction results, based on our knowledge of the 
energy demand conditions, which could have been partially missed in the given historical 
operation data. We aim at using the self tuner fuzzy system to improve the prediction 
accuracy. Fig. 8 illustrates a main fuzzy system with its tuner fuzzy system combination. 

 

Fig. 8. Self-Tuning fuzzy system (self tuning fuzzy system) 

For this system, it is required to enhance the performance of the prediction model by using 
the knowledge of the system performance, safe operation estimations and actual important 
needed decisions. In this work, two of the model inputs are selected to develop the fuzzy 
rule-based system. The rule-based system is developed to have a smooth transition between 
the specified operation cases in the decision making. In this work generally, we investigate 
the use of a one rule based system the twelve-month models. Table 3 illustrates the propose 
rule based system in this investigation. 

 

Hour\Temperature V. Cold Cold L. Warm Room temp. Warm Hot V. hot 
Midnight S. low Normal Normal S. High High V. High V. High 

Dawn Normal S. High High V. High V. High Vv High Vv High 
Morning Low S. Low Normal Normal S. High High V. High 

Afternoon V. Low V. Low Low Low S. Low Normal Normal 
Sunset V. Low Low S. Low Normal S. High High V. High 

Evening Low S. Low S. Low Normal S. High High V. High 
Night S. Low Normal S. High High V. High V. High Vv. High 

Table 3. Self tuning fuzzy rule-based system 

To cope with the operation pattern changes through the twelve months of the year, different 
membership functions are proposed for  every month models: all twelve-month models 
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have the same membership functions shape, but with different input/output ranges. Fig. 9 
shows the proposed membership function design for the tuning fuzzy system of the January 
prediction.  

 

Fig. 9. Membership functions design for the tuning fuzzy system of January demand 
prediction model 

Table 4 illustrates the membership function design for the twelve monthly prediction fuzzy 
systems. 

 

Months\Membership Functions ranges Temperature Hour Output 
January [-10 30] [0 24] [-75 75] 

February [-10 35] [0 24 ] [-75 75] 
March [-10 20] [0 24] [-50 50] 
April [15 35] [0 24] [-30 30] 
May [0 20] [0 24] [-40 40] 
June [0 25] [0 24] [-50 50] 
July [-20 20] [0 24] [-50 50] 

August [5 20] [0 24] [-30 30] 
September [-20 20] [-4 24] [-30 30] 

October [30 70] [0 18] [-200 200] 
November [10 50] [-4 18] [-100 100] 
December [-10 20] [-4 18] [-100 100] 

Table 4. Membership function design ranges for the 12 monthly demand prediction tuning 
fuzzy systems 
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The twelve-month models have different self-tuning fuzzy designs. From the twelve 

designs, different prediction improvements are carried out. Conservatively, we would like 

to spot on the weakest prediction region throughout January in Fig. 10, which shows the 

demand prediction for the 17th to the 21st of January 2009 using ANFIS and Self-Tuning 

Fuzzy System. The amount of prediction improvement is calculated by evaluating the 

Integral Square of Error (ISE). ISE is evaluated as follow: 

ܧܵܫ ൌ 1݊ሺݕ௧ െ ௧ෝݕ ሻଶ
௧ୀଵ  

where ݊ is the number of entries, ݐ is the time at each entry, ݕ௧ is the actual demand and ݕ௧ෝ  is the predicted value. From the equation above, the results show that the self-tuning 

fuzzy system has an enhanced prediction accuracy error. Table 5 shows the amount of 

ISE in each month and the percentage of improvement achieved by the fuzzy tuning 

systems. 

 

 
 

Fig. 10. Self tuning and ANFIS prediction for the 17th to the 21st of January 2009 
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Month\model ANFIS ISE Self-tuning fuzzy-ANFIS ISE Improvement 

January 29030 27230 6.2% 

February 23590 22080 6.4% 

March 42060 41040 2.5% 

April 45300 45160 0.3% 

May 27880 27760 0.4% 

June 21660 21390 1.2% 

July 19100 18760 1.7% 

August 25030 24930 0.3% 

September 24160 23760 1.6% 

October 29260 28920 1.1% 

November 27050 25060 7.3% 

December 32890 30490 7.2% 

Table 5. The amount of ISE in each month with improvement rate made by fuzzy tuning 
systems  

5.2.2 Feedback Self-Tuning Fuzzy System 

The Feedback Self-Tuning System FSTF is applied when any external effect variables 

such as the real load measures are fed to the model to adapt its prediction accuracy. With 

its adaptation mechanism, it adapts the model prediction to the external effects. The 

adaptation is developed based on an expert knowledge based system, which achieves 

successful and safe adaptation when the external effects are applied. The main principle 

of using this mechanism in our case study is to consider the actual instant demand 

change pattern change in the next subsequent prediction intervals, which provides 

flexibility to the model to correct its prediction path. The mechanism is built based on a 

feedback signal supply to allow the real demand change to enhance the prediction 

output.  

Just like the parallel self-tuning fuzzy system, the adaptation may apply on the main fuzzy 

parameters e.g. membership function parameters, input-output universe of discourse or the 

output scale. For simplicity, we aim at utilising the output scale example in this chapter. 

Fig.11 illustrates the adaptation mechanism for the Feedback Self-Tuning System.  

For the twelve different load change patterns in the targeted electric network, twelve 

different adaptation designs are required. For simplicity, one rule base system could be 

implemented to cope with twelve-month load change pattern. It is required therefore to 

tune the FSTFS input-output universe of discourse to fit its output with the load change 

patterns in every individual month. Out of this adaptation mechanism, different adaptation 
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ranges may come from the twelve-month models. Table 6 illustrates the used rule based 

system for the proposed FSTFS. 

 
 

 
 

Fig. 11. Feedback Self-Tuning Fuzzy System 

 

Error Degree of Change 

Vvery Low Vvery High 

Very Low Very High 

Low High 

Zero Normal 

High Low 

Very High Very Low 

Vvery High Vvery Low 

Table 6. FSTFS Rule Based System 

Fig. 12 illustrates the FSTFS membership function design for the proposed demand 
prediction model. 

The feedback prediction mechanism can be safely utilised in generation scheduling 

application or any other energy management system applications. For a safe use of 

prediction output, a safety margin value is added to the prediction results, which allows a 

flexible utilisation for the predicted demand.  
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To show the adaptation performance of the investigated systems, a conservative result is 
shown in Fig. 13, which illustrates the weakest prediction accuracy region throughout the 
year for the investigated electric power network. 

 

 
 

Fig. 12. FSTFS membership function design for the proposed demand prediction model 
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Fig. 13. Actual and Feedback Self-Tuning System Demand Prediction in the ECU Power 

Network for the 17th to the 21st of January 2009 

6. Summary  

In this chapter, the art of using FIS in modelling energy demand prediction for a specific 

electric network has been discussed. The type and the size of the modelled electric network 

has been comprehensively analysed in terms of the input-output identified effective 

parameters and their correlation in changing the pattern of the energy use. The identified 

parameters, however, were used in developing the energy demand prediction models. 

Fuzzy modelling process has been discussed by looking at its applications and limitations 

for the selected case study. In our modelling, we have utilised Fuzzy Subtractive Clustering 

Method to show the tips about its use in modelling, where ANFIS has been applied to 

develop the zero-order Sugeno fuzzy models. The annual energy demand model for the 

selected case study has been developed for an individual monthly basis with a specific 

design applied to deal with the twelve-month patterns. However, certain modifications had 

to be applied on each month to account for the peculiar conditions to that month. 

In addition, two fuzzy tuning mechanisms have been used to improve the fuzzy models 

prediction accuracy. The first mechanism was used to add the safe operation assumptions to 

reduce the missing knowledge in the decision making for the developed models. The results 

from the first mechanism showed that the added fuzzy systems improved the prediction 

accuracy with different rates throughout the twelve months of the year. In case of the 
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second fuzzy tuning mechanism, a real-time demand change has been added to the main 

fuzzy models to adapt their prediction to the real-time demand change through tuner fuzzy 

systems. From the twelve different demand changes throughout the year, different 

prediction adaptation ranges have been found. As a conclusion for these discussions, the FIS 

has a wide range of applications in modelling, especially when we deal with highly non-

linear multiple input-output systems we have also shown throughout this chapter that 

several simulation studies have proved the success of using FIS in modelling, which 

brightens wider its range of mathematical and engineering applications. 
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