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Engineering a Suburban Ad-Hoc Network

Mike Tyson, Ronald D Pose, Carlo Kopp, Sk. Mohammad Rokonuzzaman, Muhammad Mahmudul Islam
Faculty of Information Technology, Monash University
{mtyson,rdp,carlo,rokon,sislam}@csse.monash.edu.au

Abstract

Ad-hoc wireless networks are networks of co-operating users, with no reliance upon fixed infrastructure.  Such 
networks are growing in popularity, as wireless communication hardware, both fixed and mobile, becomes more  
common and affordable. The Monash Suburban Ad-Hoc Network (SAHN) project has devised a system that 
provides a highly secure and survivable ad-hoc network, capable of delivering broadband speeds to co-operating 
users within a fixed environment, such as a residential neighbourhood, or a campus. The SAHN can be used by  
residents within a community to exchange information, to share access to the Internet, providing last-mile access,  
or  for  local  telephony and video  conferencing.   SAHN nodes are  designed  to  be  self-configuring and self-
managing, relying on no experienced user intervention.  Thus, they are suitable for use by the general public, in  
‘plug-and-play’ fashion. This paper investigates possible architectures for an implementation of the SAHN  (Tyson 
2005), and presents a real-world prototype.  The prototype presented takes the form of a Linux kernel module, and  
a user-space daemon.
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INTRODUCTION

In our modern, information­centric society, the availability of adequate connectivity is of high importance. Not 
only   is   more   pressure   placed   upon   the   existing   communications   infrastructure,   but   the   need   to   extend 
connectivity to areas previously not covered is growing. In many areas, communications services are expensive 
and often unreliable, if not entirely unavailable.

Suburban Ad­Hoc Networks (SAHNs) are economical, high­speed connectivity alternatives for communities of 
co­operating users in a suburban environment (Islam, Pose, Kopp 2003a) (see Figure 1).  They offer affordable 
broadband access where other techniques may not be viable.   Importantly, the SAHN offers a viable alternative 
to fixed broadband services in low population density areas, where distance to exchanges, or low demand, make 

Figure 1: Sample SAHN Scenario



such fixed services overly expensive, or entirely unavailable.  SAHNs provide for community interaction, or to 
provide   last­mile   Internet   connectivity.     They   can   be   used   for   local   video   and   audio   communication,   or 
community bulletin boards.  Research is being done into localised virtual reality systems, using the SAHN.

The SAHN system has no dependence on existing infrastructure, as the network participants themselves co-
operatively form the network and route traffic.  Consequently, recurring costs are low, making the technology 
more accessible to the public (Pose, Kopp 1998).

The SAHN is designed to be independent of particular technologies, and is intended to be built with commodity, 
off-the-shelf hardware, such as PCs, or embedded systems, to keep initial costs down.

SAHNs are self-forming, self-healing networks which operate over a typically wireless medium, although they 
can incorporate many different physical media.  They operate in arbitrary, dynamic topologies.  Consequently, 
highly-connected networks can be formed, providing high redundancy and the capacity for load-sharing over 
multiple links.  SAHNs can be used to integrate and aggregate many different physical links, enhancing the 
availability and value of a network architecture.  SAHN nodes are designed to be self-configuring and self-
managing, resulting in the ability for them to be owned and maintained by members of the general public, 
without particular expertise.

In an age where information systems are becoming increasingly exposed to attack, in the form of direct attacks 
against the network or its users, or passive monitoring for espionage or other illegal purposes, security is critical. 
This becomes particularly true when using an inherently insecure channel, as in wireless networks.  Additionally, 
controlling access to network resources is important for a modern network architecture.

In the SAHN, security is built  in at  a low level (Islam, Pose,  Kopp 2004a, 2005, Islam 2006).  Fully self-
organised key and access control management facilities are available, and network layer packets are encrypted at 
each hop.  For this reason, the SAHN does not use the standard TCP/IP stack form, and instead provides a re-
designed layer structure (see Figure 2 (Islam 2006)).  Thus,  instead of being limited by the security of the 
TCP/IP  stack,  this  allows  optimisation  for  SAHN-style  network  environments,  where  encryption  should 
encapsulate all data, and thus sit below other layers.

The  SAHN  Security  Protocol  (SSP)  resides  between  the  network  and  the  link  layer,  and  protects  packets 
originating from upper layers.  Thus, it forms an underlying secured layer for protocols that operate above SSP.

SSP protects users from malicious entities by both encrypting the user’s data, and providing authentication of the 
source of all packets (Figure 3 (Islam 2006)).  SSP is effective against most common attacks, such as broadcast 
storm or piggyback attacks, tunnelling and identity theft, as detailed in (Islam 2006).

SSP uses asymmetric cryptography for signing and encrypting, or decrypting and verifying SSP control packets. 
For  all  other  network packets,  SSP uses  symmetric  cryptography.   No centralised  certification  authority  or 
centralised trusted entity is necessary for distributing and managing capabilities and keys; a fully self-organised 
capability and key management system is provided.

Performance advantages are gained by only requiring certificate verification when a node joins the SAHN, or 
when  a  certificate  is  revoked.   Ordinary  network  packets  are  encrypted  and  authenticated  with  symmetric 
cryptography, with less intensive processing requirements.

Figure 2: SAHN/OSI Comparison



SSP is based on the password-capability model (Anderson et al., 1986, Castro, 1996, Kopp, 1997, Pose, 2001). 
A capability is a token that identifies an object or resource, and grants some level of access to that resource. 
Capabilities can be granted or revoked by any entity for any other entity in the system.  Such a model provides 
for a simple and robust access control management scheme.

SSP provides services, identified and controlled by capability tokens, to authenticate a new neighbour for local 
(single hop) communications, authenticate a network membership for network-wide communications, perform 
secured routing, and further propagate or revoke capabilities.

A new node wishing to join a SAHN initially communicates out-of-band information to an existing SAHN node 
to authenticate the new node, or is invited by an existing node.  Provided the existing node possesses a new 
neighbour authentication capability,  it  authenticates the entering node for local,  single hop communications. 
This permits the entering node to communicate with the existing node only.

The entering node is then required to obtain a network membership certificate from more than one network 
member.  This operation can be performed with a fully distributed certification authority (Zhou and Hass, 1999), 
and can be executed by the existing SAHN node (which has network membership allowing communication with 
other nodes) on behalf of the entering node.

Once equipped with a network membership certificate, the entering node requests a Routing Capability from the 
existing node, using the network membership as authentication.  Once granted, the new node can begin routing 
through the SAHN, and is accepted as a network member. A network membership certificate can be revoked if 
necessary, thereby revoking a node’s network membership.

Network membership authentication yields significantly more security than protocols based only on transitive 
trust.   Two levels of  protection are offered with the two-stage authentication procedure, requiring an initial 
authentication  to  perform  single-hop  communications  with  a  single  neighbour,  followed  by  a  network 
membership authentication procedure, to begin communicating with the entire network.

Packet integrity is assured by the inclusion of a digital signature, encrypted with the rest of the packet contents. 
This signature is formed by a one-way hash, using the packet contents and the receiver’s encryption key as input. 
This  both  protects  against  packet  manipulation or  fabrication  by  a  third  party,  and provides  a  robust  error 
detection mechanism.  Each packet is verified against the digital signature when it is received.  Packets that fail 
the verification procedure are dropped.  Thus, identity theft, protocol field modification and message fabrication 
attacks are prevented.

Replay attacks are prevented by the inclusion of a monotonically increasing encrypted sequence number for each 
neighbour.   As  the  sequence  number  is  encapsulated  within  the  packet’s  encryption  layer,  this  cannot  be 
fabricated.

Additionally, encryption keys are updated and capabilities are re-issued at pseudo random intervals in order to 
prevent keys being compromised using brute force cracking methods.  Updates are performed more rapidly than 
an external party could recreate the encryption keys and capabilities.

In  addition  to  SSP,  an  intrusion  detection  system,  SAHN-IDS,  is  built  into  the  SAHN,  which  detects  and 
responds to anomalies caused by misbehaviour or faults.   This is  achieved by monitoring channel usage of 
neighbouring  nodes,  and  monitoring  of  nodes  along  each  routing  path.   Nodes  within  the  local  node’s 

Figure 3: A Link-Layer Payload produced by SSP



transmission  footprint  are  monitored  by  taking  note  of  the  time  each  neighbouring  node  spends  using  the 
common channel.  Nodes along a routing path are monitored in this fashion by neighbouring nodes, and statistics 
are periodically unicast  back to the source node.  This two-fold monitoring approach is capable of detecting 
most  network anomalies such as non-compliance with the MAC protocol or  bandwidth reservation scheme, 
jamming, black- and grey-hole attacks, and selfish packet forwarding.  The network can then respond by either 
automatically excluding misbehaving participants from network operation, and/or informing a human operator 
(Islam 2006).

The SAHN also possesses a distributed admission control and bandwidth reservation protocol, to offer QoS 
facilities.  This provides for the use of the SAHN for real-time applications, such a video or audio conferencing.

Supporting the admission control and bandwidth reservation protocol, as well as the security protocol, the SAHN 
possesses  a  capability-based resource access  control  mechanism (Bickerstaffe  2001,  Gunawan 2003), which 
provides for fine-grained control over access to network resources.

Where many traditional ad hoc networks rely on omnidirectional antennas, SAHN is capable of operation with 
directional  and  electronically  steered antennas  (Islam,  Pose,  Kopp 2004b),  giving  the  SAHN the  ability  to 
maximise range, enhance security, and maximise usage of the radio spectrum.  The use of directional antennas 
results in a very different network environment, requiring new protocols to operate and to exploit the nature of 
directional antennas.

As suggested by the name, Suburban Ad-Hoc Networks are designed for a suburban setting.  Consequently, they 
are optimised for a ‘quasi-static’ environment, where nodes rarely move or disappear.  This allows for higher 
transfer rates, particularly, than in traditional mobile ad-hoc networks.  In addition, the SAHN is symmetric in 
upstream and downstream channels, making viable a wide range of higher-level protocols such as video/audio 
conferencing and file-sharing protocols.  

As mentioned above, the SAHN is designed to be independent of any particular technology configuration.  Thus, 
many implementation options are available.  For example, a monolithic implementation of the SAHN system 
running on a single-board embedded system is suitable for a modem-type router device.  An installable operating 
system driver could allow users to run the SAHN software on their existing PC hardware. A ‘SAHN-OS’ self-
contained operating system could be installed on commodity PC hardware for a dedicated ‘SAHN gateway’.

An embedded SAHN device could provide for mass-production, offering a self-contained solution.  Operating 
system drivers or self-contained operating system software can be distributed to keep costs down, using existing 
hardware.

To  demonstrate  one  such  engineering  method,  we  have  developed  a  sample  architecture  for  a  SAHN 
implementation,  and  produced a  working prototype  implementation  under  Linux (Tyson,  2005).   While  no 
assertions are made that the presented implementation is optimal for the SAHN, a prototype under Linux can be 
produced cheaply,  quickly and easily,  as the Linux O.S. is an open system. This provides a rapid proof-of-
concept to provide further verification and profiling.

The SAHN prototype needed to be extensible, and thus modular, with well-defined interfaces.  In addition, it 
needed to avoid making assumptions about the underlying platform as much as possible, to maximise portability. 
This allows the prototype to be moved between platforms easily, a useful property for an initial prototype, when 
it  is  desirable  to  gather  information  on  hardware  choices.   Performance  was  another  consideration,  as  the 
prototype needed to provide relatively realistic behaviour.

A Linux kernel module provides an interface to the system, and interacts with a user-space daemon, which 
provides all processing and logic functionality.  This is logically placed between the physical network device 
layer, and higher layers of the network stack.  This results in the SAHN software appearing to higher layers, such 
as TCP/IP, as an ordinary physical device.

The presented architecture offers portability across platforms,  transparency to higher  layers,  modularity and 
extensibility.  Performance  profiling  of  the  developed  implementation  reveals  that  the  SAHN  prototype 
implementation provides reasonable performance.

As the implementation resides in user-space, de-coupled from operating system specifics, it is independent of 
operating system-level details, and can be moved to other operating systems with relative ease. Additionally, 
future changes to the kernel will have a minimal impact on the SAHN implementation: a large advantage.  The 
architecture makes use of widely supported POSIX libraries, and thus requires little modification to be used on 
other operating systems.

The  design  provides  similar  interfaces  to  the  IEEE802.11  and  IEEE802.3  Linux  implementations,  thereby 
providing complete protocol transparency to higher level protocols.  The architecture is highly modular, and is 
easily extensible.



The  format  of  this  paper  is  as  follows.   The  ‘Sample  Architecture’ section  shall  describe  the  proposed 
architecture of the SAHN system.  The ‘Implementation’ section shall discuss a few implementation details. 
‘Testing and Results’ will  discuss the testing and profiling procedures,  and examine the implications of the 
results.   Finally,  the  conclusion  will  summarise  the  presented  material  and  discuss  some  potential  further 
research directions.

SAMPLE ARCHITECTURE

The functionality of the SAHN is logically broken up into five separate modules (Figure 4), offering routing, 
access control, flow control and error management, security, and Quality of Service (QoS) support.

The five modules are defined below.

Suburban Ad-Hoc Network Routing (SAHNR)

An ad-hoc routing mechanism that maintains tables of routes to all known nodes for each network node.  For the 
purposes of this implementation, SAHN Routing uses concepts from Dynamic Source Routing (DSR) (Johnson, 
,Maltz,  1996)  and  Ad-Hoc  On-Demand  Distance  Vector  Routing  (AODV)  (Perkins,  Royer  1999),  with 
modifications and optimisations to suit a ‘quasi-static’ suburban environment (Makalic 2001, Islam, Pose, Kopp 
2003a).

Access Control/Management

A decentralised system for authenticating joining nodes, and managing access to network resources.  The access 
control/management system is primarily built upon ideas from the Walnut kernel, a password-capability based 
operating system (Castro 1996)), which operates by granting privileges by passing tokens subsequently used to 
gain access to resources.  It permits nodes to propagate and revoke privileged access to network resources in an 
entirely decentralised and robust fashion.

Flow Control/Error Management

A  sliding-window  based  mechanism  to  control  transfer  rates,  with  an  ACK/NACK-based  system  for 
management of  transmission errors,  and provisions for  out-of-order packet delivery.   This involves keeping 
buffers  of  transmitted  or  received  packets,  and  transmission/reception  counters  for  synchronisation. 
Communication of local counter values keeps sender and receiver synchronised.

Quality of Service

A system to provide a guarantee of certain link characteristics.  Provides a mechanism to request and reserve 
bandwidth for  a variety of critical  applications,  such as video/audio conferencing, or multimedia streaming. 
Interoperates  with  IPv6  and  ATM’s  QoS  systems,  by  way  of  providing  a  similar  interface,  with  similar 
functionality.  This  involves  supporting  similar  system  calls  on  connection  handles,  via  functions  such  as 
setsockopt().

Security

Figure 4: System overview



An encryption mechanism, both end-to-end, and node-to-node, implemented at the Network layer. This ensures 
the safety of sensitive data within the network, as well as securing network management data, which could 
potentially be used by hostile outside parties to break into the network.

The SAHN implementation presented takes the form of a user-space daemon and kernel module (Figure 5), 
communicating via a character device (such as /dev/sahn0), mapped to a segment of the SAHN daemon’s address 
space via the mmap() system call.  A similar concept, using shared memory, was introduced by (Makalic 2001, 
Bickerstaffe 2001, Garic 2001).

A pseudo network device is employed as the primary interface to the SAHN driver. This appears as a standard 
network device to the rest of the system (named, for example, sahn0).

The SAHN daemon handles all SAHN-related activity, and communicates with a real network interface, such as 
an IEEE802.11 device, via the kernel module, through the shared memory area. All packets are placed within 
this shared area, and control is transferred between the kernel module and the daemon.  See Figure 6 for a 
representation of data flow through the system.

A consequence of having a user-space process responsible for SAHN operations is that a large number of context 
switches will take place in times of high activity.  This represents a potentially serious performance bottleneck, 
with the potential  to bring down the speed of the entire  system. However,  as wireless  interface speeds are 
relatively low, due to the limitations of the medium, the quantity of data to be processed in any given time 
interval will be small enough for this bottleneck to have minimal impact.

Thus, although complexity is increased, negative effects are minimal, while the architecture provides a highly 
portable and easily maintainable implementation.

A custom kernel module is used to provide maximum interaction with the system, typically through the ioctl() 
system call.  This allows the implementation to support configuration of the QoS or Access Control subsystems 
from user-space.

IMPLEMENTATION

The  SAHN  kernel  module  encapsulates  all  operating  system-specific  elements  of  the  SAHN  system,  and 
presents an interface to the SAHN daemon.  The module drives a series of character devices, which are file-like 
structures that support a variety of operations upon them, such as reading and writing. The module also controls 
virtual network devices, each of which is associated with a character device. In addition, the module controls a 
monitoring interface, which drives a set of items within the /proc file system, which can be read for statistics.

The SAHN module provides the interface to the operating system, thereby de-coupling the SAHN software from 
operating system-specifics.   A character device forms the interface to the SAHN daemon.  Multiple  SAHN 
daemons can run concurrently, each with a separate character device, and a separate virtual network device.

As soon as a character device is opened, which occurs during SAHN daemon start-up, the module performs the 
following tasks:

•A virtual network device is allocated and registered.

•Associated structures are initialised, including the transmission and reception queues.

Figure 5: Single user-space process model



•A large amount of memory is allocated, ready to be mapped into the daemon’s memory space via the mmap() 
system call.

•The buffer space is initialised, ready for packet space allocations.

The daemon typically then maps the shared memory into its address space by way of the mmap() system call on 
the character device, and begins node start-up procedures.

The SAHN system allows for an arbitrary number of SAHN devices to be used concurrently.  When the SAHN 
daemon is started, it connects to the kernel module via the character device, and causes a SAHN device to be 
registered. Each device is numbered incrementally: sahn0, sahn1, sahn2, up to the maximum allowed number of 
devices.

To create a new interface, administrators launch a new SAHN daemon process, which will attach to the first 
available SAHN character device, and begin operating the newly created virtual network device.

The SAHN daemon does all the work of the SAHN, and interfaces with the SAHN module.  Upon start-up, the 
daemon identifies a free SAHN character device,  maps the shared memory into its memory space with the 
mmap() call, and begins performing management functions and processing packets.

Each SAHN device has an associated pool of physical network devices, through which the SAHN node operates. 
This pool is implemented as a linked list of Linux network device structures, which is manipulated by the SAHN 
daemon via  ioctl() system calls  to add or  remove a device.   On node start-up, the daemon specifies which 
physical devices are to be used for the relevant SAHN device, and the SAHN module begins monitoring the 
given devices. When an incoming packet arrives on a physical network device, the kernel module identifies the 
associated SAHN device, and uses its structures to en-queue the packet.

The daemon main event loop comprises the following steps:

1.Wait for activity.

2.Acquire the active queue segment.  This locks off  the queue segment  that  contains  packets,  and returns  a 
reference to the beginning and end of this segment.

3.Sort the queue segment in order of priority (applying QoS and traffic shaping).

4.Process each packet in queue segment, possibly submitting for transmission or reception, passing upwards to 
the Linux network stack.

5.Release the queue segment.

This loop operates while the SAHN node is online.  When packets are awaiting processing, they are passed into 
the daemon, and ultimately passed back for transmission or reception. To ensure fairness while processing, so 
that large volumes of outgoing packets do not dominate the processing of incoming packets, or vice versa, 
incoming/outgoing packets are processed in small lots, and control is returned to the loop which processes the 

Figure 6: Data paths



next queue.  Thus, if a large number of outgoing packets are awaiting processing, the incoming packets will still 
be processed in a timely fashion.

In order to ensure that the implementation does not rely on any packet structure, only the MAC header is used 
for obtaining addressing information.

Consequently, SAHN addresses are mapped to Ethernet addresses, and vice versa.  This is accomplished by 
simply converting the three-byte SAHN address to a six-byte Ethernet address by padding the Ethernet address 
field with zeros, and copying the SAHN address into the last three bytes of the Ethernet address. IP and other 
higher network layers see only an Ethernet address.

In order to achieve such functionality, a cached mapping between SAHN addresses and MAC addresses has to 
be  maintained.   This  permits  outgoing  SAHN  addresses  to  be  resolved  to  MAC  addresses  for  physical 
addressing. Without the availability of such mapping, packets could not be received by destination hardware.

This  mapping  is  achieved  through  the  ‘neighbour  discovery’ process,  whereby  an  entering  SAHN  node 
broadcasts a ‘hello’ packet to its neighbours, and in turn get a ‘hello’ reply from each neighbour.  Incoming 
‘hello’ or ‘hello reply’ packets from neighbouring nodes have a physical MAC header, which contains the node 
MAC address.  This address is stored, in combination with the node’s SAHN address, within a database for 
future look-ups.

TESTING AND RESULTS

Testing and performance profiling of  the SAHN prototype implementation was performed using a series of 
200MHz Pentium 1 PCs, connected in a chain of three nodes.  The machines used each had three network cards. 
The  first  network  card  of  every system was  connected to  a  common channel,  used for  administration  and 
baseline testing, and configured for a 192.168.1.x network. The second and third network cards connected to the 
nearest neighbours in each direction.  These network cards were configured for a 192.168.2.x and 192.168.3.x 
network, respectively.

Performance  profiling  of  the  SAHN software  reveals  that  even  on  the  obsolete  SAHN test  bed  hardware, 
performance of the SAHN implementation is relatively high.  In throughput tests over a single hop, the SAHN 
offered performance in the order of 5.87 Mbit/second.  This represents 82% of the speed obtained in the baseline 
tests, using the common channel instead of the SAHN link.  In throughput tests over two hops, the SAHN 
implementation gave 5.59 Mbit/second, 74% of the baseline test speed.

Latency tests revealed significant differences in the latencies of the ‘baseline’ common channel and the SAHN 
link.  Ping tests over a single hop revealed latencies over the SAHN link in the order of 3.7 ms, over 630% of the 
latency of the baseline test.  Tests over two hops revealed 4.5 ms latencies, 770% of the baseline test.

Figure 7: Latency test results



Such large differences in link latencies are likely to be due to the paths that packet data take through the SAHN 
software, traversing several queues and undergoing processing within the SAHN daemon.  On more modern 
hardware than the SAHN test bed, it is expected that these latencies would be significantly lower.

These test results are promising, and reveal that the SAHN software is indeed capable of offering near-link speed 
performance.  Due to the obsolete hardware comprising the SAHN test bed, throughput results are significantly 
lower than would be experienced on more modern hardware.  Processor speeds of the test bed are low, and the 
available RAM severely limits the buffer size of the SAHN software.  On more modern hardware, throughput is 
expected to closely approach link speeds.

Further  testing  would  be  desirable  to  gain  a  firmer  understanding  of  the  prototype  implementation’s 
performance.  Such tests could typically involve more complex arrangements of nodes.  A longer chain of nodes 
would give a better idea of the throughput and latency of the prototype, as well as experimentation with different 
lengths of chains (different hop counts).  Varied topologies could be used to test route discovery performance.

Finally, experimenting with different hardware for the prototype nodes would yield more information about the 
processing performance of the prototype.

CONCLUSION

The presented Monash Suburban Ad-Hoc Network (SAHN) provides a highly secure and survivable broadband 
alternative to co-operating users in a suburban environment.  The SAHN can aggregate many different physical 
media, and offers a broadband-class connectivity solution with low ongoing costs.

This paper has presented a sample architecture and prototype implementation of the SAHN, as a Linux kernel 
module and a daemon application written in C. 

The SAHN kernel module provides an interface to the operating system kernel, and provides for the de-coupling 
of operating system functionality from SAHN functionality. For interaction between the SAHN daemon and the 
SAHN kernel module, a shared memory interface is defined. Accompanying this interface, a number of control 
routines are provided via the ioctl() system call interface.

Protocol transparency is achieved through emulation of a physical network device, and the use of MAC address 
caching and mapping to SAHN addresses. This provides a mechanism whereby SAHN addresses are represented 
as  MAC addresses,  so  that  standard  interfaces  and  routines  can  be  used  with  the  SAHN implementation. 
Consequently, the SAHN implementation can be used with arbitrary upper level protocols, such as TCP/IP. 

Possible future research directions involve further implementation of the SAHN software presented in this paper. 

The remaining SAHN modules need to be completed within the implementation: Quality of Service, security, 

Figure 8: Throughput test results



management/access control, and error management.  Additionally, further development of the SAHN is possible, 
to improve its security and access control systems, and to extend its use to more diverse environments.
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