
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2011

Predictive and adaptive game development a practical application Predictive and adaptive game development a practical application

of development models to the independent video game industry of development models to the independent video game industry

Liam A. Hunt
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Hunt, L. A. (2011). Predictive and adaptive game development a practical application of development
models to the independent video game industry. Edith Cowan University. https://ro.ecu.edu.au/
theses_hons/26

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/26

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/26
https://ro.ecu.edu.au/theses_hons/26

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

Predictive and Adaptive Game Development: A practical application
of development models to the independent video game industry.

Liam Hunt

Bachelor of Creative Industries

Faculty of Education and Arts

Submitted on the 11th of November, 2011

i

Abstract
Through the process of researching a number of game and system development models, this

study defines two archetypical development models - the predictive and the adaptive. Using

each of these models, two video games have been developed in order to measure the practical

effect that they can have on the design, development process and player experience of a

game. Using the knowledge gained through playtesting and an analysis of the relationship

between each game and its development methodology, a number of development guidelines

and recommendations have been specifically constructed for use by independent games

developers. The practical development and written component of this project aim to answer

the following research questions: how does choosing between a predictive and adaptive

development model archetype affect the design, development process and player experience

of a game?; and how can components from a variety of game design and development models

be integrated into development guidelines and recommendations for independent video game

developers?

The predictive development model archetype is primarily influenced by Royce’s (1970)

‘Waterfall’ design model, while the adaptive development model archetype is primarily

influenced by Keith’s (2010) Agile approach. The way in which this study’s final guidelines

and recommendations are tailored to independent games development has largely been

influenced by Kerr’s (2006) analysis of the video game industry, as well as the experience

and suggestions of a number of accomplished games developers. The entirety of this study

has been conducted though a design-based research methodology within an action research

framework. Through the analysis of this project’s two games and their development

processes, a dialog is created between different development methodologies (from both a

games and system development background), as well as the theoretical and practical

components of game development. Ultimately it is concluded that while predictive and

adaptive development approaches to game development will affect a game in specific,

predictable ways, independent developers must use a knowledge of development

methodologies to select components specifically tailored to their individual projects.

ii

I certify that this thesis does not, to the best of my knowledge and belief:

(i) Incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

(ii) Contain any material previously published or written by another person, except

where due reference is made in the text; or

(iii) Contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make duplicate copies of

my thesis as required.

Signed, Date:

Liam Hunt

iii

Contents

Introduction

1

Research Questions

3

Literature Review
Formal game and system development models
Game design theory
Significance of independent development in the modern video game industry
Conclusion

4
4
8
12
17

Theoretical Framework

19

Methodology
Limitations

23
26

Development
Dematerialized
Cursed

28
28
34

Playtesting

40

Discussion
Design reflection
Development
Player experience

46
46
49
51

Recommendations and Conclusions

55

References

60

Appendices
Appendix 1 - Predivtive game design document
Appendix 2 - Predictive level designs
Appendix 3 - Sample predictive concept art
Appendix 4 - Final debugging change list
Appendix 5 - Playtesting questionnaire

62
62
69
73
75
76

1

Introduction
According to Forbes’ Mary Jane Irwin (2008), of all video games that enter into production,

only 4% end up making a profit. Of the games that are actually completed and reach store

shelves, still only 20% are profitable. Typically a game will have to be revised throughout its

design process, increasing costs and development time, with “about 60% of a game's budget

[being] spent reworking or redesigning a game” (Irwin, 2008). With such a small amount of

video games being successfully completed and turning in a profit, it is important to have a

formal understanding of game development processes, and the ways in which they can make

or break a game before it even reaches a player’s system.

Game design is more than planning out the story, gameplay features and assets of a game.

The process involves designing these elements in such a way that they fit into a cohesive

whole, allowing them to work together in bringing the player an experience that is

memorable, enriching, and ultimately fun. In order to develop and structure the elements of a

system effectively, it is important that we have a set of formalised models, processes and

theories that can be employed to inform every aspect of its construction (Adler, 2005). This

study involved investigating two identified game development methodology archetypes;

predictive and adaptive, and practically analysing them in order to identify aspects of both

that can be employed to effectively develop a game in an independent context.

With the advent of digital distribution services such as Xbox Live Arcade, Steam and the

iPhone store, independent game development has become a much more viable industry with

the shift of video games into a ‘multi-medium’ (Ip, 2008). The commercial and critical

success of independent titles such as Minecraft, Super Meat Boy, World of Goo and Braid

demonstrate that it is viable for independent developers to not only make a living though their

craft, but to become internationally recognised as competitors to larger budget developers.

With the growth of this sector of video games development, it is important to carry out an

investigation into what formal game development methodologies and theories may be

suitable for use in such an industry.

This study establishes of series of development recommendations and guidelines for use by

small start-up teams or independent developers. These recommendations and guidelines have

been synthesised though the combination of different elements from two separate

2

development methodology archetypes, namely predictive and adaptive development (both of

which are explained in more greater later in this submission). The effects and implications of

these two approaches have been identified through the thorough analysis of the development

process and playtesting feedback of two games, one developed adaptively and the other

developed predictively.

3

Research Questions
In order to practically investigate the ways in which the choice of a development model can

affect the game it is used to develop, as well as devise formalised methods specifically

designed to assist the growing industry of independent games development, two research

questions were identified:

• How does choosing between a predictive and adaptive development model archetype

affect the design, development process and player experience of a game?

• How can components from a variety of game design and development models be

integrated into development guidelines and recommendations for independent video game

developers?

The exploration of these questions has involved a definition of predictive and adaptive model

archetypes, developed through an analysis of models and methodologies used in game

development, traditional software engineering and project management. These development

archetypes informed the development of two games (one using each model), which have been

analysed to draw a clear comparison and contrast between the ways in which different

development models and approaches can influence the design, development process and final

player experience of a game. This analysis has been drawn from validated guidelines for

effective design and explored within the context of a review of the role of independent games

within the video game industry as a whole.

4

Literature Review
This literature review has been split into three main sections. The first section details various

theories and studies concerning game design, as well as the ways in which games can be

segmented into core components that can be analysed and measured. The second section

explores independent games development, the various theories and practices that currently

exist within this field, and its place within the modern video games industry. The final section

investigates pre-established formal game and system development models, mainly concerning

Royce’s (1970) ‘Waterfall’ model and Keith’s (2010) Agile game development with Scrum,

including a comparison between predictive and adaptive archetypes.

Game design theory

In order to properly analyse the two games developed for this a project firm understanding of

what a game is must be established, along with the fundamental components that make up

gameplay and what comprises a good game. To measure the effect that predictive and

adaptive development approaches can have on a game, a theoretical basis and game design

lexicon must be determined, along with criteria that can be used to assess the quality of each

developed game.

Huizinga (1955;2005) identifies the phenomenon of play as universal between cultures and

species, used as a means to learn, relieve stress and have fun. He argues that play satisfies a

human need beyond the purely biological, existing outside the realm of normal life, providing

people with a simulated way to explore their limits and surroundings within an ordered and

structured framework. Games are an example of such a framework used for the facilitation of

play, structured by a set of rules or parameters and most commonly including an overall goal

for the player to achieve. However, the specific components that must be included for a play

activity to be considered a game are widely debated.

Juul (2005) provides a brief definition of a game as follows:

A game is a rule-based system with a variable and quantifiable outcome,

where different outcomes are assigned different values, the player exerts effort

in order to influence the outcome, the player feels emotionally attached to the

5

outcome, and the consequences of the activity are negotiable (Juul, 2005, p.

36).

Salen & Zimmerman (2004), in a simpler form, define a game as “a system in which players

engage in an artificial conflict, defined by rules, that results in a quantifiable outcome” (Salen

& Zimmerman, 2004, p. 81). In both cases, rules are defined as an essential component of a

game and necessary to the organised structure of play, whether they are implicit or explicit.

Both definitions acknowledge that a game is a system which will result in an outcome that

can be quantified; a player who reaches one of the outcomes of a game should be able to

recognise and define it.

Oxland (2004) provides a practical analysis of a number of components that are inherent in

all games, in terms of their function and application in video games.

• Rules and boundaries guide and structure gameplay, encapsulating the game space

in order to remove player ambiguity in regards to what they are able or not able to do.

• Feedback is another method through which players can be guided, whether given

explicitly or implicitly, exposing the game’s rules and boundaries in various ways to

promote proper gameplay.

• Interface consists of the way in which a player is allowed to interact (and thus play)

with the game system, facilitating gameplay while virtually standing in for the

movement of their own bodies in analogue games.

• Goals, quests and challenges are the quantification of a game’s outcome (or many

outcomes), providing the player with motivation for gameplay.

• Balance is the way in which all these components of a game are structured in order to

complement each other and ultimately encourage the player to willingly play within

the defined rules towards an outcome that they have some motivation to achieve.

Adams (2010) argues that the two conceptual components that create gameplay within a

video game are core mechanics and user interface. Core mechanics are more specific than

rules and are the implementation of a game’s underlying mathematical systems and models.

Core mechanics determine exactly what the player can do along with the subsequent effect

that their actions will have on the game world. These mechanics can be expressed in an

algorithmic form and drive the very heart of the game; without them, there would be no

interaction. The user interface sits between these core mechanics and the player, translating

6

their inputs into perceivable outputs. This is parallel to Oxland’s (2004) description of

interface as an essential game component, both guiding and tutoring the player in what

actions they may take, while acting as an embodiment of the rules and boundaries that limit

and frame these actions.

The mechanics of a game are the underlying components that drive action and through their

affordances and limitations, construct rules and goals. The game components identified by

Oxland (2004) are all influenced by the mechanics that have been built into the game’s

fundamental systems. Jarvinen (2008) identifies a game’s mechanics as the essential core of

gameplay, working together to provide the player with access to the game in such a way that

they are able to progress towards their goal. Individual mechanics are often simple, self

contained tasks, such as aiming, shooting, moving and jumping, and in most cases are

operated by the player in parallel (e.g. they may move and shoot simultaneously). Jarvinen

(2008) classifies game mechanics into one of three categories: primary/sub mechanics are

those that work towards the highest order goal for the player (e.g. jumping on an enemy in

Mario). Modifier mechanics are those that change gameplay in such a way that the player

changes their behaviours (e.g. collecting a star in Mario). Glocal mechanics are those that

form the culmination of local goals into a global victory condition (e.g. reaching the end of

the end of a level in Mario before the time runs out). In order for the mechanics and

individual elements in a game to work in unison and construct a cohesive and playable whole,

they must be balanced.

Balance can be described as a sense of equilibrium and harmony between challenge and

achievement, mediated by feedback within the rules and boundaries of a game. Rolling &

Adams (2003) define a balanced game as “one where the main determining factor for success

of the player is the skill level of that player” (Rolling & Adams, 2003, p. 240). Commonly,

balance is achieved within a game through rigorous testing, trials and tweaking, which can

consume a large amount of time and effort on the part of the quality assurance testers.

Rollings & Adams (2003) identify two broad classes of balance in video games: static

balance and dynamic balance. Static balance involves constructing the rules and their

interactions in such a manner that they are fair and avoid promoting dominant play strategies

too greatly. Employing static balance aims to ensure that a game begins at a point of

equilibrium, ensuring all players are afforded the same initial chance of success. Dynamic

balance involves tweaking game elements during play in order to provide the player with

7

consistent challenge and avoid a sense of stagnation. A common example of such balancing

is shifting a game’s difficulty level to match a player’s performance – if they constantly

succeed the game gets harder, if they constantly fail the game gets easier.

For a game’s elements to be balanced, the testers of that game should know how properly

analyse the way in which they interact with the player and each other. Consalvo & Dutton

(2006) propose a methodology for the qualitative study of games that is broken into four

main areas: object inventory, interface study, interaction map and gameplay log. Object

inventory is a catalogue of every object in a game including the ways in which the player can

interact with it, the method and purpose of its use, the way it is represented, and the

behaviours it promotes. Interface study observes the ways in which the player is able to

interact with the game and the means through which the game communicates with the player,

which allows for an analysis of which information is given privilege and the limits that are

imposed on gameplay. Interaction map involves an examination of the choices players are

given when interacting with NPCs (Non Playable Characters) or other players, documenting

their limits, flexibility, meanings and significance to the development of the game as a whole.

Gameplay log is an exploration of the game as a whole, specifically the gameplay that

emerges from the combination of its individual elements. This final area is where a game’s

balance, or lack of balance, becomes apparent, following the ways in which the player is

encouraged to act by the affordances and restrictions of the game mechanics and their

subsequent enjoyment or frustration.

In order to illuminate bugs, balance issues, unusable mechanics or confusing game elements,

many developers will playtest their games before final release. Playtesting generally involves

gathering feedback from a number of potential consumers who have been allowed to test the

game before it is released. Davis, Steury & Pagulayan (2005) propose a particular playtesting

method whose goal is to “give game designers quantitative evaluations from players about

how they experience the game” (Davis, Steury & Pagulayan, 2005). Their playtesting method

involves one-on-one moderation in standardised environments, including large sample sizes

of test subjects (approximately 25-35 people) who represent the entire demographic of the

game’s target audience. Subjects are given around an hour to play the game and construct

their first impression and then are posed a number of questions that require standardized,

quantifiable answers (e.g. a rating between 1 and 10). Testers subsequently interview the

8

subject in a more open ended manner, allowing them to justify their responses to the first set

of questions and elaborate on their overall gameplay experience.

The playtesting method proposed by Davis, Steury & Pagulayan (2005) ultimately focuses on

assessing a game’s playability, problem areas and impact on a subject’s overall experience,

aiming to identify issues and problems encountered in order to find areas to improve. It and

other playtesting methods are used to determine whether players will perceive a game as fun

and enjoyable, challenging, innovative and novel. Davis, Steury & Pagulayan (2005) assert

that questions posed to playtesting subjects should be asked in reference and comparison to

other games they have played. By relating their experience playing a game to previous

gameplay experiences, subjects can identify what worked and what didn’t without having to

be articulate in game design and mechanics.

An understanding of the elements of game design is crucial to both the task of developing

two quality games and the construction of this study’s guidelines and recommendations for

independent game developers. These guidelines and recommendations are structured around

addressing issues highlighted by the literature, such as the definition of rules and the

balancing of mechanics, focusing on steps that directly influence the end experience of a final

game. Therefore a study such as this benefits from the existing work done on playtesting and

game analysis, in order to identify the strengths and weaknesses of specific games that can be

used as a basis for exploring how different development approaches can contribute to the

quality of the resultant games and their benefits for independent developers.

Significance of independent development in the modern video game industry

In order to adapt the above generic principles for use by independent game developers an

understanding of the modern independent games industry must be established, including the

way in which development within differs from that of the games industry at large.

According to a 2009 study by IpsosMediaCT (2010), 67% of U.S. households play computer

or video games, with national video game sales reaching 10.5 billion dollars. Game players

are 60% male and 40% female, with their average age being 34. The top selling genres of

2009 were sports, action, family entertainment and shooters, respectively. All of these

statistics suggest that video games are assuming the mantle of a mainstream medium and the

9

average person who plays games is becoming increasingly closer to the statistically average

person in society. The increasing diversity of the audience that games can be targeted towards

suggests an opportunity for increasingly diverse gameplay experiences, with the rise of smart

phones and the internet allowing for low budget games to reach and appeal to a global

market.

As asserted by Ip (2008), the increasingly diverse video game audience can be attributed to

the convergence of new technologies and content with the games industry. The integration of

technologies such as social networking, motion controls and downloadable content has

resulted in the establishment of new genres and forms of gameplay, targeted at demographics

that may have previously been considered ‘non-gamers’. Ip (2008) demonstrated that video

games have become a ‘multi-medium’, consisting of elements traditionally associated with

other media such as books, film and music. He asserts that the video games industry is

developing into “a market in which emphasis is firmly placed on users, user-generated

content, and the idea of universal access” (Ip, 2006, p. 220).

Kerr (2006) identifies the games industry as a ‘cultural industry’, noting its general high risk

and production costs, low reproduction costs and low ratio of product financial success.

Independent, small or ‘mini’ games are characterised as possessing a number of revenue

models and involving "shorter development cycles and lower production costs" (Kerr, 2006,

p. 61). Such games thus allow more experimental and less proven concepts, due to their lower

risks.

Kerr (2006) observes that the majority of games are developed or owned by those that fund

them (the publisher), who thus are justified in overseeing management. This results in

restricting of creative control and aggressive negotiations with contracted developers, due to

the fact that the publisher is the one that bears the initial financial risk and investment. He

argues that the current structure of the video games industry is focused on maximising

economic value, subsequently seeking to minimise risk and focus on proven and marketable

concepts. Although Kerr (2006) condemns this as stifling innovation and creativity, he

rationalises it by pointing out that a company will always be primarily focused on profit and

asserts that independent developers still exist that, alongside with academics, artists and user

groups, still “contribute to overall innovation and diversity in the industry" (Kerr, 2006, p.

73). Due to the high cost, high risk nature of the modern video game industry, low budget

10

independent games development has become a testing ground for new ideas, and an area

where new developers can develop and market their games without the necessary publisher

relationship inherent in the larger budget areas. Economically, this has become sustainable

through the rise of digital distribution markets such as Xbox Live Arcade, Steam and the

iPhone market.

Although independent games generally have a significantly smaller user base than large

budget mainstream games, they still have the potential for large profit margins due to their

relatively lower budgets. Shakar & Bayus (2002) compare the unit and software sales

between two systems made by Sega (higher user base) and Nintendo (lower user base), from

1993 through to 1995. Shakar & Bayus (2002) argue through their analysis and subsequent

findings that Nintendo was able to gain greater profit through a stronger network of users,

and that a large customer network does not necessarily guarantee high sales. Rather than

designing a video game or system to target the largest potential audience, it can be better to

specifically target a smaller group of people and use less development resources. By building

confidence in a niche user base, independent developers can construct the foundations

necessary to develop games using a progressively larger budget, attracting a progressively

larger audience through the strength of their base network.

In order to successfully develop independent games, game developer Jacob Stevens (2009)

provides a number of tips specifically designed to be used in low budget and small team

ventures. He argues that in order for an independent team to be successful all members must

have demonstrated independent self-motivation and the team must choose the correct

distribution platform for their design idea. Other preliminary methods that can be put in place

before development of the game begins include planning the game around the team’s pre-

established strengths (not attempting to learn a large number of new skills) and setting limits

on gameplay and scope in order to refine and limit the concepts that are created. As an

approach to the practical development of the game, Stevens (2009) argues that iterative

prototyping and play testing is the best way to ensure the final game is successful. He

emphasizes the importance of involving test players and their constant feedback in the

development process. Contrary to systems development methodologies, Stevens (2009) plays

down the importance of design documentation, arguing that in a small team time would be

better spent on the development of the game itself.

11

In an interview published by Christian Nutt (2011) of Gamasutra with a number of

successful independent game developers, Jake Kazdal (developer of the video game Rez)

echoes Steven’s (2009) insistence of including outsider parties to playtest the game at

different stages, in order to ensure that it can be understood by those who did not develop it.

Kazdal attributes the success of his games to merciless marketing and demonstration to the

people who would be potential buyers, highlighting the folly of independent developers

solely focusing on the game’s practical development. In the same interview by Christian Nutt

(2011), Daniel Cook of independent development company Spry Fox agrees that prototyping

is necessary to ensure a game remains fun and playable, in addition to iterating as often as

possible. Cook insists that all members of an independent development team must work well

together and should respect the act of designing a game as completely separate to other

disciplines such as art or programming.

Although acknowledging the independent games industry as a source of new ideas and

innovation, Grossman (2003) asserts that independent developers would also benefit from the

ideas and lessons learnt by those in the mainstream games industry. In a series of post-

mortems by experienced developers, he examines the different things that went right and

wrong in a number of commercial game projects. Most developers cited a lack of planning or

foresight into game design choices as being as source of trouble, often extending

development times and costs, as well as forcing the development team to cut features from

the project. In many cases, a lack of management or proper deference to a central creative

source created inconsistencies and misconceptions during the development process. This

caused the final game to be incoherent and lacking unity, or forced necessary revisions and

re-design. Grossman (2003) notes that, for start-up independent developers, ambition must be

restrained and a project’s limits must be defined early in order to avoid the feature creep and

overtasking inherent when developing with youthful, enthusiastic teams. In contrast to

accomplished mainstream developers, he labels the inexperience of most independent

developers as both beneficial and perilous. Such developers are more likely to try new

methods, ideas and innovations in development due to their lack of engrained knowledge but

can often ignore vital practical elements of developing a real, playable game in favour of

being caught up in the romanticism and excitement of their dream concept.

In order to construct effective game development guidelines and recommendations for

independent developers the recommendations of successful developers in the field must be

12

taken into account, while considering the reflections and post-mortem advice of professionals

working with a larger budget. As the independent games market has only relatively recently

become an economically viable means of professional games development, the unique nature

of its place in the industry at large will play a large role in the final recommendations for new

developers. In this sense, areas that require consideration include the implications and

practical impact of working alone or in a small team, developing on a small budget with a

low level of experience, releasing content in a digital market, and the ways in which these

factors will affect the structure of a game development process.

Formal game and system development models

In order to apply game design theory and an awareness of the independent games industry to

the development of a successful game, one must have a formal, proven plan or model to

structure it around. Valuable guidelines and recommendations for independent games

development can only be constructed through an understanding of existing games

development models, as well as the systems development models they were adapted from and

influenced by.

There are a large number of pre-conceived approaches to traditional systems and software

development, described by the USA Department of Health & Human Services as a

“framework that is used to structure, plan, and control the process of developing an

information system” (Department of Health & Human Services - USA, 2008). Some of these

methodologies include Waterfall, Prototyping, Incremental and Spiral. Each of these

methodologies are structured in a linear or iterative fashion, or sometimes a combination of

both. Adler (2005) argues that such formalised and structured models when developing a

system are necessary in order to ensure that it is completed within a reasonable timeframe

and budget, stressing the fact that within professional fields only a small percentage of

projects are adequately finished within the initial time and cost allocations. He asserts that

having a planned approach and project schedule before development begins can minimise the

already high risks within the chaotic field of software development. Specifically, Adler

(2005) identifies a number of ways in which development models can assist companies

including bureaucratic rationalisation in order to reduce uncertainty, modularity in order to

reduce interdependence, and automation in order to reduce task complexity.

13

The necessity and benefit of using a formal model in order to structure the development of

large software systems is further explored by Royce (1970). He argues that although all

software systems must go through two common steps of analysis and coding, any large

project will be doomed to failure unless proper time and effort is also allocated to the

identification of the system’s requirements, documentation, planning, designing and testing.

It is here that Royce’s (1970) model of software development is introduced, later dubbed by

others as the ‘Waterfall’ approach. In a basic sense, the model consists of 7 steps: system

requirements, software requirements, analysis, program design, coding, testing and

operations. In order to ensure that the final project is as user friendly, bug free and coherent

as possible, Royce (1970) suggests that once initial requirements have been identified,

approximately one third of the development time should be allocated to creating an initial

prototype of the final system that is complete in intended functionality. This practice is

intended to reduce the resources used in the project’s test phase, allowing for the developers

to practically test and revise their system long before it reaches a customer’s hands.

Figure 1. Waterfall model diagram. (Royce, 1970, p. 329).

Overall, Royce’s (1970) model is structured in a mostly linear manner, but involves an

iterative aspect in the preliminary prototyping of the system. It could be described as

predictive as it involves an identification and definition of the final system and its

functionalities prior to its actual development or coding phase. The USA Department of

Health & Human Services (2008) describes its strengths as being measurable in terms of

14

costs and time, and allowing new team members to enter the design process while using the

established documentation to understand the project's overall scope. Its weaknesses are cited

as mainly involving its inflexibility and lack of room to respond to any changes or alterations,

especially towards the end of the project.

In the field of traditional software system design, the USA Department of Health & Human

Services (2008) identifies a number of other commonly used formal models, each of which

can be used to suit specific types of projects depending on their strengths and weaknesses.

Prototyping involves breaking a project into small manageable segments, involving the user

or client throughout the entire process. Its strengths include greater user satisfaction,

flexibility and quick identification of problems. However, its weaknesses include added costs

and time, lack of documentation and potentially false user expectations. Incremental is

described as both linear and iterative, involving either a series of iterations of Royce’s (1970)

7 steps, or the use of his model’s first 4 steps to plan and document, then developing and

coding through Prototyping. Its strengths are described as allowing exploitation of knowledge

gained from incrementing and allowing formal control when planning the project. Its

weaknesses include a lack of consideration for business and technical requirements as well as

encouraging difficult problems to be put off to demonstrate early success.

Another software development model that combines both linear and iterative frameworks is

the Spiral model. Proposed by Bohem (1986), Spiral development involves breaking down

the completion of a project into a number of cycles, all of which follow a common set of

increasingly larger steps. Each cycle begins with a determination of the objectives,

alternatives and constraints of the current aspect of the project, followed by an analysis and

resolution of the potential risks involved. At this stage a prototype of the current project is

designed and developed, then verified and prepared for use in the next development cycle.

The final step of each cycle involves planning for the next cycle in the project, gradually

increasing in scope as the development process progresses.

15

Figure 2. Spiral model diagram. (Department of Health & Human Services – USA, 2008, p.

6).

The USA Department of Health & Human Services (2008) identifies the Spiral model’s focus

on risk analysis and avoidance as its major strength. Additionally it highlights the fluidity of

each software cycle’s methodology, allowing for the adoption of Waterfall, Prototyping or

Incremental approaches in each iteration, depending on the project’s current needs.

Conversely the Department of Health & Human Services (2008) cite this fluidity as a

potential weakness due to the fact that there are no definite or exact steps to follow, thus

requiring the assistance of a skilled project manager. Additional weaknesses include the lack

of firm deadlines and Spiral’s relative complexity in comparison to other development

models.

Hayes & Games (2008) discuss ways in which the use of systematic and formal development

processes can educate on the subject of game design itself. They argue that it is important for

game design novices to structure their work around a pre-conceived pattern, taking time to

plan and consider the design and overall structure of their game (both on a macro and micro

scale) before undertaking the task of actually coding and building the game itself. Hayes &

Games (2008) stress the need for enhanced focus on teaching better design thinking to

novices, including “more sophisticated and useful understandings and practices” (Hayes &

Games, 2008, p. 328). Through the undertaking of developing a game though a proper

educational scaffolding, game design practices can be taught and practically built upon by

‘learning by doing’. Formal development models can facilitate learning by providing an

16

evenly rounded development process, such as by allowing time for analysis, planning,

development (coding) and testing. They can be used to guide the uninitiated so that they do

not jump straight into coding and miss out on the overarching lessons that the other stages

can teach about game design on a more macro scale.

The purpose of using a formalised development model that allows for iteration and re-

adjustment is recognised in the Agile methodology of game development. Keith (2010)

discusses the use and application of this methodology through an iterative development

framework named Scrum, specifically tailored to break down the process of creating a game

into a series of task focused ‘sprints’. In order to facilitate these sprints, a game is broken up

into groups of related tasks or features that must be completed and are documented in a

project backlog. Every two to four weeks the game development team will meet to re-assess

the current state of the game, selecting a number of tasks from the backlog that they can

independently work on to fashion into a playable, potentially shippable release of that

specific feature. Keith (2010) argues that as much new knowledge is generated during the

design process, constant iterations are needed in order to incorporate this knowledge into the

final product. He stresses that working prototypes, playable demonstrations and constant

adaption are integral to producing a fun, coherent game, rather than comprehensive design

documents and pre-planning.

Figure 3. Agile model diagram. (Keith, 2010, p. 39).

17

Aside from being iterative by being structured around a series of task iterations and revisions,

Keith’s (2010) Agile game development model with Scrum could be labelled as adaptive. In

this sense, although a final game is planned from the beginning of the development cycle, the

developers constantly adapt the game’s features (and thus final form) throughout the

development cycle, in response to feedback from prototyping and demonstrations. This

differs from other more archetypically predictive development models such as Royce’s

(1970) model by allowing a compromise of the initial project vision. Such a model identifies

the development process as an evolving entity that the developers must work to

accommodate, as opposed to something that can strictly be controlled by tight management

and comprehensive documentation.

Bohem’s (1986) Spiral model is an example of a model which can potentially sit between the

adaptive and predictive archetypes. It seeks to predict the generic process that every iteration

of a project’s development can undergo, while allowing for multiple and increasingly

complex development cycles in order to adapt and inform the final product. Depending on the

current needs, identified risks and consumer demands at any stage in the development

process, the spiral model can waver between the two archetypes, allowing for the

introduction of elements from other development models.

Overall, predictive models would be preferable when there is a pre-defined customer

expectation or specific structure the game must withhold at all costs, allowing for a definite

vision of the final product to be established long before it takes a playable form. Adaptive

models encourage change and thus will not usually allow for all aspects of a game to be

planned in unison, seeking to allow a game’s final project to be a direct response to its

development process and the lessons learnt within. Through the analysis of different software

development models however, one can see that such models are rarely purely adaptive or

predictive, often incorporating elements primarily from one archetype but possessing a few

from the other.

Conclusion

Although many theories have been established in the field of games culture and game studies,

the technical development and methodologies of game development have been addressed in

less depth. The majority of existing development models have been created for use in the

18

field of software systems development and, while they can be adapted for game development,

are not specifically tailored for use by games developers. Due to its roots in systems

development and programming, many elements of game design are often assumed or

accepted and are rarely criticised, deconstructed or analysed for use in specific scenarios. As

shown by the section on formal game and system development models, there are relatively

few examples of a formalised approach to structuring the design of a game within a pre-

conceived and tested model. The majority of methodologies taken and used by developers

can be described as predictive; comprehensively planning as a separate task prior to actual

development, or adaptive; using multiple iterations and prototypes to shape a game and its

design based on feedback and analysis.

Overall, there has been an extremely small amount of formal investigation into the

independent games industry and the different methods in which games can be developed in

an independent context. The majority of literature on the subject is largely anecdotal, or is

constructed from interviews and discussions with developers concerning their personal

experience. However, it has been demonstrated that the popularity and economic value of

independent games is growing through different channels and methods than previously used

in mainstream games, in some cases even outselling and outperforming their higher budget

brethren. In light of this growth, this study endeavours to fill a portion of the apparent

theoretical gap, incorporating various existing theories with the practical design, development

and analysis of two games. The two games have been developed with an understanding of

effective game design theories, and have been analysed in terms of their rules and boundaries,

feedback, interface, goals, challenges and balance, using a series of formalised testing

methods. The findings resulting from the creation and analysis of these games will be used to

construct a series of guidelines and recommendations to guide inexperienced independent

game developers.

19

Theoretical Framework
In order reach a common understanding of the salient characteristics of predictive and

adaptive development archetypes for the purposes of this study, their differences must be

discussed in order to avoid any later confusion.

Predictive and adaptive development models can be distinguished by their approach to the

planning and structure of a project. A predictive model will follow a top-down approach,

specifying and planning a final project in its entirety before it enters development. In this

sense, the use of such a model will generally be executed in a linear fashion, completing each

aspect of the project before moving on to the next, with the entire development process being

structured around documentation devised in the initial planning stages. An adaptive model

will follow a bottom-up approach, involving minimal initial planning and documentation,

instead initially focusing on development. Aspects of the project are developed iteratively,

placing a large focus on analysis, revisal and re-designing.

Overall, predictive models would be preferable when there is a pre-defined customer

expectation or specific structure the game must withhold at all costs, allowing for a definite

vision of the final product to be established long before it takes a playable form. Adaptive

models encourage change and thus will not usually allow for all aspects of a game to be

planned in unison, seeking to allow a game’s final project to be a direct response to its

development process and the lessons learnt within.

20

Figure 4 demonstrates a sample framework for a predictive development archetype while

Figure 5 demonstrates a sample framework for an adaptive development archetype.

Figure 4. Predictive development framework

Conceptualisation

Design &
Documentation

Development

Debugging &
Testing

Polish &
Finalisation

Coding

Asset Creation

Integration

21

Figure 5. Adaptive development framework.

Conceptualisation

Add Components Refine & Polish Prototype

Test & Debug

Feedback

22

In many cases, the different salient characteristics of predictive and adaptive development

methodologies can be expressed as opposites. Ideally, the type of hybrid development

methodology approach that has been recommended for use by independent game developers

would likely possess a mix of characteristics that would sit somewhere between those of a

predictive or adaptive approach. Table 1 represents these competing characteristics as a

continuum, where approaches may sit at a particular point on each of the dimensions

identified.

Table 1. Predictive – adaptive characteristic continuum.
Predictive Adaptive

Linear Iterative
Focused on
documentation

 Minimal
documentation

A broad definition of
the game early in
development

 Game features are
developed, then later
synthesised

Restriction of changes
to the initial concept

 Refinement and
adaption of the initial
concept

Testing and
debugging discrete
from content
development

 Integration of testing
and debugging
throughout
development process

Sequential creation of
final game
components from
scratch

 Game components are
prototypes, then
iteratively built upon
and improved

23

Methodology
This project involved an investigation of archetypical theoretical development models for the

development of video games, including the construction of two games based upon these

models. For the purposes of the project, the term archetype has been defined as “the original

pattern or model from which all things of the same kind are copied or on which they are

based; a model or first form” (Dictionary.com Unabridged, n.d.). Criteria identified in the

literature review was used to gauge the quality of the elements in each game and identify any

problem areas or outstanding issues. The differences in design, development process and

player experience of the two games (from both the researcher’s and playtesters’ perspectives)

was then triangulated in order to first identify the contributing effect of their different

development methodologies, and then inform the construction of a set of guidelines and

recommendations specifically tailored for independent games development. As such, the

methodology can be defined as design-based research within an action research framework.

Action research is defined by O’Brien (1998) as “learning by doing”, involving a researcher

identifying a problem, reflexively endeavouring to solve it, measuring success and potentially

embarking on another method of solution. Overall it is structured to shape practical work

through theory, using the results of that work to transform the existing theories. The entire

research process and methodology of this project will be structured around the core focus of

action research; completing a task in order to improve the theories that informed it.

As detailed by Baumgartner et al (2002) design-based research involves undertaking of

research through theory driven design, enactment (implementation), analysis and re-design of

a system. As a sub-set of action research, design-based research involves the combination of

theory and practice into an iterative process, specifically to facilitate the reflexive

development of a system that will be analysed in order to build upon the theories that

informed its construction. Ultimately, design-based research attempts to combine informed

theoretical research with practice, and thus is suitable in such a practical field as game design.

The basis of this project’s methodology in action research facilitates the completion of a task

multiple times (practically testing an archetypical game development model) in order to use

the lessons learnt from those iterations to improve the quality of a final product (the

guidelines and recommendations for independent games development). This adheres to the

24

methodology of action research through the task of developing two games independently and

measuring their success in order to address issues and improve development theories in

independent games development. Through an analysis of the two games that have been

developed, the final outcome (strengths, weaknesses, and structure) of each game has been

linked to the development approach used to create it. In this sense, the use of design-based

research has assisted the project through its ability to “generate plausible causal accounts

because of its focus on linking processes to outcomes in particular settings” (Baumgartner et

al, 2002, p. 6). Through the exploration of the cause/effect relationship between the final

product of a game and the development methodology used to construct it, guidelines and

recommendations will be constructed for independent games development in an endeavour to

capitalise on the strengths of each, while avoiding their weaknesses.

The merging of theory and practice makes design-based research within an action research

framework an ideal methodology for this study. As evidenced in the literature review, there

exists a segregation between ideologies and development methods in the video games

industry. In an independent context, a final game product would benefit from increased

developer awareness of the effects and implications of the identified archetypical predictive

and adaptive approaches. Through the use of the previously detailed research methodology,

both development approaches have been allowed to inform the final guidelines and

recommendations for independent games development at the conclusion of this study.

The method through which this study endeavoured to answer the research questions can be

broken down into three individual tasks for each question. To recap, the first question is:

• How does choosing between a predictive and adaptive development model archetype

affect the design, development process and player experience of a game?

To investigate how development models affected the design of a game, a retrospective study

has been conducted upon the two games created, using the qualitative method outlined by

Consalvo & Duttton (2006). This study includes an object inventory, interface study,

interaction map and gameplay log, looking at the meanings and promoted player experiences

within the games. Through keeping a development journal throughout the process of creating

both games, an analysis has been undertaken of the problems, issues, successes and failures

that materialised as a result of their respective development methodologies and thus the ways

in which they affect the games’ development.

25

To investigate how different development models can affect a player’s experience of a game,

a series of playtests were constructed using the method outlined by Davis, Steury &

Pagulayan (2005). During these playtests, the researcher sat with select subjects while they

played each game, observing the way in which they behave and react to the game elements.

Each playtesting participant, after playing each game, was posed with a set of standardised

questions asking them to numerically rate certain aspects of the game and respond to a set of

statements on the Likert scale (strongly agree to strongly disagree). Following these

quantitative questions the subject was asked three open-ended questions, in order to identify

any areas they specifically enjoyed, areas they deemed problematic, and any possible changes

or additions to the game they would recommend.

The second research question is:

• How can components from a variety of game design and development models be

integrated into an effective process for independent video game developers?

A variety of game design and development models have be identified through research

(featured in the literature review), and used to construct a definition of two methodological

archetypes: the predictive and the adaptive. The two games subsequently created for this

project were then each developed according to one of these archetypes. To identify effective

processes and practices for independent video game developers, the unique methods used by

a number of successful developers within the independent field were researched and

investigated. These processes were framed within the current state of the video game industry

at large, as well its smaller independent sector.

As per the first research question, the two games created have been analysed in terms of the

ways in which their development archetype affected their design, development and final

player experience. This analysis was applied to the findings on independent video game

development and the independent video game industry, in order to construct guidelines and

recommendations for independent games development. These guidelines and

recommendations were tailored towards the needs of independent developers and the

demands of both the modern video game industry and modern players, in order to facilitate a

unique process useable by new and inexperienced developers.

Table 2 summarises the approach taken to address the research questions. For each question a

range of specific outcomes has been identified with the data required to explore those

26

outcomes and the analytical approach taken with this data. Triangulation has been possible

through the use of multiple forms of data and analytical approaches that enable comparison

between these.

Table 2. Summary of research outcomes, analysed data and analysis approach.
Research Outcome Analysed Data Analysis Approach

Development model effect on

design

• Final games

• Design documentation

Consalvo & Dutton’s (2006)

qualitative method

Development model effect on

development process

• Development journals Constant comparative

analysis

Development model effect on

player experience

• Playtesting feedback

• Playtesting observations

Statistical and textual

comparison

Identification of effective

processes and practices for

independent video game

developers

• Literature review;

development models and

independent development

Textual content analysis

Construction of guidelines

and recommendations for

independent games

development

• Results of the previous

research outcomes

Triangulation

Limitations
A number of factors limit the usefulness of a direct statistical comparison of the playtesting

data gathered for this project. Due to the iterative nature of this project it can be reasonably

assumed that the development of the first game, including the skills gained and lessons

learned by the developer, influenced the development of the second game and thus resulted in

higher playtesting scores. Additionally, although both games were developed to be of a

similar genre they contain different mechanics and core challenge types, which in turn could

have influenced playtester feedback based on the gameplay styles they generally prefer.

In order to combat these limitations, the discussion of the way in which each development

methodology archetype affected the design, development process and player experience of its

respective game focuses on identifying recurring instances where salient aspects of the

27

development approach affected definable elements of each game. These effects on game

elements do not include those consciously and deliberately added by the developer to adhere

to the game concept, rather focusing on highlighting unforseen areas of differencing balance,

polish, playability and prioritisation.

28

Development
The development of the two games took place over the period of 10 weeks, allowing 5 weeks

for each. The first, titled ‘Dematerialized’, was developed according to an adaptive archetype

while the second, titled ‘Cursed’, was developed according to a predictive archetype. During

the development of each game a daily development log was maintained, detailing the tasks

that were completed every day, the amount of time spent on each task and any problems or

issues that arose during development. In addition to these logs, at the end of every week of

development a weekly of build of each game in their current state was saved, in order to be

able to practically analyse the way in which they evolved from a simple concept to a fully

playable game. A consolidated summary of the development process of each game is detailed

below, including graphical representations (Figures 10 & 11) of the number of hours spent on

each generic task during the games’ development (derived from the development logs).

Dematerialized
As the first game was developed according to an adaptive methodology, no formal planning

was undertaken before development began. The game was based around a loose pre-planned

concept, driven by providing the player with the ability to freely teleport around a 2D

platforming environment. The initial concept was planned to be primarily involve combat

(psychomotor) challenges with some minor puzzle elements, focusing on using teleportation

to outsmart enemies and quickly attack them from multiple directions.

Week 1

The first week of development primarily focused on the construction of the underlying player

driven mechanics, as well as an animated and controllable player model. The player model’s

appearance was designed based on two factors; making it fit in with a ‘virtual’ visual motif,

and allowing it to be animated quickly and easily. Animations were created based on what

looked good within the constraints of the model. The player attacking system was originally

designed to be a three hit combo (later revised to two) and was planned to be further

developed for use in the game’s original beat-em-up concept.

The biggest initial difficulty that was encountered during development was the teleportation

mechanic, largely due to the fact that 2D mouse movement needed to be interpreted in a non-

orthographic 3D scene (causing issues with raycasting calculations). Additionally, systems

29

needed to be put in place to stop the player from being allowed to teleport into solid objects,

which could not be detected (to the developers knowledge) with the raycast functions build

into Unity. Because of these mechanics based difficulties, the majority of time spend during

week 1 was spent on programming tasks, resulting in a very bland look in the weekly build

(shown in Figure 6), but setting up the core gameplay for the final game.

Figure 6. Dematerialized week 1 build.

Week 2

Week two was characterised by the start of proper level planning and development, and was

the point in the game’s development process where its overall concept shifted towards more

of a focus on puzzle elements rather than combat challenges. This shift was primarily due to

the realisation of the amount of time it would take to introduce good melee fighting

mechanics, from both a programming and animation perspective. Instead, a decision was

made to have the main challenges of the game stem from the interaction of the main

teleportation mechanics with a combination of simple and predictable entities (teleport

jammers, basic enemies, level geometry). Dematerialized’s adaptive development approach

helped it in this way by allowing it to be adapted to a revised scope, but also hindered it in the

compromise of its initial concept and the redundancy of previously constructed elements that

never made it into the final game (e.g. the 3rd attack animation, the ‘intelligent’ player clone

enemy).

No insurmountable problems were encountered in week two, allowing both the creation of

number of new elements and some time to be spent on the visual and aesthetic design of the

game, as demonstrated in Figure 7. The general framing story was devised and introduced in

30

the beginnings of a basic tutorial level, but in many ways was tacked on as it was not

originally planned to be a part of the game from the beginning of development.

Figure 7. Dematerialized week 2 build.

Week 3

The third week of development was punctuated by the decision to cut the game’s original

scope from 25 levels including 5 bosses to 10 levels including 2 bosses (one of which is

shown in Figure 8). This decision was made to allow the game to appear more polished, and

was informed by the realisation of the fact that most players and markers would not ever play

long enough to reach the end of the original concept. Many small mechanical changes were

made to add polish and accessibility to the game (e.g. respawning delays, level transitions,

teleportation approximation), but the largest task of the week was adding animated textures

into the game to give it’s visuals a more dynamic feel. As the developer had no prior

experience with traditional 2D animation, learning how to complete this task consumed a

great deal of time, which in retrospect was not justified by the amount of difference it made

to the final game.

Other small visual changes were made, including adding a red aura to any dangerous objects

and creating a new shape for enemy bullets (as to stand out from the circular background

objects). A number of levels were created through experimenting (rather than pre-planning)

with the now mostly finished enemy and object catalogue, and the first boss was constructed

in order to provide a break from the usual puzzle solving with a more psychomotor based

challenge.

31

Figure 8. Dematerialized week 3 build.

Week 4

The penultimate week of development saw the completion of all levels but the final boss, and

the beginning of more rigorous playtesting and balancing. As in the previous week, the levels

were created through the process of placing a number of objects in a scene and experimenting

with their layout, allowing the pre-established mechanics to combine with these objects to

create emergent challenges. Additionally, some levels were created by updating and tweaking

previously discarded concepts, reducing some level of development redundancy.

Aside from level construction, the largest task of the week was the creation of various GUI

based elements, including the main menu (shown in Figure 9), intro sequence and prologue

level prompts. The greatest difficulty encountered in this task stemmed from the fact that

there were no pre-established plans for the game’s story (aside from a vague setting), thus

giving rise to the difficult task of using the limited GUI to establish a narrative link to the

gameplay in a way that would be interesting and motivating to the player.

32

Figure 9. Dematerialized week 4 build.

Week 5

The very first task undertaken in the final week of development, implementing the level

select and global time tracking, proved to be problematic and time consuming as a result of a

lack of understanding of how to use Unity’s GUI systems. The final level that needed to be

created was the final boss, which demanded a great deal of time to be spent on tweaking and

revising to be a challenge befitting of the end of the game. A lot of time in this week was

spent debugging, polishing and balancing, resulting in levels being re-ordered and allowing

me to detect and rectify a number of issues which were only encountered in the final

compiled game (e.g. pausing by setting the game’s timescale to 0 caused a severe drop in

performance).

The greatest issue encountered in this week was completely unforseen and had nothing to do

with the actual development of the game; the audio designer’s computer crashed and

destroyed the majority of the pre-constructed music and sound effects. As an emergency

measure in order to produce something useable in a short time, the audio designer gathered

33

and modified some old music and sound effects he had previously created for other projects,

while the developer used a freeware sound generator (Bfxr) and Audacity to create some

extra sound effects. As Dematerialized was being developed adaptively, what could have

been a disaster was quickly and easily managed; the development schedule was adapted to

allow some time to create extra sound effects, while the game’s theme was loose and abstract

enough to seamlessly incorporate a different audio style than planned.

Figure 10 shows a breakdown of number of hours spent on each generic task during the

Dematerialized’s development, derived from daily hours documented in the development

logs.

 Figure 10. Dematerialized development log task breakdown.

0
2
4
6
8

10
12
14
16
18
20

H
ou

rs

Dematerialised

34

Cursed
The second game was developed according to a predictive methodology, requiring the

construction of a set of formal design documents before development began. Due to this, the

first week of the game was spent entirely planning, constructing a game design document, a

set of level design storyboards and drawing concept art (evidence of this planning can be seen

in the appendices). While this initial week would allow for the game’s original concept to be

firmly embedded in the final product, it effectively took a week away from the actual

development of the playable game.

Week 1

Before beginning the five weeks of developing Cursed, the developer had devised a relatively

well defined concept of how final game was to look and play. As a result of this, the

construction of the game design document (see Appendix 1) and concept art (see Appendix 3)

was not very mentally taxing and did not take up a large amount of time. The only aspect of

the game design document that needed some extra in-depth consideration was the asset

catalogue, as it needed to be large enough to allow for visual and mechanical variety, but

small enough to keep the time spent modelling, animating and texturing to an acceptable

level.

The most difficult task of this week was by far the level design storyboards (see Appendix 2).

Due to the fact that the main challenges in Cursed were planned to come in the form of

environment based logic puzzles, constructing the level storyboards essentially became the

construction of every challenge the player would encounter in the game. The task of coming

up with 14 different logic puzzles within a short one week period proved to be extremely

mentally taxing, and while they did not take much time to draw onto a storyboard, the

developer found that he could not create more than a few at a time before becoming

creatively exhausted.

Week 2

The majority of the first week of actual game development was spent modelling, animating

and implementing the player character model, ensuring they move in a sufficiently realistic

manner. As the developer was still quite new to organic character modelling and animation,

the process of creating the player character was arduous, time consuming, and took a large

35

amount of research and learning. The final day of the week saw the construction of the first

heal object (which failed to animate) and the basic movement AI of the cursed characters

(based on raytracing to detect the player), as demonstrated in Figure 11.

After spending week 1 entirely planning, it was a little worrying and frustrating that the

majority of week 2 was spend on creating a single (albeit important) asset. Due to the nature

of Cursed’s predictive development approach, there was the concern that perhaps certain

crucial assets would cause unforseen issues that would slow down the creation for the game,

and thus cause it to be unfinished at the end of its reduced development time frame. However

in retrospect, spending a large time on getting the player character model and controls set up

correctly at the beginning of development most likely saved time later in the testing and

debugging phases, and thus was overall beneficial.

Figure 11. Cursed week 2 build.

Week 3

The most immediately obvious addition to the game in week 3 was a large number of 3D

models. The majority of level geometry and heal objects were created, and the player model

was fitted with a mask and various jewellery (see Figure 12). Another important visual

milestone was the beginning of texture and material creation.

A number of final gameplay mechanics were created, including cursed healing detection and

response (demonstrated in Figure 12) and player-level interaction. Player-level interaction

proved to be one of the most difficult mechanics to implement, creating unforseen problems

with gate movement when a lever is pulled and requiring a multitude of player movement

overrides when attempting to climb a ladder. These issues were resolved with perseverance

36

and a few work around methods, but the ledge grab/hand mechanic proved too troublesome

to implement, and was cut for the sake of keeping development time within the 5 week

period. This design decision was perhaps the biggest made during active development, and

caused more time to be spent re-working a number of level designs in later stages of

development.

Figure 12. Cursed week 3 build.

Week 4

The fourth week of development saw both the beginning and end of regular level

development. Every one of the 14 main levels were created and populated with pre-

constructed objects, based on the pre-constructed level design storyboards. A number of

alterations had to be made in light of the decision to remove ledge grabbing and hanging, but

overall the challenge and general structure of each level remained the same. It was this phase

of level development that most demonstrated the virtues of predictive development; what was

a difficult, time consuming, trial-and-error task in Dematerialized’s development became an

easy, relatively quick one.

Aside from a number of small playtesting tweaks made as a requirement of getting every

level to function, the second most obvious addition to the game in week 4 came in the form

of more visual improvements (Figure 13). The rocks were given a texture created in

Photoshop, and the background was populated with rubble, a beach plane made in Maya, pre-

constructed water from Unity and a sky plane painted using a custom Photoshop brush, all

created with relative speed and ease. The ability for the player to use their own health to heal

cursed was implemented, and in turn GUI health bar functionality was added.

37

Figure 13. Cursed week 3.5 build.

Week 5

By Cursed’s final week of development, the vast majority of in-game features were already

implemented, including assets and mechanics. The front end and pause GUI were easily

constructed through the adaption of scripts created for Dematerialized, allowing them to be

quickly and easily implemented (shown in Figure 14). The opening scene was created with

simple GUI commands, but the final level and ending scene proved to be problematic in

creating a sense of weight and consequence. A large amount of time was spent on getting the

final level right, as it was a particular scene which had been clearly visualised from the

game’s inception, and re-enforced the entire theme and message that was attempted to be

communicated through the game’s mechanics.

As in the end of many game development cycles, a large amount of time was spent

playtesting, polishing and debugging. Unfortunately, due to the use of a predictive

development methodology for this game, there were a large number of small issues and bugs

that were identified. In this late stage of development only the most problematic bugs could

be removed in time; less impactful ones had to be selectively left in for the sake of

completing the game on time. Based on playtesting results, the decision was made to create

an extra, simplified tutorial level, as the first tutorial proved a little too complex when

completely unfamiliar with the game’s mechanics (there was little way to tell this when

originally storyboarding on paper). Finally, the audio was easily implemented, mostly

through the re-use of scripts created in Dematerialized (especially the music manager).

38

Figure 14. Cursed week 4.3 build.

39

Figure 11 shows a breakdown of number of hours spent on each generic task during the

Cursed’s development, derived from daily hours documented in the development logs.

Figure 15. Cursed development log task breakdown.

0
2
4
6
8

10
12
14
16
18
20

H
ou

rs

Cursed

40

Playtesting
The following graphs and tables summarise the data gathered during a series of playtests of

the two games Dematerialized and Cursed, using the playtesting method outlined by Davis,

Steury & Pagulayan (2005) in the literature review. A total of 60 participants took part in the

playtests, whom were all requested to play both games for a minimum of twenty minutes and

then fill out a questionnaire on each. Each questionnaire consisted of a section asking the

participant to respond to a number of statements using a likert scale, a section asking them to

rate aspects of each game out of 10 (10 being the highest), and a section asking them to

identify (in their own words) areas they liked, disliked, and thought needed improvement. A

sample questionnaire used for both Dematerialized and Cursed is available in Appendix 5. Of

the total number of participants, seven were selected to be observed and asked questions

while playing for an extended period of time (approximately an hour for each game). These

participants were asked to verbalise their thoughts as they played, with their behaviours being

observed and recorded based on Consalvo & Dutton’s (2006) four areas of qualitative game

analysis.

41

Figure 16. Cursed feedback likert scale.

As shown in Figure 16, the results of the likert scale feedback from Cursed show that

playtesters generally disagreed with the majority of the negative statements, yet however

agreed that the game contained a number of frustrating and confusing areas. Tables 3 and 4

show the ratio of agree to disagree, and was constructed by finding the number of participants

that ‘strongly agreed’ or ‘agreed’ to each statement, then dividing this number with the

number of participants that ‘strongly disagreed’ or ‘disagreed’ to each statement, in order to

obtain a comparative ratio (1 > indicates general agreement, 1 < indicated general

disagreement). The higher the ratio number, the greater the amount of playtesters that agreed

with the statement.

0 10 20 30 40 50

The game was too difficult

The game did not provide enough of a
challenge

There were areas in the game where I
became frustrated

There were areas in the game where I
was confused on how to progress

The game's instructions and guidelines
were not made clear

The game was too short

There were noticable bugs and
technical errors

The controls and interface were difficult
to use

I would not want to play this game
again

Responses

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

42

Table 3. Cursed feedback likert ratios.

 Agree Disagree Ratio
The game was too difficult 17 25 0.68
The game did not provide enough of a challenge 1 45 0.022222

There were areas in the game where I became frustrated 37 5 7.4
There were areas in the game where I was confused on
how to progress 28 19 1.473684
The game's instructions and guidelines were not made
clear 9 35 0.257143
The game was too short 4 34 0.117647
There were noticable bugs and technical errors 8 33 0.242424
The controls and interface were difficult to use 8 37 0.216216
I would not want to play this game again 4 38 0.105263

Figure 17. Dematerialized feedback likert scale.

0 5 10 15 20 25 30 35 40

The game was too difficult

The game did not provide enough of a
challenge

There were areas in the game where I
became frustrated

There were areas in the game where I
was confused on how to progress

The game's instructions and guidelines
were not made clear

The game was too short

There were noticable bugs and
technical errors

The controls and interface were difficult
to use

I would not want to play this game
again

Responses

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

43

While the likert scale feedback from Dematarialized is similar to that of Cursed, a

comparison of Table 3 with Table 4 shows that playtesters generally considered the game to

be more frustrating, confusing, and lacking sufficient instructions or guidelines. Specifically,

the statement “There were areas in the game where I became frustrated” resulted in an agree

ratio in Dematerialized of 21.5 versus a ratio of 7.4 in Cursed. The statement “There were

areas in the game where I was confused on how to progress” resulted in agree ratios of

5.25(Dematerialized) versus 1.47(Cursed). The statement “The game's instructions and

guidelines were not made clear” resulted in agree ratios of 1.25 (Dematerialized) versus 0.26

(Cursed).

Table 4. Dematerialized feedback likert ratios.

 Agree Disagree Ratio
The game was too difficult 11 18 0.611111
The game did not provide enough of a challenge 6 35 0.171429

There were areas in the game where I became frustrated 43 2 21.5
There were areas in the game where I was confused on
how to progress 42 8 5.25
The game's instructions and guidelines were not made
clear 20 16 1.25
The game was too short 1 26 0.038462
There were noticable bugs and technical errors 12 31 0.387097
The controls and interface were difficult to use 11 34 0.323529
I would not want to play this game again 17 22 0.772727

Figures 18 and 19 graph the distribution of scores assigned by playtesters to four general

aspects of each game. For every scored game aspect, playtesters generally assigned a slightly

higher rating to those in Cursed than those in Dematarialized, as shown in Table 5.

44

Figure 18. Cursed feedback scores.

Figure 19. Dematerialized feedback scores.

Table 5. Average feedback score comparison.

 Dematerialized Cursed

Presentation 6.649 7.431

Music/Sound Effects 6.316 6.983

Graphics 6.404 7.155

Gameplay 6.301 7.172

0

2

4

6

8

10

12

14

16

18

Presentation Music/Sound
Effects

Graphics Gameplay

Re
sp

on
se

s
1

2

3

4

5

6

7

8

9

10

0

2

4

6

8

10

12

14

16

18

Presentation Music/Sound
Effects

Graphics Gameplay

Re
sp

on
se

s

1

2

3

4

5

6

7

8

9

10

45

The following are areas in Dematerialized and Cursed that playtesters commonly enjoyed or

disliked. These areas were determined by analysing the section in the questionnaires asking

playetesters to identify areas in each game that they liked, disliked, and thought needed

improvement. Areas that are listed below are those that appeared multiple times in similar

written responses.

Common areas enjoyed in Dematerialized:

• Presentation and visual cohesion.

• Teleportation mechanic.

• Music.

Common areas disliked in Dematerialized:

• The bosses.

• Difficulty and timing challenges.

• Lack of instruction and explanation.

• Reliance on player experimentation and intuition.

• Lack of in-game instructions/tutorial.

• The controls – multitasking between mouse and keyboard.

Common areas enjoyed in Cursed:

• Logic puzzles and capacity for pre-planning.

• Graphical fidelity.

• Cursed enemies – Tension and sound effects.

• Level of challenge and linear difficulty progression.

Common areas disliked in Cursed:

• Specificity of certain mechanics (e.g. distances from healObjects, ladders).

• Difficulty and complexity.

• The controls and lack of menu functionality.

• Repitition of background and scenery.

• Difficulty of tutorials, hidden or unexplained mechanics.

• Lack of instruction on how to use the health mechanic.

46

Discussion
The way in which a game is developed can have a significant effect on both its commercial

and critical success. In order to construct a set of recommendations and guidelines for

independent developers drawing on both adaptive and predictive methodologies, the

implications of specific aspects of these development approaches must first be understood.

Investigation into the ways in which Dematerialized and Cursed were affected by their

adaptive or predictive development archetype (respectively) have been split into three main

areas of study: design, development, and final player experience. Through these three areas

this study identifies specific ways in which each game’s development methodology affected

its content and overall structure, its development process and ease of construction, and the

way in which players experience and respond to its finished release. It must be noted that the

finished game releases discussed in this paper and used in playtesting have since undergone a

small number of changes and bug fixes (lists of which are available in Appendix 4).

Design Reflection
In order to analyse the design, meanings and promoted behaviours in Cursed and

Dematerialised as a result of their development methodology, a reflection of the design of the

games has been conducted following objective criteria for game analysis proposed by

Consalvo & Dutton (2006). While the results of these games being analysed by their own

developer may contain sub-conscious bias, they have been triangulated with developer

experience and playtesting feedback in order to determine specific areas in each game that

contain contrasting meanings and gameplay.

Object Inventory

Dematerialized contained very little in the way of objects that could be interacted with

(teleportation jammers, shields and end level goals). Each object provided a self-contained

function and in most cases existed as a hindrance to level progression that could only be

overcome in one particular way. Conversely, the objects in Cursed were more numerous and

in most cases were there to aid the player in the completion of every level (e.g. the heal

objects, levers and ladders); they were interrelated functioned together as a cohesive network

to solve puzzles.

47

The difference between the objects in each game can be directly attributed to the

methodology used to create them. The objects in Dematerialized were not planned or

developed together, and were not created in tandem with the design of the levels or game

mechanics. Thus each object had to function as an independent module, based on the fact that

game elements could be introduced or removed throughout the entire development process.

The objects in Cursed were planned and designed at the same time as each other, prior to the

commencement of active development. This resulted in them becoming interdependent, due

to the fact that every game element was known and quantified at the time of their design,

allowing their functions to rely on these external elements.

Interface Study

The primary difference in interface between Dematerialized and Cursed lies in the way they

obscure information from the player. As only small portions of Dematerialized’s levels could

be views on screen at any given time, level information was obscured from the player,

forcing them to explore and resulting in unforseen situations. Conversely, Cursed’s levels

were viewable in their entirety at all times, allowing the player to plan their approach in

advance and reasonable predict the outcomes of any given action.

The way in which the design methodology affected the interface of each game can be related

back again to the way in which they were planned. As Cursed’s levels were entirely pre-

planned by hand they achieved a level of cohesion and interrelation (puzzle elements were

linked and functioned in tandem with each other) that was not present in Dematerialized,

allowing a measure of complexity that allowed each level to still be challenging if its entire

structure was known by the player. However, the fact that Dematerialized’s levels were

planned iteratively and experimentally allowed them to have greater breadth and variety at

the expense of complexity and cohesion between elements, requiring the obscuring of

information in order to keep the player engaged through a sense of discovery.

Interaction Map

Dematerialized contained only NPCs that were hostile to the player, while Cursed also

contained NPCs that the player had to protect and assist. Overall, the function of the NPCs in

Cursed was far more complex and important than that in Dematerialized. They embodied

both the main goals and challenges of the game, rather than simply serving as a hindrance to

the player’s progress. However, while Cursed only contained one type of NPC with only one

48

major way to interact with them, Dematerialized involved numerous who could be confronted

or avoided at the player’s discretion.

The NPC interactions in Cursed were inherently tied to the game mechanics, setting and

narrative, as a result of the enemies being designed into the game at the point of

conceptualisation. However, due to the adaptive nature of Dematerialized, NPC interactions

that were planned from conceptualisation ended up being scrapped from the game (see week

2 in Dematerialized’s development summary), and thus the enemies that were later added

were not created in tandem with the mechanics. This resulted in them becoming less essential

to the overall gameplay, which allowed a greater variety of enemy behaviours but reduced the

depth of interaction that the player could have with them (as they were not intimately related

to the main teleportation mechanic).

Gameplay Log

While both games could be considered to involve puzzle challenges, Cursed’s design

generally encouraged logic and planning due to the structure of its puzzles and repetitiveness

of game elements, while Dematerialized encouraged a greater amount of control precision

and experimentation due to the fact that levels were obscured and challenges were varied.

The variety and independence of individual elements in Dematerialized resulted in a greater

potential for the player to become confused, disoriented or frustrated; new elements and

situations were frequently presented which demanded the player to adapt their style of play

accordingly. Conversely, Cursed’s overarching gameplay maintained a very similar structure

throughout its duration, allowing players to build upon their initially established approach to

gameplay with a certain level of repetitiveness.

The variance and repetition inherent in Dematerialized and Cursed’s gameplay respectively

was a direct influence of the manner in which they were developed. Due to its linear

development approach, Cursed grew from a single, simple but thoroughly planned gameplay

mechanic, allowing all subsequently developed elements and stages of development to build

upon this method of interaction with minimal divergence. This resulted in a more predictable

and reliable path of gameplay progression, as evidenced by every level and challenge being

structured around luring enemies into areas they could be healed. Dematerialized however

evolved over a series of iterations and revisions, allowing new methods of gameplay to be

introduced that would not disrupt its core teleportation mechanics due to game element

49

independence and modularity. Examples of these methods of gameplay include progressing

by using momentum, deflecting bullets, predicting boss movement patterns and teleporting

accurately.

Development
Perhaps the most immediately obvious difference between the development of the two games

is the fact that Dematerialized had five weeks of active development (asset creation,

programming, etc.), while Cursed only had four. As Cursed was developed under a predictive

methodology, and thus demanded some form of initial planning and formal documentation,

the first week of its 5 week timeframe was spent planning and documenting. During this

phase all aspects of the game were planned and accounted for, from mechanics to levels. The

amount of hours worked in this particular week were far lower than usual (13.5 hours,

derived from development logs) which can be attributed to the creatively intense nature of the

tasks performed. Unlike active development, where important decisions only need to be

made every so often and ideas can quickly be tested and prototyped, every step of the

planning phase required careful consideration and cross-referencing with already defined

features of the game. Due to Cursed’s nature as a logic puzzle game, the level designs needed

to be mentally playtested, ensuring that they were challenging and balanced without the aid

of the immediate feedback usually received from real prototype playtesting.

In comparing the levels of Cursed and Dematerialised and how they were developed, certain

effects of the predictive and adaptive archetypes could be determined. While Dematerialized

introduced new settings and different types of challenges throughout its levels, Cursed’s

setting and challenge types remained relatively unchanged from start to finish. This is a direct

result of the way in which these levels were planned. The levels in Dematerialized were

planned literally from the beginning to the end of its five week development period, and thus

were influenced by the particular development phase the game was in and any new ideas the

developer formulated as a result of iterative playtesting. On the other hand, Cursed’s levels

were all planned within less than a week, thus allowing less time for new ideas and resulting

in a game with a more consistent challenge type. It should be said that having planned

Cursed’s levels in advance cut down the difficulty and development time of creating the

levels in game (12.5 hours), when compared to those of Dematerialized (15.25 hours, shown

in Figures 10 & 15).

50

In adherence to a predictive development methodology, the development of Cursed was

much more planned and consistent than that of Dematerialized. This is most obvious when

comparing Cursed’s game design document timeline with its actual development process;

tasks were undertaken in a specific order that was considered before active development had

begun. When contrasted to Dematerialized’s somewhat turbulent development, the planning

and consideration put into Cursed’s development resulted in a reduction of unforseen

problems and circumvented the production of redundant or unused game elements (assets,

mechanics, etc.)

The integration of iterative playtesting into Dematerialized’s development as part of a

adaptive methodology afforded greater time to be spend debugging and playtesting (as shown

in Figures 10 & 15) , reducing the chance of bugs and issues being forgotten or put off till

later in favour of other features. This resulted in a reduction in solvable number of bugs (a

few minor unfixable problems with the Unity engine remained) through the adaptive method,

but also took time away from other tasks, increasing development time and reducing the

amount of content that could be made. Those put off under Cursed’s predictive model were

only those that did not hinder the game, but were eventually left in due to time constraints,

diluting the challenge in certain areas.

A large difference between the predictive and adaptive approach was the compromise of the

game’s initial vision and concept. While Cursed stayed almost identical, Dematerialized

changed radically, almost shifting genres. This was as a response to lessons learnt in

development, upon the realisation that the initial concept was too complex in scope for a 5

week period. This caused dilution and compromise (not always acceptable), but allowed the

game to be completed under a strict timeline to a satisfactory degree. Conversely in a

predictive approach, if planning gets out of hand an entire game can go far beyond schedule

or entirely collapse during its own development. Making changes to a game concept while

developing predictively is much more difficult than when using an adaptive approach due to

pre-planned feature interdependence.

As shown in Figures 10 & 15, player controlled mechanics and AI were a greater focus in

Dematerialized’s development (16.5 and 19.25 hours respectively), while modelling and

animation were instead focused on in Cursed (8.75 and 14.25 respectively). In turn, the

former game possessed a greater variety of gameplay options and challenges (through the

51

players choices on how to interact with the AI) while the latter achieved a higher level of

graphical fidelity. During Dematerialized’s development cycle a greater amount of time was

spent on visual special effects (12.25 vs. Cursed’s 4.75 hours). Although this extra time

resulted in a number of playtesters identifying the game as having a more consistent visual

style, much of it was spent tweaking small effects (some of which never made it into the final

game, such as animated textures). The nature of Dematerialized’s adaptive development

allowed time for this visual experimentation, iteration and testing of styles, but caused

redundancy and often resulted in only a small visual improvement for the amount of hours

put in.

As shown in the development section of this paper, Dematerialized’s adaptive approach

allowed problems and setbacks to be taken into account during development and the game to

be revised appropriately. This was particularly evident when the game’s audio files were lost,

with the development cycle being adapted and different tasks re-prioritised in order to allow

time for the last minute creation and implementation of new audio. By its very nature, the

adaptive development methodology allowed the game to easily adapt to issues and problems

encountered during active development. In contrast, during Cursed’s development it was

discovered that a certain game mechanic (ledge hanging and climbing) would have to be

removed in order to meet the five week deadline. Because of the predictive nature of the

game’s development methodology a number of other game elements were already dependent

on this mechanic, and thus removing it proved to be a difficult and time consuming task due

to the fact that the development approach was not geared towards adaption.

Player Experience
Through playtesting observation and qualitative feedback from the questionnaires, it was

found that Dematerialized demanded a level of attention, engagement and work from the

player that was not reinforced by its story and setting. The player was given small motivation

to invest in the game, aside from enjoyment of the mechanics themselves. Generally, those

who put in the effort and investment (without any real evidence of return) enjoyed the game

better than Cursed, but most found it too difficult to get into and became frustrated.

The majority of playertesters who claimed to be experienced with video games preferred

Dematerialised, claiming to have enjoyed its variety, complexity, simpler and more consistent

visuals, and the exploration of the teleportation mechanic. Less experienced players tended to

52

prefer Cursed, providing reasons such as its more consistent gameplay style, its narrative and

setting, its increased graphical fidelity and the consistency and predictability of its challenges.

On the whole, when asked about Dematerialized’s story playtesters agreed that it was too

minimalist and abstract to become involved in, and consequently did not realise what was

going on in the game’s narrative. The gameplay and narrative were recognised as being

developed separately, and it became obvious that the story, theme and setting came second to

the game’s mechanics, which frustrated many of the less skilled players. When asked to

specify areas of improvement in the questionnaire, playtesters often suggested that more story

segments or prompts be placed between levels, with many feeling that while the story didn’t

detract from the game, it did not add much or contribute to player motivation.

The predictive approach used by Cursed was shown to be more appropriate to position

narrative or setting as one of the key attractions of the game. The game’s development

methodology allowed the narrative to be worked into the entire development process and

mechanics from the very beginning. When asked how the narrative differed to that of

Dematerialized, playtesters recognised it as being re-enforced through the gameplay and easy

to understand. It was difficult to maintain this level of focus on narrative and setting when

using adaptive to develop Dematerialized, which resulted in many players feeling indifferent

to the game’s story and setting. Conversely, playtesters who had more experience with games

appreciated the mechanics focused approach of Dematerialized afforded by its adaptive

development process, highlighting the exploration and evolution of the initial mechanics as

key gameplay motivators.

When asked about the setting and theme of the two games, playtesters identified Cursed as

having greater cohesion between its gameplay and these elements, a result of all being

planned at the same time. In the same sense, most playtesters acknowledged the fact that the

game’s concept was essentially taken to its limits; it could not be extended further, and in

some cases the gameplay was too similar and somewhat boring by the end. Because of the

way in which gameplay, setting and theme were intertwined and pre-planned, many features

could not be added or removed once development had begun, as a result of each element

relying on each other to function correctly. This resulted in the game becoming somewhat

predictable in its presentation and challenges, which some playtesters appreciated for the

consistency and other disliked for the repetition.

53

Dematerialized was identified as having more variety and variation between levels, allowing

many areas to play and feel differently. In turn, many playtesters regarded the game as more

frustrating and confusing (see Playtesting section and Tables 3 and 4) as the challenges were

constantly in flux, requiring the player to devise brand new approaches to many levels rather

than building off pre-established ones. These factors were influenced by the game’s adaptive

development approach, which allowed the introduction of new ideas over the entire

development cycle and the flexibility to adapt entire sections of the game based on lessons

learnt during development. Even though less time was spent on asset creation in

Dematerialized, many playtesters enjoyed its presentation and visual cohesion (see common

areas enjoyed and disliked in the Playtesting section) – different colour palettes were able to

be tested and certain elements could be compromised to fit in with others with due to the

abstract nature of the setting.

As shown in Tables 3 & 4, playtesters considered both games to contain roughly the same

number of bugs. Those in Dematerialised were generally identified as a minor annoyance that

did not greatly affect gameplay, while those in Cursed usually helped the player (and made

the game easier), but occasionally broke the game and made it unable to complete the game

fully. The way in which bug removal was carried out was affected by the development

methodology of each came. The bugs that remained in Dematerialized were simply ones that

the developer failed to detect during testing. The bugs that remained in Cursed were generally

the ones that were deemed least detrimental to the game, as not enough time was allocated to

testing and debugging in order to remove them all within the 5 week development period.

Overall, Dematerialized was rated lower than Cursed in the majority of areas. (see Tables 3, 4

& 5). This can be attributed to a number of factors, the first of which is simply the fact that it

was developed first, and thus Cursed benefited from the skills gained by the developer

through spending 5 weeks using Unity, Maya and Photoshop (a limitation of this project).

The second factor is the fact that Dematerialized was intentionally designed to be a harder

game for more experienced players, which the majority of playtesting participants were not.

The third and most important factor is that, as Dematerialized was designed adaptively and

thus not-pre planed, many sub-conscious assumptions were made based on the developers

subjective knowledge of the game (e.g. a blue texture denotes an indestructible enemy), and

thus caused players to become frustrated, angry and less charitable when the time came to

54

rate the game. These assumptions did not materialize in Cursed due to the fact that game

elements were given more conscious and planned consideration. Cursed’s simplicity as a

result of introducing a defined scope at the start of development proved to be beneficial,

while Demateralized’s complexity as a result of a variety of different, independent elements

being introduced at different development stages proved to hinder its playability and

accessibility.

55

Recommendations and Conclusions

In order to properly provide a set of development recommendations and guidelines for

independent developers, the specific characteristics intrinsic to all independent video games

must be determined. For the purposes of this study, independent video games will be

considered to possess the following attributes, further detailed by Kerr (2006) and Stevens

(2009) in the literature review:

• Testing ground for new or innovative ideas.

• Low financial investment and risk.

• Fast development cycles, compared to those funded by a publisher.

• Financed and marketed without a publisher.

• Digitally distributed.

• Targeted towards a specific audience or niche.

• Released with a small user install base.

The choice between a more adaptive or predictive approach must be mediated by many

factors: the development team; the kind of game they want to make; and their target audience.

However, there are very few instances in which a developer should adopt an entirely

predictive or adaptive approach, and rather should use a mix of the two.

Many playtesters felt as if the narrative in Dematerialized was ‘tacked on’ (it was added after

active development began) and did not benefit the game as a whole, while that in Cursed

successfully reinforced and motivated gameplay. As such, if narrative is to be an integral part

of a game, it should be worked into the gameplay and not exist as a separate experience. In

order to ensure this, the narrative should be predictively constructed; the developers

should know it in its entirety before active development begins, ideally creating

storyboards, scripts or tangible plans to some extent.

As asserted by Stevens (2009), in almost every instance prototyping and iterative playtesting

should take place through multiple stages of development, in order to ensure that every aspect

of the game is enjoyable and functional. While iteratively playtesting in Demateralized’s

development consumed a large amount of hours, this was offset by time saved though

avoiding a number of problems later in development. Independent developers should

56

playtest constantly throughout development, ensuing that each element is functional

before other game elements become reliant on it. Doing so can cut down on the number of

things that need to be tweaked or changed if bugs are discovered by rectifying issues before

they become interdependent with other aspects of the game.

Stevens (2009) argues that a game should be planned around the team’s strengths. During the

development of Dematerialized, a lack of such planning became evident when the game

concept had to be significantly altered due to a lack of time and skill. As evidenced by

Grossman (2004), instances like this in which game features have to be cut due to a lack of

ability, a misjudgement of scope, or unrealistic ambition are common in start-up independent

development teams. In this sense, it is recommended that independent teams should at

least partially conceptualize and plan the core features of their game before

development begins. The game’s scope should realistically be considered in terms of the

team’s abilities and first and foremost focus on delivering a finished, playable game.

One obvious difference between predictive and adaptive development methodologies is their

approach to documentation. In independent development, documentation should vary

depending on team size and cohesion; if a team is large or split between locations,

common reference documentation that all members can defer to is near essential.

Grossman (2003) asserts that there should be a central creative source in development teams

for members to defer to, to avoid inconsistencies and misconceptions. As experienced in the

development of Dematerialized and Cursed, documentation can cause some areas of the

development process to proceed much smoother (in Cursed’s case, level design), but does

take time and is a creatively taxing job, which could be problematic if deadlines are involved

(which in turn help stop feature creep). The need for documentation when an independent

game is being developed by one person is dramatically reduced, but it should still be

constructed if the game is to have cohesion of narrative, theme and setting with

gameplay.

The high levels of player frustration and confusion in both games (shown in tables 2 & 3) can

be attributed to the fact that little to no external playtesting was conducted during active

development; the mechanics and design demanded a level of familiarity that only the

developer possessed. As re-enforced by Steven (2009) & Nutt (2011), it is recommended that

independent developers ideally implemented and use external playtesting in different

57

stages of their game’s development, in order to ensure that all aspects of the game are

comprehensible by outer parties. Doing so can provide an outlet for the developers to

defamiliarise themselves with the game and assess it from a foreign perspective. Such

playtesting does not necessarily have to be formalised as it was in this study, but some level

of external feedback should be drawn in order to ensure the game can be understood and

played by outside parties, preferably from members of the chosen target audience.

As shown through the discussion of the qualitative playtesting feedback in the previous

player experience section of this paper, a predominantly predictive development approach

may encourage an emphasis on pure game mechanics, and thus will be more likely

appreciated by experienced game players and those who enjoy exploration, experimentation

and can be intrinsically motivated to play a game from the action of playing itself.

Conversely, an adaptive approach is more suited to creating a cohesive setting, theme and

narrative, allowing elements other than the gameplay itself to become the primary player

motivation, and thus may be more suitable for players who are less familiar with video game

mechanics. When selecting a development approach independent game developers must

carefully consider their target audience, considering their motivations for playing

games, skill level, prior experience and attention span.

Kazdal (in Nutt, 2011) points out that if an independent game is to be commercially

successful, it must be demonstrated to potential buyers and marketers early and often.

Following this logic, independent developers looking to make a profit should aim to have a

playable and functional prototype of the game running as early as possible. There should be

small sections which can be shown off that appear ‘finished’, even if they are only a small

slice of the entire game. As shown through the development of this project’s two games, the

adaptive approach of Dematerialized allowed a semi-finished prototype of a game level to be

completed by week two, while such a prototype was only playable by week four of Cursed’s

development. In order to construct such prototypes, it is recommended that independent

developers employ a measure of predictive planning to ensure that their prototype is

representative of what prospective buyers can look forward to in a final release.

However, an adoption of an adaptive approach to prototype iteration is crucial to

constructing a ‘finished’ slice of the game while other game elements are still being

developed.

58

As shown in Dematerialized’s development summary, an adaptive approach can cause game

features created during development to be culled from the final build, leading to redundancy.

Cursed’s predictive development cycle reduced instances where such culling was necessary,

but made it much more difficult to do when it was, due to feature interdependence and

development linearity. If working adaptively, independent developers must be prepared

to make hard decisions about getting rid of game elements they have spent hours

creating, due to the experimental and iterative nature of adaptive development.

Grossman (2003) asserts that start-up developers should restrain their ambitions and define

their project’s limits early on. Focus must be on playability, polish and getting a game

finished, rather than sheer bulk. In this sense, some kind of restraints should always be agreed

upon by developers before active development begins. The lack of this in Dematerialized

caused redundancy, and increased the amount of time spent debugging (figure 10). This

finding suggests that independent developers should build their way up creating games

they are sure they can complete, constructing mechanics and assets at a level of detail

and complexity in line with their skills. However, Kerr (2006) asserts that independent

developers should be free to try new methods, ideas and innovations, and thus should leave

room for revisal and addition to their concepts once they are sufficiently executed, suggesting

all development cycles should involve a form of iterative analysis and re-design.

When it comes to gameplay features and mechanics, the playtesting feedback gathered during

this study suggests that predictive approaches encourage cohesion, while adaptive approaches

encourage variety. Ideally independent developers should aim to find an acceptable medium

between variety and cohesion in order to provide mechanics that are compelling but do not

become repetitive, suggesting that a baseline or standard should be constructed that all

features adhere to, with allowance for permutation. In this sense, the ‘hooks’ or core

mechanics of a game should be few but interactive, allowing for combinations of such

mechanics to give rise to emergent gameplay and challenges.

Through the consideration of the multitude of effects adaptive and predictive development

can have on the design, development and final player experience of a game, this study comes

to the conclusion that there can be no one set model that is most effective for all independent

game development projects. Instead, projects must be considered on a case by case basis; the

59

recommendations and guidelines in this paper aim to better equip the independent developer

to select their own unique development approach, drawing on a mix predictive and adaptive

elements based on their resources and game concept. Rather than assessing the usefulness of

adaptive and predictive approaches to a specific subset of the video games industry as this

study has, it is suggested that future research in this field could investigate the application of

game development methodologies to specific gameplay types and genres. Researches could

examine salient elements of these genres (e.g. AI in a strategy game, narrative in an

adventure game and level design in a platformer) and attempt to determine the most effective

methods of development through which to create them.

By learning from the findings and insight gained through the practical application of different

development methodologies in this study, independent developers can gain a greater

understanding of the importance of considering the development process of a game. Although

both games developed for this project were not different enough for a direct comparative

statistical study to be undertaken (quantitative playtesting feedback was generally too similar

for both), they have demonstrated that the choice of a development model can and will affect

the design, development process and player experience of a game in a number of ways. Key

game areas that have been shown to be influenced by the choice of a predictive or adaptive

development approach include narrative, challenge, visual presentation, difficulty distribution

and element variety. Through these findings it has been shown that independent developers

need to carefully consider the way in which they develop every aspect of their game, taking

into account their own unique circumstances and game concept. With the low profit-margin

and high failure rate in today’s video game industry, neglecting to consider a development

approach can not only result in an unprofitable and poorly received end result, but can even

doom an entire game project to failure and cancellation before it is ever released.

60

References

Adams, E. (2010). Fundamentals of Game Design (Second ed.). Berkeley: New Riders.

Adler, P. S. (2005). The Evolving Object of Software Development. Organization, 12(3).

archetype. (n.d.). Dictionary.com Unabridged. Retrieved October 31, 2011, from

http://dictionary.reference.com/browse/archetype

Baumgartner, E., Bell, P., Hoadley, C., Hsi, S., Joseph, D., Orrill, C., . . . Tabak, I. (2002).

Design-Based Research: An Emerging Paradigm for Educational Inquiry. Educational
Researcher, 32(1), 5-8.

Bohem, B. (1986). A Spiral Model of Software Development and Enhancement. ACM

SIGSOFT Software Engineering Notes, 11(4), 15-24.

Consalvo, M., & Dutton, N. (2006). Game Analysis: Developing a Methodological Toolkit

for the Qualitative Study of Games. Game Studies, 6(1). Retrieved from
http://gamestudies.org/0601/articles/consalvo_dutton

Davis, J., Steury, K., & Pagulayan, R. (2005). A Survey Method for Assessing Perceptions of

a Game: The Consumer Playtest in Game Design. Game Studies, 5(1). Retrieved from
http://www.gamestudies.org/0501/davis_steury_pagulayan/

Department of Health & Human Services - USA. (2008). Selecting a Development Approach.

Retrieved 10th of March, 2011, from
https://www.cms.gov/SystemLifeCycleFramework/downloads/SelectingDevelopment
Approach.pdf

Garratt, P. W. (1995). The Software Management Game. Simulation & Gaming, 26(1).

Grossman, A. (2003). Postmortems from Game Developer. USA: CMP Books.

Hayes, E., & Games, I. A. (2008). Making Computer Games and Design Thinking: A Review

of Current Software and Strategies. Games and Culture, 3(3-4).

Huizinga, J. (1955/2005). Nature and Significance of Play as a Cultural Phenomenon. In K.

Salen & E. Zimmerman (Eds.), The Game Design Reader. Cambridge: The MIT
Press.

Ip, B. (2008). Technological, Content, and Market Convergence in the Games Industry.

Games and Culture, 3(2).

IpsosMediaCT. (2010). 2010 Essential Facts About the Computer and Video Game Industry.

USA: The Entertainment Software Association.

Irwin, M. J. (2008). Cooking Up a Blockbuster Game. Retrieved 14th of April, 2011, from
 http://www.forbes.com/2008/11/21/games-eedar-developers-tech-ebiz-
 cx_mji_1121eedar.html?partner=yahootix

61

Jarvinen, A. (2008). Games without Frontiers: Theories and Methods for Game Studies and
Design. Ph.D., University of Tampere, Tampere.

Juul, J. (2005). Video Games and the Classic Game Model & Rules Half Real: Video Games

Between Real Rules and Fictional Worlds (pp. 23-67). Massachusetts: The MIT Press.

Keith, C. (2010). Agile Game Development with Scrum. Crawfordsville: Addision Wesley

Professional.

Kerr, A. (2006). Digital Games As Cultural Industry. The Business and Culture of Digital

Games. Gateshead: Sage Publications.

Martin, A. (2000). The Design and Evolution of a Simulation/Game for Teaching

Information Systems Development. Simulation & Gaming, 31(4).

Nutt, C. (2011). GDC 2011: Indie Revelations From Experienced Developers. Retrieved 11th

of March, 2011, from
http://gamasutra.com/view/news/33288/GDC_2011_Indie_Revelations_From_Experi
enced_Developers.php

O'Brien, R. (1998). An Overview of the Methodological Approach of Action Research

Retrieved 12th of March, 2011, from http://www.web.net/~robrien/papers/arfinal.html

Oxland, K. (2004). Introduction to Game Design Gameplay and Design (pp. 7-23). Essex:

Pearson Education.

Rollings, A., & Adams, E. (2003). The Internal Economy of Games and Game Balancing On

Game Design (pp. 239-285). USA: New Riders Publishing.

Royce, W. (1970). Managing the Development of Large Software Systems. Paper presented at

the IEEE WESCON 26.

Salen, K., & Zimmerman, E. (2004). Defining Games Rules of Play: Game Design

Fundamentals. Cambridge: MIT Press.

Shakar, V. & Bayus, B. (2002). Network effects and competition: An empirical analysis of

the home video game industry. Strategic Management Journal, 24(4).

Stevens, J. (2009). Practical Tips for Independent Game Development. Retrieved 12th of

March, 2011, from http://www.gamedev.net/page/resources/_//feature/fgame-
industry/practical-tips-for-independent-game-development-r2687

62

Appendices

Appendix 1 – Predictive game design document

Concept/Premise

The player is a tribal ‘healer’ on a secluded island, able to restore life to one thing by taking it

from another. One day a powerful curse descends on the inhabitants of the island, causing

them to turn into mindless undead creatures. As the only inhabitant immune to the curse, the

healer tasks themselves with finding each person on the island and bringing them back to life.

Prologue

The game opens with a series of text explanations introducing the player to the setting,

overlayed over a zoomed in scroll through of a number of levels (to show the cursed). The

explanations will read:

o “You are a healer, the only person on your tribe’s small island who holds

natural power over the flow of life and death”

o “In violation of nature, your tribe attempted to gain dominion over life and

death without trade, and thus were cursed”

o “To save your people, the ancient law of healing must be obeyed: Life that is

to be given must first be taken…”

Epilogue

The final level of the game will begin with a short cutscene of the saved tribespeople running

into a safe area, being pursued by a cursed. One will trip and be killed by the cursed, and the

others will reach the safe area and close the gate. The Player then enters the level and must

first heal the cursed with a nearby tree, so they are not killed. They then have two options;

enter the safe area and end the game but without saving every tribesperson (one was killed),

or use their own health (there are no available plants/animals) to heal the dead tribesperson,

dying in the process but potentially saving every tribesperson (depending on if they saved

everyone in each previous level).

Mechanics

Healing

63

The player is able to heal the cursed in two ways. The main way involves draining the life

from other living objects (plants or animals) and transferring it to any nearby undead. The

other way involves the player using a portion of their own life and small life forms (insects,

small plants) to restore life to the cursed incrementally. During and shortly after any amount

of healing, a cursed becomes temporarily stunned, remaining stationary and harmless. When

the player uses any healing ability they become stationary for the duration, making them

vulnerable to other cursed.

AI

The cursed will roam the screen in a simple back-forth pattern, walking in a straight line until

they hit a collider or platform edge and then reversing direction. Once a cursed is healed they

will begin to run and no longer stop at platform edges, until they reach the level’s exit. If the

player or a healed tribesperson goes in front of a cursed, the cursed will let out a scream,

become enraged and start to run towards the player/tribesperson. Enraged cursed run off

edges and move faster than usual. If the cursed makes contact with the player or a healed

person they will attack and kill their target.

Level Design

Each level of the game will be contained within a single screen (no camera scrolling) with a

set number of cursed roaming the screen. Each level will have a preset number of cursed the

player must heal before they are allowed to proceed, but it will be possible to heal every

cursed in each level with some careful planning and thinking. Along with live objects used

for healing (plants, animals) and cursed, levels will contain platforms, climbable

ladders/ledges and gates with corresponding levers/pressure plates to open/close (one lever or

pressure plate may open/close multiple gates).

Player Controls

The player has three main abilities (tied to three buttons) aside from movement. The first

emits a field draining life from nearby plants/animals and transferring to any cursed in front

of the player within range. The second drains the player’s life and transfers it to the nearest

cursed. The third pulls levers in order to open/close gates. The player can move left and right

along the level, at either a walk or a run, and is able to jump based on their movement speed

(stationary jumps up, walking jumps a small distance, running jumps a large distance).

64

Additionally, if a player is standing in front of a ladder they can climb it by pushing up/down,

and they will automatically grab onto ledges if they jump close enough to them.

Challenge

In order to heal every cursed on each level, while avoiding getting themselves or other healed

people killed, the player must deduce which people to heal first, which levers to pull (and

when), which pressure plates to stand on, and which live objects to used on which cursed. In

this sense, the game consists of a number of puzzle challenges, but contains a few traditional

psychomotor platformer challenges through the timing of healing cursed, and in the running,

jumping and climbing needed to escape when being chased.

Look & Feel

The two main visual themes of the game can be described as ‘tribal’ and ‘island’. ‘Tribal’

refers mainly to the game’s characters and the interactive level geometry. Levers, ladders and

platforms will be built of bamboo in a fashion that would be possible without the use of any

modern or industrial tools (simple, functional designs). The tribespeople will be dark skinned,

with the player (as a ‘shamanistic’ healer character) wearing a wooden mask, leaf headdress

and various ornamental decorations. The cursed will appear as shadow emanating a black

aura in the shape of a man, which will dissipate when they are healed. The ‘island’ visual

indicator refers more to the background and environment; the ocean will be visible and the

landscape will be rocky and sandy. Additionally, the plants that the player will drain life from

will include palm trees, hanging vines, mushrooms and flowers, designed to appear native to

an environment such as a tropical island.

The audio of the game will be acoustic and natural sounding to fit into the tribal motif, but

will be somewhat dark and brooding in order to convey the weight of the curse that has

settled on the island. Overall, the audio should not appear computer generated (unlike that of

the previous game).

The player will be able to control their heal character with a moderate amount of agility; they

will be able to turn quickly and move in ways that may not necessarily be physically realistic,

but will make the game easier to play. The player and healed tribespeople will run at the same

speed, while the cursed will run slightly faster, making them appear dangerous and unnatural.

65

Cursed will attack any non-cursed person they come into contact with, swinging their arms

wildly in order to appear savage and out of control.

Asset Catalog

Character Models

• Player – Masked shaman healer

o Idle

o Run

o Walk

o Climb

o Stationary jump

o Moving jump

o Fall

o Ledge hang

o Heal

o Die

o Sacrifice self (ending)

• Male tribesperson

o Heal

o Run

o Fall

o Die

• Female tribesperson

o Heal

o Run

o Fall

o Die

• Cursed

o Walk

o Chase

o Attack

o Fall

o Healed

66

Scenery Models

• Platform – Bamboo

• Gate – Bamboo

• Lever – Bamboo

• Ladder – Rope

• Obstacle - Boulder

• Ground

• Rockwall

• Background/Ambient

o Trees

o Rocks

o Bushes

o Hanging rope

• Background skybox

• Pressure Plate

Heal Objects (With alive, dead variants)

• Palm Tree

• Vines

• Bush

• Mushrooms

• Flower

• Dragonfly

o Fly animation

Sound Effects

• Player

o Footsteps – Walk

o Footsteps – Run

o Footsteps - Land

o Ledge grab

o Heal – Using plant/animal

67

o Heal – Using own health

o Hit/Die

• Cursed

o Enraged roar/scream

o Footsteps – Walk

o Footsteps – Run

o Footsteps – Land

o Attack

o Healed

• Tribesperson

o Hit/Die

o Saved (Reach Exit)

o (Re-use player footstep noises)

• Plant

o Drain life (Decay)

Music

• Menu

• Level music 1

• Level music 2

• Ending short 1 (Save self)

• Ending short 2 (Sacrifice self)

Development Timeline

Week Tasks

2 • Model and animate all player, cursed & tribesperson models

• Script all player movement (linked with animations) and healing

behaviours

• Script enemy movement (linked with animations), healing

behaviours and state switching (cursed – healed)

• Model palm tree heal object (both states) and implement in game

with full behaviours (including morphing between states).

68

• Implement and test overall core healing mechanics.

3 • Model all heal objects with both states and implement healing

behaviours

• Model all scenery models (except background models) and

implement pressure plate/lever relationship with gates

(opening/closing)

• Implement player interaction with scenery models (climbing ledges

and ladders, pulling levers, stepping on pressure plates)

4 • Create background/ambient models

• Texture all models

• Construct pre-planned levels using fully scripted assets.

• Create functional GUI (player health display, saved tribes people

counter, pause)

5 • Create menu GUI & systems

• Create prologue & epilogue scenes, scripting in cut scene

functionality.

• Implement audio

• Finish any unfinished or delayed tasks

• Polish, playtest & debug

69

Appendix 2 - Predictive level designs

Key:

Green – Heal object

Red – Cursed

Blue Arrow – Lever/Gate relationship

Double red arrow – Enraged cursed

Figure 20. Cursed level designs 1 – 4.

70

Figure 21. Cursed level designs 5 – 8.

71

Figure 22. Cursed level designs 9 – 12.

72

Figure 23. Cursed level designs 13 & Tutorial.

73

Appendix 3 - Sample predictive concept art

Figure 24. Cursed tribespeople concept art.

74

Figure 25. Cursed object concept art.

75

Appendix 4 – Final debugging change list

Dematerialized

• Added ‘Click to teleport’ prompt on prologue, if the player does not click within a
certain time.

• Change the final outro text to ‘Thanks for participating’.
• Fixed a bug in the teleportation mechanic in order to improve to improve the accuracy

of teleportation co-ordinate calculation.
• Enabled the up and down arrow keys.
• Added ‘Press Escape to skip’ dialogue in intro & outro.
• Added a picture in the controls showing the drop box and spiky cube as unkillable

enemies.
• Widened some level areas to allow for more lenient teleportation.
• Removed a bug which could cause the final boss to damage the player on collision.

Cursed

• Added an extra collision barrier in order to stop a commonly reported bug of Healed
becoming stuck on the right hand side level wall.

• Made the dragonfly heal object’s collision radius larger.
• Added a screen shake effect to make it more obvious when a Player is using their own

health to heal something.
• Calculated the total number of saved tribespeople at the moment level changes, to

avoid instances where they would not be added to the total if they escaped during the
level fade out.

• Allowed right hand alt and shift keys to function as alternative controls for pulling
levers and healing (respectively).

• Added a button in the pause menu that exits to the main menu.

76

Appendix 5 – Playtesting questionnaire

Please specify your level of agreement with the following statements:

The game was too difficult.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

The game did not provide enough of a challenge.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

There were areas in the game where I became frustrated.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

There were areas in the game where I was confused on how to progress.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

There game’s instructions and guidelines were not made clear.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

The game was too short.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

There were noticeable bugs and technical errors.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

The controls and interface were difficult to use.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

I would want to play this game again.

Strongly Agree –– Agree –– Neutral –– Disagree –– Strongly Disagree

Please provide a score for the following game aspects (10 being the highest quality)

Presentation (Art Design/Aesthetics)

1 ––– 2 ––– 3 ––– 4 ––– 5 ––– 6 ––– 7 ––– 8 ––– 9 ––– 10

Music/Sound Effects

1 ––– 2 ––– 3 ––– 4 ––– 5 ––– 6 ––– 7 ––– 8 ––– 9 ––– 10

Graphics

1 ––– 2 ––– 3 ––– 4 ––– 5 ––– 6 ––– 7 ––– 8 ––– 9 ––– 10

Gameplay

1 ––– 2 ––– 3 ––– 4 ––– 5 ––– 6 ––– 7 ––– 8 ––– 9 ––– 10

77

Which parts of the game did you enjoy?

Which parts of the game did you dislike?

Are there any improvements or changes you could recommend?

	Predictive and adaptive game development a practical application of development models to the independent video game industry
	Recommended Citation

	Please specify your level of agreement with the following statements:
	Please provide a score for the following game aspects (10 being the highest quality)

