Edith Cowan University
Research Online

Australian Digital Forensics Conference Security Research Institute Conferences

2006

Enhancing the Forensic ICQ Logfile Extraction
Tool

Kim Morfitt
Edith Cowan University

Originally published in the Proceedings of the 4th Australian Digital Forensics Conference, Edith Cowan University, Perth Western Australia,
December 4th 2006.

This Conference Proceeding is posted at Research Online.

http://ro.ecu.edu.au/adf/30

http://ro.ecu.edu.au
http://ro.ecu.edu.au/adf
http://ro.ecu.edu.au/secconf

Enhancing the Forensic ICQ Logfile Extraction Tool

Kim Morfitt
Edith Cowan University
Western Australia
kmorfitt@student.ecu.edu.au

Abstract

Programmers of forensic tools need to ensure that their tools are of suitable use, robustness and correctness for
their output to be used as evidence. One tool for logfile extraction that is currently under development and is
intended for forensic use extracts information from ICQ clients has several limitations that need to be overcome
before it is of significant value to forensic investigators. This paper covers the process and research involved in
further developing the tool, and overcoming a subset of the limitations of the tool. It also documents what was
learnt in the process about the logfiles and the extraction tool and provides a snapshot of its current state of
development. Also highlighted are the main areas for future development, area’s where research is needed, and

areas where research could be performed that were highlighted by the current research and development cycle.

Keywords

Forensics, Logfile, ICQ, Instant Messenger

INTRODUCTION

Instant messenger programs allow people from all over the world to communicate in real time over the Internet.
The main feature of instant messaging programs is that they allow users to send messages to each other in real
time, hence the term instant messenger. There are a range of additional features offered by these programs,
including the ability to voice chat, send and receive files, and to use webcams.

These programs may be used to conduct illegal activities over the Internet, allowing people who might conduct
illegal activities to communicate more easily, such as hackers and other criminals. Pedophiles also use the
Internet to search for victims. There are even programs available to allow parents to control their children’s
activities online, such as NetNanny (NetNanny).

ICQ is one such instant messenger program, and has all of the above features. It is also capable of logging the
conversations of users, and other activities they perform online using ICQ. Logfiles from chat programs can
provide valuable information on criminal activities to forensic investigators.

The format of the ICQ logfiles is in binary, and the structure is not widely known, making analysis of the files
for forensic purposes quite difficult and time consuming to perform manually. There are a number of different
versions of the official ICQ client and several different versions of the logfiles, which further complicates the
issue of logfile analysis.

It is for this reason that in 2004 a project was undertaken to find or create a tool that could automatically extract
the entries in the logfiles into a format more useful to forensic investigators. This project successfully created a
program that would extract parts of the logfiles. There were, however several limitations in the program which
limit its usefulness.

This paper describes the limitations of the existing program and the process undertaken to extend the program to
a level where it would be more useful to forensic investigators.

THE EXISTING PROGRAM

After initial research the project found that there was very little in the way of existing programs that could be
used to fulfill the requirements set out for completion of the project. A program called icqghr (HitU, 2003) was

found which could be used to compare the output and assist in verifying the accuracy of the tool, however it is a
closed source program created by a Russian hacking group, which limits its forensic credibility. Also it did not
extract partial records, a requirement of the system.

Research also uncovered work performed by Derek Soeder(2000) and Strickz(2002), which provided most of the
basics of the structure of the logfiles and allowed work to begin on understanding the logfile structure. From this
work algorithms were created, tested, and modified until the raw records could be extracted. Further information
was also discovered about the structure of the logfiles, such as how to reconstruct them from partial records and
how to identify the version of ICQ that created a logfile from the record header of a single logfile record.

The results of the project were presented at the end of 2004 and the project was deemed to be successful. The
structure of the logfiles was now known, differences between different versions of the logfiles were known, and a
program had been written that could output one of the main components of the logfiles, the messages sent
between users.

LIMITATIONS OF THE EXISTING PROGRAM

There were several limitations to the program that was written that limited it’s usefulness. The latest version of
ICQ 2003b, is quite different in structure to the previous versions of ICQ, and so the program could not extract
records from logfiles created by that version of ICQ. Of the several different types of records that can exist in a
logfile, only the records relating to messages can be output. While messages are extremely important, there other
logfile entries, such as user information, and contacts that could be extracted.

Although all records are extracted from the logfile, only certain messages are output. When a record is deleted
from the logfile, it is not actually overwritten but simply removed from the index file that is associated with each
logfile. The record remains in the logfile until its space in the logfile is required by another record. At that time a
deleted record may be partially or wholly overwritten. If two records overlapped there was no method of
validating records or knowing which record was written first without using the index file. Records that may have
been partially overwritten are not output.

The records that are output are not sorted in any way. It would be up to the user to sort the records manually, a
task which would be time consuming and much better performed by the tool.

Finally, although the extraction algorithm works, there are assumptions that have been made that may not be
correct in all cases, even though they were adequate for the test data that was available. The first of these is that
the first record encountered in the logfile is always valid. This assumption was arbitrary, and made to keep the
project on schedule.

The second assumption was a coding artifact and was not immediately obvious. When the start of a record could
not be verified, the length of the record stated in the record could not be relied upon. This is due to the fact that
the first part of the record is the length of that record, and any overlap overwrites at least part of the length.
Therefore there was no way of knowing where the record finished. To ensure all of the record was obtained,
everything was taken up to the start of the next record as part of the current record, or if there were no more
records, everything was taken the end of the file. Records were identified by a signature found in every record.
This signature starts 13 bytes into the record. If a signature is found then it is known that for that record, that the
signature is reliable, however no effort was made to ascertain the validity of the previous 12 bytes, it was
assumed that they were good.

This does not take into account a situation that may exist where one record is deleted, the first few bytes are
overwritten with a new record, and that record is then deleted and partially overwritten with a third record. The
newest record would be found, and the second record found, and it would be shown that they overlapped. The
length of the second record could not be trusted, a search would be made for another signature, which would find
the first record written. It is here the assumption would incorrect. The start of the third record we know to have

been overwritten, however the program assumes it to be correct, so subtracts 13 bytes from the position of the of
the third records signature and ends the second record there. It then reads the length of the third record,
assuming it is valid.

From that we can see two things. Firstly part of the second record has been missed, and length of the third record
is incorrect. While no errors were detected as being caused by this problem in testing, it is clearly incorrect and a
new method of determining which record is the one overwritten needed to be created. Also it meant that if the
program was enhanced to dump raw records, manual analysis would be required to determine which record is the
one overwritten.

THE ENHANCEMENTS

From this list of limitations, three were selected to be corrected. They were chosen due to their ability to correct
potential errors, enhance the correctness of the program and to enhance it’s usefulness to forensic investigators.

The limitations selected were:
1. Lack of sorting of records.
2. Validity of the first found record to verify correctness of extraction.
3. Validation of extracted records to improve extraction and verify correctness of extraction.

By concentrating on verifying the extraction algorithm, the existing program can be used with more confidence
that the work that it does perform is correct, and that future enhancements build on this.

Sorting of the records simply makes the tool easier to use by forensic investigators and saves time when testing
results against icghr as both sets of output are then sorted in a similar fashion.

SORTING RECORDS

All that needed to be decided upon before implementing sorting was the sort order. The sort order decided upon
was by the UIN number which identifies other ICQ users, and then by time, giving for each user that the person
under investigation has communicated with using ICQ, a chronological output of their interactions.

From there the process was a matter of implementation. The extraction tool is written in C++, a language which
has easily extendable sorting features. A unit of code called a class was written which decided the precedence of
two records. From there it was plugged into the existing program code. Testing showed the sorted output to be
blocks of messages, each one a chronological output of all records found for a particular UIN found in the
logfile.

VALIDITY OF THE FIRST FOUND RECORD

Another potential problem that reduced the certainty of the program was the fact that it was not known if the first
record found would always be valid. The existing information gave no indication as to the position and type of
the first record. There was information suggesting that the logfile had a header and was organised by pages in a
similar fashion to the index file. This suggested that the first valid record may occur at a file offset of 0xCD, as
this was the first byte after the first page header. When this position was checked in the logfiles used for testing,
no record was found there.

Several logfiles were searched. Some were logfiles that were completely new and had little or no user
information in them other than a My Details record. One was a logfile generated for testing purposes, and had
seen extremely limited use. The last was the logfile of the author and has been used for an extended period of
time, and has many records deleted from it. In all cases, the first record was found to be at the file offset of
0x555 and had as the first byte of its signature OxE9. This is significant as this record has been identified as
being used for sound settings. Even in the logfiles that had little or no changes to the sound settings this record
existed as the first record in the logfile.

In doing previous research, logfiles were generated from different versions of the ICQ client, with just the initial
entries that are created by default when the user first connects using that client. A number of these were checked
all were found to have this record as their first entry, and were at offset 0x555. In its initial state, the record
simply had its record header, and was followed by 8 bytes of 0x00. In the author’s logfile, the record was much
larger, appearing to contain a lot of information about wave files and sounds to play when different events occur,
such as the user receives a message.

Another point of interest is that this record has a particular entry number allocated to it, 1007 or Ox3EF in
hexadecimal. There are several types of records that are unique in a logfile, such as the Address Book, which has
an entry number of 1006, or Ox3EE in hexadecimal, and the My Details record, which has an entry number of
1005, or Ox3ED in hexadecimal.

Although the sample of logfiles checked was quite small, it was clear from the positioning of the record in the
logfiles, and that it has its own entry number, that it is highly likely that all logfiles for the ICQ version that this
program works on contain this record as the first record in the file.

Therefore as the first record in the file is always a valid record, the assumption that it would be is correct and no
longer of issue. There would not need to be any changes to the program, however a check to ensure that the
record expected to the be first one found is actually the first one found, and that it is in the expected position
could possibly be useful for showing that the logfile was found to be sound.

IMPROVING RECORD IDENTIFICATION USING RECORD NUMBERS

When the original program was designed, it was hoped that adequate extraction could be achieved without
having to inspect any other part of the record, other than its length. When it was found that records were simply
deleted from the index file and not from the logfile, a method was designed to try to ensure that the records were
as complete as possible without having to inspect the records.

This method worked well when there were no partial records, however when two records overlapped there was
not enough information available to adequately determine which of the two records overlapped the other. It
would be known that two signatures were found, indicating that there were two records, and that the start of the
second record, which could be calculated, overlapped with the end of the first.

It is known that all records share the same record header format, and that records for events that represent
interaction between different users, such as messages, are time stamped. The format of the header includes an
identification number for the record. As mentioned before, some records which occur only once and server a
particular function such as the My Details record, have a particular identification number, also known as an entry
number, associated with them. Other record types, such as messages, have an identification number assigned
when the record is created. If the numbers could be shown to be assigned sequentially, then they could be used to
determine which record was written first.

Record time stamps could have been used, however if the system clock is inaccurate, if the user changes the
system time, or the system battery is removed, then the timestamps can no longer be relied upon to determine
which record was written first.

The record identification numbers have the limitation that if more than 8 bytes of the two records overlap, they
cannot be relied upon either. The difference between using the timestamp and the record numbers, is that the
program can determine how much overlap occurs. It cannot determine if the system time can be relied upon. This
is something the forensic analyst would be required to determine before timestamps can be used to determine
which records were written first.

Before record numbers could be used, it had to be determined that they were indeed assigned sequentially. For
this a reliable way of ordering the records was needed. In this instance time stamps could be used as the authors
logs have been created on a computer that has a utility called StatBar. One function of StatBar is to keep the

system time in synch by the use of the Network Time Protocol (NTP). For almost the full life of this logfile, the
system time can be relied upon to be correct.

A copy of the existing logfile extractor was created and a class called AscendingSort was created to sort all the
message records by their record number. The program was then modified to extract all the records, and create a
list with a copy of all the message records found. Only message records were used as they are the only records
that were known to exist in this file that required a time stamp. Next the list of messages was sorted using
AscendingSort. Lastly the program iterated through the list of messages firstly checking to see that the time
stamp of the current record was greater than the time stamp of the previous record. The program also printed out
each records record number followed by its time stamp so that its accuracy can be visually checked. If the
program found a record that had a time stamp that was lower than the previous record a message was printed to
screen.

When this modified program was run on the testing logfiles, it failed to find any timestamp that was out of order,
showing that records without a dedicated record number are assigned their record numbers sequentially. Having
verified this, the next stage was to create an algorithm to use the record numbers to improve extraction.

AN IMPROVED EXTRACTION ALGORITHM & VALIDATION OF EXTRACTED
RECORDS

With the ability to determine which records were created first, some of the problems relating to improving the
extraction algorithm had been removed. There remained however the problem of how to verify records where the
overlap between records was greater than 8 bytes. More than 8 bytes of overlap makes the use of record numbers
to identify which record was written first impossible. The index file could be used if it was available, however
there still needed to be a method to determine the precedence of records where the index file was unavailable.
The index could still be a useful reference for a forensic analyst if available, as it could provide corroborating
evidence as to the correctness of the programs output.

For reasons stated above time stamps were also discounted. They cannot be relied upon to be correct. This left
determining if the whole of the record was complete as the only method of determining if which was the first
record written. For each different record type, and each different version of a record type, a verification
algorithm would need to be created. For existing version of the program, only two different record types, Long
Message and Short Message are extracted at the current time. This meant that extraction methods needed to be
created for only these types of records.

Due to the nature of the first 12 bytes of a record, the only part of those 12 bytes that can be verified by looking
at the rest of the record is the record length in the first 12 bytes. If the end of the record can be verified, then the
length of the record can be verified, and subsequently the expected value in the record length is known. If the
correct value is found in the record length, the remaining 8 bytes can be safely assumed to be correct. For the
purpose of extraction however, the end of the current record is being compared with the start of the next.

To determine if the start of the next record has been overwritten by the current record, it only need to be
determined if the end of the current record is intact. From this it can be determined if the start of the next record
has been overwritten by the current record. If it has not been overwritten by the current record is likely (although
not guaranteed) to be intact.

Using what is known, the algorithm on the following page, displayed in Figure 1 was created. First the file is
searched until a signature is found, then a record is created for that signature. Then the next signature is found. A
reference is kept to the previously created record. If there is no previous record (first iteration of the loop) the
algorithm simply marks the start and end of the record as CLEAN, reads the length of the record from file and
reads in the data for the record to store.

If there is a previous record, and the end of the previous record overlaps with the start of the current record, the
algorithm checks to see if the overlap between records is equal to or less than 8 bytes. If the overlap is less than
or equal to 8 bytes, the record numbers of the two record are compared. The record with the lower record number

is considered to be the record written first. This record has its start valid (current record) or end valid (previous
record) property set to OFFSET, and the amount that it overlaps (the offset) is stored in the record. The other
record has its (current record) or end valid (previous record) property set to CLEAN. As this record is considered
to be intact it has no OFFSET. If the overlap is greater than 8 bytes, then the end of both records is set to DIRTY.

If the start of the record is marked as clean, the length of the data is read from the file and four is added to it.
This allows for the four bytes that record the length of the record, as they are not already included into the length
of the record.

If the start of the record is not marked clean, one of two things happen. If there is no further signature’s in the
file, the data length is set so that everything is taken to the end of the file. If there is another signature, a method
named verifyRecord() is called. This method uses the signature to identify type of record, and then calls the
implementation of verification algorithms for those record types that verification algorithms were created for. If
there is no verification algorithm the type of record is output to console.

The verification algorithms are used to determine if the end of the record has been overwritten or not. If the
algorithm is able to verify that the end of the record has not been overwritten it is marked as clean, otherwise if it
is able to verify the portion of the record that has been overwritten and so marks the end of the record as
OFFSET and sets the offset value to the amount of the record that has been overwritten.

If the algorithm is unable to verify enough of the record, then it is unable to determine the end of the record. It
simply marks the end of the record as DIRTY.

When the verifyRecord() method returns, if the record is marked as DIRTY then the data length is set to take
everything up to before the signature of the next records starts. This does two things. First it ensures that all the
data possible for that record has been put into that record, and it ensures that the next record is verified, as on the
next iteration an overlap of greater than 8 will e detected. This verification is required as there is no way to know
is the current record has overwritten any part of the next record, so the record length of the next record cannot be
trusted until.

Figure 2 and figure 3 are the algorithms for verification of short messages and long messages. These algorithms
determine how much of the record is valid. Each record contains a second separator value and are identical up to
the second separator value. Between the signature and the second separator value is the ANSI text of the
message. The first check that both algorithms do is to check the second signature matches the first.

Next the short message algorithm validates the end of its record, which is simply 27 bytes of 0x00. If 27 bytes of
0x00 are found then the end of the record is marked as clean. If not, the end of the record is marked as OFFSET,
and the first byte not found to be 0x00 to be first byte of the end offset of the record.

The long message verification algorithm varies in that the number of 0x00 bytes at the end of the record is
different. The calculation of the position of those bytes is more complicated due to copies of the message that
may be stored in rich text format, and/or in UTF8 format between the time stamp and the 0x00 bytes at the end
of the record.

Other than these differences, the verification algorithms are extremely similar.

RESULTS OF THE ENHANCEMENTS

The sorted records will simplify and speed up analysis of the output, saving time and reducing the possibilities
of mistakes by the forensic analyst.

Knowing that the first record in a logfile is almost certainly correct verifies what the implementation of the
program has assumed, improving the validity of the information and its forensic usefulness.

On the test data that was used, which included a file with over 2000 records, the algorithms verified all but two
of the records. The research resulted in a stronger and more verifiable algorithm with more accurate information
about the validity of the data stored in the records. Further testing of the implementation of the improved

algorithm is required, however, and further checks need to be added to ensure that all of the extracted data is
correct. Some of these tests can be tests that are compiled out in production code, by using a feature of C++
called an assertion. An assertion is a simple boolean test that will throw an exception and halt execution of the
program if the test returns false.

Execution of the program and debugging has shown more records that exist in the test logfiles that were not
previously identified, as they were simply ignored in favour of the message records.

Start

Search File for
Signature

y

Signature

onatun < Add Record
ound?

to list
A

Create lygyv Record
Set Sig position
Set Start Position

Read data
¢ from file

Search For next
Signature

v

P revious
Signature
exists?

SetEnd Pos > i
value

< Read in datalength
f?fgm"f]nea(adznz% Call verifyR ecord S teatkceiatt':z)aIEeBg'qu

Is Cur Start Is ther
valid value CLEAN Another Sig?
Does the current No
Record overlap
the next?

o

A

SetPrevEnd OFFSET | | SetCurStartOFFSET

Yes SetPrevEnd Offsetto | | SetCurStartOffsetto
offset val offsetval

SetCur Start Clean SetPrevEnd CLEAN

Is the current records
entry id less than

the previous? Yes

SetCurStart DRTY
SetPrevEnd DIRTY | |
Set Cur Start/Prev

End Offset Value

Is overlap
less than 8 bytes

Figure 1: Record extraction algorithm

Start

!

Get separator
value

Yes

A

Calculate second

27 bytes of 0x00?
separator offset v

Y
o Setend offset
Separators Calculate beginning to last 0x00
match? of the 27 0x00's

Y

SetEnd to Clean

SetEnd to DIRTY SetEnd to OFFSE

Y

End

Figure 2. - Short Message Verification Algorithm

Calculate offset Calculate offset
of second long > Sic%r;?sl%r;g > of third long
after UTF8 text q ‘ after UTF8 text
No
Set End offset
to 8

] Third long equals
Begin first I?ng7 SetE ndlgffset _>i<_ Set End offset 0x00800080
equals 07 to to4 or OXOOFFFFFF?
Calculate offset
of first long after
Get separator UTF8 text
value

Setdata length to
end of third long

Y

EetEnd to OFFSE

A

Calculate second

Separators
separator offset

match? v

SetEnd to Clean

SetEnd to DIRTY|

) 4
3 \‘4
> >@<

End

Figure 3. - Long Message Verification Algorithm

LIMITATIONS OF THE NEW VERSION

There are still several limitations existing with the new version and more testing is required. During testing some
areas of the program were noted as needing addressing, but as of yet have not been addressed.

The first of these is that the short message verification algorithm should set the end of the record to DIRTY if
none of the 27 bytes can be validated. Currently in the code if none of the 27 bytes are validated, then the end of
the record is marked as OFFSET and the offset of the end of the record is set to 27. This would be correct if the
previous element in the record was the second signature, which had just been verified, however the time stamp is
between the second signature and the first of the 27 byte of 0x00. Setting the offset to 27 bytes assumes that the
time stamp is correct which has not and can not be verified.

What this suggests is that there needs to be a record of what part of the record has been verified as intact, as well
as what part has been verified as overwritten. The offset value records what part of the record has been
overwritten, and with the addition of an element to record what part of the signature has been verified, there
would be a section of the record marked as good, a section marked as bad and any section remaining would be
regarded as unknown.

The same problem exists for the long message verification algorithm. During documentation and testing it was
shown that the checks for the last 12 bytes of 0x00 in the record produce the same problem. It was also noticed
that an additional check could be added that could check part of the record after the time stamp, to see if the time
stamp can be validated.

The extraction algorithm itself has yet to be subjected to rigorous testing to eliminate any yet to be discovered
bugs, and to ensure that all paths through the algorithm produce a record of consistent state, with accurate
information. While this has received testing to ensure that the program runs as expected, and that the results that
are checked are valid, further validation is required for forensic purpose.

The remaining limitations also exist. No other records have been output and the output of the message records
has yet to be altered to output partial records. No work has been performed to extract records from version 2003b
of the ICQ client and no work has been done to allow the analyst to account for time stamps.

FUTURE WORK

Firstly more work is needed to test and refine the algorithm. While no major are changes required to complete
the current work, extra checks can be included such as the asserts mentioned earlier, as well as checks to ensure
that the first record in the file of the type expected, and at the expected position. If the type of the record found is
not what is expected, this can be flagged for the analyst to investigate. Once fully tested this algorithm should
need no further changes to extract records by signature.

Further work can possibly be done to extract text strings from the file. This may be required to be a separate
extraction pass that requires parameters from the user, and possibly may be interactive or partially interactive.
This is due to the nature of how the strings are stored, and the ability to generate a large amount of false
positives, which would need the analyst to adjust parameters to filter out.

Also the remaining record types need to be output, as do records from 2003b. For versions of the ICQ logfiles
created from 2003b, this will require a great deal of research to ascertain the structure of the logfiles.

For versions of ICQ earlier than 2003b, this will be a matter of implementing the record types and adding them
to the program.

Finally, while writing this paper, a possible technique for analysing the history of the logfiles in regards to
deleted records and when they were deleted is in the early stages of being concocted. This technique would use
the positioning of records of different numbers in the file, and what records are overwritten by a series of records
to make determinations on when they were deleted. This information may be of limited use, however it is
possible that it may give information about actions by the user such as when the user deleted a contact and
history from the logfile.

A technique such as this would require knowing exactly how a section of a file that contains a deleted record is
selected to be overwritten and if time stamps cannot be reliably used, may only give information relative to other
records. This information, if it can be determined might, however provide supporting evidence as to the actions

of a subject under investigation. Even if it is found that there is no possibility of reliably using this information,
knowing when a record is overwritten and the criteria for the reuse of this space would be useful as background
information when using logfiles as evidence, and may provide other useful information.

CONCLUSION

While the current additions to the logfile extractor are only in the early phases of testing, the program is showing
itself to be ready for more rigorous testing. There is still a lot of work that needs doing to build up the program
into a more useful tool, however as a preliminary investigation tool, it could be quite useful.

Further research into the latest versions of the official ICQ client are required to document the structure of the
logfiles and to allow the program to be extended to extract records from those logfiles.

Ideas for techniques to analyse numbered and time stamped data are being formulated as topics for further
research. While this is secondary to the purpose of generating logfiles that are useful forensically, it can be
considered that as the reason the logfile extractor has been created is to improve the forensic analysis of the
logfiles, this type of research could be relevant the project and could be undertaken to improve the body of
knowledge that should be associated with a program such as this.

REFERENCES

HitU. (2003). icqhr (Version 1.8f).

NetNanny. Retrieved Novemer 3rd, 2005, 2004, from http://www.netnanny.com/p/page?sb=product
Soeder, D. (2000). ICQNEWDB. Retrieved Jan 20th, 2004

Strickz. (2002). ICQ Db Specs. Retrieved Jan 21st, 2004, from
http://cvs.sourceforge.net/viewcvs.py/*checkout*/mirandaicq/Plugins/import/docs/import-
ICQ_Db_Specs.txt?content-type=text%2Fplain&rev=1.9

COPYRIGHT

Kim Morfitt ©2006. The author/s assign SCISSEC & Edith Cowan University a non-exclusive license to use
this document for personal use provided that the article is used in full and this copyright statement is reproduced.
The authors also grant a non-exclusive license to SCISSEC & ECU to publish this document in full in the
Conference Proceedings. Such documents may be published on the World Wide Web, CD-ROM, in printed form,
and on mirror sites on the World Wide Web. Any other usage is prohibited without the express permission of the
authors

	Edith Cowan University
	Research Online
	2006

	Enhancing the Forensic ICQ Logfile Extraction Tool
	Kim Morfitt

