
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Information Security Management
Conference Conferences, Symposia and Campus Events

11-30-2010

Detect and Sanitise Encoded Cross-Site Scripting and SQL Detect and Sanitise Encoded Cross-Site Scripting and SQL

Injection Attack Strings Using a Hash Map Injection Attack Strings Using a Hash Map

Erwin Adi
BINUS University, Indonesia

Irene Salomo
BINUS University, Indonesia

Follow this and additional works at: https://ro.ecu.edu.au/ism

 Part of the Information Security Commons

DOI: 10.4225/75/57b66ecc3477a
8th Australian Information Security Mangement Conference, Edith Cowan University, Perth Western Australia, 30th
November 2010
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ism/86

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/ism?utm_source=ro.ecu.edu.au%2Fism%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fism%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b66ecc3477a

Proceedings of the 8th Australian Information Security Management Conference

1 | P a g e

Detect and Sanitise Encoded Cross-Site Scripting and SQL Injection
Attack Strings Using a Hash Map

Erwin Adi and Irene Salomo
School of Computer Science

BINUS International – BINUS University, Indonesia
eadi@binus.edu, irene.salomo@gmail.com

Abstract
Cross-Site Scripting (XSS) and SQL injection are the top vulnerabilities found in web applications. Attacks to these
vulnerabilities could have been minimised through placing a good filter before the web application processes the
malicious strings. However adversaries could craft variations on the attack strings in such a way that they do not get
filtered. Checking through all of the possible attack strings was tedious and causes the web application performance to
degrade. In this paper, we propose the use of a hash map as a data structure to address the issue. We implemented a
proof-of-concept filter which we tested through an open-source web application to show that such filter could sanitise
some attack strings that otherwise were too tedious to detect. Our evaluation included comparing the proposed solution
with other existing ones such as prepared statements, input length limitation, white list and black list input validation;
our proposed solution performed the most efficient.

Keywords
Cross-Site Scripting, XSS, SQL injection, hash map, attack strings, web application vulnerabilities.

INTRODUCTION
Cybercrime already cost businesses $1 trillion globally in 2008 alone (Mills, 2009). It included lost of intellectual
property and expense to solve the problems. Hence, computer security cannot be considered as an insignificant issue
anymore; people start to realise the urgency of protecting their computer system, particularly in business areas where
every single failure in computer systems may result in financial loss worth hundreds to millions dollars, or bad
reputation.

Cross site scripting, also known as XSS, was the most likely web vulnerability and was found in 7 out of 10 web
applications (Grossman, 2007). The same source also showed that the Structured Query Language (SQL) injection attack
was the top 5 vulnerability and was found in 1 out of 5 web applications. The increasing risks of attacks attributed to the
above vulnerabilities were also prompted by available automated tools that enabled faster and much easier attacks. Even
without much knowledge about database or web programming, attackers could simply exploit these vulnerabilities, while
in the past attackers still used manual methods that required more effort and time.

There were some similarities on how to detect and prevent both XSS and SQL Injection vulnerabilities. The impact of the
attack could have been minimised through good programming practices and use of filter, or sanitisation process.
However, the existing solutions did not address how to detect encoded attack strings. Web browsers supported several
encoding mechanisms i.e., HTML, URL, UTF-7 encodings, etc. HTML encoding would encode character < into <
characters. As a result, when attacker tried to inject <script> as an XSS attack, input sanitisation would encode it into
<script> so that XSS attacks would not be successfully launched. The problems with this approach were (Auger,
Cross site scripting, 2009; Ollmann, n.d.; Stuttard & Pinto, 2008):

(i) Some sanitisations encoded or removed malicious strings in total. For instance a function removed an input
string if it read <script> tag; an attacker could bypass this function using <scr<script>ipt> tags.

(ii) Since most HTML and JavaScript codes were written in lowercase, some filters only encoded lowercase
characters. For instance, <scRIPt> might evade filters.

(iii) Some lower level programming treated null byte characters such as \0 or &00 as signs to end a sequence of
strings or to stop processing. On the contrary, higher level programming languages could interpret them as
regular inputs. This difference could let attackers escape sanitisation by injecting null byte character before
a malicious script.

(iv) Input strings from the user’s browser might be encoded differently to guarantee that varied data may be
transmitted safely over HTTP. Canonicalization was the process of converting or decoding data into a
common character set after that encoding process. If this canonicalization was completed after input
sanitisation process, an attacker could inject his scripts successfully by encoding them firstly. Examples
were %3cscript%3e or %253cscript%253e tags.

Proceedings of the 8th Australian Information Security Management Conference

2 | P a g e

In this paper, we proposed to use a hash map to detect encoded XSS and SQL injection attack strings. We proved that it
resulted in a more efficient way of detecting and sanitising the vulnerabilities through our experiment.

The remaining of this paper is arranged as follows. First, we discuss the existing solutions to detect and sanitise XSS or
SQL injection (or both). Then we propose our design and explain how we implement the design. We show our testing in
the Results section, which we then compare our results with the other solutions within the Evaluation and Discussion
section.

EXISTING SOLUTIONS
Prepared statement was one of those features in many web programming languages to manage its SQL statement.
Basically, application would obtain its SQL statement and execute it instantaneously. Prepared statement allowed
developers to separate processes between input parsing and database logic. It was used to set up an input statement first,
and then execute it many times with different parameters. SQL statements which were processed with this technique
would be precompiled first before executed by the database management system (Fisk, n.d.; Kabutz, n.d.; Wiegenstein &
Weidemann, 2007). Hence prepared statement was one of a method to prevent SQL Injection. Currently, popular web
programming languages support this concept: Java with PreparedStatement class, and PHP with PHP Data Objects
(PDO). Unfortunately, the improved performance happened only if that particular input statement was executed for
several times. Otherwise there would be a round trip to the server for both input parsing and executing the database logic,
and that made the technique cost more than the regular statement.

Generally, XSS attack strings required longer length of input string attacks than the normal input strings. Based on this
assumption, some web developers limited the permitted input length. However, this approach was not very flexible and
convenient for the users, especially when a longer input data (such as an address) was needed. Furthermore, some SQL
injection attacks did not need long attack strings. A determined attacker might penetrate this defense by shortening the
attack payload and removing unnecessary characters.

White list was a list of permitted or legal input strings in web applications. Any input that did not match any character on
the list would not be accepted. The problem with this solution was the complexity in constructing a good white list
(Presson, 2008; Wiegenstein & Weidemann, 2007). Web developers needed to exhaustively select what kind of
characters he should allow in his application because there were a vast number of words in the world from all human
languages. Furthermore, different type of input fields had different list of permitted inputs (e.g., phone numbers should
allow only numeric characters, while city names permitted only alphabet characters). A possible result of having an
inaccurate white list was to have a false positive alarm. It could be argued that a white list input validation did not deliver
an efficient solution to prevent SQL injection or XSS attacks.

One alternative solution to address the above problems was through using input sanitisation. This was a process of
transforming or sanitising original input strings into more secured strings before processing and outputting them. It was
assumed that all input strings may be malicious and the application needed to anticipate them in advance. The
transformation process usually involves encoding or decoding processes.

PROPOSED SOLUTION
We proposed to implement a hash map to detect the SQL injection and XSS attack strings. We tested our solution
through web applications that was run in our local server; hence we did not attack real websites.

We deployed a simple web application from http://gotocode.com/ that provided free, open source, and database-
connected web applications in various programming languages, like ASP, JSP, PHP, Perl, ColdFusion, and ASP.NET/C
#. Because of our familiarity with the language, we decided to deploy a Java Server Pages (JSP) web application of
Employee Directory as the attacked target to provide our proof of concept. The Employee Directory was a simple
application for administrator to store and manage all company’s department names. Some possible injection points
(called sources), in which attacks could be launch to this web application were through the login form, inserting
department form, and updating department form.

To provide a proof-of-concept for both SQL Injection and XSS attacks, we tried to inject malicious input strings into
those sources. The following are some injected input strings:

a. ' OR 1=1--
This input string tried to bypass authentication process for administrator because 1 = 1 is always true and --
symbols would comment all remaining SQL statements.

Proceedings of the 8th Australian Information Security Management Conference

3 | P a g e

b. ' or 1=1#
It had a similar purpose with the previous script. However we encoded the first character by using HTML
encoding and represented its ASCII code.

c. ' or 1=1#
This script also served the same purpose with the previous script, but the first character was encoded by using
HTML encoding without representing its ASCII code.

d. <script>alert('xss')</script>
This script could be considered as the most basic cross site scripting attack, it would pop up an alert dialog box
with “XSS” text.

e. <script>alert(document.cookie)</script>
This script would also pop up an alert dialog box with the value of current cookie element. However, we
encoded some characters in this strings using HTML encoding scheme. For example, < was encoded into <
and > was encoded into > in order to bypass certain input filtering.

f. <img src=script:A L

ERT('Q')/>
This script was encoded by using HTML encoding and represented by ASCII numbers. We injected this script
in the inserting department form. A successful result would put an image icon in the list of the departments.

g. <table><tr><td>Lo</td><td><input type=text length=20>
This input string would generate an input text field in which other users could insert data in the form, as if it
were a legitimate input field of the web application.

h. ?><ScRiPt>alert('xss')</ScRiPt>
This script would produce a similar result with script (c), but we tried to circumvent input filtering by initiating
script with the ‘?’ sign, and used some capital letters.

As the victim was implemented in Java, we understood that the language itself provided a HashMap object in its library.
Hence we constructed a filtering code using this language. We would explain the implementation process in two parts:
module implementation and integrated implementation.

In the module implementation, we constructed a stand-alone filter application that had not been integrated with the web
application. This was to ensure that all logic and procedure in input filtering and sanitisation were accurately
implemented, before it was run in conjunction with the web application. Constructing the most complete input filtering
list was not the main objective of this study.

Hash table algorithm works by associating keys and their values in one-to-one mapping. There were two available
objects that followed this algorithm in Java: the HashMap class and the Hashtable class. We decided to choose the
HashMap class instead of the Hashtable class. HasMap was more efficient for us since it was not synchronized. Although
the input filter we constructed might be accessed by multiple clients, it would be managed and modified by a single
thread only. Therefore it did not need synchronized class. On the other hand, Hashtable was synchronized, would
consume more resources and would compromise the performance.

Most of the defined malicious characters were stored into the HashMap as hash keys, while their encoded formats were
defined as hash values.

During the integrated implementation phase, we integrated the input filtering module with the web application. Input
validation and sanitisation was applied in common.jsp file since the all other functions called the sanitisation process
code in the file. The sanitisation process modules were:

a. String toSQL(String value, int type)

This method would accept SQL input strings, including the malicious one.

b. boolean checkParam(javax.servlet.http.HttpServletRequest req, String tainted)

Proceedings of the 8th Australian Information Security Management Conference

4 | P a g e

This method would accept HttpServletRequest’s object that hold user request’s input strings, and then stored that
object in a tainted variable called param. In addition, it would call the hash map as explained in our module
implementation. The hash map contained a list of malicious characters for the first input filtering process. This
method would notify web application whether the tainted variable contained malicious characters or not.

c. boolean replaceParam(String untainted)
If the checkParam method discovered that the tainted variable contained malicious character and it needed to be
reflected to the users, this method would be called first to sanitise all input strings inside the tainted variable.
Therefore this method would produce untainted variable that would be reflected to the users.

We implemented our filtering mechanism within the above methods. The sanitisation process used the hash map as the
look-up table. The following snippet of code showed the initializing process of the hash map as a look-up table:

HashMap hash_filter = new HashMap(100, 0.75f);
hash_filter.put("<", "<");
hash_filter.put(">", ">");
hash_filter.put("\"", """);
hash_filter.put("&", "&");
hash_filter.put("&", "&");
hash_filter.put("!", "!");
hash_filter.put("\\", "\");
hash_filter.put("#", "#");

The sanitation logic worked through replacing the malicious character with its encoded format and appending it to the
other safe characters. We named the web application version that implemented this filter as “secured”, compared to its
“unsecured” counterpart.

RESULTS
To test this input filtering and sanitisation functions, we injected some scripts and their encoded formats into the web
applications and compared the result between the secured and the unsecured application. Table 1 shows the testing result.

Table 1. Comparison Testing Result from Unsecured and Secured Application
Injected Script Sources Sink Result from

Unsecured
Result from

Secured

' or 1=1# Login form SQL function Successful Unsuccessful

' or 1=1# Login form SQL function Unsuccessful Unsuccessful

' or 1=1# Login form SQL function Unsuccessful Unsuccessful

<script>alert('xss')</script> Inserting
department form Reflecting to users Successful Unsuccessful

<script>alert
(document.cookie)</script>

Inserting
department form Reflecting to users Successful Unsuccessful

<img src= s ;c r
ipt:A
L#69;RT('
;Q')/>

Inserting
department form Reflecting to users Successful Unsuccessful

<table><tr><td>lo</td></tr><input
type=text length=20>

Inserting
department form Reflecting to users Successful Unsuccessful

?><ScRiPt>alert('test')</ScRiPt>" Inserting
department form Reflecting to users Successful Unsuccessful

The table shows that most scripts and their encoded format could be injected successfully to launch SQL Injection and
Cross Site Scripting attacks towards the unsecured web application. The hash map input filtering and sanitisation
functions could prevent both attack by filtering and sanitisation the malicious characters into legal input strings.

Proceedings of the 8th Australian Information Security Management Conference

5 | P a g e

EVALUATION AND DISCUSSION

In this part, we compared the result with some other existing and possible solutions. Our experiment implemented
HashMap as the data structure in the lookup table to filter all malicious characters and to sanitise them. Table 2 below
shows HashMap was the most appropriate searching algorithm according to our study, compared with other algorithms,
such as linear search, binary search trees, heaps, and brute-force search. It had a good running time which was O(1).

Table 2. Search Algorithm Comparisons

Algorithm Name Running Time Usage Evaluation

Linear search
O (n) To search an array or list by

checking items one at a time
sequentially.

It is not very efficient to iterate
all elements

Binary search trees
O (h), where h
is the height of
tree

To search a binary tree where every
node’s left subtree has keys less than
that node’s key

All elements in tree must be
sorted first, so it may take extra
time and resources

Heaps

O log (n)

To search a binary tree with child
node that is always smaller than its
parent node.

All elements in tree must be
sorted first according to heap’s
properties, so it may take extra
time and resources.

Brute-force search

O (2n)

To systematically enumerate all
possible candidates for the solution
and checking whether each candidate
satisfies the problem's statement.

It is simple to implement, yet its
cost may grow quickly as the
size of problem increases

HashMap

O (1)

To search a table that contains
mapping between unique keys and
their own values.

All elements are not necessary
to be sorted and enumerated.
Instead, a key or value is
sufficient to locate an element.
Besides, it can be easily
implemented.

Comparison with Prepared Statement
Prepared statement was a common strategy to prevent SQL Injection. However, if the query statement would not be
necessarily executed several times, this solution cost more than regular statement since there would be round trips to the
database server, to process both input parsing and executing database logic. In addition, it could only prevent SQL
Injection, and not Cross Site Scripting.

Unlike prepared statement, these HashMap–based input filtering and sanitisation functions could prevent both SQL
Injection and Cross Site Scripting. It did not filter and sanitise input in the database server, thus there was no round trip to
the database server.

Comparison with Attribute Length Limit of User Input Strings
Unlike attribute length limit, our input filtering and sanitisation functions did not limit the number of characters that the
user inserted. No matter how long those input strings were, our design would filter and sanitise them. Therefore, this
proposed solution was more flexible for the web application. Moreover, determined attackers normally had many
strategies to shorten their injected input strings; hence good programming practices should not assume that limiting input
length could bypass all malicious input strings.

Proceedings of the 8th Australian Information Security Management Conference

6 | P a g e

Comparison with White List Input Validation
It was elaborative to construct a good white list to validate input because of the vast range of human languages. Hence
we actually implemented a black list input validation solution by constructing a mapping between malicious characters
and their encoded formats; we applied the black list technique as a sanitisation solution. The benefit of this approach was
that certain input strings could still be displayed to the users after being sanitised, instead of rejecting them completely.

Comparison with Black List Input Validation
Black list input validation consisted of all malicious characters which should not be allowed in a web application. This
solution was much easier and more flexible than white list input validation as programmers did not need to know all
possibilities of user supplied input strings. Instead, they would construct a list of malicious input strings. However,
attackers could bypass this validation and sanitisation solutions by many methods, including encoding and varying input
strings (Auger, Improper input handling, 2010) (Wheeler, 2003).

Although our proposal also implemented a black list input validation solution, it attempted to anticipate the attackers’
strategy. In our implementation, the HashMap’s keys consisted of both malicious characters and their encoded formats
that were mapped with their encoded formats and malicious characters as well. For instance:

hash_filter.put("&", "&");
hash_filter.put("&", "&");

As a comparison, other existing input filtering and sanitisation functions implemented linear search algorithm. As an
example, this following snippet of code was a sanitisation function provided by GotoCode (http://gotocode.com/).

String toHTML(String value) {
 if (value == null) return "";
 value = replace(value, "&", "&");
 value = replace(value, "<", "<");
 value = replace(value, ">", ">");
 value = replace(value, "\"", "&" + "quot;");
 return value;
 }

Therefore, our proposed solution could improve the existing black list input validation. Instead of iterating entire
available filtering and sanitisation criteria, our filtering and sanitisation functions would locate certain entries by using
their keys since hash map had mappings between keys and their values. No matter how many criteria a filtering had, it
only needed to access this hash map table once by using the given key.

We encountered some obstacles during the development. First, we found that there were too many possible types of input
strings to launch SQL Injection and XSS attacks. It was impossible to include all of them. However, the purpose of our
study was to provide a proof-of-concept implementation of our design: to provide a simple and fast solution that
addressed the problem of handling the variation of the attack strings.

Second, different web browsers might show different results towards the same security attacks. In the beginning we used
three different web browsers: Internet Explorer 6.0, Mozilla Firefox 3.6.3, and Google Chrome 4.1. In fact each of them
had different vulnerabilities and therefore each showed different reactions to the problem. This made us difficult to trace
back if a problem was caused by the browser, or if it was caused by our ineffective solution. Therefore we finally focused
more on Mozilla Firefox.

CONCLUSION AND RECOMMENDATIONS
In our proof-of concept experiment, we have shown that a HashMap was able to provide an easy to implement, a fast
running time sanitisation function to detect encoded SQL injection and XSS attack strings. To implement our proposal
into a more general practice, one needs to develop libraries or plug-ins for input filtering and sanitisation functions that
can be used transparently by web developers. For instance, web developers could call a Java library or PHP built in
function htmlentities() without having to be aware that sanitisation has occurred.

Finally, there is an open possibility that the efficiency of the HashMap operation could be optimized as the attack factor
grows. In Java, there are two factors that affect the efficiency of a hash algorithm: the initial capacity and the load factor.
These are initialized during the call to the constructor. Because we have already shown that a hash map can be
implemented in input filtering and sanitisation functions, future research can focus on how to optimize this algorithm.

Proceedings of the 8th Australian Information Security Management Conference

7 | P a g e

REFERENCES

Auger, R. (2009, 12 30). Cross site scripting. Retrieved June 1, 2010, from The Web Application Security Consortium:
http://projects.webappsec.org/Cross-Site+Scripting

Auger, R. (2010, January). Improper input handling. Retrieved June 1, 2010, from The Web Application Security
Consortium: http://projects.webappsec.org/Improper-Input-Handling

Fisk, H. (n.d.). Prepared statements. Retrieved June 1, 2010, from MySQL developer zone:
http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html

Grossman, J. (2007, October). WhiteHat website security statistics report. Retrieved March 8, 2010, from WhiteHat
Security: http://www.whitehatsec.com/home/assets/WPStatsreport_100107.pdf

Kabutz, H. M. (n.d.). Closing database statements. Retrieved June 1, 2010, from Javaspecialists.eu:
http://www.javaspecialists.eu/archive/Issue116.html

Mills, E. (2009, January). Study: Cybercrime cost firms $1 trillion globally. Retrieved March 8, 2010, from Cnet News:
http://news.cnet.com/8301-1009_3-10152246-83.html

Ollmann, G. (n.d.). HTML code injection and Cross-site scripting: Understanding the cause and effect of CSS (XSS)
vulnerabilities. Retrieved June 1, 2010, from Technical Info: Making sense of security:
http://www.technicalinfo.net/papers/CSS.html

Presson, M. (2008, May 2). White list input validation, where it becomes hairy. Retrieved June 2, 2010, from Coding
insecurity: General guidance on how to make your applications more secure: http://coding-
insecurity.blogspot.com/2008/05/whitelist-input-validation-where-it.html

Stuttard, D., & Pinto, M. (2008). The web application hacker's handbook. Indianapolis, IN: Wiley Publishing, Inc.
Wheeler, D. (2003, October). Secure programmer: Validating input. Retrieved June 10, 2010, from IBM Website:
http://www.ibm.com/developerworks/linux/library/l -sp2.html

Wiegenstein, A., & Weidemann, F. (2007, November 2). Input validation is no silver bullet against hacker attacks.
Retrieved June 1, 2010, from Virtualforge: We harden your software:
http://www.virtualforge.de/whitepapers/input_validation.pdf

	Detect and Sanitise Encoded Cross-Site Scripting and SQL Injection Attack Strings Using a Hash Map
	7th Australian Information Security Conference

