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1.2.  The significance of the study 
Most traditional automated red teaming simulations use genetic algorithms to 
evaluate the score or performance of a simulation with a particular set of 
parameters. A disadvantage of this approach is that a simulation must complete 
execution before the effectiveness of that set of parameters can be evaluated. 
Combining this with the fact that creating a heuristic evaluation function for non 
terminal game states can be extremely difficult to implement (G Chaslot, et al., 
2008), means that evolutionary methods are not suited for use when implementing 
re-planning. 
 
The proposed Monte-Carlo Tree Search algorithm would work well within an 
Automated Red Teaming environment by supporting re-planning and therefore 
longer simulations. A Monte-Carlo Tree Search algorithm does not rely on a heuristic 
evaluation function to score game states. While MCTS methods have been used in 
fields such as chess, board games, Real Time Strategy (RTS) games (G. M. J.-B. 
Chaslot, 2010), they have not been used in an ART environment combined with a 
linear programming approach before. This should lead to more information gained 
from longer simulation leading to more intelligent decisions. 

1.3.  The purpose of the study 
The primary purpose of the study is to improve current Automated Red Teaming 
methods by including a Monte-Carlo Tree Search component that support replanning 
and provide an algorithm that chooses the best strategy for the simulation at the 
current time step in a two-person stochastic zero-sum simulation. 
 
The purpose of this study was to determine if combining a Monte-Carlo Tree Search 
method with a linear programming scoring approach in an ART environment would 
provide better results than random strategy choices. If the method provides better 
results than random strategy selection, then the next step was to determine which 
methods worked better than other and if re-planning provided a benefit to the 
average score and how the MCTS approach handled extra randomness in the 
simulation. 

1.4.  Research questions 
How do Monte-Carlo Tree Search methods perform in an automated red teaming 
environment compared to random strategy choices? 
 
How do Monte-Carlo Tree Search methods using re-planning perform in an 
automated red teaming environment when compared to random strategy choices?  
Is it better to use re-planning methods rather than methods without re-planning? 
 
How do Monte-Carlo Tree Search methods perform given an element of uncertainty 
caused by Improvised Explosive Devices (IEDs) in an Automated Red Teaming 
environment? 
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2.2. Studies into red teaming, data farming and re-planning 
Red teaming has a long history in the military and has been used in areas of network 
security (Markham & Payne, 2001). Automated Red Teaming was first introduced in 
2004 by Upton, Johnson and McDonald as a complement to manual red teaming and 
is described as “we automate this vulnerability discovery process using a 
combination of evolutionary algorithms and agent-based simulations” (Upton, 
Johnson, & McDonald, 2004). 
 
Choo, Chua and Tay later built upon this work to create an automated red teaming 
framework (ART Framework) specifically for military application. Their study showed 
that there was a clear benefit from using evolutionary algorithms, as apposed to 
manual red teaming. “Results showed that Red Force survivability can be improved 
by 27% just by modifying behavioural parameters alone. These findings could be 
used by Blue force to refine their tactics and strategy thereby ensuring robustness of 
plans and mission success.” (Choo, Chua, & Tay, 2007). Figure 4 shows the ART 
framework 

 
Figure 4. ART Framework (Choo, et al., 2007) 

Other work performed in the Automated Red Teaming field showed that ART was 
able to “enhance the Red performance from their manual red teaming tactics” (S. W. 
Chung, Choo, Martinez-Tiburcio, & Lin, 2006) and that the ART had produced 
alternate plans that were not discovered during the MRT process by exploring paths 
that had initially been dismissed.  
 
Others recognise the problem associated with many-objective problems. “Solving 
real world problems commonly involves the simultaneous optimization of many 
objectives which often conflict with each other” (Decraene, et al., 2009). They 
propose several different techniques to handle multi-objective problems, with future 
research to focus on “to develop new heuristic techniques capable of efficiently 
addressing many-objective ART problems” (Decraene, et al., 2009). 
 
In 2008, a study looked at using a game tree structure for decision making in data 
farming. This technique is named “Strategic Data Farming” and uses a hybrid of real-
world war games and computer-based simulations. “Strategic Data Farming uses 
iteration between human and computer to gain the best of both worlds” (Duong, 
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2.3.  Studies similar to this study 
In 2005 Chung, Burro and Schaeffer applied a Monte-Carlo based technique to 
planning in RTS games using the Open RTS software. They created a general Monte-
Carlo planning framework named MCPlan. Their technique was to look ahead at each 
planning point using simulations with random choices and the authors’ note that the 
importance of the research is the level of abstraction they are able to obtain from the 
game. “MCPlan is similar to the stochastic sampling techniques used for other 
games” (M. Chung, et al., 2005). The authors discuss the fact that this kind of 
automated planning is still reliant on expert knowledge for creating plans and 
creating a good evaluation function that works effectively. “For most application 
domains, including RTS games, there is no easy way around this dependence on an 
expert” (M. Chung, et al., 2005) 
 
A similar study by Sailer, Buro and Lanctot focused on adversarial planning in RTS 
games. They discuss the six main problems associated with planning in RTS games, 
many of which also apply to automated red teaming situations. 

• Complex unit types and actions 
• Real-time constraint 
• Large game maps and number of units 
• Simultaneous moves 
• Several opponents and allies 
• Incomplete information 

(Sailer, Buro, & Lanctot, 2007) 
 
The authors overcome the difficulty of creating an effective evaluation function by 
simulating to the end of the game and checking if they have won or lost the game. 
They combine ideas from previous studies on RTS planning with ideas from game 
theory. “In a zero-sum two-player setting with simultaneous moves the natural 
move-selection choice then would be to determine a Nash equilibrium strategy by 
mapping the payoff matrix r into a linear programming problem” (Sailer, et al., 
2007). One of the problems associated with this method is the small set of strategies 
that are used.  
 
In 2009 a Monte-Carlo based tactical planner was implemented for use in RTS 
games. The main feature of the planner was that it uses UCT for creating a 
simulation tree. “The key idea behind UCT is to intelligently bias the rollout 
trajectories toward ones that appear more promising based on previous trajectories, 
while maintaining sufficient exploration” (Balla & Fern, 2009). The authors discuss 
that UCT is usually used in sequential moves, however they have applied it to non-
sequential, continuous games. The authors presented a domain independent planner 
that does not require expert knowledge. 
 
There are several studies that build upon this work and try to reduce the search 
space of particular problems by using other artificial intelligence techniques. Laviers 
(2010) notes that one of the issues with multi-agent adversarial games is “the size of 
the search space can be prohibitively large when the actions of all players are 
considered simultaneously” (Laviers, 2010). The study used a K* classifier to rank 
groups of moves along with a UCT Monte-Carlo planning approach to create better 
plans. They concluded that using this method “doubles the offensive team’s 
performance in the Rush 2008 football simulator over prior methods” (Laviers, 
2010). 
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Branavan, Silver and Barzilay (2011) presented a method of reducing the search 
space in for large sequential planning problems in the game Civilization II. “We 
approximate the value function by a neural network, augmented by linguistic 
knowledge that is extracted automatically from the official game manual” (Branavan, 
Silver, & Barzilay, 2011). They show a clear benefit by using a different, enhanced 
evaluation function from what would usually be used with a ‘vanilla’ Monte-Carlo Tree 
Search implementation “Our non-linear Monte-Carlo search algorithm wins over 78% 
of games against the built-in AI of Civilization II” (Branavan, et al., 2011).  
 
Szita, Chaslot and Spronck (2010) apply a Monte-Carlo Tree Search method to a 
non-deterministic board game called Settlers of Catan, which is a multiple agent 
environment with more than two players. The authors show that, when provided with 
a small amount of domain knowledge, “The playing strength of our agent is notable: 
it convincingly defeats the hand-coded AI of JSettlers, and is a reasonably strong 
opponent for humans” (Szita, Chaslot, & Spronck, 2010). 
 
A 2003 study examined utilising game theory concepts for military decision-making 
in two-person zero sum games. The study outlines a ten step process for calculating 
a payoff matrix using manual red teaming then solving the problem using software 
linear programming solvers. “The intent is to translate the abstract concepts of game 
theory to a well-defined process for organising information to enhance military 
decision-making. This study offers a model for the military commander to augment 
the military decision-making process.” (Cantwell, 2003) 
 
In 2009, Cazenave introduced a method called “nested monte-carlo search”. This 
method deals with the problem where no easy heuristic method of scoring a game 
exists. At each level of the algorithm, the best set of moves is stored. Then random 
playouts occur at the lower level. “If none of the moves improves on the best 
sequence, the move of the best sequence is played, otherwise the best sequence is 
updated with the newly found sequence and the best move is played” (Cazenave, 
2009). The algorithm has been tested successfully on Morphion Solitaire, SameGame 
and 16x16 Sudoku. This algorithm was further extended to execute in parallel with 
successful results “The parallel algorithm run at level 3 has found sequences of 
length 80 which is the current world record at Morphion Solitaire disjoint version” 
(Cazenave & Jouandeau, 2009). In 2010, it was shown that a new algorithm named 
MAX, a combination of the Nested Monte-Carlo and UCT methods outperformed the 
separate methods “MAX gets the performance of both algorithms by taking at each 
step the move with the best independent evaluation” (Mehat & Cazenave, 2010). 
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3. Theoretical Framework 
The philosophical approach that was used in this study was quantitative methods 
based on the positivist paradigm. According to Creswell, quantitative methods are “a 
means for testing objective theories by examining the relationships among variables. 
These variables, in turn, can be measured, typically on instruments, so that 
numbered data can be analysed using statistical procedures” (Creswell, 2009). 
Therefore, the research questions that are developed in a study with positivist views 
can be answered by using experimental research to determine the effect that the 
independent variables have on the dependent variables. 
 
Experimental design is the method most commonly used to answer a hypothesis in 
the fields of automated red teaming and data farming. “Experimental research 
provides a systematic and logical method for answering ‘If this is done under 
carefully controlled conditions, what will happen?’” (Best & Kahn, 1989). Taking into 
account the previous work performed in this field, the most suitable method of 
testing the research questions is experimental design.  

3.1.  Identification of variables 
The independent variables in this study are the variables that are modified to 
determine if they have an effect on the dependent variable. The independent 
variables are the methods of choosing a strategy. There are four different methods 
that are used to choose a strategy; these are further explained in chapter 5.3: 

• Random strategy choices 
• Monte-Carlo methods without re-planning (level 1) 
• Monte-Carlo methods with re-planning (level 1) 
• Monte-Carlo methods with re-planning (level 2) 

 
Another method that will be modified is the Improvised Explosive Device (IED) 
presence in the scenario. This is also described in more detail in chapter 5.3. 

• IEDs present in the scenario 
• IEDs not present in the scenario 

 
The dependent variable in this study is the variable that will be measured to 
determine if the research questions can be proven. The dependent variables is: 

• Red team score 
 
The studied simulation is asymmetric because changing the identities of the players 
will not give the same payoff matrix or final score. This is because we are only 
measuring the red team’s final score. Other parameters of the simulation include: 

• Number of re-planning points 
• Squad numbers per team 
• Agents per squad 
• Objective point scores 

These parameters are fixed so they don’t affect the dependent variable. Although the 
results of modifying these parameters is not analysed in this study, it would be 
interesting to see the effects in future work. 
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3.2.  Phases of the study 
There are six phases that were used in the study. These are based on the 
recommendations made by Crawford and Stucki (1990). The phases are shown in 
Figure 5 and described below. 
 
1. Design 
2. Implementation 
3. Test 
4. Collect data 
5. Analyse 
6. Report 
(Crawford & Stucki, 1990). 
 
The software development process of the study was similar to the agile software 
development method. The agile development process uses iteration with relatively 
short time limits. Breaking the project down into sections allows faster development 
time by allowing testing and reworking of discrete parts of the project. The iteration 
is shown in Figure 5. “That people make mistakes is exactly why iterative and 
incremental development were invented. Iterative refers to a scheduling and staging 
strategy that allows rework of pieces of the system” (Cockburn, 2000). 
 
The design phase of the project involved designing the software system that will 
carry out the set of experiments. Initially a simplified UML version of the overall 
structure was created. This was enhanced as the project progressed and more details 
of implementation and design were worked out. Some parts of the final system were 
written in discrete parts during the implementation phase, but most of the parts of 
the system were developed at the same time, whilst being tested. 
 
The testing phase included not only testing to check if the parts of the system 
worked well together, but also tracking down bugs. Fixing bugs was a large part of 
this phase. Once a part of the system passed the testing phase, the next part was 
developed. Some time was spent profiling and optimising during this phase. 
 
Data collection occurred in the fourth phase. Many simulations were executed and 
the resulting scores written to text files. The output from this stage was a results file 
per combination of search algorithms. These log files were then analysed to give a 
mean, standard deviation and error of the mean to give the final results (as 
described in chapter 7). Throughout the separate stages the data was reported and 
collated into the final information present in this document. 
 

 
Figure 5. Phases of the project. Iterative Agile Process.  
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3.3.  Software framework 
Appendix A shows the main structure of the simulation developed for the study. The 
simulation framework is loosely based on other Automated Red Teaming frameworks 
and military style chain of command. Each simulation has two teams; these teams 
each have a commander class. Each commander class controls a set of squads. Each 
squad controls a set of agents. After the search algorithms have picked a strategy, 
the strategy is passed to the commander class, which then sets the strategy for each 
squad and the agents that make up the squad are given a list of goals (from the 
strategy). The agents are responsible for the path finding between goals. 
 
The rest of the software framework is loosely based on the Automated Red Teaming 
Framework shown in Figure 4. ART Framework (Choo, et al., 2007). A controller 
class is responsible for configuring and executing the search algorithms. The result of 
the final execution is the red scores from each simulation stored in text files that are 
analysed later. 
 
Each search algorithm inherits methods from the PlannerInterface class. Similarly, 
the objects in each search algorithm that depend on the mason simulation are 
implemented from interfaces. Examples of these are the SimulationInterface, 
StateInterface, ChoicesInterface and the linear programming SolverInterface. 
 
Each search algorithm is given the initial state for the simulation. It is then 
responsible for building a search tree, growing the tree, analysing the results and 
choosing a strategy to play. This is achieved through the execution of simulations 
and building payoff matrices for each simulation tree. The simulation trees are solved 
with linear programming to give a chosen strategy. In the case of the random search 
algorithm, a random strategy is picked and the grow operation is ignored because it 
does not take into account scores when choosing a strategy to play. For the two 
search algorithms that can replan, they are given the chance to replan when the 
main simulation reaches the re-planning point. 
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4. Materials 
Throughout the study the following software instruments were utilised: 

• Netbeans Java IDE – Version 6.9.1 
• MASON Multi-agent Simulation Toolkit – Version 15 
• JFreeChart graphing library 
• Lp_solve (5.5.20) – Mixed integer linear programming (MILP) solver 
• Classmexer – java memory profiler toolkit 

 
The primary reason for using the above tools is that they are all open source 
software and cross platform. This turned out to be a useful choice as the finished 
project was executed on Windows, Linux and Mac OSX operating systems. Open 
source software has gained a reputation for reliable, portable software. “Open source 
software is well known today for its high degree of reliability and portability” 
(Bonaccorsi & Rossi, 2003). Netbeans was used because it contains a powerful 
profiler and debugger and supports many different programming languages. 
 
Mason was chosen because it provides a solid cross-platform agent-based simulation 
toolkit, whilst being open-source and was designed to be a “general-purpose single-
process discrete-event simulation library intended to support diverse multi-agent 
models across the social sciences, artificial intelligence and robotics” (Balan, Cioffi-
Revilla, Luke, Panait, & Paus, 2003). Mason separates the simulation core and the 
GUI of a simulation. This means that simulations written using mason can easily be 
executed without a user interface and run as a single process. This made scaling up 
significantly less complex. 
 
The mason toolkit has a feature called checkpointing that allows the state of a 
simulation to be saved and written to disk where it can be resumed easily. 
Checkpointing also enables the simulation to be resumed on a different system than 
the one on which it was started. The applications of saving a simulation state like this 
are to enable front-end visualisation of a simulation that was running on a cluster / 
high performance computing environment (Balan, et al., 2003) or to save the state 
of a longer simulation incrementally so it can be resumed at a later point if any 
errors occur. 
 
Although the checkpointing system of mason wasn’t used directly in this study, the 
fact that was implemented made saving the state in memory incredibly easy. Rather 
than writing the state to disk, for performance reasons, states were stored in 
memory. If a significantly larger scenario is required for future research, 
checkpointing to disk will be a useful feature. 
 
JFreeChart is an open-source graphing library for java. JFreeChart was used for 
tracking agent scores and casualties throughout the project. It was chosen because it 
is included as a required library for mason and many tutorials for using JFreeChart 
and mason together are readily available. 
 
Lp_solve is a free, open-source Mixed Integer Linear Programming (MILP) solver and 
was a crucial part of the project. Lp_solve was used in the study for measuring the 
effectiveness of strategy choices at intermediate simulation tree nodes. This software 
was chosen because it is well documented, and provides the source code for the java 
bindings as well as the core software. This was very important because the core 
Lp_solve library had to be recompiled for each system is was used on. 
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The hardware instruments that were utilised in the study are: 
• Laptop (2.66GHz Dual Core Intel i7 with 8GB RAM) 
• SGI Altix 1300. 512-core cluster High Performance Computing environment 

with 2GB RAM per core named XE. 
• SGI Altix 3700 Bx2 (192 x 1.5GHz Itanium2 with 384GB RAM) named 

COGNAC. 
• Desktop computer (3.8GHz Quad Core Intel i7 with 6GB RAM) 

 
The software required to execute the simulations was developed on a laptop. Most of 
the execution of the simulations was performed on the XE machine with the other 
machines being used mostly for testing. 
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5. Experiment 
This chapter contains the description of the scenarios and how they are designed to 
answer the research questions that were introduced in 1.4. The main basis of the 
search algorithm is described in section 5.1. This chapter also introduces the 
scenario used in the simulations, how the scenario is used to test the research 
questions and shows how linear programming is used to give a team a score in the 
intermediate steps of the algorithm. Also discussed are the Nash Equilibrium 
solutions for several of the search algorithms.  

5.1.  Scenario 
For this study, a scenario was created that supports a single re-planning point. The 
simulation is non-deterministic and consists of two teams: red and blue. Figure 6 
shows the abstract representation of the scenario used in this study. The red team 
starts at node A, while the blue team starts at node I. There are 4 distinct paths from 
the start nodes to goal nodes (D, E, F) for each team. This gives a total of 16 total 
strategy choices at the first level of the tree. The scores for the scenario are fixed, 
with the scores for nodes d, e, and f being 2, 3, and 5 respectively. Figure 7 shows 
the mason implementation of the scenario. Scenarios are stored in an xml format, 
which makes modifying and creating new scenarios easy.   
 
The teams are limited to a small number of strategies that they can choose from. A 
strategy is simply a list of nodes leading to a goal node. E.g. (I, H, F). Limiting the 
strategy choices also limits the computational complexity of the simulation, which 
was essential for this study as time was a principal limitation. As the depth of a 
scenario increases, the memory consumption and execution times increase 
exponentially. Limiting the depth allowed more simulations to be executed and lead 
to higher accuracy in the final results. 
 
Each team has a commander class that is responsible for selecting strategy choices 
using the MCTS methods and controlling squads. The selected strategy choice is then 
passed on to the squads present in the team. Each squad is made up of multiple 
agents that act autonomously based on their given strategy selection. Each agent 
has a pathfinder that calculates the path to the goal node. The squad is governed by 
a number of rules such as flocking rules that keep the agents in a close formation 
with some separation. An agent can have three different states: idle, pathfinding and 
attacking as shown in Figure 6. An agent can have an idle state when there are no 
further goals to move towards. An agent has a pathfinding state when moving 
towards goal nodes. An agent has an attacking state when the agent is within a 
certain distance of an enemy agent. When an agent is within attacking distance of an 
enemy agent, the agent has a 50% chance of either killing the enemy agent or being 
killed. 

 
Figure 6. Agent state diagram 
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Figure 7. The Scenario. 

 
Figure 8. The implementation of the scenario. 
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5.2. Search Algorithm 
The search algorithm makes use of several data structures. A simulation can be 
thought of as a matrix that can be evaluated and subsequently scored. The cells of 
the matrix store a data structure named a continuation. Each continuation can stored 
multiple simulation trees. 

 
Figure 9. MCTS with Nash Solution Scoring 

The search algorithm used in this project has five steps. First, an initial simulation 
tree is built using mutual recursion. For each pair of red/blue strategy choice 
combinations, we add a continuation to the tree. Each continuation is passed the 
level of the simulation, the current simulation state and the strategy choices for each 
team. During this initial tree construction, continuations are simulated to a certain 
point given their level. For example, a continuation with a level of 2 or higher will 
simulate to a re-planning point and a continuation with a level of 1 will execute the 
simulation to the end point. 
 
If another re-planning point exists, another simulation tree is added a level below, 
with each set of choices containing continuations, the algorithm recursively continues 
until the last level contains a continuations with no simulation trees attached.  
 
The second step selects a node at random to grow. This study used a random 
selection method, however, future work on this algorithm could explore how 
changing the selection strategy changes the outcome of the simulations and whether 
there is any benefit to adjusting the selection method. 
 
The grow step uses the selected node and executes the simulation with the strategy 
selection for each team. The result is added to the parent simulation tree. This 
execution of the simulation only requires the input simulation state, the team 
strategies and whether or not to replan. Given that this method is discrete and does 
not rely on any other simulations this makes it viable to separate simulations into 
separate threads. This was not focussed on in this study because the simulations 
that are being executed are embarrassingly parallel and the methods being 
compared were simply separated out into different executions. However, this would 
make interesting further work to support huge simulations. The grow step is 
performed at least 100 times in this study. 
 
The scoring step scores the individual simulation trees. Each simulation tree acts as a 
payoff matrix that stores the scores for each pair of red/blue strategy choices in the 
tree. For the leaf node simulation trees we use the scores calculated from the 
measures of effectiveness.  
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For this study, the scores for a terminal state are simply a summation of the scores 
for each squad from the red team. This means that each squad in the red team can 
capture a goal node and get the full score, or the blue team defeats the red team 
and the red team gets a score of 0. Using this method we expect the payoff where 
two teams meet to be half of the goal node’s score. For simulation trees that contain 
multiple continuations, these scores are averaged. 
 
The final step is an implicit method from the scoring process. After the leaf nodes of 
the tree are scored, the result scores populate the payoff matrices above them in the 
tree. The intermediate nodes are then scored using linear programming to determine 
the Nash Equilibrium. 
 
Throughout the simulation each team has it’s own planner that either uses the 
algorithm from Figure 8, or a random planner. This allows the comparison of search 
algorithms. Each team can then estimate expected payoffs and plan accordingly.   
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5.3. Procedure 
To answer the research questions, four different search algorithms are used. These 
are as follows: 
 
1. Random – The search algorithm builds a search tree of level 1 that ignores re-
planning points and results in strategies from the start nodes to the goal nodes. The 
simulation tree is not grown at all. The search algorithm picks an initial random 
strategy, at a replanning point, the random planner is asked for another strategy 
that is chosen at random from the available choices. 
 
2. Without Replan Depth 1 – This search algorithm builds a search tree of level 1, 
which does not take into account the re-planning points The tree is then grown a 
minimum of 100 times and the search algorithm picks a strategy based on the 
results from the linear programming solution. No replanning occurs and the search 
algorithm cannot change its chosen strategy. 
 
3. With Replan Depth 1 – This search algorithm builds a tree of depth 1 that ignores 
the replanning points. The tree is then grown a minimum of 100 times. A strategy is 
then picked based on the results of the linear programming solution. At the 
replanning point, this search algorithm builds another tree of level 1 and replans. A 
new strategy can then picked based on the results of the linear programming 
solution for this new tree. 
 
4. With Replan Depth 2 - This search algorithm builds a tree of depth 2 that includes 
the replanning points. This tree is then grown a minimum of 100 times. A strategy is 
then picked based on the results of the linear programming solution. At the 
replanning point this search algorithm is given the chance to replan, by creating a 
search tree of level 1, which is then grown a minimum of 100 times. A new strategy 
then may be chosen based on the results of the linear programming solution for this 
tree. 
 
Given that the red team score is the dependent variable and all results are measured 
in final red score, the notation used in this study when two search algorithms are 
being compared always lists the red search algorithm first. For example Random vs. 
With Replan Depth 1 refers to the red team using the random search algorithm and 
the blue team using the With Replan Depth 1 search algorithm. This notation is also 
interchangeable with numbers instead of names. E.g. 1,3 could represent the 
previous example. 
 
The first research question states – “Can Monte-Carlo Tree Search methods be used 
for planning in automated red teaming?” This research question will by comparing 
the results of the random search algorithm and the MCTS search algorithm that does 
not use replanning. 
 
First the theoretical results are calculated and then compared to an abstract problem 
to test if the implementation of the MCTS algorithm is correct. Then a baseline score 
can be calculated by comparing the Random search algorithm against itself (where 
both teams use the random search algorithm). This baseline score can then be 
compared against the scores of MCTS without replanning vs. the Random search 
algorithm. It is expected that the MCTS without replanning scores will be higher than 
the random baseline as the red team is trying to maximise it’s own score. We can 
also compare the score when the blue team uses the MCTS with replanning methods 
to the random baseline. 
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The second research question states – “Can Monte-Carlo Tree Search methods be 
used for re-planning in Automated Red Teaming? How effective are they compared to 
methods where no re-planning is employed?” This research question will be 
answered in two parts. 
 
For the second part of the question we can compare the results of the monte-carlo 
methods that use replanning to the monte-carlo methods that do not use replanning. 
If the results have higher red scores, then the conclusion can be drawn that Monte-
Carlo Tree Search methods with replanning are more effective than methods where 
no replanning is employed. 
 
The idea of Improvised Explosive Devices (IEDs) was used to test how the search 
algorithms handle extra randomness in the scenario. When IEDs are present in the 
simulation and a team reaches a replanning point, an Improvised Explosive Device 
could kill a random number of agents in that team. The deaths possible per team for 
this study was up to half of the agents. Two methods are then proposed, how the 
search algorithms perform normally and how they perform with the added 
randomness of IEDs. 
 
The data will be collected from executing many different simulations designed to test 
the research questions as described above. It is important to determine a baseline 
score against which other scores can be measured calculated where both teams use 
random strategy selection. Each team tries to maximise their own score and 
minimise their opponent’s score, but globally, the red team is the minimising team 
and the blue team is the maximising team in the simulations. The data will be 
outputted into a number of text files for analysis. 
 
Each simulation will use the scenario shown Figure 6. Each experiment will be 
repeated 100 times, to ensure accuracy. We can then build matrices that compare 
the different results. 
 
No Replanning 
  Blue  
  Random Level 1 
Red Random   
 Level 1   
 
With Replanning 
  Blue   
  Random Level 1 Level 2 
Red Random    
 Level 1    
 Level 2    
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5.4.  Linear programming method 
The strategies produced for a two-person zero-sum game can be solved with linear 
programming. The solution gives us what is known as the Nash equilibrium for the 
game where “no team has any incentive to deviate [from their chosen strategies]” 
(Sailer, et al., 2007). Finding the Nash equilibrium gives us the ratio of strategies 
each team should choose to get the maximum payoff.  
 
This section covers the linear programming method used in the study and shows how 
the results are calculated for a payoff matrix that contains the red player score for 
each combination of red and blue strategy choices. We build a strategy matrix where 
the rows represent the red team’s (player 1’s) strategy choices, and the columns 
represent the blue team’s (player 2’s) strategy choices. The following payoff matrix 
can be built when either team has the choices {d, e, f} and shows how strategy pairs 
can be combined into a payoff matrix. Each strategy pair has a score associated with 
it. For example: The score {d, d} would be the averaged payoff for all simulations 
where both teams choose d as a strategy choice. 
 
 Blue: d Blue: e Blue: f 
Red: d {d, d} {d, e} {d, f} 
Red: e {e, d} {e, e} {e, f} 
Red: f {f, d} {f, e} {f, f} 

 
Luce and Raiffa state the method for determining the Nash Equilibrium for Player 1 
(red) is: 
 
Let U be the set of all m-tuples u = (u1, u2, …, um) such that 

𝑢𝑢𝑖𝑖  ≥ 0,    𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … ,𝑚𝑚 
 
In this study the u values are the strategy pairs for the matrix, referred to as x1, x2, 
and x3 for this example. 
 
and  

�𝑎𝑎𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖  ≥ 1   𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … ,𝑛𝑛
𝑚𝑚

𝑖𝑖=1

 

 
To find those u belonging to U such that ∑ 𝑢𝑢𝑖𝑖𝑚𝑚

𝑖𝑖=1  is a minimum. (Luce & Raiffa, 1989) 
This means we are minimising the u values (x1, x2 and x3) for this example. 
Combining this with the scores from the payoff matrix we get the following linear 
equations: 

minimise: x1 + x2 + x3 
 
subject to: 
x1 >= 0 
x2 >= 0 
x3 >= 0 
 
{d, d} x1 + {e, d} x2 + {f, d} x3 >= 1 
{d, e} x1 + {e, e} x2 + {f, e} x3 >= 1 
{d, f}  x1 + {e, f} x2 + {f, f} x3  >= 1 
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Luce and Raiffa (1989) state that “Player 1 should attempt to find a u in U which 
maximises 1

∑ 𝑈𝑈𝑖𝑖𝑖𝑖
 or, equivalently, minimises ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 ” (Luce & Raiffa, 1989). This means 

that player 1 (the red team) can either be the minimising player using the standard 
payoff matrix, or can be the maximising player using the transpose of the payoff 
matrix. In this study, the red team is the minimising player. 
 
Solving this set of equations gives us four outputs – the objective value and the 
values for each strategy choice. From these numbers we can determine how many 
times to choose each objective to get the maximum payoff possible. The inverse of 
the objective value is then used as a score to propagate up the simulation tree. The 
values returned for each variable can be used to calculate the probabilities for each 
strategy choice as follows: 
 
𝑥𝑥1 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =   𝑥𝑥1 ∗ 1

𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑝𝑝𝑢𝑢𝑂𝑂
   

 
𝑥𝑥2 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =   𝑥𝑥2 ∗ 1

𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎 𝑝𝑝𝑢𝑢𝑂𝑂
  

 
𝑥𝑥3 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 =   𝑥𝑥3 ∗ 1

𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑝𝑝𝑢𝑢𝑂𝑂
  

 
Solving this linear programming problem for the blue team is similar. The payoff 
matrix from the red team’s point of view is transposed. The blue team is the 
maximising team, so we are trying to maximise x1, x2, and x3. When maximising, 
the constraints are set to less than or equal to 1. Chapter 5.5 solves for the payoffs 
expected from the different search algorithms. 
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5.5.  Nash equilibrium for the scenario 
 
This section will use linear programming to solve the scenario by hand to determine 
the Nash Equilibrium for several of the search algorithm combinations. The methods 
evaluated will be random strategy choices, MCTS without replanning and MCTS with 
replanning. If the two teams meet at a goal node, the red payoff is half of the actual 
goal node score because the probability of a team winning a battle is 50%. The full 
solutions are present in Appendix B (10.2). 

5.5.1. Expected outcome with random choices 
This section will calculate the expected red score given both teams using random 
strategy choices. The scenario in Figure 6 has 4 distinct paths from the start nodes 
to the end nodes for each team. Given that two of the paths lead to the E node, the 
probability of ending up on that node is higher than landing on the other two nodes. 
The probability is calculated for each goal node where the red team reaches the goal 
node and the blue team chooses a different node as well as the case when the two 
teams meet. 
 
D Node Probability: 
 
Red team chooses D. Blue team chooses a different goal node. 
1
4
∗

3
4
∗ 2 

 
Red team chooses D. Blue team chooses D. 
1
4
∗

1
4
∗ 1 

 
E Node Probability: 
 
Red team chooses E. Blue team chooses a different goal node. 
2
4
∗

2
4
∗ 3 

 
Red team chooses E. Blue team chooses F. 
2
4
∗

2
4
∗ 1.5 

 
F Node Probability: 
 
Red team chooses F. Blue team chooses a different goal node. 
1
4
∗

3
4
∗ 5 

 
Red team chooses F. Blue team chooses F. 
1
4
∗

1
4
∗ 2.5 

 
 
Expected Red Score: 
 
0.375+0.0625+0.75+0.375+0.9375+0.15625 = 2.656 
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5.5.2. Nash equilibrium ignoring replanning  
This section will calculated the Nash Equilibrium solution for where both players are 
using a MCTS search algorithm where re-planning is not used. Each team has 4 
strategy choices so we can build a payoff matrix of size 4x4. Each strategy choice is 
a complete path from the start node to a goal node. The payoff matrix is shown 
below. 
 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
  
This gives us the following linear equation for the Red team: 
 

 
 
Solving this gives us the following values: 
Objective Value: 0.35555555 
x1: 0 
x2: 0.2222222 
x3: 0 
x4: 0.1333333 
 
This means that the Nash Equilibrium score for this scenario ignoring replanning is 
1.0/objective value = 2.8125. 
 
To achieve this score, the red team should make the following choices: 
Percentages: 
x1: 0% 
x2: 62.5% 
x3: 0% 
x4: 37.5% 
 
To solve for the blue team, we transpose the matrix and the blue team becomes the 
minimising player. This gives us the following linear equation: 

/* Objective function */ 
min: +X1 +X2 +X3 +X4; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
R3: +X3 >= 0; 
R4: +X4 >= 0; 
 
+X1    +3 X2    +3 X3    +5 X4 >= 1; 
+2 X1 +1.5 X2 +1.5 X3 +5 X4 >= 1; 
+2 X1 +1.5 X2 +1.5 X3 +5 X4 >= 1; 
+2 X1 +3 X2    +3 X3    +2.5 X4 >= 1; 
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Solution for blue: 
Objective Value: 0.355555555 
x1: 0 
x2: 0.04444444444 
x3: 0 
x4: 0.31111111111 
 
The optimal strategy for the blue team is then to play the strategies with the 
following probabilities: 
x1: 0% 
x2: 12.5% 
x3: 0% 
x4: 87.5% 
  

/* Objective function */ 
max: +X1 +X2 +X3 +X4; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
R3: +X3 >= 0; 
R4: +X4 >= 0; 
 
+X1 +2 X2 +2 X3 +2 X4 <= 1; 
+3 X1 +1.5 X2 +1.5 X3 +3 X4 <= 1; 
+3 X1 +1.5 X2 +1.5 X3 +3 X4 <= 1; 
+5 X1 +5 X2 +5 X3 +2.5 X4 <= 1; 
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5.5.3. Nash equilibrium with replanning 
This section solves for the Nash Equilibrium where both players are using MCTS 
methods with depth 2 replanning. When we include re-planning, we have two initial 
choices for each team, which gives us a 2x2 payoff matrix as shown below. We need 
to populate the values from the payoff matrix by solving the linear equations at the 
lower level. This means there are four other linear programming problems to solve 
before we can solve the top-level matrix. 
 
 Blue: G Blue: H 
Red: B   
Red: C   
 
Red Chooses B, Blue Chooses G: 
 Blue: D Blue: E 
Red: D 1 2 
Red: E 3 1.5 
 
This gives the following linear equation for the red team: 

 
Objective Value: 0.5555 
x1: 60% 
x2: 40% 
Score: 1.8 
 
Red Chooses B, Blue Chooses H: 
 Blue: E Blue: F 
Red: D 2 2 
Red: E 1.5 3 
 
This gives the following linear equation for the red team: 

 
Objective Value: 0.5 
x1: 100% 
x2: 0 
Score: 2 
Red Chooses C, Blue Chooses G: 

/* Objective function */ 
min: +X1 +X2; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
 
+2 X1 +1.5 X2 >= 1; 
+2 X1 +3 X2 >= 1; 

/* Objective function */ 
min: +X1 +X2; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
 
+X1 +3 X2 >= 1; 
+2 X1 +1.5 X2 >= 1; 
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 Blue: D Blue: E 
Red: E 3 1.5 
Red: F 5 5 
 
This gives the following linear equation for the red team: 

 
Objective Value: 0.2 
x1: 0% 
x2: 100% 
Score: 5 
 
Red Chooses C, Blue Chooses H: 
 Blue: E Blue: F 
Red: E 1.5 3 
Red: F 5 2.5 
 
This gives the following linear equation for the red team: 

 
Objective Value: 0.3555 
x1: 62.5% 
x2: 37.5% 
Score: 2.8125 
 
We can then combine the scores from the previous steps into the first matrix and 
solve to get the expected score for the scenario: 
Top Level of the Scenario: 
 Blue: G Blue: H 
Red: B 1.8 2 
Red: C 5 2.8125 
 

/* Objective function */ 
min: +X1 +X2; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
+1.5 X1 +5 X2 >= 1; 
+3 X1 +2.5 X2 >= 1; 

/* Objective function */ 
min: +X1 +X2; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
 
+3 X1 +5 X2 >= 1; 
+1.5 X1 +5 X2 >= 1; 
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Objective Value: 0.35555 
x1: 0% 
x2: 100% 
Score: 2.8125 
 
So the expected score for this scenario when replanning is used is 2.8125 and red 
should always choose C at the top level.  
  

/* Objective function */ 
min: +X1 +X2; 
 
/* Constraints */ 
R1: +X1 >= 0; 
R2: +X2 >= 0; 
+1.8 X1 +5 X2 >= 1; 
+2 X1 +2.8125 X2 >= 1; 
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6. Limitations 
The primary limitation of this study was time. This limitation has had an effect on 
most areas of the study. Other limitations include scope, depth of simulation and 
memory limitations. In this section I will outline how these limitations affected areas 
of this study and how they were counteracted. 
 
The study had a number of simulations that had to be executed in a relatively timely 
manner. One possible solution to this problem was more computational power. I had 
an initial budget of 5000 hours booked on a 512-core SGI Altix machine that would 
allow for quicker execution in parallel compared to sequentially on a laptop or 
desktop machine with the backup plan of leaving myself enough time to run on the 
laptop and desktop machine if something went wrong. Some problems occurred with 
memory issues on the Altix machine and some of the earlier simulations had to be 
executed on a desktop machine. This did not adversely affect the timing of the 
results.  
 
Downtime and system outages can also be a potential problem when it comes to 
computing resources. To manage the risk of outages affecting the study, I spread out 
the total computation over a slightly larger period of time so I was less likely to be 
affected by a small outage. 
 
Another limitation of the study was the replanning depth of the simulation or the 
number of squads per team. The simulation that was chosen had a depth of 2. Given 
that adding another level of depth or adding another squad per team to the 
simulation increases the number of simulations that need to be executed 
exponentially, this limitation was closely related to computational time and memory 
consumption. 
 
Memory consumption was an issue for the study, because a naïve method of storing 
states was used. A trade off was eventually made so that the stored states would 
take more memory, but execute faster. An option was included to compress states so 
that for huge simulations where much more time is available for execution can still 
run in a reasonable amount of memory. Another potential fix for this limitation was 
to optimize the states being saved, however, given the time available this wasn’t 
possible or necessary to complete the project. 
 
Scope was a large limitation for this study as many other scenarios could have easily 
been included as well as other areas of study such as just analysing which pair of 
choices to explore / exploit in the grow method of the search algorithms. Feature 
creep was a real risk for the study and was limited by placing limits on the number of 
scenarios / number of squads / objectives of the study. Some feature creep did 
occur, but was within limits. 
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7. Results 
This section contains the results from the experiments introduced in chapter 5.3. 

7.1.  Theoretical Results 
This section contains the results calculated in chapter 5.5 and these represent the 
scores expected from the abstract scenario and mason scenarios. 
 
 
No Replanning 
  Blue  
  Random Level 1 
Red Random 2.656 2.609 
 Level 1 3.047 2.8125 

Figure 10 

 
With Replanning 
  Blue   
  Random Level 1 Level 2 
Red Random 2.656 2.312 2.281 
 Level 1 2.652 2.392 2.305 
 Level 2 3.90625 3.086 2.8125 
 

Figure 11 

7.2.  Abstract Scenario 
This section contains the results from the initial abstract scenario that is a version of 
the same scenario used in the mason simulation but the agents and simulation have 
been simplified down to the simplest possible representation. The abstract scenario 
was used to test the validity of the search algorithm against the theoretical results. 
 
The values in the tables are shown with the mean value for 1000 iterations and the 
second value is the error of the mean for that run of simulations. 
 
No Replanning 
  Blue  
  Random Level 1 
Red Random 2.656 ± 0.01 2.613 ± 0.01 
 Level 1 3.044 ± 0.01 2.805 ± 0.01 

Figure 12 

 
With Replanning 
  Blue   
  Random Level 1 Level 2 
Red Random 2.656 ± 0.01 2.323 ± 0.01 2.279 ± 0.005 
 Level 1 2.644 ± 0.01 2.408 ± 0.01 2.304 ± 0.01 
 Level 2 3.896 ± 0.01 3.083 ± 0.01 2.827 ± 0.01 

Figure 13 
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The results in Figure 11 and Figure 12 match (within standard error) the theoretical 
calculations in Figure 9 and Figure 10. The trend of scores shows an increase as they 
move down the rows and a decrease as they move across the columns of the table. 
This indicates that more planning is beneficial to the red team, and as the level of 
planning increases for the blue team they defend better and limit the red team’s 
possible payoff.  
 
Given that the results from the abstract scenario show values matching the 
theoretical results extremely closely, it can be concluded that the search algorithm is 
working correctly and the mason simulation can be executed. 
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7.3.  Mason Scenario 
This section contains the results from the chosen scenario when the mason toolkit 
was used. Each set of simulations was executed with multiple agents, with 100 
iterations and growing the tree 100 times. 
 
No Replanning 
  Blue  
  Random Level 1 
Red Random 2.620 ± 0.170 2.680 ± 0.125 
 Level 1 2.960 ± 0.198 2.790 ± 0.182 

Figure 14 

 
With Replanning 
  Blue   
  Random Level 1 Level 2 
Red Random 2.620 ± 0.170 2.300 ± 0.164 2.130 ± 0.159 
 Level 1 3.460 ± 0.175 2.770 ± 0.165 2.530 ± 0.142 
 Level 2 3.900 ± 0.162 2.990 ± 0.171 2.790 ± 0.185 

Figure 15 

Figure 13 shows the results from the Mason scenario where no re-planning is used. 
This table can be used to answer the first research question. The first research 
question states “Can Monte-Carlo Tree Search methods be used for planning in 
automated red teaming?” The values in Figure 13 show an increasing trend as the 
red team’s search algorithm is changed from random to a level 1 search-algorithm 
without re-planning. Where the blue team is using random strategy selection, the red 
values change from 2.620 to 2.960, which are both within the standard error of the 
mean from the calculated theoretical results. Similarly, where the blue team is 
employing the level 1 search algorithm, the red values change from 2.680 to 2.790. 
These values are also within the standard error of the mean from the calculated 
theoretical results and have the same trend as the values in Figure 11. From these 
results we can conclude that methods that use Monte-Carlo Tree Search based 
planning perform better than random methods. 
 
The first research question is then confirmed as true and Monte-Carlo Tree Search 
methods can be used for planning in an automated red teaming environment.  
 
The second research question states “Can Monte-Carlo Tree Search methods be used 
for re-planning in Automated Red Teaming? How effective are they compared to 
where no re-planning is employed?” The values from Figure 14 can be used to 
answer this research question.  The table shows that as the red search algorithm’s 
move from random to level 1 and finally to level 2 with replanning, the trend is an 
increasing value. This trend holds true for each of the different blue team’s search 
algorithms that are tested. As expected, the red payoffs increase as the red team’s 
level of planning in increased and decreases as the blue team uses more in depth 
planning methods. 
 
The first part of the second research question can be answered by comparing the 
results in Figure 14 to Figure 13. Examining the values where the red team is using a 
level 1 method and the blue team uses random strategy selection, the re-planning 
method gives a higher final score than the scenario where no replanning is used. 
Comparing the opposite situation where the red team is using random strategy 
selection and the blue team is using a level 1 method, the re-planning value is lower 
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than the value where no re-planning is used. This is because the blue team can 
better minimise the red team’s payoffs when re-planning is employed. 
 
This can answer the first part of the second research question and the conclusion can 
be made that Monte-Carlo Tree Search methods can be used for re-planning in 
Automated Red Teaming because the values from the re-planning search algorithms 
are greater than random chance. 
 
Comparing level 2 re-planning methods to the method without replanning where the 
blue team is using random strategy selection shows that the re-planning method 
gives a significantly higher red payoff.  Similarly, comparing the level 2 re-planning 
method where the red team is using random strategy selection shows a much lower 
score than the no-replanning method. From these results the conclusion can be 
made that Monte-Carlo Tree Search methods with re-planning are more effective 
than methods where no re-planning is employed.  

7.4. Mason Scenario with IEDs 
This section contains the results using the same parameters from section 7.3 with 
the addition of IEDs. An IED explodes just before a re-planning point so that the 
information can be used by re-planning methods. When an IED explodes, it has the 
potential to kill up to half of a squad’s agents. The results of this section are used to 
answer the third research question. 
 
No Replanning 
  Blue  
  Random Level 1 
Red Random 2.580 ± 0.160 2.630 ± 0.159 
 Level 1 3.370 ± 0.187 2.880 ± 0.184 

Figure 16 

 
With Replanning 
  Blue   
  Random Level 1 Level 2 
Red Random 2.580 ± 0.160 2.490 ± 0.150 2.130 ± 0.159 
 Level 1 3.470 ± 0.166 2.730 ± 0.176 2.590 ± 0.163 
 Level 2 3.240 ± 0.203 3.040 ± 0.160 2.770 ± 0.165 

Figure 17 

The third research question states, “How do Monte-Carlo Tree Search methods 
handle extra randomness in an Automated Red Teaming environment?” The results 
in Figure 15 and Figure 16 compared to the results where no IEDS are used show 
similar results.  
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8. Conclusion 
This study has shown in several ways that Monte-Carlo Tree Search methods can be 
used successfully in an Automated Red Teaming environment using calculated 
theoretical results, results from an abstract scenario and the results from the Mason 
simulation present in chapter 7.3. The theoretical results were essential to checking 
if the algorithm was feasible and would show an improvement over current methods.  
 
The abstract scenario was created to test if the MCTS algorithm was working 
correctly without introducing potential bugs from the Mason simulation. The abstract 
simulation showed similar results to the theoretical results.  
 
Chapter 7.3 also shows that Monte-Carlo Tree Search methods that use re-planning 
can be used in an Automated Red Teaming environment and give better results than 
other methods such as random strategy choices and MCTS based strategy choices 
without re-planning. 
 
Chapter 7.4 shows the results from the Mason experiment that uses IEDs. The 
results are similar to the results shown in chapter 7.3 so for this experiment with the 
parameters used, introducing IEDs into the scenario does not provide a significant 
example for either team. Further work is required to test if different scenarios using 
differing amounts of agents per squad and a higher IED death rate would make a 
difference to this score. 
 
This project has shown that MCTS based methods provide a clear increase in red 
team score in an automated red teaming environment when compared to other 
methods. An extensible and generic MCTS framework was built successfully. 

9. Further Work 
There are many areas of future work that could be explored. One of these is 
parallelising the MCTS algorithm itself. When executing the search algorithm, the 
largest amount of time is spent in building and growing the tree including running 
the simulation itself. Chaslot (2010) states that “MCTS benefits substantially from 
parallelization” (G. M. J.-B. Chaslot, 2010).  
 
Another area to be explored is the method that is used to grow the simulation tree. 
Both a random grow method and a method that was biased towards exploration were 
used for the algorithm in this study. The random method was eventually used 
because the speed of execution was increased as the other method required scoring 
the entire simulation tree before each grow operation. This area should be explored 
to test if a better grow method is available to produce better results and faster 
execution. 
 
The search algorithm should be tested with scenarios that have more re-planning 
points. Given that the search algorithm has been proven to be effective on the 
smaller scenario by comparing the results from the implementation to the theoretical 
results, a larger scenario that has a higher depth could be explored. The difficulty of 
exploring larger scenarios is the increase in required memory and computational 
power, as well as it being very difficult or impossible to calculate the theoretical 
results of a larger simulation. 
 
The IED experiment could be tested with varying levels of randomness to check how 
the different levels affect the end results. For example, instead of up to half of the 
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team having a chance of being killed by an IED, situations where all of the team 
could potentially be killed by an IED could be explored. 
 
Other changes to the scenario would be interesting to test, such as increasing the 
number of squads per team, and increasing the number of agents per squad and 
determining what effect this has on the final payoffs. Changing the goal nodes 
payoffs could also be tested. 
  



Daniel Beard Honours Thesis, p. 41 of 57 

10. Glossary 
Term Description Source 
Algorithm “A well specified sequence of steps to 

solve a particular problem that accepts an 
input and produces an output. Algorithms 
can be expressed in any language.” 
 

(Ali & Wasimi, 2007) 

Stochastic “Stochastic is often used as counterpart of 
the word ‘deterministic’, which means that 
random phenomena are not involved. 
Therefore, stochastic models are based on 
random trials.” 
 

(Origlio, 2011) 

Monte-Carlo “A method of using repeated random 
sampling to estimate the solutions to 
problems that are very hard or impossible 
to find analytically” 
 

(Kleij, 2010) 

Real Time 
Strategy (RTS) 
Game 

“Real-time strategy (RTS) games are 
popular commercial computer games 
involving a fight for domination between 
opposing armies. There is no notion of 
whose turn it is to move.” 
 

(M. Chung, et al., 
2005) 

Two-person 
zero-sum games 

“[A game] in which the two players have 
precisely opposite preferences. It is, 
therefore a game in which cooperation 
and collusion can be of no value. Any 
improvement for one player necessitates a 
corresponding loss for the other” 
 

(Luce & Raiffa, 1989) 

Nash Equilibrium “A set of strategies, one for each player, 
such that no player has incentive to 
unilaterally change her action. Players are 
in equilibrium if a change in strategies by 
any one of them would lead that player to 
earn less than if they remained with their 
current strategy”  

(Shor, 2005) 
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11.  Appendixes 

11.1. Appendix A
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11.2. Appendix B 
 
Linear Programming Solutions: 
 
 
Total Solutions 
 
With Replanning 
  Blue   
  Random Level 1 Level 2 
Red Random 2.656 2.312 2.281 
 Level 1 2.652 2.392 2.305 
 Level 2 3.90625 3.086 2.8125 
 
No Replanning 
  Blue  
  Random Level 1 
Red Random 2.656 2.609 
 Level 1 3.047 2.8125 
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Random vs. Random 
D Node Probability: 
 
Red team chooses D. Blue team chooses a different goal node. 
1
4
∗

3
4
∗ 2 

 
Red team chooses D. Blue team chooses D. 
1
4
∗

1
4
∗ 1 

 
E Node Probability: 
 
Red team chooses E. Blue team chooses a different goal node. 
2
4
∗

2
4
∗ 3 

 
Red team chooses E. Blue team chooses F. 
2
4
∗

2
4
∗ 1.5 

 
F Node Probability: 
 
Red team chooses F. Blue team chooses a different goal node. 
1
4
∗

3
4
∗ 5 

 
Red team chooses F. Blue team chooses F. 
1
4
∗

1
4
∗ 2.5 

 
 
Expected Red Score: 
 
0.375+0.0625+0.75+0.375+0.9375+0.15625 = 2.656 
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Random vs. No Replan Level 1 
Red probabilities: 0.5 
Blue initially solves a tree of level 1: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
 
Result: Blue chooses I,G,E 0.125 and I,H,F 0.875 
 
Build the following choice tree: 

 
Payoffs: 
0.5*0.125*0.5*2.0+ 
0.5*0.125*0.5*1.5+ 
0.5*0.875*0.5*2.0+ 
0.5*0.875*0.5*3.0+ 
0.5*0.125*0.5*1.5+ 
0.5*0.125*0.5*5.0+ 
0.5*0.875*0.5*3.0+ 
0.5*0.875*0.5*2.5 
 
Final Red Score: 2.609 
 
  

PayoffRedBlueRed

Start

B 0.5

G,E 0.125
D 0.5 2.0

E 0.5 1.5

H,F 0.875
D 0.5 2.0

E 0.5 3.0

C 0.5

G,E 0.125
E 0.5 1.5

F 0.5 5.0

H,F 0.875
E 0.5 3.0

F 0.5 2.5
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NoReplan1 vs. Random 
 
Red solves a single matrix: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
 
Red Score: 2.8125. 
Percentages: 
x1: 0% 
x2: 62.5% 
x3: 0% 
x4: 37.5% 
 
Combining this with random blue strategy choices: 
 
D Node: 
Red chooses D, Blue chooses other 
0 * ¾ * 2  
Red Chooses D, Blue chooses D 
0 * ¼ * 1 
 
E Node: 
Red chooses E, Blue chooses other 
0.625 * 2/4 * 3 
Red chooses E, Blue chooses other 
0.625 * 2/4 * 1.5 
 
F Node: 
Red chooses F, Blue chooses other 
0.375 * ¾ * 5 
Red chooses F, Blue chooses F 
0.375 * ¼ * 2.5 
 
Total Score: 
(0 * ¾ * 2) + (0 * ¼ * 1) + (0.625 * 2/4 * 3) + (0.625 * 2/4 * 1.5) + (0.375 * ¾ * 
5) + (0.375 * ¼ * 2.5) 
Final red score = 3.046875 
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No Replan Level 1 vs. No Replan Level 1 
Red and blue initially solve a tree of level 1: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
 
Results: 
Red chooses A,B,E 0.625 and A,C,F 0.375 
Blue chooses I,G,E 0.125 and I,H,F 0.875 
 
Build the following choice tree: 

Payoffs: 
0.625*0.125*1.5+ 
0.625*0.875*3.0+ 
0.375*0.125*5.0+ 
0.375*0.875*2.5 
 
Final red score: 2.8125  

PayoffBlueRed

Start

B,E 0.625
G,E 0.125 1.5

H,F 0.875 3.0

C,F 0.375
G,E 0.125 5.0

H,F 0.875 2.5
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Random vs. Replan Level 1 
Red probabilities = 0.5 
Blue solves initial depth 1 matrix: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
 
Result: Blue chooses I,G,E 0.125 and I,H,F 0.875. 
 
Blue can replan when they reach the replanning points. 
 

 
Payoffs: 
0.125*0.5*0.2*0.5*1.0+ 
0.125*0.5*0.2*0.5*3.0+ 
0.125*0.5*0.8*0.5*2.0+ 
0.125*0.5*0.8*0.5*1.5+ 
0.125*0.5*1.0*0.5*1.5+ 
0.125*0.5*1.0*0.5*5.0+ 
0.875*0.5*1.0*0.5*2.0+ 
0.875*0.5*1.0*0.5*1.5+ 
0.875*0.5*0.125*0.5*1.5+ 
0.875*0.5*0.125*0.5*5.0+ 
0.875*0.5*0.875*0.5*3.0+ 
0.875*0.5*0.875*0.5*2.5 
 
Total red payoff = 2.312 
 
  

Start

G 0.125

B 0.5

D 0.2
D 0.5 1.0

E 0.5 3.0

E 0.8
D 0.5 2.0

E 0.5 1.5

C 0.5 E 1.0
E 0.5 1.5

F 0.5 5.0

H 0.875

B 0.5 E 1.0
D 0.5 2.0

E 0.5 1.5

C 0.5

E 0.125
E 0.5 1.5

F 0.5 5.0

F 0.875
E 0.5 3.0

F 0.5 2.5
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Random vs. Replan Level 2 
 
Red probabilities = 0.5 
Blue Initial tree: 
1.8 2.0 
5 2.8125 
 
Result: Blue’s initial choice is always h. 

 
 
Payoffs: 
1.0*0.5*1.0*0.5*2 = 0.5 
1.0*0.5*1.0*0.5*1.5 = 0.375 
1.0*0.5*0.125*0.5*1.5 = 0.046875 
1.0*0.5*0.125*0.5*5 = 0.15625 
1.0*0.5*0.875*0.5*3 = 0.65625 
1.0*0.5*0.875*0.5*2.5 = 0.546875 
 
Total red payoff = 2.281 
 
  

PayoffRedBlueRedBlue

Start H 1.0

B 0.5 E 1.0
D 0.5 2.0

E 0.5 1.5

C 0.5

E 0.125
E 0.5 1.5

F 0.5 5.0

F 0.875
E 0.5 3.0

F 0.5 2.5
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Level 1 Replan vs. Random 
Blue probabilities: 0.5 
Red solves a level 1 tree initially: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
 
Result: 
Red chooses A,B,E 0.625 
Red chooses A,C,F 0.375 
 
Payoffs: 
0.625*0.5*0.6*0.5*1.0+ 
0.625*0.5*0.6*0.5*2.0+ 
0.625*0.5*0.4*0.5*3.0+ 
0.625*0.5*0.4*0.5*1.5+ 
0.625*0.5*1.0*0.5*2.0+ 
0.625*0.5*1.0*0.5*2.0+ 
0.375*0.5*1.0*0.5*5.0+ 
0.375*0.5*1.0*0.5*5.0+ 
0.375*0.5*0.625*0.5*1.5+ 
0.375*0.5*0.625*0.5*3.0+ 
0.375*0.5*0.375*0.5*5.0+ 
0.375*0.5*0.375*0.5*2.5 
 
Expected red payoff: 
2.65234375 
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Level 1 Replan vs. Level 1 Replan 
Red and Blue both initially solve a tree of level 1 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
Red chooses B 0.625, C, 0.375 
Blue chooses G 0.125, H 0.875 
 
Payoffs: 
0.625*0.125*0.6*0.2*1.0+ 
0.625*0.125*0.6*0.8*2.0+ 
0.625*0.125*0.4*0.2*3.0+ 
0.625*0.125*0.4*0.8*1.5+ 
0.625*0.875*1.0*1.0*2.0+ 
0.375*0.125*1.0*1.0*5.0+ 
0.375*0.875*0.625*0.125*1.5+ 
0.375*0.875*0.625*0.875*3.0+ 
0.375*0.875*0.375*0.125*5.0+ 
0.375*0.875*0.375*0.875*2.5 
 
Final red score: 2.3916 
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Level 1 Replan vs. Level 2 Replan 
Red initially solves a tree of depth 1: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
Red chooses B,E 0.625 and C,F 0.375 
 
Blue initially solves a tree of depth 2: 
1.8 2.0 
5 2.8125 
 
Blue chooses H 100% of the time 
 

 
Payoffs: 
0.625*1.0*1.0*2.0+ 
0.375*0.125*0.625*1.5+ 
0.375*0.125*0.375*5.0+ 
0.375*0.875*0.625*3.0+ 
0.375*0.875*0.375*2.5 
 
Final red score: 2.3046875 
  

PayoffRedBlueRedBlue

Start H 1.0

B 0.625 E 1.0 D 1.0 2.0

C 0.375

E 0.125
E 0.625 1.5

F 0.375 5.0

F 0.875
E 0.625 3.0

F 0.375 2.5
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Level 2 Replan vs. Random 
 
Blue Probabilities: 0.5 
Red Solves an initial tree of level 2: 
 Blue: G Blue: H 
Red: B 1.8 2.0 
Red: C 5 2.8125 
 
Result: Red chooses C 100% of the time. 
 
Payoffs: 
0.5*1.0*0.5*5.0+ 
0.5*1.0*0.5*5.0+ 
0.5*0.625*0.5*1.5+ 
0.5*0.625*0.5*3.0+ 
0.5*0.375*0.5*5.0+ 
0.5*0.375*0.5*2.5 
 
Final Red Score: 3.90625 
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Level 2 Replan vs. Level 1 Replan 
 
Red solves a tree of level 2: 
 Blue: G Blue: H 
Red: B 1.8 2.0 
Red: C 5 2.8125 
 
Results: Red chooses C 100% of the time 
 
Blue solves a tree of level 1: 
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F 
Red: A, B, D 1 2 2 2 
Red: A, B, E 3 1.5 1.5 3 
Red: A, C, E 3 1.5 1.5 3 
Red: A, C, F 5 5 5 2.5 
 
Blue chooses G 0.125 and H 0.875 
 
Decision Tree: 

 
Payoffs: 
0.125*1.0*1.0*5.0+ 
0.875*0.625*0.125*1.5+ 
0.875*0.625*0.875*3.0+ 
0.875*0.375*0.125*5.0+ 
0.875*0.375*0.875*2.5 
 
Final red score: 3.086  

PayoffBlueRedBlueRed

Start C 1.0

G 0.125 F 1.0 E 1.0 5.0

H 0.875

E 0.625
E 0.125 1.5

F 0.875 3.0

F 0.375
E 0.125 5.0

F 0.875 2.5
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Level 2 Replan vs. Level 2 Replan 
 
Both teams solve a tree of depth 2 
 Blue: G Blue: H 
Red: B 1.8 2.0 
Red: C 5 2.8125 
 
Red:  Chooses C 100% of the time 
Blue: Chooses H 100% of the time 
 
Final red score: 2.8125 
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