
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2011

Enhancing automated red teaming with Monte Carlo Tree Search Enhancing automated red teaming with Monte Carlo Tree Search

Daniel Beard
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Beard, D. (2011). Enhancing automated red teaming with Monte Carlo Tree Search. Edith Cowan
University. https://ro.ecu.edu.au/theses_hons/36

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/36

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/36

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

Daniel Beard Honours Thesis, p. 1 of 57

En h a n c in g Au t o m a t e d Re d Te a m in g w it h

Mo n t e Ca r lo Tr e e S e a r c h

Bachelor of Computer Science Honours Thesis

By: Daniel Beard
Student ID: 10045549

Faculty of Computing, Health and Science
Edith Cowan University

Supervisor(s): Associate Professor Philip Hingston
Dr Martin Masek

Date of submission: November 2011

Daniel Beard Honours Thesis, p. 2 of 57

Abstract

This study has investigated novel Automated Red Teaming methods that support
replanning. Traditional Automated Red Teaming (ART) approaches usually use
evolutionary computing methods for evolving plans using simulations. A drawback of
this method is the inability to change a team’s strategy part way through a
simulation. This study focussed on a Monte-Carlo Tree Search (MCTS) method in an
ART environment that supports re-planning to lead to better strategy decisions and a
higher average score.

Daniel Beard Honours Thesis, p. 3 of 57

Table of Contents
1. Introduction .. 4

1.1. The background to the study .. 5
1.1.1. Game Theory .. 5
1.1.2. Game Tree Search ... 6
1.1.3. Monte-Carlo Tree Search .. 7
1.1.4. Evolutionary Algorithms .. 8

1.2. The significance of the study .. 9
1.3. The purpose of the study ... 9
1.4. Research questions ... 9

2. Review of the literature .. 10
2.1. Studies into Monte-Carlo Tree Search .. 10
2.2. Studies into red teaming, data farming and re-planning 11
2.3. Studies similar to this study ... 13

3. Theoretical Framework ... 15
3.1. Identification of variables ... 15
3.2. Phases of the study ... 16
3.3. Software framework .. 17

4. Materials ... 18
5. Experiment ... 20

5.1. Scenario .. 20
5.2. Search Algorithm .. 22
5.3. Procedure .. 24
5.4. Linear programming method .. 26
5.5. Nash equilibrium for the scenario .. 28

5.5.1. Expected outcome with random choices .. 28
5.5.2. Nash equilibrium ignoring replanning .. 29
5.5.3. Nash equilibrium with replanning ... 31

6. Limitations .. 34
7. Results ... 35

7.1. Theoretical Results .. 35
7.2. Abstract Scenario .. 35
7.3. Mason Scenario .. 37
7.4. Mason Scenario with IEDs .. 38

8. Conclusion .. 39
9. Glossary ... 41
10. Appendixes ... 42

10.1. Appendix A ... 42
10.2. Appendix B ... 43

Random vs. Random .. 44
Random vs. No Replan Level 1 .. 45
NoReplan1 vs. Random .. 46
No Replan Level 1 vs. No Replan Level 1 .. 47
Random vs. Replan Level 1 ... 48
Random vs. Replan Level 2 ... 49
Level 1 Replan vs. Random ... 50
Level 1 Replan vs. Level 1 Replan .. 51
Level 1 Replan vs. Level 2 Replan .. 52
Level 2 Replan vs. Random ... 53
Level 2 Replan vs. Level 1 Replan .. 54
Level 2 Replan vs. Level 2 Replan .. 55

11. References .. 56

Daniel Beard Honours Thesis, p. 4 of 57

1. Introduction
The term “red teaming” refers to playing or thinking like an opponent or adversary.
“Red teams are established by an enterprise to challenge aspects of that very
enterprise’s plans, programs, assumptions” (Schneider, 2003). Red teaming has
practical applications in many fields including network security, business, and
military. Red teaming usually consists of two teams, the red team that is challenging
a plan or organisation and the blue team, the team or organisation that is being
challenged.

There are generally three different types of red teaming:

• Surrogate adversaries and competitors of the enterprise
• Devil’s Advocates
• Sources of judgment independent of the enterprise’s “normal” processes
(Schneider, 2003)

Surrogate adversaries generally try to expose weaknesses and vulnerabilities in an
organisation as an attempt to understand how a real adversary may use these
weaknesses to their advantage. An outcome from this process is a list of potential
responses to an adversary. “The setting could be a military training, experimentation
or gaming environment where the red team plays the ‘Opposing Force’, using the
adversary’s presumed tactics and equipage” (Schneider, 2003). Surrogate
adversaries and competitors of the enterprise are the most common type of red
teaming used in simulation and will be the focus of this study.

A devil’s advocate approach is used to challenge an assumption that an organisation
has that the organisation cannot afford to be wrong about. “By deliberately
challenging the organisation’s own plans, programs and assumptions, Red Teaming
can identify strengths, weaknesses, opportunities and threats that were not
considered or given proper review” (Nettles, 2010)

Schneider (2003) describes the sources of independent judgement method as an
analysis from “team members with experience from positions at higher levels in
industry or government” (Schneider, 2003). This method has been criticised as “The
objective is often to be a sounding board and ‘kitchen cabinet’ for the sponsor”
(Schneider, 2003) and “Even the most talented group of planners and thinkers
cannot identify their own oversights and sometimes are unable to see the overall big
picture” (Nettles, 2010).

Computational, or Automated Red Teaming (ART) is a natural progression from red
teaming that involves using computer simulated environments and involves
executing many simulations over a short period of time. Automated red teaming is
usually used in military applications to find strategic weaknesses and shape
battlefield strategies. Automated red teaming usually uses an evolutionary algorithm
to tune certain parameters.

Evolutionary algorithms define a fitness function, which measures the effectiveness
of a simulation after execution is complete. Given that the simulation has to run to
completion before it can be evaluated, the teams cannot change their strategies part
of the way through a simulation and makes implementing re-planning difficult with
an evolutionary based algorithm. Rather than having to rely on a heuristic evaluation
function to evaluate how well each team is performing, which can often be very
difficult to implement for non-terminal game states (G Chaslot, Bakkes, Szita, &
Spronck, 2008)an alternative method is explored in this project that support re-
planning.

Daniel Beard Honours Thesis, p. 5 of 57

1.1. The background to the study
Red teaming simulations involve complex interactions between an environment and
sets of agents, which are well suited for agent-based modelling. Agent based
modelling typically consists of three parts.

1. A set of agents, their attributes and behaviours
2. A set of agent relationships and methods of interaction:

An underlying topology of connectedness defines how and with whom
agents interact.

3. The agents’ environment: Agents interact with their environment in
addition to other agents. (Macal & North, 2010)

A red teaming scenario is similar to a game in several aspects. Each side (player)
has strategies and tactics, the scenario has certain rules that must be adhered to,
each side is trying to defeat an opponent, and teams have scores.

Therefore in analysing a red teaming scenario, we can use tools such as:

• Game theory
o Linear programming

• Artificial intelligence methods designed for use in games
o Game tree search
o Evolutionary algorithms to search for strategies

1.1.1. Game Theory
A branch of mathematics that is concerned with studying and analysing games is
known as game theory. A game is “a situation in which several individuals have
choices to make” (Cave, 1987). Generally, the study of games has two objectives:
“the descriptive goal of understanding why the parties (‘players’) in competitive
situations behave as they do” and “being able to advise the players of the game the
best way to play” (Morris, 1994).

The scenarios in the proposed study are two-person zero-sum games. A two-person
zero-sum game is “one in which the two players have precisely opposite preferences.
It is, therefore a game in which cooperation and collusion can be of no value. Any
improvement for one player necessitates a corresponding loss for the other” (Luce &
Raiffa, 1989). An example of a two-person zero sum game is tic-tac-toe.

One method commonly used in game theory of representing the payoffs for a two-
person zero sum game is a payoff matrix. E.g. Matrix A = (aij) could contain the final
scores of the red team given a set of strategy choices for each team. The rows are
player 1’s strategies (the red team) the columns are player 2’s strategies (the blue
team). “The rows and columns of A are called pure (or deterministic) strategies that
are available for the two players to choose” (Zafra, 2010).

Solving a payoff matrix with linear programming gives values known as the Nash
Equilibrium. The Nash Equilibrium is where “no team has any incentive to deviate
[from their chosen strategies]” (Sailer, et al., 2007). Finding the Nash equilibrium
gives us the ratio of strategies each team should choose to get the maximum payoff.
E.g. Red team should play strategy 1 100% of the time, while the Blue team should
play strategy 1 38% of the time and strategy 2 62% of the time.

Daniel Beard Honours Thesis, p. 6 of 57

1.1.2. Game Tree Search
A common method used for representing turn-based games is the game tree. “Each
node in the tree represents a board position, and each branch represents one
possible move. Each player gets to move at alternating levels of the tree” (Millington
& Funge, 2009).

Figure 1. Minimax Tree. Adapted from (Lin, 2003)

An algorithm that is commonly used for artificial intelligence in board games such as
chess, checkers and tic-tac-toe is known as minimax. A simple example of a minimax
tree from a tic-tac-toe game is shown in Figure 1. “The minimax algorithm is an
algorithm for finding an optimal strategy in a certain game state for deterministic
two-player zero-sum games” (Kleij, 2010). Minimax assigns a score to each node of
the tree through the use of a heuristic evaluation function. When choosing a move to
make, an assumption is made that the opposing team will choose the move that puts
the current team in the worst possible position (lowest score). “We are maximising
our score, while our opponent is minimising our score. This changing between
maximising and minimising, as we search the game tree is called minimaxing”
(Millington & Funge, 2009).

The minimax algorithm only works for deterministic, turn-based two-person zero-
sum games. When games have an element of randomness or players can make
simultaneous moves, minimax is not effective. A known problem is that “in several
games building an evaluation function based on heuristic knowledge for a non
terminal position is a difficult and time-consuming issue; the most notorious example
is the game of Go” (G. Chaslot, Winands, Uiterwijk, Herik, & Bouzy, 2007).

Daniel Beard Honours Thesis, p. 7 of 57

1.1.3. Monte-Carlo Tree Search
An alternative to minimax is the Monte-Carlo Tree Search algorithm. Monte Carlo
Tree Search (MCTS) is based on the Monte Carlo method, which relates to random
sampling of methods that have some randomness or uncertainty and is used in the
fields of artificial intelligence, statistics, and simulating physical systems. Monte Carlo
is “a method of using repeated random sampling to estimate the solutions to
problems that are very hard or impossible to find analytically” (Kleij, 2010).

Monte-Carlo Tree Search does not use a heuristic evaluation function when scoring
nodes in a tree. Instead, random iterated sampling of choices occurs and each choice
is executed to the end of the simulation. A node’s score represents the best possible
outcome from that game position. As shown in Figure 2, MCTS has four steps:
selection, expansion, simulation and back-propagation.

Selection: Navigate down the tree through the child nodes, starting at the root node
using a combination of exploitation and exploration. Exploitation is where the “higher
scoring” nodes are most focused on. Exploration is the processes of investigating
nodes that don’t score particularly well, but might offer an advantage at a lower
depth. A balance must be made between exploration and exploitation and there are
several algorithms available to help this choice. The most common of these is Upper
Confidence Bounds for Trees (UCT). UCT focuses on the more promising nodes of the
tree, while still exploring the lower scoring nodes.
Expansion: The first state found that isn’t present in the search tree is added as a
new node to the tree.
Simulation: The game or simulation is then executed using random moves to gain
knowledge of the average outcome for the selected child node. The node is then
given a score that indicates the strength of that choice based on the average
outcome of that action.
Back-propagation: The calculated score is then recursively propagated upwards
through the nodes of the tree until the root node is reached.

Figure 2. The four steps of the Monte Carlo Tree Search Algorithm. Adapted from (G

Chaslot, et al., 2008)

Daniel Beard Honours Thesis, p. 8 of 57

1.1.4. Evolutionary Algorithms
The most common method used in Automated Red Teaming to find an optimal
solution to a given problem is the use of evolutionary algorithms. Binary
representations of variables are usually used in evolutionary algorithms to represent
a problem. This bit string is known as a chromosome and the individual bits are
named genes. A collection of chromosomes is known as a population.

The actual algorithm itself is quite simple; the initial population of chromosomes is
randomly generated. Each individual is then evaluated using a fitness function and is
given a fitness value. At each generation, the algorithm performs selection and
reproduction. Selection is the process of choosing a sample of individuals to breed
together. “This sample is obviously biased towards better individuals, i.e., good –
according to the fitness function- solutions should be more likely in the sample than
bad solutions” (Alba & Cotta, 2006).

A pair of selected parent chromosomes then produces a child chromosome using
methods known as mutation and crossover. A mutation operation in a binary string
chromosome can be a bit flip in a random position. A crossover operation is where a
random point in the parent’s bit strings is chosen and the child is a combination of
the information before the split point in the first parent and the information after the
split point in the second parent. Figure 3 shows an example of the crossover
operation.

Figure 3. Crossover operation (Alba & Cotta, 2006)

Iteration continues until termination criteria are met. A terminating condition can be
minimum fitness level, maximum number of generations reached, maximum
computation time is met. The most common method is usually a combination of the
above criteria.

In Automated Red Teaming, “the parameter values (e.g. troop clustering/cohesion,
response to injured teammates, etc.) Defining the behaviour or personality of the red
team are evolved to optimise its efficiency (e.g. maximise damage to target
facilities) against the blue team” (Decraene, Zeng, Low, Zhou, & Cai, 2009).

Daniel Beard Honours Thesis, p. 9 of 57

1.2. The significance of the study
Most traditional automated red teaming simulations use genetic algorithms to
evaluate the score or performance of a simulation with a particular set of
parameters. A disadvantage of this approach is that a simulation must complete
execution before the effectiveness of that set of parameters can be evaluated.
Combining this with the fact that creating a heuristic evaluation function for non
terminal game states can be extremely difficult to implement (G Chaslot, et al.,
2008), means that evolutionary methods are not suited for use when implementing
re-planning.

The proposed Monte-Carlo Tree Search algorithm would work well within an
Automated Red Teaming environment by supporting re-planning and therefore
longer simulations. A Monte-Carlo Tree Search algorithm does not rely on a heuristic
evaluation function to score game states. While MCTS methods have been used in
fields such as chess, board games, Real Time Strategy (RTS) games (G. M. J.-B.
Chaslot, 2010), they have not been used in an ART environment combined with a
linear programming approach before. This should lead to more information gained
from longer simulation leading to more intelligent decisions.

1.3. The purpose of the study
The primary purpose of the study is to improve current Automated Red Teaming
methods by including a Monte-Carlo Tree Search component that support replanning
and provide an algorithm that chooses the best strategy for the simulation at the
current time step in a two-person stochastic zero-sum simulation.

The purpose of this study was to determine if combining a Monte-Carlo Tree Search
method with a linear programming scoring approach in an ART environment would
provide better results than random strategy choices. If the method provides better
results than random strategy selection, then the next step was to determine which
methods worked better than other and if re-planning provided a benefit to the
average score and how the MCTS approach handled extra randomness in the
simulation.

1.4. Research questions
How do Monte-Carlo Tree Search methods perform in an automated red teaming
environment compared to random strategy choices?

How do Monte-Carlo Tree Search methods using re-planning perform in an
automated red teaming environment when compared to random strategy choices?
Is it better to use re-planning methods rather than methods without re-planning?

How do Monte-Carlo Tree Search methods perform given an element of uncertainty
caused by Improvised Explosive Devices (IEDs) in an Automated Red Teaming
environment?

Daniel Beard Honours Thesis, p. 10 of 57

2. Review of the literature
The literature review will consider the fields of Monte-Carlo Tree Search, red
teaming, data farming and the use of Monte-Carlo Tree Search methods in Real Time
Strategy (RTS) games.

2.1. Studies into Monte-Carlo Tree Search
The term Monte-Carlo Tree Search was defined by Chaslot in 2006, and came from
work in the artificial intelligence field. Monte-Carlo Tree Search was first applied to
the game Go (G Chaslot, Saito, Bouzy, Uiterwijk, & van der Herik 2006), but has
since been used for many purposes in areas such as Kriegspiel (Ciancarini & Favini,
2010), Texas Hold‘em Poker (Kleij, 2010), an RTS game (M. Chung, Burro, &
Schaeffer, 2005).

Chaslot states that “building an adequate [authors’ emphasis] evaluation function
based on heuristic knowledge for a non-terminal game state is a domain-dependent
and complex task” (G Chaslot, et al., 2008) and also backs this up with “MCTS does
not require any heuristic positional evaluation function.” MCTS does not require a
heuristic evaluation function because the algorithm itself evaluates the score of a
move by playing the simulation to a point as talked about by Takeuchi “Monte Carlo
Go utilizes the results of random sampling in evaluating positions, instead of hand-
coded evaluation functions of heuristic search” (Takeuchi, Kaneko, & Yamaguchi,
2010).

Monte-Carlo Tree Search seeks to solve the problem where building an evaluation
function would be extremely difficult or unfeasible such as the game of Go. There are
several different methods available for choosing a new node in Monte-Carlo Tree
Search. These methods try to strike some balance between exploration and
exploitation. The algorithm Upper Confidence Bound for Trees (UCT) was first
introduced in 2006 (Kocsis & Szepesvári, 2006). A UCT algorithm is based on the
Upper Confidence Bound (UCB) algorithm, which tries to maximise a score or payoff
while “occasionally the algorithm might decide to do exploration which improves the
knowledge about the reward generating process, but which is not necessarily
maximising the current reward” (Auer, 2003).

In 2011, Fern and Lewis presented a method called Ensemble Monte-Carlo Planning.
This method involves using UCT methods to create multiple Monte-Carlo search trees
for a single problem. The algorithm then uses a weighted voting system to make a
decision. The authors test the algorithm on Backgammon, Yahtzee and Connect 4
games successfully showing computational benefits over traditional Monte-Carlo Tree
Search methods.

 “Our main observations are the following: 1) Ensembles can significantly
improve performance per unit time in a parallel model, 2) Ensembles can
significantly improve performance per unit memory in a single-core model,
and 3) Contrary to some prior observations, we did not observe a significant
improvement in performance per unit time in a single-core model” (Fern &
Lewis, 2011)

Daniel Beard Honours Thesis, p. 11 of 57

2.2. Studies into red teaming, data farming and re-planning
Red teaming has a long history in the military and has been used in areas of network
security (Markham & Payne, 2001). Automated Red Teaming was first introduced in
2004 by Upton, Johnson and McDonald as a complement to manual red teaming and
is described as “we automate this vulnerability discovery process using a
combination of evolutionary algorithms and agent-based simulations” (Upton,
Johnson, & McDonald, 2004).

Choo, Chua and Tay later built upon this work to create an automated red teaming
framework (ART Framework) specifically for military application. Their study showed
that there was a clear benefit from using evolutionary algorithms, as apposed to
manual red teaming. “Results showed that Red Force survivability can be improved
by 27% just by modifying behavioural parameters alone. These findings could be
used by Blue force to refine their tactics and strategy thereby ensuring robustness of
plans and mission success.” (Choo, Chua, & Tay, 2007). Figure 4 shows the ART
framework

Figure 4. ART Framework (Choo, et al., 2007)

Other work performed in the Automated Red Teaming field showed that ART was
able to “enhance the Red performance from their manual red teaming tactics” (S. W.
Chung, Choo, Martinez-Tiburcio, & Lin, 2006) and that the ART had produced
alternate plans that were not discovered during the MRT process by exploring paths
that had initially been dismissed.

Others recognise the problem associated with many-objective problems. “Solving
real world problems commonly involves the simultaneous optimization of many
objectives which often conflict with each other” (Decraene, et al., 2009). They
propose several different techniques to handle multi-objective problems, with future
research to focus on “to develop new heuristic techniques capable of efficiently
addressing many-objective ART problems” (Decraene, et al., 2009).

In 2008, a study looked at using a game tree structure for decision making in data
farming. This technique is named “Strategic Data Farming” and uses a hybrid of real-
world war games and computer-based simulations. “Strategic Data Farming uses
iteration between human and computer to gain the best of both worlds” (Duong,

Daniel Beard Honours Thesis, p. 12 of 57

2008). Strategic data farming uses a Minimax game tree and a heuristic evaluation
function to score moves, as well as an alpha-beta optimisation.

Duong further built upon this work in 2010 and showed that re-planning was
effective using a Minimax-based algorithm for choosing a different Course of Action
(COA). “In strategic data farming, for each set of parameter values, the simulation is
run for, the moves that would have been in a script change according to what
achieves the agent’s objectives” (Duong et al., 2010).

Duong et al (2010) state that for a simulation to support decision making it must
support three things:

• Indicators that measure how far agents are from their goals at specific time
intervals

• A way to save and precisely restore the simulation state (checkpoint/restart)
• A way to make moves

(Duong, et al., 2010)

Daniel Beard Honours Thesis, p. 13 of 57

2.3. Studies similar to this study
In 2005 Chung, Burro and Schaeffer applied a Monte-Carlo based technique to
planning in RTS games using the Open RTS software. They created a general Monte-
Carlo planning framework named MCPlan. Their technique was to look ahead at each
planning point using simulations with random choices and the authors’ note that the
importance of the research is the level of abstraction they are able to obtain from the
game. “MCPlan is similar to the stochastic sampling techniques used for other
games” (M. Chung, et al., 2005). The authors discuss the fact that this kind of
automated planning is still reliant on expert knowledge for creating plans and
creating a good evaluation function that works effectively. “For most application
domains, including RTS games, there is no easy way around this dependence on an
expert” (M. Chung, et al., 2005)

A similar study by Sailer, Buro and Lanctot focused on adversarial planning in RTS
games. They discuss the six main problems associated with planning in RTS games,
many of which also apply to automated red teaming situations.

• Complex unit types and actions
• Real-time constraint
• Large game maps and number of units
• Simultaneous moves
• Several opponents and allies
• Incomplete information

(Sailer, Buro, & Lanctot, 2007)

The authors overcome the difficulty of creating an effective evaluation function by
simulating to the end of the game and checking if they have won or lost the game.
They combine ideas from previous studies on RTS planning with ideas from game
theory. “In a zero-sum two-player setting with simultaneous moves the natural
move-selection choice then would be to determine a Nash equilibrium strategy by
mapping the payoff matrix r into a linear programming problem” (Sailer, et al.,
2007). One of the problems associated with this method is the small set of strategies
that are used.

In 2009 a Monte-Carlo based tactical planner was implemented for use in RTS
games. The main feature of the planner was that it uses UCT for creating a
simulation tree. “The key idea behind UCT is to intelligently bias the rollout
trajectories toward ones that appear more promising based on previous trajectories,
while maintaining sufficient exploration” (Balla & Fern, 2009). The authors discuss
that UCT is usually used in sequential moves, however they have applied it to non-
sequential, continuous games. The authors presented a domain independent planner
that does not require expert knowledge.

There are several studies that build upon this work and try to reduce the search
space of particular problems by using other artificial intelligence techniques. Laviers
(2010) notes that one of the issues with multi-agent adversarial games is “the size of
the search space can be prohibitively large when the actions of all players are
considered simultaneously” (Laviers, 2010). The study used a K* classifier to rank
groups of moves along with a UCT Monte-Carlo planning approach to create better
plans. They concluded that using this method “doubles the offensive team’s
performance in the Rush 2008 football simulator over prior methods” (Laviers,
2010).

Daniel Beard Honours Thesis, p. 14 of 57

Branavan, Silver and Barzilay (2011) presented a method of reducing the search
space in for large sequential planning problems in the game Civilization II. “We
approximate the value function by a neural network, augmented by linguistic
knowledge that is extracted automatically from the official game manual” (Branavan,
Silver, & Barzilay, 2011). They show a clear benefit by using a different, enhanced
evaluation function from what would usually be used with a ‘vanilla’ Monte-Carlo Tree
Search implementation “Our non-linear Monte-Carlo search algorithm wins over 78%
of games against the built-in AI of Civilization II” (Branavan, et al., 2011).

Szita, Chaslot and Spronck (2010) apply a Monte-Carlo Tree Search method to a
non-deterministic board game called Settlers of Catan, which is a multiple agent
environment with more than two players. The authors show that, when provided with
a small amount of domain knowledge, “The playing strength of our agent is notable:
it convincingly defeats the hand-coded AI of JSettlers, and is a reasonably strong
opponent for humans” (Szita, Chaslot, & Spronck, 2010).

A 2003 study examined utilising game theory concepts for military decision-making
in two-person zero sum games. The study outlines a ten step process for calculating
a payoff matrix using manual red teaming then solving the problem using software
linear programming solvers. “The intent is to translate the abstract concepts of game
theory to a well-defined process for organising information to enhance military
decision-making. This study offers a model for the military commander to augment
the military decision-making process.” (Cantwell, 2003)

In 2009, Cazenave introduced a method called “nested monte-carlo search”. This
method deals with the problem where no easy heuristic method of scoring a game
exists. At each level of the algorithm, the best set of moves is stored. Then random
playouts occur at the lower level. “If none of the moves improves on the best
sequence, the move of the best sequence is played, otherwise the best sequence is
updated with the newly found sequence and the best move is played” (Cazenave,
2009). The algorithm has been tested successfully on Morphion Solitaire, SameGame
and 16x16 Sudoku. This algorithm was further extended to execute in parallel with
successful results “The parallel algorithm run at level 3 has found sequences of
length 80 which is the current world record at Morphion Solitaire disjoint version”
(Cazenave & Jouandeau, 2009). In 2010, it was shown that a new algorithm named
MAX, a combination of the Nested Monte-Carlo and UCT methods outperformed the
separate methods “MAX gets the performance of both algorithms by taking at each
step the move with the best independent evaluation” (Mehat & Cazenave, 2010).

Daniel Beard Honours Thesis, p. 15 of 57

3. Theoretical Framework
The philosophical approach that was used in this study was quantitative methods
based on the positivist paradigm. According to Creswell, quantitative methods are “a
means for testing objective theories by examining the relationships among variables.
These variables, in turn, can be measured, typically on instruments, so that
numbered data can be analysed using statistical procedures” (Creswell, 2009).
Therefore, the research questions that are developed in a study with positivist views
can be answered by using experimental research to determine the effect that the
independent variables have on the dependent variables.

Experimental design is the method most commonly used to answer a hypothesis in
the fields of automated red teaming and data farming. “Experimental research
provides a systematic and logical method for answering ‘If this is done under
carefully controlled conditions, what will happen?’” (Best & Kahn, 1989). Taking into
account the previous work performed in this field, the most suitable method of
testing the research questions is experimental design.

3.1. Identification of variables
The independent variables in this study are the variables that are modified to
determine if they have an effect on the dependent variable. The independent
variables are the methods of choosing a strategy. There are four different methods
that are used to choose a strategy; these are further explained in chapter 5.3:

• Random strategy choices
• Monte-Carlo methods without re-planning (level 1)
• Monte-Carlo methods with re-planning (level 1)
• Monte-Carlo methods with re-planning (level 2)

Another method that will be modified is the Improvised Explosive Device (IED)
presence in the scenario. This is also described in more detail in chapter 5.3.

• IEDs present in the scenario
• IEDs not present in the scenario

The dependent variable in this study is the variable that will be measured to
determine if the research questions can be proven. The dependent variables is:

• Red team score

The studied simulation is asymmetric because changing the identities of the players
will not give the same payoff matrix or final score. This is because we are only
measuring the red team’s final score. Other parameters of the simulation include:

• Number of re-planning points
• Squad numbers per team
• Agents per squad
• Objective point scores

These parameters are fixed so they don’t affect the dependent variable. Although the
results of modifying these parameters is not analysed in this study, it would be
interesting to see the effects in future work.

Daniel Beard Honours Thesis, p. 16 of 57

3.2. Phases of the study
There are six phases that were used in the study. These are based on the
recommendations made by Crawford and Stucki (1990). The phases are shown in
Figure 5 and described below.

1. Design
2. Implementation
3. Test
4. Collect data
5. Analyse
6. Report
(Crawford & Stucki, 1990).

The software development process of the study was similar to the agile software
development method. The agile development process uses iteration with relatively
short time limits. Breaking the project down into sections allows faster development
time by allowing testing and reworking of discrete parts of the project. The iteration
is shown in Figure 5. “That people make mistakes is exactly why iterative and
incremental development were invented. Iterative refers to a scheduling and staging
strategy that allows rework of pieces of the system” (Cockburn, 2000).

The design phase of the project involved designing the software system that will
carry out the set of experiments. Initially a simplified UML version of the overall
structure was created. This was enhanced as the project progressed and more details
of implementation and design were worked out. Some parts of the final system were
written in discrete parts during the implementation phase, but most of the parts of
the system were developed at the same time, whilst being tested.

The testing phase included not only testing to check if the parts of the system
worked well together, but also tracking down bugs. Fixing bugs was a large part of
this phase. Once a part of the system passed the testing phase, the next part was
developed. Some time was spent profiling and optimising during this phase.

Data collection occurred in the fourth phase. Many simulations were executed and
the resulting scores written to text files. The output from this stage was a results file
per combination of search algorithms. These log files were then analysed to give a
mean, standard deviation and error of the mean to give the final results (as
described in chapter 7). Throughout the separate stages the data was reported and
collated into the final information present in this document.

Figure 5. Phases of the project. Iterative Agile Process.

Daniel Beard Honours Thesis, p. 17 of 57

3.3. Software framework
Appendix A shows the main structure of the simulation developed for the study. The
simulation framework is loosely based on other Automated Red Teaming frameworks
and military style chain of command. Each simulation has two teams; these teams
each have a commander class. Each commander class controls a set of squads. Each
squad controls a set of agents. After the search algorithms have picked a strategy,
the strategy is passed to the commander class, which then sets the strategy for each
squad and the agents that make up the squad are given a list of goals (from the
strategy). The agents are responsible for the path finding between goals.

The rest of the software framework is loosely based on the Automated Red Teaming
Framework shown in Figure 4. ART Framework (Choo, et al., 2007). A controller
class is responsible for configuring and executing the search algorithms. The result of
the final execution is the red scores from each simulation stored in text files that are
analysed later.

Each search algorithm inherits methods from the PlannerInterface class. Similarly,
the objects in each search algorithm that depend on the mason simulation are
implemented from interfaces. Examples of these are the SimulationInterface,
StateInterface, ChoicesInterface and the linear programming SolverInterface.

Each search algorithm is given the initial state for the simulation. It is then
responsible for building a search tree, growing the tree, analysing the results and
choosing a strategy to play. This is achieved through the execution of simulations
and building payoff matrices for each simulation tree. The simulation trees are solved
with linear programming to give a chosen strategy. In the case of the random search
algorithm, a random strategy is picked and the grow operation is ignored because it
does not take into account scores when choosing a strategy to play. For the two
search algorithms that can replan, they are given the chance to replan when the
main simulation reaches the re-planning point.

Daniel Beard Honours Thesis, p. 18 of 57

4. Materials
Throughout the study the following software instruments were utilised:

• Netbeans Java IDE – Version 6.9.1
• MASON Multi-agent Simulation Toolkit – Version 15
• JFreeChart graphing library
• Lp_solve (5.5.20) – Mixed integer linear programming (MILP) solver
• Classmexer – java memory profiler toolkit

The primary reason for using the above tools is that they are all open source
software and cross platform. This turned out to be a useful choice as the finished
project was executed on Windows, Linux and Mac OSX operating systems. Open
source software has gained a reputation for reliable, portable software. “Open source
software is well known today for its high degree of reliability and portability”
(Bonaccorsi & Rossi, 2003). Netbeans was used because it contains a powerful
profiler and debugger and supports many different programming languages.

Mason was chosen because it provides a solid cross-platform agent-based simulation
toolkit, whilst being open-source and was designed to be a “general-purpose single-
process discrete-event simulation library intended to support diverse multi-agent
models across the social sciences, artificial intelligence and robotics” (Balan, Cioffi-
Revilla, Luke, Panait, & Paus, 2003). Mason separates the simulation core and the
GUI of a simulation. This means that simulations written using mason can easily be
executed without a user interface and run as a single process. This made scaling up
significantly less complex.

The mason toolkit has a feature called checkpointing that allows the state of a
simulation to be saved and written to disk where it can be resumed easily.
Checkpointing also enables the simulation to be resumed on a different system than
the one on which it was started. The applications of saving a simulation state like this
are to enable front-end visualisation of a simulation that was running on a cluster /
high performance computing environment (Balan, et al., 2003) or to save the state
of a longer simulation incrementally so it can be resumed at a later point if any
errors occur.

Although the checkpointing system of mason wasn’t used directly in this study, the
fact that was implemented made saving the state in memory incredibly easy. Rather
than writing the state to disk, for performance reasons, states were stored in
memory. If a significantly larger scenario is required for future research,
checkpointing to disk will be a useful feature.

JFreeChart is an open-source graphing library for java. JFreeChart was used for
tracking agent scores and casualties throughout the project. It was chosen because it
is included as a required library for mason and many tutorials for using JFreeChart
and mason together are readily available.

Lp_solve is a free, open-source Mixed Integer Linear Programming (MILP) solver and
was a crucial part of the project. Lp_solve was used in the study for measuring the
effectiveness of strategy choices at intermediate simulation tree nodes. This software
was chosen because it is well documented, and provides the source code for the java
bindings as well as the core software. This was very important because the core
Lp_solve library had to be recompiled for each system is was used on.

Daniel Beard Honours Thesis, p. 19 of 57

The hardware instruments that were utilised in the study are:
• Laptop (2.66GHz Dual Core Intel i7 with 8GB RAM)
• SGI Altix 1300. 512-core cluster High Performance Computing environment

with 2GB RAM per core named XE.
• SGI Altix 3700 Bx2 (192 x 1.5GHz Itanium2 with 384GB RAM) named

COGNAC.
• Desktop computer (3.8GHz Quad Core Intel i7 with 6GB RAM)

The software required to execute the simulations was developed on a laptop. Most of
the execution of the simulations was performed on the XE machine with the other
machines being used mostly for testing.

Daniel Beard Honours Thesis, p. 20 of 57

5. Experiment
This chapter contains the description of the scenarios and how they are designed to
answer the research questions that were introduced in 1.4. The main basis of the
search algorithm is described in section 5.1. This chapter also introduces the
scenario used in the simulations, how the scenario is used to test the research
questions and shows how linear programming is used to give a team a score in the
intermediate steps of the algorithm. Also discussed are the Nash Equilibrium
solutions for several of the search algorithms.

5.1. Scenario
For this study, a scenario was created that supports a single re-planning point. The
simulation is non-deterministic and consists of two teams: red and blue. Figure 6
shows the abstract representation of the scenario used in this study. The red team
starts at node A, while the blue team starts at node I. There are 4 distinct paths from
the start nodes to goal nodes (D, E, F) for each team. This gives a total of 16 total
strategy choices at the first level of the tree. The scores for the scenario are fixed,
with the scores for nodes d, e, and f being 2, 3, and 5 respectively. Figure 7 shows
the mason implementation of the scenario. Scenarios are stored in an xml format,
which makes modifying and creating new scenarios easy.

The teams are limited to a small number of strategies that they can choose from. A
strategy is simply a list of nodes leading to a goal node. E.g. (I, H, F). Limiting the
strategy choices also limits the computational complexity of the simulation, which
was essential for this study as time was a principal limitation. As the depth of a
scenario increases, the memory consumption and execution times increase
exponentially. Limiting the depth allowed more simulations to be executed and lead
to higher accuracy in the final results.

Each team has a commander class that is responsible for selecting strategy choices
using the MCTS methods and controlling squads. The selected strategy choice is then
passed on to the squads present in the team. Each squad is made up of multiple
agents that act autonomously based on their given strategy selection. Each agent
has a pathfinder that calculates the path to the goal node. The squad is governed by
a number of rules such as flocking rules that keep the agents in a close formation
with some separation. An agent can have three different states: idle, pathfinding and
attacking as shown in Figure 6. An agent can have an idle state when there are no
further goals to move towards. An agent has a pathfinding state when moving
towards goal nodes. An agent has an attacking state when the agent is within a
certain distance of an enemy agent. When an agent is within attacking distance of an
enemy agent, the agent has a 50% chance of either killing the enemy agent or being
killed.

Figure 6. Agent state diagram

Daniel Beard Honours Thesis, p. 21 of 57

Figure 7. The Scenario.

Figure 8. The implementation of the scenario.

Daniel Beard Honours Thesis, p. 22 of 57

5.2. Search Algorithm
The search algorithm makes use of several data structures. A simulation can be
thought of as a matrix that can be evaluated and subsequently scored. The cells of
the matrix store a data structure named a continuation. Each continuation can stored
multiple simulation trees.

Figure 9. MCTS with Nash Solution Scoring

The search algorithm used in this project has five steps. First, an initial simulation
tree is built using mutual recursion. For each pair of red/blue strategy choice
combinations, we add a continuation to the tree. Each continuation is passed the
level of the simulation, the current simulation state and the strategy choices for each
team. During this initial tree construction, continuations are simulated to a certain
point given their level. For example, a continuation with a level of 2 or higher will
simulate to a re-planning point and a continuation with a level of 1 will execute the
simulation to the end point.

If another re-planning point exists, another simulation tree is added a level below,
with each set of choices containing continuations, the algorithm recursively continues
until the last level contains a continuations with no simulation trees attached.

The second step selects a node at random to grow. This study used a random
selection method, however, future work on this algorithm could explore how
changing the selection strategy changes the outcome of the simulations and whether
there is any benefit to adjusting the selection method.

The grow step uses the selected node and executes the simulation with the strategy
selection for each team. The result is added to the parent simulation tree. This
execution of the simulation only requires the input simulation state, the team
strategies and whether or not to replan. Given that this method is discrete and does
not rely on any other simulations this makes it viable to separate simulations into
separate threads. This was not focussed on in this study because the simulations
that are being executed are embarrassingly parallel and the methods being
compared were simply separated out into different executions. However, this would
make interesting further work to support huge simulations. The grow step is
performed at least 100 times in this study.

The scoring step scores the individual simulation trees. Each simulation tree acts as a
payoff matrix that stores the scores for each pair of red/blue strategy choices in the
tree. For the leaf node simulation trees we use the scores calculated from the
measures of effectiveness.

Daniel Beard Honours Thesis, p. 23 of 57

For this study, the scores for a terminal state are simply a summation of the scores
for each squad from the red team. This means that each squad in the red team can
capture a goal node and get the full score, or the blue team defeats the red team
and the red team gets a score of 0. Using this method we expect the payoff where
two teams meet to be half of the goal node’s score. For simulation trees that contain
multiple continuations, these scores are averaged.

The final step is an implicit method from the scoring process. After the leaf nodes of
the tree are scored, the result scores populate the payoff matrices above them in the
tree. The intermediate nodes are then scored using linear programming to determine
the Nash Equilibrium.

Throughout the simulation each team has it’s own planner that either uses the
algorithm from Figure 8, or a random planner. This allows the comparison of search
algorithms. Each team can then estimate expected payoffs and plan accordingly.

Daniel Beard Honours Thesis, p. 24 of 57

5.3. Procedure
To answer the research questions, four different search algorithms are used. These
are as follows:

1. Random – The search algorithm builds a search tree of level 1 that ignores re-
planning points and results in strategies from the start nodes to the goal nodes. The
simulation tree is not grown at all. The search algorithm picks an initial random
strategy, at a replanning point, the random planner is asked for another strategy
that is chosen at random from the available choices.

2. Without Replan Depth 1 – This search algorithm builds a search tree of level 1,
which does not take into account the re-planning points The tree is then grown a
minimum of 100 times and the search algorithm picks a strategy based on the
results from the linear programming solution. No replanning occurs and the search
algorithm cannot change its chosen strategy.

3. With Replan Depth 1 – This search algorithm builds a tree of depth 1 that ignores
the replanning points. The tree is then grown a minimum of 100 times. A strategy is
then picked based on the results of the linear programming solution. At the
replanning point, this search algorithm builds another tree of level 1 and replans. A
new strategy can then picked based on the results of the linear programming
solution for this new tree.

4. With Replan Depth 2 - This search algorithm builds a tree of depth 2 that includes
the replanning points. This tree is then grown a minimum of 100 times. A strategy is
then picked based on the results of the linear programming solution. At the
replanning point this search algorithm is given the chance to replan, by creating a
search tree of level 1, which is then grown a minimum of 100 times. A new strategy
then may be chosen based on the results of the linear programming solution for this
tree.

Given that the red team score is the dependent variable and all results are measured
in final red score, the notation used in this study when two search algorithms are
being compared always lists the red search algorithm first. For example Random vs.
With Replan Depth 1 refers to the red team using the random search algorithm and
the blue team using the With Replan Depth 1 search algorithm. This notation is also
interchangeable with numbers instead of names. E.g. 1,3 could represent the
previous example.

The first research question states – “Can Monte-Carlo Tree Search methods be used
for planning in automated red teaming?” This research question will by comparing
the results of the random search algorithm and the MCTS search algorithm that does
not use replanning.

First the theoretical results are calculated and then compared to an abstract problem
to test if the implementation of the MCTS algorithm is correct. Then a baseline score
can be calculated by comparing the Random search algorithm against itself (where
both teams use the random search algorithm). This baseline score can then be
compared against the scores of MCTS without replanning vs. the Random search
algorithm. It is expected that the MCTS without replanning scores will be higher than
the random baseline as the red team is trying to maximise it’s own score. We can
also compare the score when the blue team uses the MCTS with replanning methods
to the random baseline.

Daniel Beard Honours Thesis, p. 25 of 57

The second research question states – “Can Monte-Carlo Tree Search methods be
used for re-planning in Automated Red Teaming? How effective are they compared to
methods where no re-planning is employed?” This research question will be
answered in two parts.

For the second part of the question we can compare the results of the monte-carlo
methods that use replanning to the monte-carlo methods that do not use replanning.
If the results have higher red scores, then the conclusion can be drawn that Monte-
Carlo Tree Search methods with replanning are more effective than methods where
no replanning is employed.

The idea of Improvised Explosive Devices (IEDs) was used to test how the search
algorithms handle extra randomness in the scenario. When IEDs are present in the
simulation and a team reaches a replanning point, an Improvised Explosive Device
could kill a random number of agents in that team. The deaths possible per team for
this study was up to half of the agents. Two methods are then proposed, how the
search algorithms perform normally and how they perform with the added
randomness of IEDs.

The data will be collected from executing many different simulations designed to test
the research questions as described above. It is important to determine a baseline
score against which other scores can be measured calculated where both teams use
random strategy selection. Each team tries to maximise their own score and
minimise their opponent’s score, but globally, the red team is the minimising team
and the blue team is the maximising team in the simulations. The data will be
outputted into a number of text files for analysis.

Each simulation will use the scenario shown Figure 6. Each experiment will be
repeated 100 times, to ensure accuracy. We can then build matrices that compare
the different results.

No Replanning
 Blue
 Random Level 1
Red Random
 Level 1

With Replanning
 Blue
 Random Level 1 Level 2
Red Random
 Level 1
 Level 2

Daniel Beard Honours Thesis, p. 26 of 57

5.4. Linear programming method
The strategies produced for a two-person zero-sum game can be solved with linear
programming. The solution gives us what is known as the Nash equilibrium for the
game where “no team has any incentive to deviate [from their chosen strategies]”
(Sailer, et al., 2007). Finding the Nash equilibrium gives us the ratio of strategies
each team should choose to get the maximum payoff.

This section covers the linear programming method used in the study and shows how
the results are calculated for a payoff matrix that contains the red player score for
each combination of red and blue strategy choices. We build a strategy matrix where
the rows represent the red team’s (player 1’s) strategy choices, and the columns
represent the blue team’s (player 2’s) strategy choices. The following payoff matrix
can be built when either team has the choices {d, e, f} and shows how strategy pairs
can be combined into a payoff matrix. Each strategy pair has a score associated with
it. For example: The score {d, d} would be the averaged payoff for all simulations
where both teams choose d as a strategy choice.

 Blue: d Blue: e Blue: f
Red: d {d, d} {d, e} {d, f}
Red: e {e, d} {e, e} {e, f}
Red: f {f, d} {f, e} {f, f}

Luce and Raiffa state the method for determining the Nash Equilibrium for Player 1
(red) is:

Let U be the set of all m-tuples u = (u1, u2, …, um) such that

𝑢𝑢𝑖𝑖 ≥ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … ,𝑚𝑚

In this study the u values are the strategy pairs for the matrix, referred to as x1, x2,
and x3 for this example.

and

�𝑎𝑎𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖 ≥ 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … ,𝑛𝑛
𝑚𝑚

𝑖𝑖=1

To find those u belonging to U such that ∑ 𝑢𝑢𝑖𝑖𝑚𝑚

𝑖𝑖=1 is a minimum. (Luce & Raiffa, 1989)
This means we are minimising the u values (x1, x2 and x3) for this example.
Combining this with the scores from the payoff matrix we get the following linear
equations:

minimise: x1 + x2 + x3

subject to:
x1 >= 0
x2 >= 0
x3 >= 0

{d, d} x1 + {e, d} x2 + {f, d} x3 >= 1
{d, e} x1 + {e, e} x2 + {f, e} x3 >= 1
{d, f} x1 + {e, f} x2 + {f, f} x3 >= 1

Daniel Beard Honours Thesis, p. 27 of 57

Luce and Raiffa (1989) state that “Player 1 should attempt to find a u in U which
maximises 1

∑ 𝑈𝑈𝑖𝑖𝑖𝑖
 or, equivalently, minimises ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 ” (Luce & Raiffa, 1989). This means

that player 1 (the red team) can either be the minimising player using the standard
payoff matrix, or can be the maximising player using the transpose of the payoff
matrix. In this study, the red team is the minimising player.

Solving this set of equations gives us four outputs – the objective value and the
values for each strategy choice. From these numbers we can determine how many
times to choose each objective to get the maximum payoff possible. The inverse of
the objective value is then used as a score to propagate up the simulation tree. The
values returned for each variable can be used to calculate the probabilities for each
strategy choice as follows:

𝑥𝑥1 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑥𝑥1 ∗ 1

𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑝𝑝𝑢𝑢𝑂𝑂

𝑥𝑥2 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑥𝑥2 ∗ 1

𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎 𝑝𝑝𝑢𝑢𝑂𝑂

𝑥𝑥3 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑥𝑥3 ∗ 1

𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑝𝑝𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑝𝑝𝑢𝑢𝑂𝑂

Solving this linear programming problem for the blue team is similar. The payoff
matrix from the red team’s point of view is transposed. The blue team is the
maximising team, so we are trying to maximise x1, x2, and x3. When maximising,
the constraints are set to less than or equal to 1. Chapter 5.5 solves for the payoffs
expected from the different search algorithms.

Daniel Beard Honours Thesis, p. 28 of 57

5.5. Nash equilibrium for the scenario

This section will use linear programming to solve the scenario by hand to determine
the Nash Equilibrium for several of the search algorithm combinations. The methods
evaluated will be random strategy choices, MCTS without replanning and MCTS with
replanning. If the two teams meet at a goal node, the red payoff is half of the actual
goal node score because the probability of a team winning a battle is 50%. The full
solutions are present in Appendix B (10.2).

5.5.1. Expected outcome with random choices
This section will calculate the expected red score given both teams using random
strategy choices. The scenario in Figure 6 has 4 distinct paths from the start nodes
to the end nodes for each team. Given that two of the paths lead to the E node, the
probability of ending up on that node is higher than landing on the other two nodes.
The probability is calculated for each goal node where the red team reaches the goal
node and the blue team chooses a different node as well as the case when the two
teams meet.

D Node Probability:

Red team chooses D. Blue team chooses a different goal node.
1
4
∗

3
4
∗ 2

Red team chooses D. Blue team chooses D.
1
4
∗

1
4
∗ 1

E Node Probability:

Red team chooses E. Blue team chooses a different goal node.
2
4
∗

2
4
∗ 3

Red team chooses E. Blue team chooses F.
2
4
∗

2
4
∗ 1.5

F Node Probability:

Red team chooses F. Blue team chooses a different goal node.
1
4
∗

3
4
∗ 5

Red team chooses F. Blue team chooses F.
1
4
∗

1
4
∗ 2.5

Expected Red Score:

0.375+0.0625+0.75+0.375+0.9375+0.15625 = 2.656

Daniel Beard Honours Thesis, p. 29 of 57

5.5.2. Nash equilibrium ignoring replanning
This section will calculated the Nash Equilibrium solution for where both players are
using a MCTS search algorithm where re-planning is not used. Each team has 4
strategy choices so we can build a payoff matrix of size 4x4. Each strategy choice is
a complete path from the start node to a goal node. The payoff matrix is shown
below.

 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

This gives us the following linear equation for the Red team:

Solving this gives us the following values:
Objective Value: 0.35555555
x1: 0
x2: 0.2222222
x3: 0
x4: 0.1333333

This means that the Nash Equilibrium score for this scenario ignoring replanning is
1.0/objective value = 2.8125.

To achieve this score, the red team should make the following choices:
Percentages:
x1: 0%
x2: 62.5%
x3: 0%
x4: 37.5%

To solve for the blue team, we transpose the matrix and the blue team becomes the
minimising player. This gives us the following linear equation:

/* Objective function */
min: +X1 +X2 +X3 +X4;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;
R3: +X3 >= 0;
R4: +X4 >= 0;

+X1 +3 X2 +3 X3 +5 X4 >= 1;
+2 X1 +1.5 X2 +1.5 X3 +5 X4 >= 1;
+2 X1 +1.5 X2 +1.5 X3 +5 X4 >= 1;
+2 X1 +3 X2 +3 X3 +2.5 X4 >= 1;

Daniel Beard Honours Thesis, p. 30 of 57

Solution for blue:
Objective Value: 0.355555555
x1: 0
x2: 0.04444444444
x3: 0
x4: 0.31111111111

The optimal strategy for the blue team is then to play the strategies with the
following probabilities:
x1: 0%
x2: 12.5%
x3: 0%
x4: 87.5%

/* Objective function */
max: +X1 +X2 +X3 +X4;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;
R3: +X3 >= 0;
R4: +X4 >= 0;

+X1 +2 X2 +2 X3 +2 X4 <= 1;
+3 X1 +1.5 X2 +1.5 X3 +3 X4 <= 1;
+3 X1 +1.5 X2 +1.5 X3 +3 X4 <= 1;
+5 X1 +5 X2 +5 X3 +2.5 X4 <= 1;

Daniel Beard Honours Thesis, p. 31 of 57

5.5.3. Nash equilibrium with replanning
This section solves for the Nash Equilibrium where both players are using MCTS
methods with depth 2 replanning. When we include re-planning, we have two initial
choices for each team, which gives us a 2x2 payoff matrix as shown below. We need
to populate the values from the payoff matrix by solving the linear equations at the
lower level. This means there are four other linear programming problems to solve
before we can solve the top-level matrix.

 Blue: G Blue: H
Red: B
Red: C

Red Chooses B, Blue Chooses G:
 Blue: D Blue: E
Red: D 1 2
Red: E 3 1.5

This gives the following linear equation for the red team:

Objective Value: 0.5555
x1: 60%
x2: 40%
Score: 1.8

Red Chooses B, Blue Chooses H:
 Blue: E Blue: F
Red: D 2 2
Red: E 1.5 3

This gives the following linear equation for the red team:

Objective Value: 0.5
x1: 100%
x2: 0
Score: 2
Red Chooses C, Blue Chooses G:

/* Objective function */
min: +X1 +X2;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;

+2 X1 +1.5 X2 >= 1;
+2 X1 +3 X2 >= 1;

/* Objective function */
min: +X1 +X2;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;

+X1 +3 X2 >= 1;
+2 X1 +1.5 X2 >= 1;

Daniel Beard Honours Thesis, p. 32 of 57

 Blue: D Blue: E
Red: E 3 1.5
Red: F 5 5

This gives the following linear equation for the red team:

Objective Value: 0.2
x1: 0%
x2: 100%
Score: 5

Red Chooses C, Blue Chooses H:
 Blue: E Blue: F
Red: E 1.5 3
Red: F 5 2.5

This gives the following linear equation for the red team:

Objective Value: 0.3555
x1: 62.5%
x2: 37.5%
Score: 2.8125

We can then combine the scores from the previous steps into the first matrix and
solve to get the expected score for the scenario:
Top Level of the Scenario:
 Blue: G Blue: H
Red: B 1.8 2
Red: C 5 2.8125

/* Objective function */
min: +X1 +X2;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;
+1.5 X1 +5 X2 >= 1;
+3 X1 +2.5 X2 >= 1;

/* Objective function */
min: +X1 +X2;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;

+3 X1 +5 X2 >= 1;
+1.5 X1 +5 X2 >= 1;

Daniel Beard Honours Thesis, p. 33 of 57

Objective Value: 0.35555
x1: 0%
x2: 100%
Score: 2.8125

So the expected score for this scenario when replanning is used is 2.8125 and red
should always choose C at the top level.

/* Objective function */
min: +X1 +X2;

/* Constraints */
R1: +X1 >= 0;
R2: +X2 >= 0;
+1.8 X1 +5 X2 >= 1;
+2 X1 +2.8125 X2 >= 1;

Daniel Beard Honours Thesis, p. 34 of 57

6. Limitations
The primary limitation of this study was time. This limitation has had an effect on
most areas of the study. Other limitations include scope, depth of simulation and
memory limitations. In this section I will outline how these limitations affected areas
of this study and how they were counteracted.

The study had a number of simulations that had to be executed in a relatively timely
manner. One possible solution to this problem was more computational power. I had
an initial budget of 5000 hours booked on a 512-core SGI Altix machine that would
allow for quicker execution in parallel compared to sequentially on a laptop or
desktop machine with the backup plan of leaving myself enough time to run on the
laptop and desktop machine if something went wrong. Some problems occurred with
memory issues on the Altix machine and some of the earlier simulations had to be
executed on a desktop machine. This did not adversely affect the timing of the
results.

Downtime and system outages can also be a potential problem when it comes to
computing resources. To manage the risk of outages affecting the study, I spread out
the total computation over a slightly larger period of time so I was less likely to be
affected by a small outage.

Another limitation of the study was the replanning depth of the simulation or the
number of squads per team. The simulation that was chosen had a depth of 2. Given
that adding another level of depth or adding another squad per team to the
simulation increases the number of simulations that need to be executed
exponentially, this limitation was closely related to computational time and memory
consumption.

Memory consumption was an issue for the study, because a naïve method of storing
states was used. A trade off was eventually made so that the stored states would
take more memory, but execute faster. An option was included to compress states so
that for huge simulations where much more time is available for execution can still
run in a reasonable amount of memory. Another potential fix for this limitation was
to optimize the states being saved, however, given the time available this wasn’t
possible or necessary to complete the project.

Scope was a large limitation for this study as many other scenarios could have easily
been included as well as other areas of study such as just analysing which pair of
choices to explore / exploit in the grow method of the search algorithms. Feature
creep was a real risk for the study and was limited by placing limits on the number of
scenarios / number of squads / objectives of the study. Some feature creep did
occur, but was within limits.

Daniel Beard Honours Thesis, p. 35 of 57

7. Results
This section contains the results from the experiments introduced in chapter 5.3.

7.1. Theoretical Results
This section contains the results calculated in chapter 5.5 and these represent the
scores expected from the abstract scenario and mason scenarios.

No Replanning
 Blue
 Random Level 1
Red Random 2.656 2.609
 Level 1 3.047 2.8125

Figure 10

With Replanning
 Blue
 Random Level 1 Level 2
Red Random 2.656 2.312 2.281
 Level 1 2.652 2.392 2.305
 Level 2 3.90625 3.086 2.8125

Figure 11

7.2. Abstract Scenario
This section contains the results from the initial abstract scenario that is a version of
the same scenario used in the mason simulation but the agents and simulation have
been simplified down to the simplest possible representation. The abstract scenario
was used to test the validity of the search algorithm against the theoretical results.

The values in the tables are shown with the mean value for 1000 iterations and the
second value is the error of the mean for that run of simulations.

No Replanning
 Blue
 Random Level 1
Red Random 2.656 ± 0.01 2.613 ± 0.01
 Level 1 3.044 ± 0.01 2.805 ± 0.01

Figure 12

With Replanning
 Blue
 Random Level 1 Level 2
Red Random 2.656 ± 0.01 2.323 ± 0.01 2.279 ± 0.005
 Level 1 2.644 ± 0.01 2.408 ± 0.01 2.304 ± 0.01
 Level 2 3.896 ± 0.01 3.083 ± 0.01 2.827 ± 0.01

Figure 13

Daniel Beard Honours Thesis, p. 36 of 57

The results in Figure 11 and Figure 12 match (within standard error) the theoretical
calculations in Figure 9 and Figure 10. The trend of scores shows an increase as they
move down the rows and a decrease as they move across the columns of the table.
This indicates that more planning is beneficial to the red team, and as the level of
planning increases for the blue team they defend better and limit the red team’s
possible payoff.

Given that the results from the abstract scenario show values matching the
theoretical results extremely closely, it can be concluded that the search algorithm is
working correctly and the mason simulation can be executed.

Daniel Beard Honours Thesis, p. 37 of 57

7.3. Mason Scenario
This section contains the results from the chosen scenario when the mason toolkit
was used. Each set of simulations was executed with multiple agents, with 100
iterations and growing the tree 100 times.

No Replanning
 Blue
 Random Level 1
Red Random 2.620 ± 0.170 2.680 ± 0.125
 Level 1 2.960 ± 0.198 2.790 ± 0.182

Figure 14

With Replanning
 Blue
 Random Level 1 Level 2
Red Random 2.620 ± 0.170 2.300 ± 0.164 2.130 ± 0.159
 Level 1 3.460 ± 0.175 2.770 ± 0.165 2.530 ± 0.142
 Level 2 3.900 ± 0.162 2.990 ± 0.171 2.790 ± 0.185

Figure 15

Figure 13 shows the results from the Mason scenario where no re-planning is used.
This table can be used to answer the first research question. The first research
question states “Can Monte-Carlo Tree Search methods be used for planning in
automated red teaming?” The values in Figure 13 show an increasing trend as the
red team’s search algorithm is changed from random to a level 1 search-algorithm
without re-planning. Where the blue team is using random strategy selection, the red
values change from 2.620 to 2.960, which are both within the standard error of the
mean from the calculated theoretical results. Similarly, where the blue team is
employing the level 1 search algorithm, the red values change from 2.680 to 2.790.
These values are also within the standard error of the mean from the calculated
theoretical results and have the same trend as the values in Figure 11. From these
results we can conclude that methods that use Monte-Carlo Tree Search based
planning perform better than random methods.

The first research question is then confirmed as true and Monte-Carlo Tree Search
methods can be used for planning in an automated red teaming environment.

The second research question states “Can Monte-Carlo Tree Search methods be used
for re-planning in Automated Red Teaming? How effective are they compared to
where no re-planning is employed?” The values from Figure 14 can be used to
answer this research question. The table shows that as the red search algorithm’s
move from random to level 1 and finally to level 2 with replanning, the trend is an
increasing value. This trend holds true for each of the different blue team’s search
algorithms that are tested. As expected, the red payoffs increase as the red team’s
level of planning in increased and decreases as the blue team uses more in depth
planning methods.

The first part of the second research question can be answered by comparing the
results in Figure 14 to Figure 13. Examining the values where the red team is using a
level 1 method and the blue team uses random strategy selection, the re-planning
method gives a higher final score than the scenario where no replanning is used.
Comparing the opposite situation where the red team is using random strategy
selection and the blue team is using a level 1 method, the re-planning value is lower

Daniel Beard Honours Thesis, p. 38 of 57

than the value where no re-planning is used. This is because the blue team can
better minimise the red team’s payoffs when re-planning is employed.

This can answer the first part of the second research question and the conclusion can
be made that Monte-Carlo Tree Search methods can be used for re-planning in
Automated Red Teaming because the values from the re-planning search algorithms
are greater than random chance.

Comparing level 2 re-planning methods to the method without replanning where the
blue team is using random strategy selection shows that the re-planning method
gives a significantly higher red payoff. Similarly, comparing the level 2 re-planning
method where the red team is using random strategy selection shows a much lower
score than the no-replanning method. From these results the conclusion can be
made that Monte-Carlo Tree Search methods with re-planning are more effective
than methods where no re-planning is employed.

7.4. Mason Scenario with IEDs
This section contains the results using the same parameters from section 7.3 with
the addition of IEDs. An IED explodes just before a re-planning point so that the
information can be used by re-planning methods. When an IED explodes, it has the
potential to kill up to half of a squad’s agents. The results of this section are used to
answer the third research question.

No Replanning
 Blue
 Random Level 1
Red Random 2.580 ± 0.160 2.630 ± 0.159
 Level 1 3.370 ± 0.187 2.880 ± 0.184

Figure 16

With Replanning
 Blue
 Random Level 1 Level 2
Red Random 2.580 ± 0.160 2.490 ± 0.150 2.130 ± 0.159
 Level 1 3.470 ± 0.166 2.730 ± 0.176 2.590 ± 0.163
 Level 2 3.240 ± 0.203 3.040 ± 0.160 2.770 ± 0.165

Figure 17

The third research question states, “How do Monte-Carlo Tree Search methods
handle extra randomness in an Automated Red Teaming environment?” The results
in Figure 15 and Figure 16 compared to the results where no IEDS are used show
similar results.

Daniel Beard Honours Thesis, p. 39 of 57

8. Conclusion
This study has shown in several ways that Monte-Carlo Tree Search methods can be
used successfully in an Automated Red Teaming environment using calculated
theoretical results, results from an abstract scenario and the results from the Mason
simulation present in chapter 7.3. The theoretical results were essential to checking
if the algorithm was feasible and would show an improvement over current methods.

The abstract scenario was created to test if the MCTS algorithm was working
correctly without introducing potential bugs from the Mason simulation. The abstract
simulation showed similar results to the theoretical results.

Chapter 7.3 also shows that Monte-Carlo Tree Search methods that use re-planning
can be used in an Automated Red Teaming environment and give better results than
other methods such as random strategy choices and MCTS based strategy choices
without re-planning.

Chapter 7.4 shows the results from the Mason experiment that uses IEDs. The
results are similar to the results shown in chapter 7.3 so for this experiment with the
parameters used, introducing IEDs into the scenario does not provide a significant
example for either team. Further work is required to test if different scenarios using
differing amounts of agents per squad and a higher IED death rate would make a
difference to this score.

This project has shown that MCTS based methods provide a clear increase in red
team score in an automated red teaming environment when compared to other
methods. An extensible and generic MCTS framework was built successfully.

9. Further Work
There are many areas of future work that could be explored. One of these is
parallelising the MCTS algorithm itself. When executing the search algorithm, the
largest amount of time is spent in building and growing the tree including running
the simulation itself. Chaslot (2010) states that “MCTS benefits substantially from
parallelization” (G. M. J.-B. Chaslot, 2010).

Another area to be explored is the method that is used to grow the simulation tree.
Both a random grow method and a method that was biased towards exploration were
used for the algorithm in this study. The random method was eventually used
because the speed of execution was increased as the other method required scoring
the entire simulation tree before each grow operation. This area should be explored
to test if a better grow method is available to produce better results and faster
execution.

The search algorithm should be tested with scenarios that have more re-planning
points. Given that the search algorithm has been proven to be effective on the
smaller scenario by comparing the results from the implementation to the theoretical
results, a larger scenario that has a higher depth could be explored. The difficulty of
exploring larger scenarios is the increase in required memory and computational
power, as well as it being very difficult or impossible to calculate the theoretical
results of a larger simulation.

The IED experiment could be tested with varying levels of randomness to check how
the different levels affect the end results. For example, instead of up to half of the

Daniel Beard Honours Thesis, p. 40 of 57

team having a chance of being killed by an IED, situations where all of the team
could potentially be killed by an IED could be explored.

Other changes to the scenario would be interesting to test, such as increasing the
number of squads per team, and increasing the number of agents per squad and
determining what effect this has on the final payoffs. Changing the goal nodes
payoffs could also be tested.

Daniel Beard Honours Thesis, p. 41 of 57

10. Glossary
Term Description Source
Algorithm “A well specified sequence of steps to

solve a particular problem that accepts an
input and produces an output. Algorithms
can be expressed in any language.”

(Ali & Wasimi, 2007)

Stochastic “Stochastic is often used as counterpart of
the word ‘deterministic’, which means that
random phenomena are not involved.
Therefore, stochastic models are based on
random trials.”

(Origlio, 2011)

Monte-Carlo “A method of using repeated random
sampling to estimate the solutions to
problems that are very hard or impossible
to find analytically”

(Kleij, 2010)

Real Time
Strategy (RTS)
Game

“Real-time strategy (RTS) games are
popular commercial computer games
involving a fight for domination between
opposing armies. There is no notion of
whose turn it is to move.”

(M. Chung, et al.,
2005)

Two-person
zero-sum games

“[A game] in which the two players have
precisely opposite preferences. It is,
therefore a game in which cooperation
and collusion can be of no value. Any
improvement for one player necessitates a
corresponding loss for the other”

(Luce & Raiffa, 1989)

Nash Equilibrium “A set of strategies, one for each player,
such that no player has incentive to
unilaterally change her action. Players are
in equilibrium if a change in strategies by
any one of them would lead that player to
earn less than if they remained with their
current strategy”

(Shor, 2005)

Daniel Beard Honours Thesis, p. 42 of 57

11. Appendixes

11.1. Appendix A

Daniel Beard Honours Thesis, p. 43 of 57

11.2. Appendix B

Linear Programming Solutions:

Total Solutions

With Replanning
 Blue
 Random Level 1 Level 2
Red Random 2.656 2.312 2.281
 Level 1 2.652 2.392 2.305
 Level 2 3.90625 3.086 2.8125

No Replanning
 Blue
 Random Level 1
Red Random 2.656 2.609
 Level 1 3.047 2.8125

Daniel Beard Honours Thesis, p. 44 of 57

Random vs. Random
D Node Probability:

Red team chooses D. Blue team chooses a different goal node.
1
4
∗

3
4
∗ 2

Red team chooses D. Blue team chooses D.
1
4
∗

1
4
∗ 1

E Node Probability:

Red team chooses E. Blue team chooses a different goal node.
2
4
∗

2
4
∗ 3

Red team chooses E. Blue team chooses F.
2
4
∗

2
4
∗ 1.5

F Node Probability:

Red team chooses F. Blue team chooses a different goal node.
1
4
∗

3
4
∗ 5

Red team chooses F. Blue team chooses F.
1
4
∗

1
4
∗ 2.5

Expected Red Score:

0.375+0.0625+0.75+0.375+0.9375+0.15625 = 2.656

Daniel Beard Honours Thesis, p. 45 of 57

Random vs. No Replan Level 1
Red probabilities: 0.5
Blue initially solves a tree of level 1:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

Result: Blue chooses I,G,E 0.125 and I,H,F 0.875

Build the following choice tree:

Payoffs:
0.5*0.125*0.5*2.0+
0.5*0.125*0.5*1.5+
0.5*0.875*0.5*2.0+
0.5*0.875*0.5*3.0+
0.5*0.125*0.5*1.5+
0.5*0.125*0.5*5.0+
0.5*0.875*0.5*3.0+
0.5*0.875*0.5*2.5

Final Red Score: 2.609

PayoffRedBlueRed

Start

B 0.5

G,E 0.125
D 0.5 2.0

E 0.5 1.5

H,F 0.875
D 0.5 2.0

E 0.5 3.0

C 0.5

G,E 0.125
E 0.5 1.5

F 0.5 5.0

H,F 0.875
E 0.5 3.0

F 0.5 2.5

Daniel Beard Honours Thesis, p. 46 of 57

NoReplan1 vs. Random

Red solves a single matrix:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

Red Score: 2.8125.
Percentages:
x1: 0%
x2: 62.5%
x3: 0%
x4: 37.5%

Combining this with random blue strategy choices:

D Node:
Red chooses D, Blue chooses other
0 * ¾ * 2
Red Chooses D, Blue chooses D
0 * ¼ * 1

E Node:
Red chooses E, Blue chooses other
0.625 * 2/4 * 3
Red chooses E, Blue chooses other
0.625 * 2/4 * 1.5

F Node:
Red chooses F, Blue chooses other
0.375 * ¾ * 5
Red chooses F, Blue chooses F
0.375 * ¼ * 2.5

Total Score:
(0 * ¾ * 2) + (0 * ¼ * 1) + (0.625 * 2/4 * 3) + (0.625 * 2/4 * 1.5) + (0.375 * ¾ *
5) + (0.375 * ¼ * 2.5)
Final red score = 3.046875

Daniel Beard Honours Thesis, p. 47 of 57

No Replan Level 1 vs. No Replan Level 1
Red and blue initially solve a tree of level 1:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

Results:
Red chooses A,B,E 0.625 and A,C,F 0.375
Blue chooses I,G,E 0.125 and I,H,F 0.875

Build the following choice tree:

Payoffs:
0.625*0.125*1.5+
0.625*0.875*3.0+
0.375*0.125*5.0+
0.375*0.875*2.5

Final red score: 2.8125

PayoffBlueRed

Start

B,E 0.625
G,E 0.125 1.5

H,F 0.875 3.0

C,F 0.375
G,E 0.125 5.0

H,F 0.875 2.5

Daniel Beard Honours Thesis, p. 48 of 57

Random vs. Replan Level 1
Red probabilities = 0.5
Blue solves initial depth 1 matrix:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

Result: Blue chooses I,G,E 0.125 and I,H,F 0.875.

Blue can replan when they reach the replanning points.

Payoffs:
0.125*0.5*0.2*0.5*1.0+
0.125*0.5*0.2*0.5*3.0+
0.125*0.5*0.8*0.5*2.0+
0.125*0.5*0.8*0.5*1.5+
0.125*0.5*1.0*0.5*1.5+
0.125*0.5*1.0*0.5*5.0+
0.875*0.5*1.0*0.5*2.0+
0.875*0.5*1.0*0.5*1.5+
0.875*0.5*0.125*0.5*1.5+
0.875*0.5*0.125*0.5*5.0+
0.875*0.5*0.875*0.5*3.0+
0.875*0.5*0.875*0.5*2.5

Total red payoff = 2.312

Start

G 0.125

B 0.5

D 0.2
D 0.5 1.0

E 0.5 3.0

E 0.8
D 0.5 2.0

E 0.5 1.5

C 0.5 E 1.0
E 0.5 1.5

F 0.5 5.0

H 0.875

B 0.5 E 1.0
D 0.5 2.0

E 0.5 1.5

C 0.5

E 0.125
E 0.5 1.5

F 0.5 5.0

F 0.875
E 0.5 3.0

F 0.5 2.5

Daniel Beard Honours Thesis, p. 49 of 57

Random vs. Replan Level 2

Red probabilities = 0.5
Blue Initial tree:
1.8 2.0
5 2.8125

Result: Blue’s initial choice is always h.

Payoffs:
1.0*0.5*1.0*0.5*2 = 0.5
1.0*0.5*1.0*0.5*1.5 = 0.375
1.0*0.5*0.125*0.5*1.5 = 0.046875
1.0*0.5*0.125*0.5*5 = 0.15625
1.0*0.5*0.875*0.5*3 = 0.65625
1.0*0.5*0.875*0.5*2.5 = 0.546875

Total red payoff = 2.281

PayoffRedBlueRedBlue

Start H 1.0

B 0.5 E 1.0
D 0.5 2.0

E 0.5 1.5

C 0.5

E 0.125
E 0.5 1.5

F 0.5 5.0

F 0.875
E 0.5 3.0

F 0.5 2.5

Daniel Beard Honours Thesis, p. 50 of 57

Level 1 Replan vs. Random
Blue probabilities: 0.5
Red solves a level 1 tree initially:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

Result:
Red chooses A,B,E 0.625
Red chooses A,C,F 0.375

Payoffs:
0.625*0.5*0.6*0.5*1.0+
0.625*0.5*0.6*0.5*2.0+
0.625*0.5*0.4*0.5*3.0+
0.625*0.5*0.4*0.5*1.5+
0.625*0.5*1.0*0.5*2.0+
0.625*0.5*1.0*0.5*2.0+
0.375*0.5*1.0*0.5*5.0+
0.375*0.5*1.0*0.5*5.0+
0.375*0.5*0.625*0.5*1.5+
0.375*0.5*0.625*0.5*3.0+
0.375*0.5*0.375*0.5*5.0+
0.375*0.5*0.375*0.5*2.5

Expected red payoff:
2.65234375

Daniel Beard Honours Thesis, p. 51 of 57

Level 1 Replan vs. Level 1 Replan
Red and Blue both initially solve a tree of level 1
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5
Red chooses B 0.625, C, 0.375
Blue chooses G 0.125, H 0.875

Payoffs:
0.625*0.125*0.6*0.2*1.0+
0.625*0.125*0.6*0.8*2.0+
0.625*0.125*0.4*0.2*3.0+
0.625*0.125*0.4*0.8*1.5+
0.625*0.875*1.0*1.0*2.0+
0.375*0.125*1.0*1.0*5.0+
0.375*0.875*0.625*0.125*1.5+
0.375*0.875*0.625*0.875*3.0+
0.375*0.875*0.375*0.125*5.0+
0.375*0.875*0.375*0.875*2.5

Final red score: 2.3916

Daniel Beard Honours Thesis, p. 52 of 57

Level 1 Replan vs. Level 2 Replan
Red initially solves a tree of depth 1:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5
Red chooses B,E 0.625 and C,F 0.375

Blue initially solves a tree of depth 2:
1.8 2.0
5 2.8125

Blue chooses H 100% of the time

Payoffs:
0.625*1.0*1.0*2.0+
0.375*0.125*0.625*1.5+
0.375*0.125*0.375*5.0+
0.375*0.875*0.625*3.0+
0.375*0.875*0.375*2.5

Final red score: 2.3046875

PayoffRedBlueRedBlue

Start H 1.0

B 0.625 E 1.0 D 1.0 2.0

C 0.375

E 0.125
E 0.625 1.5

F 0.375 5.0

F 0.875
E 0.625 3.0

F 0.375 2.5

Daniel Beard Honours Thesis, p. 53 of 57

Level 2 Replan vs. Random

Blue Probabilities: 0.5
Red Solves an initial tree of level 2:
 Blue: G Blue: H
Red: B 1.8 2.0
Red: C 5 2.8125

Result: Red chooses C 100% of the time.

Payoffs:
0.5*1.0*0.5*5.0+
0.5*1.0*0.5*5.0+
0.5*0.625*0.5*1.5+
0.5*0.625*0.5*3.0+
0.5*0.375*0.5*5.0+
0.5*0.375*0.5*2.5

Final Red Score: 3.90625

Daniel Beard Honours Thesis, p. 54 of 57

Level 2 Replan vs. Level 1 Replan

Red solves a tree of level 2:
 Blue: G Blue: H
Red: B 1.8 2.0
Red: C 5 2.8125

Results: Red chooses C 100% of the time

Blue solves a tree of level 1:
 Blue: I, G, D Blue: I, G, E Blue: I, H, E Blue: I, H, F
Red: A, B, D 1 2 2 2
Red: A, B, E 3 1.5 1.5 3
Red: A, C, E 3 1.5 1.5 3
Red: A, C, F 5 5 5 2.5

Blue chooses G 0.125 and H 0.875

Decision Tree:

Payoffs:
0.125*1.0*1.0*5.0+
0.875*0.625*0.125*1.5+
0.875*0.625*0.875*3.0+
0.875*0.375*0.125*5.0+
0.875*0.375*0.875*2.5

Final red score: 3.086

PayoffBlueRedBlueRed

Start C 1.0

G 0.125 F 1.0 E 1.0 5.0

H 0.875

E 0.625
E 0.125 1.5

F 0.875 3.0

F 0.375
E 0.125 5.0

F 0.875 2.5

Daniel Beard Honours Thesis, p. 55 of 57

Level 2 Replan vs. Level 2 Replan

Both teams solve a tree of depth 2
 Blue: G Blue: H
Red: B 1.8 2.0
Red: C 5 2.8125

Red: Chooses C 100% of the time
Blue: Chooses H 100% of the time

Final red score: 2.8125

Daniel Beard Honours Thesis, p. 56 of 57

12. References
Alba, E., & Cotta, C. (2006). Evolutionary Algorithms Handbook of Bioinspired Algorithms and Applications

(pp. 3-19): Chapman & Hall/CRC.
Ali, A. B. M. S., & Wasimi, S. A. (2007). Data Mining: Methods and Techniques: Thompson - Nelson

Australia.
Auer, P. (2003). Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., 3,

397-422.
Balan, G. C., Cioffi-Revilla, C., Luke, S., Panait, L., & Paus, S. (2003). MASON: A Java Multi-Agent

Simulation Library. Paper presented at the Agent 2003 Conference.
Balla, R.-K., & Fern, A. (2009). UCT for Tactical Assault Planning in Real-Time Strategy Games. Paper

presented at the International Joint Conference on Artificial Intelligence, Pasadena, California, USA.
Best, J. W., & Kahn, J. V. (1989). Research in Education (6th ed.). New Jersey: Prentice-Hall Inc.
Bonaccorsi, A., & Rossi, C. (2003). Why Open Source software can succeed. Research Policy, 32(7), 1243-

1258.
Branavan, S. R. K., Silver, D., & Barzilay, R. (2011). Non-linear monte-carlo search in Civilization II. Paper

presented at the IJCAI.
Cantwell, L. C. G. L. (2003). Can two person zero sum game theory improve military decision-making

course of action selection?
Cave, J. (1987). Introduction to Game Theory. Santa Monican, California: Rand.
Cazenave, T. (2009). Nested Monte-Carlo Search. Paper presented at the 21st International Joint

Conference on Artificial Intelligence (IJCAI09), San Francisco.
Cazenave, T., & Jouandeau, N. (2009, 23-29 May 2009). Parallel Nested Monte-Carlo search. Paper

presented at the Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on.

Chaslot, G., Bakkes, S., Szita, I., & Spronck, P. (2008). Monte-Carlo tree search : a new framework for
game AI. Paper presented at the The 4th Artificial Intelligence and Interactive Digital Entertainment
Conference.

Chaslot, G., Saito, J., Bouzy, B., Uiterwijk, J., & van der Herik , H. (2006). Monte-Carlo Strategies for
Computer Go. Paper presented at the 18th Belgian-Dutch Conference on Artificial Intelligence.

Chaslot, G., Winands, M., Uiterwijk, J., Herik, H. J. v. d., & Bouzy, B. (2007). Progressive strategies for
Monte-Carlo tree search. Paper presented at the 10th Joint Conference on Information Sciences,
Salt Lake City, USA.

Chaslot, G. M. J.-B. (2010). Monte-Carlo Tree Search. Maastricht, Maastricht.
Choo, C. S., Chua, C. L., & Tay, S. H. V. (2007). Automated red teaming: a proposed framework for

military application. Paper presented at the GECCO '07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, New York, NY, USA.

Chung, M., Burro, M., & Schaeffer, J. (2005). Monte-Carlo planning in RTS games. Paper presented at the
IEEE Symposium on Computational Intelligence and Games.

Chung, S. W., Choo, C. S., Martinez-Tiburcio, F., & Lin, K. (2006). Applying Automated Red Teaming in a
Maritime Scenario. Paper presented at the International Data Farming Workshop 14 (IDFW14).

Ciancarini, P., & Favini, G. P. (2010). Monte Carlo tree search in Kriegspiel. Artificial Intelligence, 174(11),
670-684.

Cockburn, A. (2000). Agile Software Development: Addison-Wesley.
Crawford, S., & Stucki, L. (1990). Peer review and the changing research record. [10.1002/(SICI)1097-

4571(199004)41:3<223::AID-ASI14>3.0.CO;2-3]. Journal of the American Society for Information
Science, 41(3), 223-228.

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Third
ed.). Thousand Oaks, California: SAGE Publications.

Decraene, J., Zeng, F., Low, M. Y. H., Zhou, S., & Cai, W. (2009, 9/3/2011). Research Advances in
Automated Red Teaming. Paper presented at the Spring Simulation Multi-Conference (SpringSim),
Orlando, FL, USA.

Duong, D. (2008). Strategic Data Farming. Retrieved from http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA489884&Location=U2&doc=GetTRDoc.pdf.

Duong, D., Brown, R., Schubert, J., McDonald, M., Makovoz, D., & Singer, H. (2010). Strategic Data
Farming of Military and Complex Adaptive Simulations for COA Optimization. Paper presented at
the International Data Farming Workshop 20 (IDFW20).

Fern, A., & Lewis, P. (2011). Ensemble Monte-Carlo Planning: An Empirical Study. Paper presented at the
Twenty-First International Conference on Automated Planning and Scheduling, University of
Freiburg.

Kleij, A. A. J. v. d. (2010). Monte Carlo Tree Search and Opponent Modeling through Player Clustering in
no-limit Texas Hold'em Poker. University of Groningen, Groningen, The Netherlands.

Kocsis, L., & Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning. In J. Fürnkranz, T. Scheffer & M.
Spiliopoulou (Eds.), Machine Learning: ECML 2006 (Vol. 4212, pp. 282-293-293): Springer Berlin /
Heidelberg.

Laviers, K. (2010). Multi-agent plan adaptation using coordination patterns in team adversarial games.
Paper presented at the Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1 - Volume 1.

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA489884&Location=U2&doc=GetTRDoc.pdf�
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA489884&Location=U2&doc=GetTRDoc.pdf�

Daniel Beard Honours Thesis, p. 57 of 57

Lin, Y. (2003). Game Trees. Retrieved from
http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html

Luce, R. D., & Raiffa, H. (1989). Games and Decisions: Introduction and Critical Survey: Dover
Publications.

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of
Simulation, 4, 151-162.

Markham, T., & Payne, C. (2001, 2001). Security at the network edge: a distributed firewall architecture.
Paper presented at the DARPA Information Survivability Conference & Exposition II, 2001. DISCEX
'01. Proceedings.

Mehat, J., & Cazenave, T. (2010). Combining UCT and Nested Monte Carlo Search for Single-Player
General Game Playing. Computational Intelligence and AI in Games, IEEE Transactions on, 2(4),
271-277.

Millington, I., & Funge, J. (2009). Artificial Intelligence for Games (2 ed.). Burlington: Morgan Kaufmann.
Morris, P. (1994). Introduction to Game Theory: Springer.
Nettles, A. B. (2010). The President Has No Clothes: The case for broader application of red teaming

within homeland security. Monterey, California.
Origlio, V. (2011). Stochastic. Retrieved from http://mathworld.wolfram.com/Stochastic.html
Sailer, F., Buro, M., & Lanctot, M. (2007, 1-5 April 2007). Adversarial Planning Through Strategy

Simulation. Paper presented at the Computational Intelligence and Games, 2007. CIG 2007. IEEE
Symposium on.

Schneider, W. (2003). The Role and Status of DoD Red Teaming Activities. Retrieved from
http://www.fas.org/irp/agency/dod/dsb/redteam.pdf.

Shor, M. (2005). Nash Equilibrium. Retrieved from
http://www.gametheory.net/dictionary/NashEquilibrium.html

Szita, I. n., Chaslot, G., & Spronck, P. (2010). Monte-Carlo Tree Search in Settlers of Catan
Advances in Computer Games. In H. van den Herik & P. Spronck (Eds.), (Vol. 6048, pp. 21-32): Springer

Berlin / Heidelberg.
Takeuchi, S., Kaneko, T., & Yamaguchi, K. (2010). Evaluation of Game Tree Search Methods by Game

Records. Computational Intelligence and AI in Games, IEEE Transactions on, 2(4), 288-302.
Upton, S. C., Johnson, S. K., & McDonald, M. J. (2004). Breaking Blue: Automated Red Teaming Using

Evolvable Simulations. Paper presented at the GECCO: Proceedings of the 6th annual conference on
Genetic and evolutionary computation.

Zafra, P. (2010). Linear Programming and Two-Person Zero-Sum Games. Kean University.

http://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html�
http://mathworld.wolfram.com/Stochastic.html�
http://www.fas.org/irp/agency/dod/dsb/redteam.pdf�
http://www.gametheory.net/dictionary/NashEquilibrium.html�

	Enhancing automated red teaming with Monte Carlo Tree Search
	Recommended Citation

	Enhancing Automated Red Teaming with
	Monte Carlo Tree Search
	Introduction
	The background to the study
	Game Theory
	Game Tree Search
	Monte-Carlo Tree Search
	Evolutionary Algorithms

	The significance of the study
	The purpose of the study
	Research questions

	Review of the literature
	Studies into Monte-Carlo Tree Search
	Studies into red teaming, data farming and re-planning
	Studies similar to this study

	Theoretical Framework
	Identification of variables
	Phases of the study
	Software framework

	Materials
	Experiment
	Scenario
	Search Algorithm
	Procedure
	Linear programming method
	Nash equilibrium for the scenario
	Expected outcome with random choices
	Nash equilibrium ignoring replanning
	Nash equilibrium with replanning

	Limitations
	Results
	Theoretical Results
	Abstract Scenario
	Mason Scenario
	Mason Scenario with IEDs

	Conclusion
	Further Work
	Glossary
	Appendixes
	Appendix A/
	Appendix B
	Random vs. Random
	Random vs. No Replan Level 1
	NoReplan1 vs. Random
	No Replan Level 1 vs. No Replan Level 1
	Random vs. Replan Level 1
	Random vs. Replan Level 2
	Level 1 Replan vs. Random
	Level 1 Replan vs. Level 1 Replan
	Level 1 Replan vs. Level 2 Replan
	Level 2 Replan vs. Random
	Level 2 Replan vs. Level 1 Replan
	Level 2 Replan vs. Level 2 Replan

	References

