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Dear Editor, 

 

 

Ceramic nanocomposite coatings offer great potential for surface engineering of metal 

components used for cutting tools and medical devices. However, a deeper understanding of 

the roles of coating microstructure and residual stress in corrosion prevention remains lacking. 

In this work, an array of surface and subsurface characterisation techniques including focused 

ion beam microscopy and nanoindentation are utilised to probe the corrosion evolution of 

nanocomposite TiSiN coatings on steel substrates in nitric acid solution and unlock the 

controlling mechanism under which the coated steels corrode. The effect of residual stress 

upon localised corrosion development is also clarified by finite element analysis. Accordingly, 

new strategies are proposed to extend the service life of ceramic coatings in corrosive 

environments.  

It will be really appreciated, if you kindly publish this manuscript in your renowned journal. 

Regards. 

 

On behalf of all Authors, 

Mohammad S Ahmed 

Edith Cowan University 
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 Pitting, originated from surface defects, was dominant in TiSiN coated steels, 

 Thin oxidation layer generated by annealing provided protection against corrosion,  

 Compressive residual stress resisted corrosion propagation in TiSiN coated steels. 
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Abstract 

Nanocomposite TiSiN coatings were deposited on tool steels. Detailed mechanisms that 

govern the corrosion of these coated steels were revealed, following immersion tests in 70% 

nitric acid solution. Pitting occurred preferentially at surface defect sites and expanded with 

increasing immersion time. Both Young’s modulus and hardness decreased as the corrosion 

damage intensified. A thin oxide layer formed during thermal annealing at 900°C was found 

to be effective against corrosive attack. In addition, compressive residual stress was noted to 

suppress the propagation of corrosion-induced cracks. Role of residual stress in controlling 

the corrosion resistance of these ceramic-coated steels was clarified. 
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1. Introduction 

Nanocomposite ceramic coatings have been investigated intensively in recent years for 

applications in machining tools and medical devices, owing to their high hardness and good 

wear resistance [1-4]. Among them, TiSiN is commonly applied. Pitting corrosion has been 

frequently observed in ceramic coatings deposited on steel substrates, originating from 

surface defect sites [5,6,]. Electron microscopy, surface X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy have been used to probe the mechanisms under which these 

ceramic coated steels corroded [7, 8, 9]. However, a detailed understanding of initiation and 

propagation of corrosion in surface-treated steels is lacking and, consequently, the factors that 

control the expansion of pitting remains unclear. Though mechanical properties of ceramic 

coatings are anticipated to deteriorate during corrosion, no data are available to date to 

substantiate such a hypothesis, making it difficult to predict the service life of ceramic coated 

steels in corrosive environments.  

 

High compressive residual stress is known to exist in ceramic coatings prepared by PVD [10, 

11]. Although, stress corrosion cracking has often been observed in metals subjected to 

tensile stresses [12], little effort has been made so far to clarify the effect of compressive 

residual stress on the corrosion behaviour of ceramic-coated steels. Focused ion beam (FIB) 

microscopy is a powerful tool in the preparation and analysis of local cross-sections in a 
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material surface [13, 14]. It has recently been used for subsurface characterization of ceramic 

coatings following mechanical surface testing [15, 16]. In this study, FIB, along with XRD, 

X-ray photoelectron spectroscopy (XPS) and nanoindentation testing, were used to 

characterise the microstructural evolution in both surface and subsurface after corrosion tests 

and determine key factors that control the corrosion process. The change of mechanical 

properties of the coatings under the influence of corrosion was quantified, and the effect of 

residual stress on the corrosion progression was also clarified by finite element analysis 

(FEA).  

 

2. Experimental procedure 

 

2.1 Sample preparation 

 

Nanocomposite TiSiN coatings were deposited onto AISI M42 tool steel substrates by 

physical vapour deposition (PVD) using a reactive close-field unbalanced magnetron 

sputtering system (UDP650, Teer Coatings Ltd., Droitwich, Worcestershire, UK). The details 

of the deposition procedure were given elsewhere [17] and can be summarised as follows: 

prior to deposition, the surface of the steel substrates was bombarded by Ar ions to remove 

the oxide layer and other contaminants. During deposition a Ti buffer layer of ~0.2 µm was 

first deposited, followed by a TiN transition layer of ~1 µm. The thickness of the outer TiSiN 

coating was ~3 m and it was composed of ~50 at.% of Ti, ~10 at.% of Si and ~40 at.% of N, 

as determined by XPS. After deposition, some of the samples were annealed for 3 hours in a 

Carbolite vacuum tube furnace at 900 °C with a base pressure < 1×10
-6

 Torr and a heating 

rate of 5C/min. Compressive residual stress in as-deposited TiSiN coatings was found to 

decrease from ~10 GPa to ~1 GPa after the thermal annealing treatment [18]. However, the 
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microstructural features of the annealed samples remained identical to that of the as-deposited 

specimens, as shown in Figure 1.  

 

2.2 Corrosion tests 

 

Before immersion tests, the samples were coated with an acrylic protective layer (without 

metallic flakes) to expose only the coated area. The tests were performed in 70% HNO3 

solution at 25°C. The immersion period was set as 2 and 8 days. 

 

2.3 Surface structure characterisation 

 

The coating crystal structure of all the samples was characterised by grazing incidence XRD 

(GI-XRD) at the powder diffraction beam line of the Australian Synchrotron located in 

Melbourne, Australia. The energy of the synchrotron radiation was 9.0 keV, which 

corresponds to a wavelength of 0.13 nm at an incidence angle of 1°. The patterns were 

collected over the 2θ range of 20° to 80°. The depth of the incidence SR beam was 0.5 μm, 

according to a formula described elsewhere [19]. 

 

The surface bonding structure of both virgin and corroded TiSiN coatings were probed by 

XPS (Kratos Axis Ultra XPS spectrometer, Manchester, UK) with Mg Kα radiation (hν = 

1,253.6 eV). The sample was mounted horizontally normal to the entrance of electrostatic 

lens. The base pressure of the analyser chamber was maintained at ~10
-9

 Torr. The voltage 

and emission current of X-ray source were kept at 12 kV and 12 mA, respectively. The pass 

energy were selected at 80 eV for survey scan and 10 eV for the features of interests (i.e., 

N1s, Ti2p, Si2p) to ensure high resolution and good sensitivity. XPS spectra energy scale was 
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calibrated using Cu2p (932.67 eV), Ag3d (368.27 eV), C1s (284.6 eV) and Au4f (83.98 eV). 

The electrostatic lens mode and analyser entrance were selected Hybrid and Slot mode (Iris = 

0.6 and Aperture = 49), respectively. A charge neutraliser was employed during the XPS 

measurements. 

 

2.4 Surface and subsurface observations 

 

Sectioning and imaging of the surface defects of virgin annealed samples were conducted on 

a Neon 40EsB focussed ion beam scanning electron microscope (FIB-SEM) (Carl Zeiss NTS 

GmbH, Oberkochen, Germany). Imaging of the subsurface was achieved using the FIB to 

expose a cross-section of the sample. Images were collected using an in-lens secondary 

electron detector. The surface of both virgin and corroded samples was examined using a 

field emission scanning electron microscope (FESEM) (Model Fei Nova 230, EI Company, 

Hillsboro, OR, USA). Sectioning and subsurface imaging of samples was also carried out 

using a focused ion beam (FIB) workstation (FEI xP200 focused ion beam microscope, FEI 

Company, Hillsboro, OR, USA). The procedure has been described elsewhere [20]. First, a 

high gallium ion beam current (7,000 pA) was used to mill through the surface area of 

interest and to create a wedge-like trench. The resultant rough cross-section was then 

polished at medium currents (1,000 – 3,000 pA) to remove particle deposition and smooth the 

surface. Finally, the cross section was imaged at lower beam currents.  

 

2.5 Nanoindentation testing 

 

A nanoindentation system (Ultra-Micro Indentation System 2000, CSIRO, Sydney, 

Australia), equipped with a Berkovich indenter, was used to measure the mechanical 

javascript:openContact('110263DE01C24661C12570260034399F',true)
javascript:openContact('110263DE01C24661C12570260034399F',true)
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properties of the TiSiN coatings before and after corrosion tests, according to a standard 

method [21]. Prior to nanoindentation testing, the area function of the indenter tip was 

calibrated using a fused silica specimen. Nanoindentation tests were carried out under load 

control with a maximum load of 50 mN. For each test, 20 incremental and 20 decremental 

steps were used. The maximum penetration depth during the tests was found to be less than 

10 % of the TiSiN coating thickness, which ensured only the coating properties were 

measured. 

 

2.6 Finite element analysis of residual stress distribution 

 

An axisymmetric model (Comsol Multiphysics software, Version 3.5a, Burlington, MA 

01803, USA) was constructed to create a direct link between the residual stress and corrosion 

resistance. The model that contains the cross section of a cone-shaped cavity, resulting from 

localised corrosion damage, is shown in Fig.2. The geometry and size of the corrosion 

damage site in the model are based upon the subsurface observations enabled by the FIB 

microscopy. Boundary conditions are given as follows: the left hand side is the axisymmetric 

axis. The bottom and the right hand side are fixed along the z and r directions, respectively, 

but free to move in the other directions. The overall dimension of the model is much larger 

than both the thickness of the coating layers, and the edge effect due to boundary constrains 

is thus negligible. The meshes were generated in an interactive way to ensure that they were 

sufficiently dense around the edge, which defines the inner wall of the corrosion cavity. 

Planar compressive residual stresses were assigned to the TiN and TiSiN layers. For the as-

deposited samples, the residual stresses were set to be 3 GPa for the TiN layer [22] and 10 

GPa for the TiSiN layer [18]. For the annealed samples, the residual stresses were set to be 

0.3 GPa and 1 GPa for the TiN and TiSiN layers, respectively [18]. Under the influence of 
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the residual stress, the percent reduction in the cavity area sectioned along the horizontal 

direction at a distance of x from the cavity tip can be calculated by A/A = (r0
2
(x) - r

2
(x)) / 

r0
2
(x), where r(x) and r0(x) are the radii of the cavity area under stress and stress-free 

conditions, respectively. Structural and physical parameters of both the substrate and coating 

materials are given in Table I.  

 

3. Results 

 

3.1 Characterisation of surface crystal structure  

 

The surface crystal structure of the as-deposited and annealed samples were analysed by GI-

XRD before and after corrosion tests. Four diffraction peaks identified at the diffraction 

angles of 32.5°, 39.9°, 64° and 72° corresponded to {1 1 1}, {2 0 0}, {2 2 0} and {3 1 1} 

crystal planes of cubic B1 NaCl-type TiN, respectively (Fig. 3(a) & (b)). Notably, with the 

increase of immersion test time, the TiN {1 1 1} peak was intensified, indicative of a 

continuing removal of the outer nanostructured TiSiN layer and the exposure of the 

columnar-grained TiN transitional layer having a preferred {1 1 1} orientation [23]. In 

addition, the peaks of austenite phase  () {200} and martensite phase (M) {200} of M42 

steel substrate appeared in both types of virgin samples, suggesting that surface defects such 

as pits may exist in the samples. The peaks of these steel phases were intensified with 

increasing immersion time, most likely due to the thinning or removal of the coating under 

acid attack. The other small peaks were associated with the carbide phases of M42 steel 

substrate. No diffraction peaks related to Si and its compounds were identified. By comparing 

the peak intensity of both  and M phases, the as-deposited coating seemed to be more 



8 
 

susceptible to corrosion attack than the annealed samples, though both coatings exhibited a 

similar trend in the evolution of peak intensity.  

 

3.2 Analysis of the surface chemistry of the coatings   

 

The change in surface chemical bonding states of both as-deposited and annealed samples 

with the development of corrosion progress were characterised by XPS. From N 1s spectra, 

the two peaks at ~396 eV and ~397 eV arise from Ti-O-N and TiN phases, respectively, 

whereas the other peak at 400 eV represents Si3N4 (Fig. 4(a) & (b)). Considering that no 

crystalline Si3N4 phase was detected in the samples during GI-XRD analysis (Fig. 3), Si3N4 

was thought to exist in an amorphous state in TiSiN coatings [24]. The peak of Ti–O–N 

might be attributed to surface contamination caused by oxygen [25, 26]. By increasing the 

immersion period to eight days, the intensities of these peaks decreased significantly, 

presumably due to aggressive attack of the nitric acid on the samples. According to the Ti 2p 

spectra, two pairs of peaks from Ti 2p3/2 and Ti 2p1/2 were identified before and after the 

immersion tests, corresponding to TiN and TiOx phases in the surface of both as-deposited 

and annealed samples (Fig. 4(c) & (d)). Prior to the corrosion tests, TiOx prevailed in the 

annealed sample, while TiN phase was dominant in the as-deposited sample, indicating that 

an oxidation layer formed during the thermal treatment at 900C. Following two days 

immersion tests, TiOx remained dominant in the annealed sample. However, surface 

passivation seemed to occur in the as-deposited sample, making TiOx the dominant phase. 

With increasing immersion time up to eight days, the intensities of these peaks decreased for 

both phases, indicating corrosion progression in the acid solution. Analysis of the binding 

energy peaks associated to Si 2p spectra shows only one peak at 102.7 eV corresponding to 
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Si3N4 phase in both as-deposited and annealed samples (Fig. 4(e) & (f)), whose intensities 

also decreased with the increase of immersion time in the acid solution. The binding energies 

of surface phases identified by XPS in the samples before and after corrosion tests are given 

in Table II. 

 

3.3 Nanoindentation tests 

 

Young’s modulus and hardness of the as-deposited sample were found to be higher than the 

annealed sample by ~25% and ~47%, respectively, before immersion tests (Fig. 5). A slight 

decrease of mechanical properties was observed for both types after two days immersion 

tests. By immersing the samples in 70% HNO3 solution for eight days, the as-deposited 

sample showed a marked decrease in mechanical properties compared to the annealed: for 

Young’s modulus, the as-deposited sample decreased by ~33% and the annealed sample by 

~10% (Fig. 5(a)); for hardness, the as-deposited sample decreased by ~ 62% and the annealed 

samples by ~21% (Fig. 5(b)).     

 

3.4 Surface and subsurface observations 

 

The surface of both as-deposited and annealed coatings was examined before corrosion tests. 

Surface defects, such as micron-sized pits and embedded particles, were observed in both 

samples (Fig. 6(a)&(b)). Elemental maps, recorded using EDS, over a surface pit in Fig. 6(b) 

were also acquired. The colour pixels in these images represent the presence of the elements 
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of interest. Notably, a high concentration of iron was detected within the pit, indicating that 

the steel substrate may be locally exposed and more likely to corrode in subsequent 

immersion tests. To probe the depth of a surface pit, a cross-section was produced across the 

pit (Fig. 6(c)). The pit was observed to have a depth to the thickness of the TiSiN coating. 

Within the pit, micron-sized particles can also be seen, apparently arising from the deposition 

process.  

 

The sample surface was examined following two and eight-days immersion tests (Fig. 7). For 

samples subjected to two days corrosion tests, the initiation of localised corrosion was 

observed at surface defect sites. By increasing the immersion time to eight days, pitting was 

observed to expand in both types of coated specimens – moving downward and corroding the 

less-noble steel substrate, and at the same time propagating laterally along the interface 

between the outer TiSiN coating and the TiN underlayer. More often, pits extended to join 

their neighbours in the as-deposited sample and created widespread damage in the coatings, 

compared to a relatively isolated pitting damage in the annealed sample. Elemental maps over 

two pits in the annealed sample were also given after 8 days immersion tests; the steel 

substrate was more evident inside the pits than in the virgin samples.  

 

To clarify the effect of compressive residual stress in the coatings on the corrosion behaviour 

of the coated seels, the cross-sections of the coating samples were prepared after corrosion 

tests and the interaction between the coating microstructure and corrosion progression was 

examined (Fig. 8). For two days immersion tests, the lateral expansion of the pits along the 

TiSiN/TiN interface was observed in both types of TiSiN coatings, since the TiN layer within 

the pits acted as a physical barrier against downward progression of corrosion. Even so, 



11 
 

corrosion penetration through the less-densely packed boundaries between vertically aligned 

columnar TiN grains was evident in the annealed coating. Following eight days immersion 

tests, an appreciable thinning of the TiN layer was observed at the pitting sites in the as-

deposited sample, caused by prolonged acid attack. Neither subsurface cracks nor 

delamination were noted. In contrast, the exposed TiN layer was etched away in bulk at the 

pitting sites in the annealed sample (Fig. 9). Moreover, delamination was detected at the 

interface between the top TiSiN and TiN as well as the boundary between the TiN and steel 

substrate around these pitting sites.   

 

3.5 Effect of residual stress on the corrosion resistance 

 

A FEA model was constructed to quantify the effect of compressive residual stress on the 

opening of corrosion-induced cavities in the samples. The percent reduction of lateral section 

area of a cavity was observed to increase rapidly with the opening (i.e. the size of end 

diameters) of the cavity (Fig. 10). For a through-TiN coating cavity the maximum area 

reduction was ~3% (Fig. 10(a)), while the reduction was larger for a shallow cavity, i.e., ~ 

8% (Fig. 10(b)), meaning that the residual stress was more effective in resisting the 

infiltration of corrosive agents at the early stage of corrosion development. Moreover, the 

maximum percent area reduction was noted to occur near the cavity tip, in particular for the 

shallow cavities, indicating the residual stress played a critical role in resisting the corrosion 

advance. 

 

4. Discussion 
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The effect of the coating microstructure and residual stress on the corrosion behaviour of 

TiSiN coated steels in acidic environments was investigated in this work. The microstructure 

of these coatings consisted of three sublayers, namely, a nanocomposite TiSiN outer layer, a 

columnar-grained TiN transitional layer and a thin metallic Ti adhesion layer. All these three 

layers, while fulfilling their mechanical functions, also acted as physical barriers against 

potential corrosion attack on the steel substrates. Surface imperfections, such as pinholes and 

microparticles, are often found in PVD prepared ceramic coatings [27, 28], and these defects 

played an important role in the initiation and expansion of corrosion damage in the coatings 

in corrosive solutions [29, 30]. Unlike previous studies on corrosion of ceramic-coated steels, 

in which a understanding of corrosion mechanism was mainly developed from the surface 

observation [31, 32, 33], direct subsurface observation was conducted in this work, in 

combination with a host of surface characterisation techniques including FESEM, GI-XRD, 

XPS and nanoindentation. Detailed mechanistic insights into the mechanism that controlled 

the corrosion behaviour of ceramic coatings on steel substrates were thus gained.  

 

Compressive residual stress, as high as ~10 GPa, was measured for the as-deposited TiSiN 

coatings [18], and its origins and effects upon the mechanical behaviour of the coatings have 

recently been explored [17, 18]. The magnitude of residual stress in the as-deposited coatings 

can be reduced to ~1 GPa by thermal annealing at 900C [18]. Interestingly, this treatment 

has little impact upon the composition and microstructure of the TiSiN coatings, except that a 

thin oxide layer formed on the surface of TiSiN coatings. The newly formed layer was noted 

to act as a barrier to restrict lateral expansion and merging of localised corrosion. It may 
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explain why the annealed samples showed greater Young’s modulus and hardness than the 

as-deposited after eight days corrosion tests. 

 

Compressive residual stress in the coatings also played a key part in resisting the corrosion 

damage in the coated steels. The propagation of cracks induced by localised corrosion was 

suppressed by high compressive residual stress in the as-deposited coatings. In contrast, by 

diminishing compressive residual stress through thermal annealing, the corrosion cracking 

occurred with little resistance preferentially through structural defects, i.e., the boundaries of 

exposed columnar TiN grains and the interface between sublayers, causing appreciable 

damage around the pits. Moreover, the FEA model demonstrated that compressive residual 

stress can reduce the size of cavities created by corrosive attack, leading to an increase in 

corrosion resistance. 

 

5. Conclusions 

 

Direct subsurface observation, in combination with surface characterisation and modelling 

techniques, was performed to probe the corrosion evolution of TiSiN coated steels in 70% 

nitric acid, with a focus on the roles of surface oxidation layer and compressive residual 

stress in controlling the development of localised corrosion. The following conclusions can 

be drawn: 

1) Corrosion pitting was observed to be dominant in TiSiN coatings on steel substrates, 

which originated from surface defects. 
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2) Thin oxidation layer, formed during post-deposition annealing treatment, inhibited the 

penetration of acidic solution through the surface of the annealed coating and 

provided an overall protection of the coated steels. 

3) Compressive residual stress suppressed the propagation of corrosion-induced cracks 

through the sublayer interface and the boundaries of columnar TiN grains and helped 

maintain the structural integrity of TiSiN coated steel systems. 

Accordingly, surface oxidation technique may be applied in conjunction with the control 

of compressive residual stress to provide an effective protection against localised 

corrosion in PVD-prepared ceramic coatings on steels. 
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Table captions 

 

Table I Materials properties of substrate and coating components used in FEA simulations. 

 

Table II Binding energy peaks of N 1s, Ti 2p and Si 2p and corresponding phases identified 

by surface XPS analysis in both as-deposited and annealed samples before and after 2 days 

immersion tests 

 
 

Figure captions 

Figure 1 Secondary electron micrographs showing the microstructure of (a) as-deposited and 

(b) annealed TiSiN coatings on steel substrates.  

Figure 2 Coating architecture and meshes in a localised corrosion model. Note that a cone-

shaped cavity through the thickness of the TiN layer. The left-hand side is the axisymmetric 

axis.  

Figure 3 Grazing incidence X-ray diffraction patterns of (a) as-deposited and (b) annealed 

coating samples before and after immersion tests. Patterns have been offset for ease of 

viewing. Note “” stands for austenite phase and “M” for martensite phase. 

Figure 4 Surface X-ray photoelectron spectroscopy spectra for both as-deposited and 

annealed sample before and after immersion tests:  the chemical bonding states of N 1s in (a) 

as-deposited and (b) annealed samples; the chemical bonding states of Ti 2p in (c) as-

deposited and (d) annealed samples; the chemical bonding states of Si 2p in (e) as-deposited 

and (f) annealed samples. 
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Figure 5 Variation of (a) Young’s modulus and (b) hardness of both as-deposited and 

annealed TiSiN coatings with immersion test time. 

Figure 6 Scanning electron micrographs showing the surface of (a) as-deposited and (b) 

annealed TiSiN coatings on steel substrates, and a gallium ion-induced secondary electron 

micrograph showing (c) the cross section of a surface pit in the annealed coating sample. 

Next to the surface image in (b) are an enlarged view of a surface pit and corresponding Ti 

and Fe elemental maps. 

Figure 7 Scanning electron micrographs showing the surface of both as-deposited and 

annealed TiSiN coatings on steel substrates after corrosion tests. Next to the surface image of 

the annealed sample subjected to 8 days immersion test are a separate view of two separate 

surface pits and corresponding Ti and Fe elemental maps. 

Figure 8 Secondary electron micrographs showing the progression of the corrosion in as-

deposited and annealed TiSiN coatings on steel substrates. Note corrosion-induced crack 

propagation can be seen in the annealed samples.  

Figure 9 Scanning electron micrograph showing typical damage pattern of corrosion pitting 

in the annealed sample subjected to eight days immersion test. Note TiN layer in the central 

region is removed and the delamination of the top TiSiN layer occurs, presumably caused by 

corrosion cracking along the weak TiSiN/TiN interface.   

Figure 10 Percent reduction of the lateral section area of cone-shaped cavities having 

different end diameters developed in the TiN layer of the as-deposited samples as a function 

of the distance to the cavity front. Insets showing the profiles of the cavities. (a) A pit of 1 

m depth and (b) a shallow pit of 200 nm depth. 
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Substrate TiSiN  TiN  Ti 

___________________________________________________________________________ 

Young’s modulus (GPa)  200†  510[18] 590‡  104† 

Poisson’s ratio    0.30†  0.20  0.25  0.34† 

Residual stress, as-deposited (GPa) -  10  3  - 

Residual stress, annealed (GPa) -  1  0.3  - 

Thickness ( m)   -  1.78  1.00  0.22 

 

†http://www.efunda.com/materials/alloys/  

‡http://www.ceramics.nist.gov/srd/scd/Z00220.htm 

 

 

Table I



Sample type  

Binding 

Energy (eV) 

of N 1s 

Phases 

Binding 

Energy 

(eV) of Ti 

2p3/2 

Phases 

Binding 

Energy 

(eV) of Ti 

2p1/2 

Phases 
Binding Energy 

(eV) of Si 2p 
Phase 

 

virgin 

396.3 

397.7 

400.5 

Ti-O-N 

TiN 

Si3N4 

456 

458.5 

TiN 

TiOx 

460.8 

464.3 

TiN 

TiOx 
102.6 Si3N4 

As-deposited 

2 days 

immersion 

396.4 

397.5 

399.5 

Ti-O-N 

TiN 

Si3N4 

456 

458 

TiN 

TiOx 

461.2 

463.8 

 

TiN 

TiOx 
102.8 Si3N4 

 

virgin 

396.4 

397.4 

400 

Ti-O-N 

TiN 

Si3N4 

455.8 

458 

TiN 

TiOx 

461.5 

463.8 

TiN 

TiOx 
102.3 Si3N4 

Annealed 

2 days 

immersion 

396.6 

397.8 

399.7 

Ti-O-N 

TiN 

Si3N4 

455.6 

457.6 

TiN 

TiOx 

461.3 

463.5 

TiN 

TiOx 
102.2 Si3N4 

 

Table II



(a)

(b)

TiSiN coating

TiN transition layer

Ti buffer layer 

Steel substrate

TiSiN coating

TiN transition layer

Ti buffer layer 

Steel substrate

2 μm

2 μm

Fig. 1



Cavity wall

Steel substrate

TiN

TiSiN

Fig. 2



20 30 40 50 60 70 80

(220)

(220)

(220)

(311)

(311)

(311)

(200)

(200)

(200)

(111)

(111)

(111)

As-deposited

Immersed 

for 2 days 

Immersed 

for 8 days 

Diffraction angle, 2θ (degree)

In
te

n
si

ty

M(200)

(200)

(200)

(200)

M(200)

M(200)

(a)

Fig. 3(a)



20 30 40 50 60 70 80

M(200)

(220) (311)
(200)

(111)

Annealed

Immersed 

for 2 days

(111)

(200) M(200)
(220)

(311)

(111)

(200)

M(200)

(220)

(311)

Immersed 

for 8 days

γ(200)

γ(200)

γ (200)

Diffraction angle, 2θ (degree)

In
te

n
si

ty

(b)

Fig. 3(b)



390395400405410

Binding  energy

In
te

n
si

ty

Immersed for 8 days

Immersed for 2 days

Virgin

N1s in as-deposited 

sample

394396398400402404
Binding  energy

In
te

n
si

ty

Curve fit of  

virgin as-

deposited sample

394396398400402404
Binding  energy

Curve fit of  2 

day immersed 

as-deposited 

sample

In
te

n
si

ty

Ti-O-N 

bond 

TiN 

Si3N4

TiN 

Ti-O-N 

bond 

Si3N4

Fig. 4(a)



390395400405410

Virgin

Immersed for 2 days

Immersed for 8 days

In
te

n
si

ty

Binding  energy

394396398400402404

394396398400402404

Binding  energy

Binding  energy

In
te

n
si

ty
In

te
n

si
ty

Ti-O-N 

bond 

TiN 

Si3N4

Ti-O-N 

bond 
TiN 

Si3N4

Curve fit of  

virgin annealed 

sample

Curve fit of  2 

day immersed 

annealed sample

N1s in annealed 

sample

Fig. 4(b)



450455460465470

Ti 2p3/2 Ti 2p3/2 

Ti 2p1/2 
Ti 2p1/2 

450455460465470

TiN

TiOX

TiN 

Curve fit for  virgin 

as-deposited sample

TiOX

450455460465470Binding  energy

In
te

n
si

ty

Binding  energy

Binding  energy

In
te

n
si

ty
In

te
n

si
ty

TiN 

TiOX

TiN 

TiOX

Virgin

Immersed 

for 2 days

Curve fit for  2 

day immersed 

as-deposited 

sample

Immersed 

for 8 days

Ti2p in as-

deposited sample

Fig. 4(c)



450455460465470

In
te

n
si

ty

Binding  energy

Ti 2p1/2 
Ti 2p1/2 

Ti 2p3/2 Ti 2p3/2 

Virgin

Immersed 

for 2 days

Immersed 

for 8 days

450455460465470

TiN

TiOX

TiNTiOX

450455460465470

TiN

TiOX

TiN
TiOX

Binding  energy

Curve fit for  

virgin annealed 

sample

Curve fit for  2 

day immersed 

annealed sample

Binding  energy

In
te

n
si

ty
In

te
n

si
ty

Ti2p in annealed 

sample

Fig. 4(d)



98100102104106

Si 2p
Si3N4

Binding  energy

In
te

n
si

ty

As-

deposited

virgin

Immersed 

for 2 days

Immersed 

for 8 days

Si3N4

98100102104106

Binding  energy

In
te

n
si

ty

Si3N4

Si3N4

Si 2p

Annealed

virgin

Immersed 

for 2 days

Immersed 

for 8 days

(e) (f)

Fig. 4(e) & (f)



0

100

200

300

400

500

600

Y
o

u
n

g
’s

 M
o

d
u

lu
s,

 E
 (

G
P

a)

As 

deposited 

Annealed Immersed for 

2 days
Immersed for 

8 days

Fig.5(a)



0

10

20

30

40

50

60

70
H

ar
d

n
es

s,
 H

 (
G

P
a)

As 

deposited 

Annealed Immersed for 

2 days
Immersed for 

8 days

Fig.5(b)



(c)

(a) (b)

Ti

Fe
40 μm

4 μm

40 μm

Fig.6



AnnealedAs-deposited

2 days

8 days
Ti

Fe
40 μm

40 μm

40 μm

40 μm

Fig. 7



As-deposited

2 days

Annealed

8 days

cracks

crack

thinning

chipping

5 μm5 μm

5 μm5 μm

Fig. 8



TiSiN

TiN

Steel 
substrate

10 μm

Fig. 9



Distance to the cavity front ( m)

Steel

TiSiN TiSiN

TiN

Fig. 10(a)



Steel

TiSiN TiSiN

TiN

Distance to the cavity front ( m)

Fig. 10(b)


	Corrosion behaviour of nanocomposite TiSiN coatings on steel substrates
	Authors

	tmp.1354248007.pdf.9i9nH

