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1. Introduction 

Optical coherence tomography (OCT), ultrasound and other reflection based biomedical 
imaging technologies involve image signal processing that is primarily a filtering, digitizing 
and summing process so that the tissue cross-section can be visualized. In particular, in 
OCT, a series of adjacent one dimensional in-vivo axial interferograms (A-scan) are summed 
to form a two dimensional (B-scan) reflection map or reflectogram. Further graphical 
combinations can add adjacent B-scan together to form three dimensional C-scans. A 
physician can make a subjective interpretation and evaluation from the B and/or C-scans 
that may lead to actions impacting on the patient’s prognosis. More objective information 
can be obtained by using backwards fitting models (BFM) that fit tissue characteristics, 
including layer depth and reflectivity, to imaged tissue A-scans, returning values that are 
not significantly different to the actual values.  

BFMs can be either primarily deterministic or stochastic. One example of the latter is a 
genetic algorithm model (GAM). In this chapter, a GAM is characterised for its degree of 
precision and accuracy to retrieve the depth and reflectivity profile of a simulated A-scan of 
a virtual tissue model with defined tissue layer depths and layer refractive indicies. This 
stochastic model intrinsically evolves successively more precise and accurate generations of 
solutions, in accordance with certain software defined specific and random selection control 
parameters. This chapter presents a characterisation of the dependence of the accuracy and 
precision of the estimated layer depths and reflectivities, returned by this version of the 
GAM, on the number of generations, and the values of the GAM’s selection-control 
parameters. 
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2. Theory 

2.1. Optical coherence tomography 

Optical coherence tomography (OCT) is a medical imaging technique that is fundamentally 
an application of low coherence interferometry (Drexler et al 2008), (Fercher 1996), (Izatt et al 
1997). In OCT, a low coherent near infrared source is used to generate a reflection intensity 
map of the tissues cross section. An OCT scan can be 1 to 3 mm deep (Friebel et al 2009), 
depending on the tissue type and the optical properties of the light source, specifically the 
wavelength and intensity. Using a conventional solid state broadband light source, the axial 
resolution is typically 1 to 10 micrometers, depending on the bandwidth, central wavelength 
(Drexler et al 2008) and the sources Fourier envelope shape (Adie 2007) (Rossetti et al 2005) 
(Shidlovski 2008). Four key elements impact on the OCT detector signal: the light source, the 
optical delay line (ODL), type of interferometer used and the sample characteristics. 

 
Figure 1. Operating principle of a Michelson interferometer type OCT system. 

The light source is low-coherent in that it has a broad frequency bandwidth. All the light 
frequencies interfere with each other resulting in a self modulated light source where the 
width of the individual peak in the time domain is proportional to the image axial resolution, 
measured by the coherence length (Lc) of the source (Eq. (1)) divided by the average tissue 
refractive index. The Lc can be determined from the spectral characteristics of the source using, 

 
2
0ln 4.

,CL


 



 (1) 

where  is the source central wavelength, and  is the spectral Full Width at Half 
Maximum (FWHM) of the power spectrum, assuming it has a Gaussian spectral profile. 
Typical OCT sources have  at 840 nm and 1320 nm, with  equal to 60 nm. From Equation 
(1), these values give coherence lengths of 5.2m and 12.8 m, respectively. 

Because the inverse Fourier Transform of a perfectly Gaussian spectrum in the frequency 
domain is itself a Gaussian in the time domain, a perfectly Gaussian spectrum will have one 
peak and no repeated peaks; ideal for stratified samples. The less Gaussian the source 
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spectrum in the frequency domain, the more frequently that peaks appear in the time 
domain. A Michelson or Mach Zehnder interferometer can then be used to manipulate the 
introduced light to acquire an interference pattern of the multi-layered sample’s reflected 
beam and the reflected reference ODL beam at the detector (Fig. 1). 

2.2. The forward model 

The use of a Matlab OCT circuit simulation model to produce interferogram A-scans from a 
defined Gaussian spectral light source for a user defined stratified sample has been 
previously used to characterise typical OCT light sources (Jansz et al 2012) and optical delay 
lines (Jansz et al 2011). With this forwards model, backward fitting models (BFM) can now 
be tested to retro-fit certain sample parameters. These parameters for the present BFM 
version are sample layer thicknesses and reflectivities. 

2.2.1. The source 

Suppose that a light source emits a continuous distribution of wavelengths whose 
amplitude is a function of the wavelength. That is, A = A(). For example, if the light source 
is modelled as a spectrum of continuous wavelengths, with a Gaussian spectral shape 
defined by the peak amplitude (A0), the peak wavelength (), and the spectral bandwidth, 
FWHM (), we have, 

  
 

2
0

0 2

ln(16)
( )A A Exp

 




   
  

,  (2) 

with the laser power given by, 

 0 ln(16)
P A      (3)  

2.2.2. Light amplitude in the interferometer 

The distribution of wavelengths is first passed through a 50% mirror, with half of the light 
reflected (R), and half transmitted (T). The result is a reflected and transmitted wave with 
amplitude distributions, 

          
2R T

A
A A


   .  (4) 

Once the original light source is split, it becomes important to keep track of the distance 
travelled by each wave, as any difference will be associated with a phase shift, and therefore 
a change in the interference pattern. The transmitted wave, considered to be the sample arm 
of the interferometer, travels to a multi-layered surface consisting of n partially reflecting 
interfaces, the phantom structure to be imaged. The transmitted wave goes through 
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transmission and reflection at each interface. Upon returning from the multi-layered 
interface, the transmitted wave is reflected by the 50% mirror to the detector. The total 
distance travelled by the transmitted wave which reflects off the interface of the multi-
layered structure is denoted di for i = 1,2,…,n. The thickness di of the ith layer in the sample 
(i.e. the distance between the ith and (i+1)th interface) is then given by 

 1 , 1,2, , 1
2

i i
i

d d
d i n 

           (5) 

The reflectivity of the interface is denoted by ri for i = 1,2,…,n. We have assumed that the 
contribution of waves which are reflected off multiple interfaces within the multi-layered 
structure is negligible. Therefore it makes sense to decompose the detected component of 
the transmitted wave into n parts corresponding to each of the reflecting surfaces. Hence, 
we have, 
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           (6) 

The reflected wave, considered to be the reference arm of the interferometer, travels from 
the 50% mirror to another reflector which is moved incrementally (i.e. no Doppler effect) 
before being reflected back through the 50% mirror (transmitted) to a detector. The total 
distance travelled by the reflected wave is denoted dn+1. Note that a shift of the moving 
reflector by an amount will result in an increase in the total distance travelled by the 
reflected wave of 2. We will denote the reflectivity of the reference arm mirror by rn+1 
(although typically rn+1 = 1). The final amplitude distribution of the reflected wave is, 

       
1 .

2R n
A

A r


                 (7) 

In the interest of notational convenience, let us define a reflectivity factor, 
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Then the amplitudes of the transmitted and reflected waves can be expressed as, 
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2.2.3. Light wave interference in the interferometer 

Having defined expressions for the amplitudes of the interfering waves, we now consider 
the interference of these waves. Without loss of generality, we can represent all waves using 
a sine function with origin at the detector. The expression for the reflected wave is, 

      1
2, , sin ,R R ny x t A x d ct 
 

 
   

 
 (10) 

while for the (originally) transmitted components we have, 
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
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               (11) 

where i is a phase shift indicator function given by, 

         1

1
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                  (12) 

where ni denotes the refractive index of the ith layer of the sample (not to be confused with 
the number of layers in the sample n). Note that n0 denotes the refractive index of the 
medium in front of the sample. Note also that n+1 = 1. 

For the sake of simplifying notation, let us denote, 

   2 ,x ct
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          (13) 

   2
, 1,2, , .i

i i
d

i n


  


             (14) 

Then we can write, 
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The resultant wave arriving at the detector is therefore given by, 
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where,  
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It follows that the amplitude of the resultant wave is given by, 

              2 2
1 2 ,Amplitude C C                (19) 

and hence that the total intensity of detected light over all wavelengths is given by, 
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Equation (20) can be expressed in a more convenient form by simplifying the integrand as 
follows, 
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Hence, the intensity I at the detector can be expressed as, 
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Note that if A() is given by equation (2) then, 
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The expression given in equation (22) separates the intensity into a constant offset 
component B0 (i.e. constant for a specific sample structure with fixed distances d1, d2,…,dn 
and reflectivity’s r1, r2,…,rn), and an interference component for each of the layers given by 
BiF(di – dn+1). The coefficient Bi contains only information relating to layer reflectivity’s, while 
the function F(di – dn+1) contains the information related to the layer distances. 

2.2.4. Demonstrating the forwards model functionality 

We have demonstrated the use of the forwards model in characterising various OCT optical 
delay lines (ODLs) as well as typical OCT light sources.  

2.2.4.1. Optical delay line simulations  

The simulation produced A-scans of a typical moving optical delay line (ODL), as well as a 
stepped stationary ODL. For the former, the model generated typical A-scans using a 
Gaussian spectral light source. However, the model showed that there was not enough 
definition of layer peaks in the A-scan for the stationary stepped ODL. To overcome this, the 
model showed that the light in the ODL need to be modulated in the light source axis by an 
amount equal to the source wavelength (Jansz et al 2011). 

2.2.4.2. Characterising simulated light sources 

The typical OCT light source is a super luminescent light emitting diode (SLD). It is 
preferred as its spectral shape is Gaussian. The inverse Fourier transform of a Gaussian 
spectrum in the frequency domain is a single peak Gaussian in the time domain, ideal for 
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multi layer interferometry. Simulated single and multiple SLD light sources were used to 
characterise A-scans of virtual samples. They demonstrated particular artefacts such as side 
lobes, whose intensity decreased as the sources central wavelengths moved closer together. 
Equation (1) was also verified by the simulation demonstrating that broader bandwidth 
sources generated thinner A-scan peaks (Jansz et al 2012). 

2.3. The backward fitting model (BFM) - genetic algorithm approach 

We will now propose a method for determining the reflectivity’s and distances    1
,

n
i i i

r d


 

of each layer in a sample structure, given a discrete set of M observations of intensity at 

known reference arm distances,
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M
j j

n
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O I d 
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n nd d 
   for j = 1,2,…,M – 1; and the sample layers are separated by at least to ensure 

minimal layer interference effects. 

2.3.1. BFM – genetic algorithm method 

The problem of reverse fitting an interferogram to a set of M observations   1
1

,
M

j j
n

j
O I d 


  

can be formulated as a least squares problem: 

                
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i i ns S s S j i
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where the solution space   0 1 1 2, , , , , , , : (0,0.5)n n
n nS s B B B d d d s      , and the 

function ( )F x  is the cubic-spline interpolant of the local maxima of F(x). Since this is a non-
linear optimization problem there is no obvious systematic/efficient approach to obtaining a 
solution, so instead we will utilize a meta-heuristic genetic algorithm approach to try to 
identify a ‘near optimal’ solution. 

The basic idea behind a genetic algorithm is as follows (Hillier and Lieberman 2005): 

1. Define an initial population 0S of solutions, and evaluate the objective function 
(equation 27) for each member of the population. 

2.  Select out the less optimal solutions from population 0S  (i.e. those which have a large 
objective value). Randomly ‘breed’ the remaining solutions to obtain a new solution 
population 1S . The optimal solutions from which the new solutions are bred are called 
‘parents’, while the new solutions are called ‘children’. 

3. Repeat step 2 until a pre-defined termination criterion is satisfied. 

By continually selecting out the optimal solutions and ‘breeding’ these to give more optimal 
solutions, the selected solution set evolves towards a near optimal solution i.e. it evolves 
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towards the specific sample parameter values producing the interferogram, produced by the 
forwards model. One testable assertion in this mathematically stochastic paradygm, is that, 
for an optimal solution to be achieved, diversity needs to be maintained in the population at 
all iterations. This may be achieved in a number of ways. In this approach, two methods will 
be employed:  

1. By introducing a mutation rate in which child solutions randomly inherit a feature not 
possessed by either parent.  

2. The independent addition of new members which were not bred from the initial 
population.   

2.3.2. BFM – The genetic algorithm  

Initialise: Specify values for the following parameters: 

 The size of the solution population P. 
 The non-negative integers P1, P2, P3, which respectively define the number of best 

solutions retained for the next population, the number of solutions randomly selected 
from the worst solutions for inclusion in the next population, and the number of new 
solutions bred from the solutions retained from the current population. Note that P1, P2, 
P3, must be chosen such that P1+ P2+ P3 ≤ P.  

 The maximum number of algorithm cycles or generations, N. 
 The termination tolerance  . 
 The mutation rate MR % 

Following are the steps required to perform the algorithm: 

Step 1. Identify all observations O  which are locally maximum relative to the other 
observations in O  (i.e.   1 1

1, :  and j j j j j j
nO I d I I I I 
    ). The size of O  (denoted 

n ), is the estimated number of layers in the sample. Denote the index set of O  as 
  1: ,i i

nJ i I d O   . 
Step 2. Refine the solution space S  as follows: 

i. Set the offset value 0 min jB I ; 
ii. Note that the location of the layer identified in Step 1 will be such that 

1 1i i id d d   for all i J . 
Denote the refined solution space S . 

Step 3. Randomly generate an initial population 0S S  of size P, and evaluate LS(s) for 
every 0s S . 

Step 4. Use the existing population kS (  0,1,2,k  ) to generate 1kS   as follows: 

i. Let 1
1

kS   denote the set consisting of the 1P  solutions ks S with the lowest values 
of LS(s). 

ii. Let 1
2

kS 
 denote a random sample of 2P  solutions from 1

1\k kS S  . 
iii. Generate /breed a set 1

3
kS   of 3P  new solutions. Each element 1

3
ks S   is constructed 

as a convex combination of randomly chosen solutions 1 1
1 2 1 2, k ks s S S     
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 1 21s s s     

where  0,1   is a uniform random variable.  

A mutation is randomly applied to MR % of the elements of the solution vector S.  
The mutated element is set to a random value, while ensuring that s S . 

i. Randomly generate/introduce a set 1
4

kS   of 
3

1
i

i
P P


  new solutions. 

ii. Set 
4

1 1

1

k k
i

i
S S 



 . 

Step 5. Repeat Step 4 for a fixed number of cycles N, or until there exists a member ks S  
such that  LS s  , for a pre-specified tolerance  . 

The optimal member of the final population  0 1 1 2, , , , , , ,n ns B B B d d d     directly 
provides the total distance travelled by the laser light off each of the n  layers identified by 
the algorithm (i.e. 1 2, , , nd d d  ). The reflectivities of the layers can be obtained recursively as 
follows: 

 

2
1

1
1

2

n

B
r

RF 

 
   
   

                                   (28) 
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          (29) 

Note: We will never get negative values of the coefficients because we are using the upper 
envelope function. 

3. Method 

3.1. Testing the precision of the genetic algorithm model (GAM) 

This characterization of the efficacy of the BFM – Genetic Algorithm compares the spread of 
the depth and reflectivity of each layer for 2, 3, 4 and 5 layer sample models, for 20, 50, 100, 
200, 400 and 800 generations of the GAM. This is in order to gauge the level of precision of 
the GAM as a function of generation number and number of sample strata. Ideally the 
precision of the two parameters should remain statistically not significantly different from the 
actual parameter values for a given layer irrespective of the number of layers in the sample.   

The following GAM control variables were used for 2, 3, 4 and 5 strata virtual samples: 

 P = 1000 – The total solution population size at the start of each generation. 
 P1 = 100 – The number of optimal solutions retained for inclusion in the next generation.   
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 P2 = 250 – The number of solutions randomly selected from the remaining ranked 
solutions not in P1, for inclusion in the next generation.  

 P3 = 300 – The number of new solutions (children) bred from a convex combination of 
P1 and P2, for inclusion in the next generation. 

 P4 = P – (P1+P2+P3) = 350 – number of extra solutions randomly generated so that the 
total population quota, P, is achieved for the next generation. This is an implicit variable.  

 N= 20, 50, 100, 200, 400, 800. 
 Epsilon () = 0.000001 – termination tolerance. 
 Mutation rate = 0.01 – for each generation of size P, 1% of P has an introduced mutation. 

The thickness was equivalent for each stratum being 100m. The strata reflectivities used 
were based on approximate tissue strata refractive indices (n), alternating between 1.45 for 
the first stratum and 1.49, with n of air being 1, above the first stratum. The expected 
reflectivities for the ith interface can then be calculated from, 

 
2

1
2

1

( )
( )

i i
i

i i

n n
R

n n








,          (30) 

given that i = 1 refers to the top most stratum (n1) interface with the air (n0). The calculated 
percentage reflectivities are then 3.37359 for the surface and only 0.0185108 for the lower 
interfaces. Each generation number is repeated 7 times. 

The degree of statistical “equality” of simulated depths to actual strata depths follows from 
the relative error of the depths introduced by the degree of coherence of the virtual light 
source. It provides a region of acceptable depths about the actual depths that are 
experimentally not significantly different from their actual values. The degree of source 
coherence defines an axial resolution that is measured by the source’s coherence length (Lc) 
divided by the tissue refractive index. With the average tissue refractive index of 1.47 and 
the light source’s central wavelength () of 1550 nm and the full-width-half-maximum 
bandwidth () of 40 nm, the Lc is 26.5 m (equation 1). Hence, the in-tissue resolution is 
18.03 m, which is 9.01 m either side of the actual depth. It follows then, that the relative 
error (%) for each strata of depth: 100, 200, 300, 400, 500 m is 9.01, 4.51, 3.00, 2.25, 1.80%, 
respectively, using the virtual source’s characteristics. 

The precision results were compared graphically, with the independent variable as the 
generation number and the dependent variable a measure of the precision, i.e. the relative 99% 
confidence interval of the depth and reflectivity, with respect to the average depth and 
reflectivity, expressed as a percentage. This relative percentage precision was compared as one 
graph per layer that included each of the two to five layer sample structures. As indicated 
above, the relative error (%) associated with the source coherence for each layer was included 
in each of these graphs as an indication of acceptable precision of the simulated depths.  

3.2. GAM parameter effect on accuracy and precision 

This characterization of the efficacy of the BFM – Genetic Algorithm identifies a trend for 
which combination of GAM control variable magnitudes achieve optimal convergence 
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speed, i.e. the least number of generations that give a satisfactory precision level for the 
returned parameters, strata depths and reflectivities. The procedure uses the same five strata 
sample as in the GAM precision section above (3.1) with the following variation of GAM 
control parameters in table 1.  

Three trials of 7 simulations, each for only 20 generations were undertaken. The pooled 
mean and pooled standard deviation of the 3 trials for depth and reflectivity were 
calculated. The relative error (%) between these means and the actual depths and 
reflectivities were compared graphically for each parameter variation. Also compared 
graphically, were the relative error (%) between the pooled standard deviations and their 
pooled means, for each depth and its reflectivity. As indicated above, the relative error (%) 
associated with the source coherence for each layer was included in these graphs as an 
indication of acceptable accuracy of the simulated depths.    
 

GAM  
Parameters 

Varying P1 Varying P2 Varying P3 Varying Mutation Rate (MR) 

P 1000 1000 1000 1000 
P1 0, 20,... 800 100 100 400 
P2 100 0, 20,... 800 100 100 
P3 100 100 0, 20,... 800 100 
Mutation   
Rate 

0.01 0.01 0.01 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 
0.002, 0.001, 0.0005, 0.0002, 0.0001 

 0.0000001 0.0000001 0.0000001 0.0000001 

Table 1. Variation of GAM parameters 

4. Results, Inferences and Implications 

4.1. GAM precision  

The following section demonstrates the capability of the GAM to provide a precision for 
layer depth and reflectivity for samples with different number of layers, such that the 
parameter precisions are not significantly different for any given layer. Results for strata 
depth precisions is followed by the reflectivity precision results, each demonstrated 
graphically. 

4.1.1. GAM strata depth precision 

Fig. 2 shows that, though the GAM precision for each layer depth is dependent on the 
number of sample layers, all precisions fall within the relative error boundary of the source 
resolution, i.e. they are all acceptable precision variations. Layer depth precision generally 
decreases with the increase in the number of layers. The first, more reflective layer, has 
better precision by more than an order of magnitude, compared to the other layers. This is 
due to the more prominent peak of the first layer due to its greater reflectivity. 
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Figure 2. The precisions (99% confidence intervals) of the GAM calculated strata depths by number of 
sample layers and number of GAM generations. The precisions for returned (A) layer 1, (B) layer 2, (C) 
layer 3, and (D) layer 4 depths, are presented.  

4.1.1. GAM layer reflectivity precision 

The reflectivity precision parallels the depth precision trends for each layer (Fig. 3 A – D), 
though these precisions are significantly less sparse. 

4.2. GAM control parameter effects on performance 

Here we investigate the effect of the four GAM parameters on the accuracy and precision of 
the calculated layer depths and reflectivities, produced from 20 generations, for a five layer 
virtual sample. Hence the better the accuracy and precision, the more optimal the GAM 
parameter. The accuracy was measured by the relative error (%) of the resulting pooled 
mean depth and pooled mean reflectivity compared to the actual, for three trials each of 
seven 20 generation GAM cycles. The precision was denoted by the relative standard 
deviation, being the quotient of the pooled standard deviation to the pooled mean for the 
three trials, expressed as a percentage. 

4.2.1. GAM strata depth accuracy and precision 

It is important to note, that due to time constraints, the GAM accuracy and precision to 
predict the layer depth has been characterised using a univariate approach.  
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Figure 3. The precisions (99% confidence intervals) of the GAM calculated strata reflectivities by 
number of sample layers and number of GAM generations. Precision for returned (A) layer 1, (B) layer 
2, (C) layer 3, and (D) layer 4 reflectivities, is presented. 

4.2.1.1. P1 effect on layer depth 

First P1 is the control parameter that indicates the number of best solutions kept for the next 
generation. It would then seem probable that maximizing this value would arrive at the 
solution sooner. From the GAM results of three trials, Fig. 4 contradicts this prediction.   

Fig. 4 shows that optimal accuracy and precision is not limited to maximizing P1 but rather 
that in layer 1, optimality is achieved at lower values of P1, while all other layers are 
optimized randomly across the P1 spectrum. Fig. 4 shows that the percentage of depth 
relative errors (DREs) that fall inside the percentage error boundaries of the source’s in-
tissue resolution for layers 1 to 5 (Fig. 4A to 4E) are 100, 61, 32, 73 and 100% respectively.  

Considering layer 1 (Fig. 4A) for the given fixed GAM parameters, for optimal layer 1 depth 
predictions, P1 needs to be between 100 and 300, with best results below 200. Note also that 
in this region, the precision is also the greatest, being closest to the null line.  

For layer 2 (Fig. 4B), P1 delivers best results 61% sporadically across the 0 to 800 spectrum. 
A constant dip in the precision (red squares) between 120 and 200 may suggest an optimal 
region of P1 for predicting layer 2. Also P1 from 340 to 580 shows significant accuracy and 
precision, with the depth relative error within the relative error boundaries of the source’s  
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Figure 4. Effect of P1 varying on the relative errors and standard deviation errors for (A) layer 1, (B) 
layer 2, (C) layer 3, (D) layer 4, (E) layer 5 depth GAM calculations. These are the Average values of 3 
trials. The other GAM control variables, P2, P3,  and Mutation rate were fixed at 100, 100, 0.0000001, 
and 0.01, respectively. 

in-tissue resolution. Layer 2 depth is consistently being underestimated, indicated by the 
negative relative error values (blue diamonds).  

Layer 3 has best depth prediction at P1 = 180, while the accuracy and precision values are 
not separated. For the accuracy to be not significantly different to zero percent, the precision 
values (red squares) need to be significantly more positive than the absolute value of the 
accuracy (relative error) values (blue diamonds).  

Layer 4 has best results with P1 between 40 and 200, and 600 to 800. Layer 5 has best results 
with P1 between 120 and 220.  

Layer 2 results show the greatest degree of spread with in a corridor, basin or boundary of 
attraction. This ‘basin of attraction’ thins as the layer becomes deeper as well as getting 
progressively more accurate and precise. This difficulty of the GAM to locate the second and 
third layers is because they falls in the shadow of the much more intense (i.e. more 
reflective) first layer, while locating the lower layers becomes progressively easier the 
deeper the GAM searches.  

Though the GAM results seem random, their ‘basin of attraction’ localization imparts a 
degree of confidence in the reproducibity of the GAM solutions which are reliably attracted 
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to some random data corridor or geometry; for layer 1 a ‘wine glass’ geometry, layer 2 a 
wide corridor, and layers 3 – 5, narrow corridors. These regions of ‘random’ solutions are a 
product of the interplay between the GAM’s stochasticity and its parametric control.  

In summary, for the constant values of P2, P3, Mutation rate and tolerance being 100, 100, 
0.01 and 0.0000001 respectively, while P1 is best between 100 and 300 for layer 1, there is no 
particular value of P1 that is best for the other layers. More refined analysis investigating 
other values of P2, P3, and MR, for this range of P1, is necessary to establish a broader 
picture of the effects of P1 and its interaction with the other GAM control parameters.        

4.2.1.2. P2 effect on layer depth 

P2 is the control parameter that indicates the number of not-best solutions randomly chosen 
from the sample set remaining after the P1 set has been chosen, which are kept for the next 
generation. It would then seem probable that minimizing this value would arrive at the 
solution sooner. From the GAM results of three trials, Fig. 5 suggests this prediction for the 
layer depth calculations.  

 
Figure 5. Effect of P2 varying on the relative errors and standard deviation errors for (A) layer 1, (B) layer 2, 
(C) layer 3, (D) layer 4, (E) layer 5 depth GAM calculations. These are the average results of 3 trials. The other 
GAM control variables, P1, P3,  and Mutation rate were fixed at 100, 100, 0.0000001, and 0.01, respectively. 

Fig. 5 shows that the percentage of depth relative errors (DREs) that fall inside the 
percentage error boundaries of the source’s in-tissue resolution for layers 1 to 5 (Fig. 5A to 
5E) are 90, 44, 20, 83 and 100% respectively.  
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In Fig. 5A, the layer 1 accuracy (blue Diamonds) and precision (Red squares) are best for P2 
between 0 and 100, being closer to zero. The precision reduces and accuracy is more random 
beyond these points. Layer 2 results show less spread of the accuracy and precision than for 
layer 1. However because the blue error boundary of the source resolution is now half 
compared to layer 1, ~50% less values fall in the +/- 4.51% acceptability zone. As for the 
previous section, a ‘basin of attraction’ for both the accuracy and precision, thins as the layer 
becomes deeper as well as getting progressively more accurate and precise. Again the 
difficulty of locating the second layer is noted due to the magnitude of the first layer’s 
signal. This also affects the third layer, for which the accuracy values are now larger than the 
precision, showing that 34% of the depth estimates are significantly different to the actual 
layer depth value. This shadowing effect is reduced for the lower layers where the majority 
of the values are not significantly different to the actual depths, with progressively 
becoming more accurate and precise. 

In summary, for the constant values of P1, P3, Mutation rate and tolerance being 100, 100, 
0.01 and 0.0000001 respectively, while P2 is best between 0 and 100 for layer 1, there is no 
particular value of P2 that is best for the other layers. More refined analysis investigating 
other values of P1, P3, and MR, for this range of P2, is necessary to establish a more 
accurate picture of the effects of P2 and its interaction with the other GAM control 
parameters.  

4.2.1.3. P3 effect on depth 

P3 is the control parameter that indicates the number of children generated by a randomly 
selected, with replacement, convex combination of P1 and P2. It would then seem probable 
that neither maximizing or minimizing this value would arrive at a suitable solution sooner. 
From the GAM results of three trials, Fig. 6 suggests there is no value of P3 that is 
reproducibly of high accuracy or precision.  

Fig. 6 shows that the percentage of depth relative errors (DREs) that fall inside the 
percentage error boundaries of the source’s in-tissue resolution for layers 1 to 5 (Fig. 5A to 
5E) are 100, 63, 39, 88 and 100% respectively.  

In Fig. 6A, the layer 1 accuracy values (blue Diamonds) are not significantly different to the 
actual depth. Layer 2 results (Fig. 6B) show more spread of the accuracy and precision than 
for layer 1, with the depth being under estimated for all values of P3. As for the previous 
section, a ‘basin of attraction’ for both the accuracy and precision, thins as the layer becomes 
deeper as well as getting progressively more accurate and precise. Again due to the 
magnitude of the first layer’s signal, The GAM has difficulty of locating the second and 
third layers. For the third layer (Fig. 6C) the accuracy values are now larger than the 
precision, showing that 22% of the depth estimates are significantly different to the actual 
value. This shadowing effect is reduced for layers 4 (Fig. 6D) and 5 (Fig. 6E); the majority of 
the values are not significantly different to the actual depths, though layer 3 and 4 values are 
over estimated. Layer 5’s accuracy is demonstrated by symmetry about the zero line, with 
precision comparable to layer 1.   
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Figure 6. Effect of P3 varying on the relative errors and standard deviation errors for (A) layer 1, (B) 
layer 2, (C) layer 3, (D) layer 4, (E) layer 5 depth GAM calculations. These are the average results of 3 
trials. The other GAM control variables, P1, P3,  and Mutation rate were fixed at 100, 100, 0.0000001, 
and 0.01, respectively. 

In summary, for the constant values of P1, P2, Mutation rate and tolerance being 100, 100, 
0.01 and 0.0000001 respectively there is no particular value of P3 that will benefit the GAM 
accuracy or precision. Further, more refined analysis investigating other values of P1, P2, 
and MR, for this range of P3, is necessary to establish a broader picture of the effects of P3 
and its interaction with the other GAM control parameters.  

4.2.1.4. Mutation rate effect on layer depth 

Mutation rate (MR) is the control parameter that indicates the proportion of each generation 
of size P, that has (MR x 100) % introduced mutation. 

Fig. 7 shows that the percentage of depth relative errors (DREs) that fall inside the 
percentage error boundaries of the source’s in-tissue resolution for layers 1 to 5 (Fig. 5A to 
5E) are 100, 50, 0, 50 and 100% respectively.  

In Fig. 7A, the layer 1 accuracy values (blue Diamonds) are not significantly different to the 
actual depth, with a decreasing general trend towards smaller MR, except for a MR of 
0.005, which is as accurate as 0.5. Layer 2 relative error results (Fig. 7B) are all under 
estimated but not significantly different to zero. Again due to the magnitude of the first 
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layer’s signal, The GAM has difficulty of locating the second and third layers. For the third 
layer (Fig. 7C) all the accuracy values fall outside the relative error boundary of the source 
resolution as well as being over estimated. Also 17% of the values are larger than the 
precision, implying that these depth estimates are significantly different to the actual value. 
This shadowing effect is reduced for layers 4 (Fig. 7D) and 5 (Fig. 7E); the majority of the 
values are not significantly different to the actual depths. Layer 5’s accuracy is 
demonstrated by symmetry about the zero line, with significantly better accuracy and 
precision than layer 1. As for the previous section, a ‘basin of attraction’ for both the 
accuracy and precision, widens as the layer becomes deeper as well as getting 
progressively more accurate and precise.   

 
Figure 7. Effect of Mutation rate varying on the relative errors and standard deviation errors for (A) 
layer 1, (B) layer 2, (C) layer 3, (D) layer 4, (E) layer 5 depth GAM calculations. These are the average 
results of 3 trials. The other GAM control variables, P1, P2, P3 and  were fixed at 400, 100, 100, and 
0.0000001, respectively. 

In summary, for the constant values of P1, P2, P3 and tolerance being 400, 100, 100, and 
0.0000001 respectively, there is no particular value of MR that will benefit the GAM 
accuracy or precision for calculating the layer depths. More refined analysis investigating 
other values of P1, P2, and P3, over this range of MR, is necessary to establish a broader 
picture of the effects of MR and its interaction effects with the other GAM control 
parameters on the estimation of layer depth.  
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4.2.2. GAM layer reflectivity accuracy and precision 

It is important to note, that due to time constraints, the GAM accuracy and precision to 
predict the layer reflectivities has been characterised in only a univariate manner, with each 
parameter varied singularly, while the other parameters were kept constant, as indicated.  

4.2.2.1. P1 effect on layer reflectivity 

First P1 is the control parameter that indicates the number of best solutions kept for the next 
generation. It would then seem probable that by maximizing this parameter, for each 
generation, the GAM will converge faster to the actual layer reflectivities. 

 
Figure 8. Effect of P1 varying on the relative errors and standard deviation errors for (A) layer 1, (B) 
layer 2 reflectivity GAM calculations. These are the Average values of 3 trials. The other GAM control 
variables, P2, P3,  and Mutation rate were fixed at 100, 100, 0.0000001, and 0.01, respectively. 

However, the two Fig. 8 graphs demonstrate no relationship between P1 and the accuracy 
and precision of the calculated reflectivity for varying P1 from 0 to 800, given that the other 
fixed GAM control parameters, P2, P3, MR and , are 100, 100, 0.01 and 0.0000001 
respectively. Layer 1 (Fig. 8A) reflectivity is the most accurate and precise, with the other 
layers demonstrating similar accuracy and precision to that of layer 2 (Fig. 8B). However as 
the pooled standard deviation precision values (red squares) are less than the absolute 
relative error values (blue diamonds), i.e. accuracy, for all layers, all reflectivity estimates 
are significantly different from the actual layer reflectivities. Hence, 20 generations is too 
small to obtain satisfactory accuracy and precision, even after 3 trials, using this GAM 
version. Also the level of precision is not satisfactory for layers 3 to 5, being each similar to 
layer 2 (Fig. 8B).   

More refined analysis investigating other values of P2, P3, and MR over this range of P1, is 
necessary to establish a broader picture of the effects of P1 and its interaction effects with the 
other GAM control parameters on the estimation of layer reflectivity. 

4.2.2.2. P2 effect on layer reflectivity 

P2 is the control parameter that indicates the number of not-best solutions randomly chosen 
from the sample set remaining after the P1 set has been chosen, which are kept for the next 
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generation. It would then seem probable that minimizing this value would arrive at the 
solution sooner. From the GAM results of three trials, Fig. 9 suggests this prediction for the 
layer reflectivity calculations, but only for P2 = 0, for all layers. Layer 3 to 5 results are 
similar to layer 2 results (Fig. 9B).  

 
Figure 9. Effect of P2 varying on the relative errors and standard deviation errors for (A) layer 1, (B) 
layer 2 reflectivity GAM calculations. These are the Average values of 3 trials. The other GAM control 
variables, P1, P3,  and Mutation rate were fixed at 100, 100, 0.0000001, and 0.01, respectively. 

Other than P2 = 0, the two Fig. 9 graphs demonstrate no general relationship between P2 
and the accuracy and precision of the calculated reflectivity for varying P1 from 0 to 800, 
given that the other fixed GAM control parameters, P1, P3, MR and , are 100, 100, 0.01 and 
0.0000001 respectively. Again Layer 1 (Fig. 9A) reflectivity is the most accurate and precise, 
with the other layers, 3 to 5, demonstrating similar accuracy and precision to that of layer 2 
(Fig. 8B). However as the pooled standard deviation precision values (red squares) are less 
than the absolute relative error values (blue diamonds), i.e. accuracy, for all layers, all 
reflectivity estimates are significantly different to the actual values. Hence, 20 generations is 
too low, to obtain satisfactory accuracy and precision, even after 3 trials, with this GAM 
version. 

 
Figure 10. Effect of P3 varying on the relative errors and standard deviation errors for (A) layer 1, (B) 
layer 2 reflectivity GAM calculations. These are the Average values of 3 trials. The other GAM control 
variables, P1, P2,  and Mutation rate were fixed at 100, 100, 0.0000001, and 0.01, respectively. 
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4.2.2.3. P3 effect on layer reflectivity 

P3 is the control parameter that indicates the number of children generated by a randomly 
selected, with replacement, convex combination of P1 and P2. It would then seem probable 
that neither maximizing or minimizing this value would arrive at a suitable solution sooner. 
From the GAM results of three trials, Fig. 10 suggests there is no value of P3 that is 
reproducibly of high accuracy or precision for the reflectivity, and all values are 
significantly different to the actual reflectivities for layers 1 and 2. This also applies to the 
lower layers as they are similar to layer 2 results (Fig. 10B). 

For the same reason that the depth results were best for layer 1, the reflectivity results are 
best for layer 1 because its reflectivity is orders of magnitude greater than the lower layer 
reflectivities. Layer 2 results show no relationship at all to P3, with the accuracy values 
significantly different to 0 %. 

4.2.2.4. Mutation rate effect on layer reflectivity 

Mutation rate (MR) is the control parameter that indicates the proportion of each generation 
of size P, that has (MR x 100) % introduced mutation. 

 
Figure 11. Effect of Mutation rate varying on the relative errors and standard deviation errors for (A) 
layer 1, (B) layer 2 reflectivity GAM calculations. These are the average results of 3 trials. The other 
GAM control variables, P1, P2, P3 and  were fixed at 400, 100, 100, and 0.0000001, respectively. 

In Fig. 11A, the layer 1 reflectivity accuracy relative error values (blue Diamonds) are 
significantly different to zero percent. Layer 2 relative errors (Fig. 11B) are all over estimated 
and significantly different to zero percent, based on the large precision values (red squares). 
This is also true for the lower layers, 3 to 5. Also the same non-relationship trend of accuracy 
and precision for layers 3 to 5, is similar to layer 2. Again due to the large first layer’s 
reflectivity and very small reflectivity of the lower layers, this version of the GAM has 
difficulty of locating the lower layer reflectivities, given only 20 generations of evolution. 

In summary, for the constant values of P1, P2, P3 and tolerance being 400, 100, 100, and 
0.0000001 respectively, there is no particular value of MR that will benefit the GAM 
accuracy or precision for calculating the layer reflectivities. More refined analysis 
investigating other values of P1, P2, and P3, over this range of MR, is necessary to establish a 
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broader picture of the effects of MR and its interaction effects with the other GAM control 
parameters on the estimation of layer reflectivity. 

4.2.3. GAM layer depth and reflectivity accuracy and precision summary 

Table 2 summarises the results of the GAM estimates of depth and reflectivity. With the 
exception of P2, all other parameters show no significant relationship to the relative errors of 
the GAM estimated depth and reflectivity calculated.  
 

 
Layer # 

(P = 1000) 

Optimal Depth Optimal Reflectivity 

P1 
0 to 800 

P2 
0 to 800 

P3 
0 to 800

MR 
0.0001 - 0.5

P1 
0 to 800

P2 
0 to 800

P3 
0 to 800 

MR 
0.0001 - 

0.5 

1 100 - 300 0-100 AV AV 
All SD
to 0% 

0 
All SD 
to 0% 

All SD 
to 0% 

2 
NSV- 
61%(1) 

NSV -
44% 

NSV - 
63% 

NSV - 
50% 

All SD
to 0% 

0 
All SD 
to 0% 

All SD 
to 0% 

3 
NSV - 
32% 

NSV - 
20% 

NSV - 
39% 

NSV - 
0% 

All SD
to 0% 

0 
All SD 
to 0% 

All SD 
to 0% 

4 
NSV - 
73% 

NSV - 
83% 

NSV - 
88% 

NSV - 
50% 

All SD
to 0% 

0 
All SD 
to 0% 

All SD 
to 0% 

5 AV AV AV AV 
All SD
to 0% 

0 
All SD 
to 0% 

All SD 
to 0% 

(1) The percentage of results that are within the relative error boundary of the source resolution. NSV = no specific 
value; AV = all values; SD = significantly different. 

Table 2. General and relative error results summary  

In the case of P2 = 0, the reflectivity accuracy and precision are significantly improved for all 
layers, while the layer depth accuracy and precision are significantly improved for the first 
layer. Except for P2 = 0, all other values of P1, P2, P3, and MR return reflectivities that are 
significantly different to the actual reflectivities as indicated in the Table 2 as “All SD to 0%”, 
meaning that all the values of the control parameter give reflectivities that are significantly 
different to the actual reflectivity values. 

5. Discussion 

5.1. GAM precision 

The results have demonstrated that the precision of GAM layer depth estimation worsens 
for any given layer as the number of layers in the sample increases. This difference in results 
between different layered samples reduces as the GAM generation number increases. One 
can now gauge the degree of result reliability with a given A-scan, which indicates number 
of layers, so that an appropriately long generation number calculation can be undertaken if 
a sample with a larger number of layers is predicted.   
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Though the layer depth and reflectivity precision increases with increasing number of 
generations, so does the time to arrive at a more optimal solution. This increase in time is 
linear: if one generation takes 1 min, then 800 generations will consume 800 min. Certainly 
not practical for returning specific layer depths from a B-scan consisting of 600 A-scans, if 
each A-scan result was generated from 800 GAM generations. Clearly it is necessary to 
optimize the speed by minimizing the generation number to the point that the relative error 
of the depth is just within the light source’s resolution boundary. Furthermore, The back 
fitting software’s application will be assisting the clinician, by returning depth and 
reflectivity of points of interest on A-scans in the B-scans, not necessarily all depths and 
reflectivities of the B-scan.  

The reflectivity precision parallels the depth precision trends for each layer (Fig. 3 A – D) 
because locating the correct depth is enhanced by greater layer reflectivity. Also, the more 
the layers the more there are peaks in the A-scan for the GAM to locate, requiring more 
generations to achieve equivalent precision to A-scans with less peaks.   

5.2. GAM control parameter effects on depth estimation 

For all the parameters, P1, P2, P3 and Mutation rate, layer 3 has least accurate results with 
most or all values falling outside the relative error boundary of the expected source 
resolution. layer 2 results show the greatest degree of spread with in a corridor, basin or 
boundary of attraction. This ‘basin of attraction’ thins as the layer becomes deeper as well as 
getting progressively more accurate and precise. This difficulty of the GAM to locate the 
second and third layers is because it falls in the shadow of the much larger (i.e. more 
reflective) first layer, while locating the lower layers becomes progressively easier the 
deeper the GAM searches.  

The term ‘basin of attraction’ is used because, for the three trials, each trial produced the 
same region of graph values without the actual values being the same. This is a product of 
the interplay between the GAM’s stochasticity and its parametric control. This is important 
to note as it imparts a degree of confidence in the reproducibity of the GAM solutions which 
are reliably attracted to some random data corridor or geometry. This ‘basin of attraction’ 
construct is applicable and evident in all of the GAM depth estimates, because the GAM is a 
parameter controlled stochastic algorithm, and not solely stochastic. 

5.3. GAM control parameter effects on reflectivity estimation 

For all the parameters, P1, P2, P3 and Mutation rate, layer 1 is the most accurate and precise. 
However all GAM estimated reflectivities are significantly different to the actual values for 
all five layers. A larger number of evolution generations are needed, using this version of 
the GAM. This will require either repeating the GAM evolution to run for a much larger 
number of generations or extrinsically evolving the GAM by altering the software so that it 
evolves faster, i.e. alter the existing GAM version so that it arrives at suitable accuracy and 
precision sooner. 
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5.4. Future backwards fitting model research 

Further trials with realistic non-Gaussian light sources (Rossetti et al 2005), (Shidlovski 
2008), (Unterhuber et al 2008) that generated A-scans with side lobes and other artefacts, will 
require the programming of the GAM to detect and disregard such false information, 
resulting in the return of accurate parameter values. This will involve further extrinsic 
evolution of the GAM as well as exploring other types of Backwards Fitting Models that 
though more deterministic may be much faster due to loss of the random element. However 
further investigation is needed to establish this.  

6. Conclusion  

This chapter has demonstrated that a genetic algorithm approach suggests some success at 
extracting layer depth and reflectivity values from virtual samples with realistic biological 
layer depths and refractive indices. The GAM’s efficacy has been challenged by these 
realistically small reflectivities, returning values that are an order of magnitude larger than 
the actual values. More extensive testing of the GAM using a multivariate approach is 
needed to fine tune the GAM control parameters to deliver accurate and precise solutions at 
optimal speed for the least number of generations possible. Further extrinsic evolution of the 
GAM to extend its application to non Gaussian light sources is envisaged. This will enable 
the deconvolution of more realistic A-scans. This may provide the opportunity to give a 
more objective measure of sample layer characteristics to better inform physicians, assisting 
in their diagnosis and monitoring of particular tissue pathologies.  

Author details 

Paul Jansz, Steven Richardson, Graham Wild and Steven Hinckley 
School of Engineering, Edith Cowan University, Australia 

7. References 

Adie, S.G. (2007) Enhancement of Contrast in Optical Coherence Tomography: New Modes, 
Methods and Technology, University of Western Australia, PhD Thesis, Chapter 2, 10-
12. 

Drexler, W., Chen, Y., Aguirre, A., Povazay, B., Unterhuber, A., and Fujimoto, J.G. (2008) 
Ultrahigh resolution optical coherence tomography. Optical Coherence Tomography: 
Technology and Applications, W. Drexler and J.G. Fugimoto, Eds. Berlin: Springer-Verlag, 
239-279.  

Fercher, A.F. (1996) Optical coherence tomography, in Journal of Biomedical Optics, 1(2), 157-
173. 

Friebel, M., J. Helfmann, U. Netz, and M. Meinke. (2009) Influence of oxygen saturation on 
the optical scattering properties of human red blood cells in the spectral range 250 to 
2000 nm. Journal of Biomedical Optics, 14(3), 034001-1 – 6. 



 
Biomedical Engineering – Technical Applications in Medicine 386 

Hillier, F.S., and Lieberman, G.J. (2005), Introduction to operations research, McGraw Hill, 
New York. 

Izatt, J.A., Kulkarni, M.D., Kobayashi, K., Sivak, M.V., Barton, J.K., and Welch, A.J. (1997) 
Optical Coherence Tomography for Biodiagnostics, Opt. Photon. News, 41-47. 

Jansz, P.V., Wild, G., Richardson, S., and Hinckley, S. (2011) Simulation of optical delay lines 
for optical coherence tomography, Proc. IQEC-CLEOPR ACOFT, Sydney. 

Jansz, P.V., Wild, G., Richardson, S., Hinckley, S. (2012) Low coherence interferometry 
modelling using combined broadband Gaussian light sources. Proc. SPIE 8351 APOS, 
Sydney.  

Rossetti, M., Markus, A., Fiore, A., Occhi, L., and Velez, C. (2005) Quantum dot 
superluminescent diodes emitting at 1.3m. IEEE Photonics Technology Letters, 17(3), 541-
544. 

Shidlovski, V.R. (2008) Superluminescent diode light sources for OCT. Optical Coherence 
Tomography: Technology and Applications, W. Drexler and J.G. Fugimoto, Eds. Berlin: 
Springer-Verlag, 281-299. 

Unterhuber, A., Považay, B., Aguirre, A., Chen, Y., Kärtner, F.X., Fujimoto, J.G., and Drexler, 
W. (2008) Broad bandwidth laser and nonlinear optical light sources for OCT, in Optical 
Coherence Tomography: Technology and Applications, Drexler, W. and Fugimoto, J.G., Eds. 
Berlin: Springer-Verlag, 301-358. 


	Biomedical Image Signal Processing for Reflection-Based Imaging
	Biomedical Image Signal Processing for Reflection-Based Imaging

