
Edith Cowan University
Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

2011

Can current packet analysis software detect
BitTorrent activity or extract files from BTP and
μTP traffic streams?
William Pung
Edith Cowan University

Andrew Woodward
Edith Cowan University

10.4225/75/57b2c14440cf0
Originally published in the Proceedings of the 9th Australian Digital Forensics Conference, Edith Cowan University, Perth Western Australia, 5th -7th
December 2011
This Conference Proceeding is posted at Research Online.
http://ro.ecu.edu.au/adf/100

http://ro.ecu.edu.au
http://ro.ecu.edu.au/adf
http://ro.ecu.edu.au/conference
http://dx.doi.org/10.4225/75/57b2c14440cf0

93

CAN CURRENT PACKET ANALYSIS SOFTWARE DETECT
BitTORRENT ACTIVITY OR EXTRACT FILES

FROM BTP AND µTP TRAFFIC STREAMS?

William Pung, Andrew Woodward
secau Security Research Centre, School of Computer and Security Science

Edith Cowan University, Perth, Western Australia
wpung@our.ecu.edu.au; a.woodward@ecu.edu.au

Abstract
BitTorrent is a peer to peer file sharing protocol used to exchange files over the internet, and is used for both
legal and illegal activity. Newer BitTorrent client programs are using proprietary UDP based protocols as well
as TCP to transmit traffic, and also have the option of encrypting the traffic. This network forensic research
examined a number of packet analysis programs to determine whether they could detect such traffic from a
packet captures of a complete file transmitted using one of four protocol options. The four states examined were:
TCP without encryption, TCP with encryption, µTP without encryption and µTP with encryption, and the six
programs investigated were: Network Miner, Tcpxtract, Honeysnap, OpenDPI, Netwitness Investigator and
SPID. Of the six programs investigated, none of them were fully able to fully reconstruct a file, with most not even
able to detect that the traffic related to BitTorrent usage. The Netwitness Investigator program was able to
extract the announce and scrape files. The signature based SPID was able to partly match TCP based torrent
traffic, but could not identify µTP traffic. The conclusion is that until new tools are developed, forensic
investigators must continue to rely on artifacts created by the BitTorrent clients themselves in order to locate
evidence in the event that a crime has been alleged.

Keywords

BitTorrent, packet analysis, deep packet inspection, μTP

INTRODUCTION
BitTorrent technology modified the modus operandi of peer to peer (P2P) file sharing by decentralizing the
server or central connecting node to the users themselves. Previously, P2P file sharing applications such as
Napster were based on a client-server architecture which relied upon indexing servers to locate files (Hughes &
Lang, 2005). Whilst some of this activity is legal, there is a percentage of P2P traffic which trades in material
which is considered both illegal and unwanted, such as child exploitation images (Thomas, J.T., personal
communication, October 11 2011). The major advantage to law enforcement and other authoritative bodies of
these technologies is that these servers are fairly easily identified and neutralised and thus, not a viable means to
share files such as unlicensed media or other malicious software. It was inevitable that a replacement technology
would emerge to make the task of censoring or stopping such activity more difficult. BitTorrent operates on a
pure client-client platform that does not breakdown due to nodes being shut down by governing bodies, and has
since been the file sharing application of choice for many users for some time. BitTorrent clients log all their
activity and store significant evidence in relation to downloaded and shared files, and physical seizure of a
suspect computer will yield such evidence (Woodward, 2008; 2009). There has also been research conducted
into discovering forensic evidence the purposes of copyright infringement for P2P file sharing, but this also
relies on interrogation of the user device (Kokkinen & Noyranen, 2009). There appears to be no evidence in the
literature in relation to exploring the traces that the BitTorrent traffic may reveal, nor is there evidence of the
files themselves being extracted from a network stream through packet capture and reassembly.

The objective of this paper is to determine whether common network tools and well known network monitoring
suites have the ability to correctly identify and/or reconstruct data based on PCAPs containing full downloads of
a certain file. Results may vary from tool to tool as some of them do not support torrents fully, while some of
them claim to do so. This paper looks at traditional TCP BitTorrent packets and the new μTP in terms of
network forensics to determine files can be carved from captured packets or packet history. Also, the effect of
encryption on both streams of traffic and how it obscures file mining was investigated. A total of four PCAP
files were produced, and these files were then scrutinised using various well known applications and results
studied and analyzed for two main characteristics: detection of BitTorrent activity and the ability to carve data
out of these PCAP files.

94

BITTORRENT BACKGROUND
The BitTorrent protocol, also known as BTP, was conceived with the objective of relieving uploading load on
file servers serving large files, by distributing it across its simultaneous downloaders. This was based on the
belief that clients do not utilize their upload capacity while downloading a file, hence not putting the client at any
disadvantage. Furthermore, this protocol allows efficient file publishing without the support of a large
infrastructure, enabling smaller organizations to publish with minimal overhead or administrative burden
(Fonseca, Reza, Fjeldsted, & DIKU, 2005).

Download methodology

The BTP specification states that torrent content is divided into pieces and is simultaneously requested and
received via a piece selection strategy, which requests for the rarest pieces from the cloud to reduce wait time on
missing pieces. (Fonseca, et al., 2005)This technique effectively shuffles up the content’s download sequence
and receives them in parallel, rather than a traditional FTP sequential file transfer in circuit. This is akin to
parallel fetching of a file from a FTP server via multipart downloading; just that BTP has increased complexity
due to multichannel and multipart weaved into each other and its file source are peers from the cloud.

Encryption

In the light of severe bittorrent traffic throttling on ISP ends, the developers of Azureus (now known as Vuze),
designed and implemented an encryption standard to obfuscate and encrypt traffic to conceal itself from prying
listeners. This is further rectified and implemented into Vuze and uTorrent as ‘Protocol Encryption (PE)’. PE
primarily utilizes Diffie-Hellman public key cryptography for encryption, under RSA’s standard. (Mennecke,
2006)

µTP specification

μTorrent transport protocol (μTP), introduced in June 2009 was an alternative protocol to TCP when dealing
with bittorrent. The significant change lies in the utilization of UDP instead of TCP that BTP utilizes. μTP was
introduced with efforts of not disrupt internet connections, while still utilizing the unused bandwidth fully when
downloading files via bittorrent. (Norberg, 2009)

Effects on file mining

Since the conception of BTP, network forensics on bittorrent traffic has been a stalemate. There have been no
new tools to fully explore the potentials of data recovery via packet captured files. Since files have been
transported in jumbled sequences and multiple sources chipped into the construction of a single file, traditional
network mining tools have not been able to reconstruct this traffic type, nor are they able to correctly identify
them. Moreover, clients have the option to encrypt their traffic with PE, further evading scanners and file miners.

MATERIALS AND METHODS

Materials

A number of network forensics tools have been gathered to analyze packet captures. These tools were selected as
they are commonly used and provide a range of different characteristics in terms of their analysis engines. All of
the tools, with the exception of OpenDPI have one function in common, that is the ability to read PCAP files and
extract files from it. The six programs usd in this research were as follows:

Network Miner V1.0 (http://sourceforge.net/projects/networkminer/)
This Windows based GUI tool offers simplicity in its usage, the application will process the loaded PCAP file
and display any information that it discerns. Network miner is capable of file reassembly via deep packet
inspection (DPI), this added advantage may be of use in the experiment.(Hjelmvik, 2009a)

Tcpxtract 1.0.1 (http://sourceforge.net/projects/tcpxtract/)
This Unix based tool captures all data streams within a PCAP file, and splices them out, dumping data in
sequence of discovery.

Honeysnap 1.0.7 (http://www.honeynet.org/project/Honeysnap/)
This is a tool spawned off the Honeynet project that parses PCAP files and identifies significant events within
the processed data. It creates a folder named analysis and dumps parsed results into it, including dumps and
statics such as flow contents, incoming/outgoing TCP and UDP connection logs.

95

OpenDPI 1.2 (http://www.opendpi.org/)
OpenDPI is a deep packet inspection (DPI) engine released as open source by a network security company
‘IPOQUE’. As stated in its Protocol and Application Classification Engine’s (PACE) white paper, it supports the
following protocols and applications that are of concern in this experiment (ipoque GmbH, 2011).

� BitTorrent
� BitTorrent-plain
� BitTorrent-encrypted
� µTorrent 2.2

Netwitness Investigator 9.5.5.6 (http://www.netwitness.com)
Carrying on with DPI technology, Netwitness has released a free version of their award winning Investigator.
Investigator is an interactive threat analysis application of the Netwitness enterprise of network monitoring
platforms (EMC Corporation, 2011).

SPID Algorithm Proof of Concept Application

(http://sourceforge.net/apps/mediawiki/spid/index.php?title=Main_Page)
This proof of concept open source tool compares captured traffic against pre calculated models in order to
classify or categorise the traffic according to its protocol. This program uses a fingerprint system, similar to other
pattern based algorithms used in intrusion detection and antivirus software (Hjelmvik, 2009b).

Method

A Windows XP SP3 machine will be prepared in a form of a Virtual Machine, with μTorrent installed in it.

Steps

1. Wireshark will be capturing all traffic from the virtual machine

a. Capture filter set to VM’s address only

2. On the virtual machine, OpenOffice will be downloaded via μTorrent with settings as below

a. TCP without encryption

b. TCP with encryption

c. μTP without encryption

d. μTP with encryption

3. Separate packet captures from Wireshark will be saved for each permutations of Step 2.

4. These PCAP files were then analysed using each of the forensic tools listed in Table 1

Standalone tools with single operation usage such as Network Miner, TcpXtract will be used first, for its lack of
complexity in obtaining results. These tools will provide the base coverage and knowledge on the PCAP files
obtained through a linear workflow.

Next, complete analysis toolkit Honeysnap will be used to gain more knowledge from different points of views.

Lastly, tools and suites providing Deep Packet Inspection will be used. This will shed light on the internals of the
PCAP, especially those that are encrypted.

RESULTS
As can be seen in Figure 1, SPID proved to be very close to its DPI counterparts in identifying torrent streams,
despite not being able to calculate the data behind its identified streams. However, no tool was able to detect
torrent streams when data obfuscation (encryption) or usage of UDP (μTP) was employed.

Data analysis reveals that the most detected/mined traffic is of TCP without encryption, followed by TCP with
encryption. The protocol μTP without encryption was the third most detectable, and μTP with encryption was
the least detectable protocol. This proves that most tools are tuned to seek out and tag TCP traffic with specific
signatures as bittorrent protocol. However, efficiency plunges when an entirely different protocol is used,
although still adhering to the general Bittorrent Protocol. Data obfuscation via encryption worsens the detection
rate even further, dropping to near 0 in cases of DPI and SPID algorithms.

96

All these statistics does not seem to matter, when reaching the apex of this experiment. None of these tools offer
a completely unscrambled or decoded file. Although entire PCAPs were captured with a full download of a
torrent file, these tools were unable to reconstruct its contents. At best, the tools were able to identify but a chunk
of the required raw data, further arrangement of data pieces was not possible.

Figure 1: Summary of results for an investigation into the ability of six packet analysis programs to extract

complete files from a BitTorrent packet capture file.

Network Miner
It was observed that this tool was unable to grasp the internals of the provided PCAPS. However, it was able to
pick up other characteristics such as DNS queries, Host addresses and total number of sessions. No recognizable
files have been identified by Network Miner; hence none are displayed in the Files tab. Unfortunately, this tool
is not able to display streams of data. It is possible that although it detects raw data in its TCP/UDP streams, it is
unable to correctly thumbprint the files, therefore it did not display any.

Tcpxtract
Tcpxtract was unable to construct a single meaningful file from the provided PCAP files. It appears that these
mined files were extracted from various streams of TCP traffic without any effort to piece them together (No
support for torrent traffic). This simple tool reconstructs files based on simple file signatures from single
streams. Therefore it was not coded to parse torrent traffic at all, additionally, all carved files contained raw data
and had been wrongly assigned extensions.

Honeysnap
From the sample extract of a file dump, it is observed that although data flows can be identified by Honeysnap it
is also, like tcpxtract, unable to decipher torrent traffic. This results in large numbers of file when dumped.
Moreover, it is also observed that encryption obfuscates much data, causing less number of recognizable data
streams.

OpenDPI
Test results put the white paper’s claims to the test indeed; only TCP without encryption was identified, while
the other 3 have slipped past its scanners unscathed. This shows that so far, only Deep Packet Inspection has
managed to correctly identify bittorrent traffic, let alone uTP, which remains fully obscure. However, with
encryption, even TCP is able to evade this DPI’s engine.

SPID Algorithm Proof of Concept Application
This application does nothing more than to identify protocol within a PCAP file. Although simplistic looking,
this algorithm is praiseworthy as it does not perform DPI to differentiate files. SPID determines a PCAP’s

Network
Miner

Tcpxtract Honeysnap OpenDPI
Netwitness
Investigato

r

SPID
Algotithm

POC
application

TCP w/o encryption 0 115.38 120.64 152 87.88 0

TCP w/ encryption2 0 25.42 111.72 0.008 0.006 0

uTP w/o encryption 0 80.65 18.42 17.68 19.93 0

uTP w/ encryption2 0 40.71 21.46 0.005 0.002 0

0
20
40
60
80

100
120
140
160

D
et

ec
te

d/
M

in
ed

 d
at

a
in

 M
B

Total Detected/Mined torrent traffic

97

protocol based on pattern matching of its headers and flow; as depicted in the above figure, the stream tagged
Bittorrent has matching signatures up to 34.25%.

Netwitness Investigator
These results show that Netwitness Investigator ‘s DPI engine is similar to OpenDPI’s in that it was only able to
detect plain TCP traffic, while the other 3 variations went undetected. However, it was able to pick up announce
and scrape files which are used in torrent information transactions.

Further analysis of information extracted by Netwitness Investigator

As Netwitness Investigator was able to extract both the announce and scrape files, which are used to initiate the
association of the user’s machine with the peer cloud, further analsyis was warranted in order to dsetermine
whether there was any forensically viable evidence. The contents of the extracted file are shown in Figure 2 as
follows:

GET
/announce?info_hash=%ad%1dq%a3%0b%40%9e%28%ca%3f%b9%bb%93%2f%3e%a7%18q%b3%f
a&
peer_id=-UT2210-
%d6bBQ%d0%de1%f0%f7v%17%e6&port=34044&uploaded=0&downloaded=14343
2120&left=0&corrupt=0&key=88AE4C54&event=completed&numwant=200&compact=1&no_peer
_
id=1&ipv6=fe80%3a%3a20c%3a29ff%3afe15%3a25db HTTP/1.1
Host: core-tracker.enlist-a-distro.net:9800
User-Agent: uTorrent/2210(25302)
Accept-Encoding: gzip
Connection: Close

Figure 2: Information extracted from a BitTorrent packet capture by Netwitness Investigator

It was possible to reverse engineer a hash figure of the content file from the above announce file.

The info_hash is SHA-1 hash of the info dictionary in bencoded format.

You have to get the info dictionary part of the file in order to compute its hash. Assuming you have access to a
bencode encoder and decoder you could:
� decode the whole file
� take the info dictionary part of it
� re-encode it for hashing. (Jasmin, 2010)

Therefore, info_hash extracted from the announce file would be the following:

info_hash=%ad%1dq%a3%0b%40%9e%28%ca%3f%b9%bb%93%2f%3e%a7%18q%b3%fa

Using Python ‘s urllib to reverse the URL encoded binary hash into a HEX hash, yields a hexadecimal
representation of the torrent data (Figure 3), which can then be further converted into plain text (Figure 4).

Figure 3: Hexadecimal information extracted from a BitTorrent packet capture by Netwitness Investigator

98

Figure 26: BEncode Editor - Hashing Figure 27: BEncode Editor - hash value

Figure 4: Decoded bencode data extracted from a packet capture of a BitTorrent file download showing the
name of the file and its associated hash value

DISCUSSION
Having analyzed the results from the selected tools, it is clear that all of them use a signature based matching
algorithm. Even DPI uses content matching at the start of streams to determine traffic type. Although μTP has
been around for over a year, no modification of current DPI engines appears to have taken place, and thus this
protocol is not being detection by these tools. Unless an update is applied to the engine, the monitoring system
will be of no value in relation to detection of BitTorrent traffic. Another inherent hurdle is the nature of
BitTorrent content request in itself. A multi-piece parallel download approach as described in the RFC shuffles
the sequence of raw data. Downloading from many peers simultaneously hurts the recomposing process even
more.

As for file carving from network captures, according to Damaye (Personal communication, June 2011), no tool
exists that could recompose torrent content as at the time of writing. He commented that it may be possible to do
so, however, thorough knowledge of the RFC is necessary to write such a tool. Still, a problem lies in the
existence of encryption; if one does not have the keypair, it will be difficult to recompose its contents.

Even though it is possible to decipher a SHA1 of a torrent’s contents it is still impossible to identify it solely
from the announce file alone: a match must still be made with the original torrent file. This may seem to be a
hurdle to cross when only network traffic is available. Unless the host machine is in custody and torrent files
been found on it, it will be difficult to determine what he/she has downloaded. Another option is to correctly
identify and carve out the .torrent file itself from the traffic capture preceding the actual torrent content
download (if any), then using it as the associating end to match data against.

Moving on to the future, as Internet Service Providers catch up with BTP’s evolutions and begin throttling
traffic, more evasion techniques will be born ‘out of necessity’ from the peer to peer file sharing community,
much like uTP is today. Investigators not only need to first, identify BitTorrent traffic, he also has to associate
them with other evidences found elsewhere. An intelligent investigator need not be on the cutting edge of
technology to fight fire with fire, but to wisely connect the dots with given information.

Although this study focused on identification of traffic from an evidentiary perspective, there is another issue
raised by this research. Given that some of the files transferred using BitTorrent are illegal in nature, and
certainly highly undesirable, the Australian Federal Government has expressed its intention to filter all internet
traffic into and out of Australia. Whilst the currently proposed mechanism for such filtering would be URL
based, there is also anecdotal evidence that DPI based technology would be employed in order to classify and
potentially block unwanted traffic. Whilst the exact mechanisms used by such devices are proprietary, it seems
that use of such technology is unlikely to achieve the Governments aims, given that such software based
implementations as tested in this research were unable to detect BitTorrent traffic when encryption or the μTP
protocol was used.

99

CONCLUSION
It is conclusive that, no matter which tool was used, a complete reconstructed file was not able to be dumped.
Detection of clear TCP torrent traffic was difficult in itself; stateful, deep packet inspection techniques employed
by Network Miner and Netwitness Investigator were also unable to fully detect even clear TCP traffic. Only
OpenDPI was very much attuned to the detection of clear TCP traffic, other than that, it suffered the same
detection flaws as any other tool. Apart from DPI, SPID algorithm was used in hopes of detecting traffic. This
algorithm does not scan deep into the packet to uncover contents, however, it analyzes flows and payload
statistics. Still, the algorithm is not perfect.

Future research will endeavour to examine hardware based DPI solutions to determine whether such
technologies are capable of detecting all formats investigated in this research. Namely, TCP and μTP, both
encrypted and unencrypted.

REFERENCES
EMC Corporation. (2011). Investigator. Retrieved from http://www.netwitness.com/products-

services/investigator

Fonseca, J., Reza, B., Fjeldsted, L., & DIKU. (2005). BitTorrent Protocol -- BTP/1.0. Retrieved from BitTorrent
Protocol -- BTP/1.0 website: http://jonas.nitro.dk/bittorrent/bittorrent-rfc.html#anchor1

Hjelmvik, E. (2009a). Nothing but Network Forensics. Retrieved from
http://www.dfrws.org/2009/challenge/hjelmvik.pdf

Hjelmvik, E. (2009b). SPID Algorithm Proof-of-Concept. Retrieved from http://sourceforge.net/projects/spid/

Hughes, J., & Lang, K. R. (2005). Peer-to-Peer Filesharing Systems for Digital Media. In Pagani, M. (Ed.),
Encyclopedia of Multimedia Technology and Networking. (pp. 807-813). ipoque GmbH. (2011).
Supported protocols and application. Retrieved from
http://www.ipoque.com/sites/default/files/mediafiles/documents/data-sheet-protocol-support.pdf

Jasmin, A. (2010). How To Calculate Torrent Info Hash In VB6. Retrieved from
http://stackoverflow.com/questions/4044733/how-to-calculate-torrent-info-hash-in-vb6

Kokkinen, H., & Nöyränen, J. (2009). Forensics for Detecting P2P Network Originated MP3 Files on the User
Device Forensics in Telecommunications, Information and Multimedia. In M. Sorell (Ed.), (Vol. 8, pp.
10-18): Springer Berlin Heidelberg.

Mennecke, T. (2006). BitTorrent End to End Encryption and Bandwidth Throttling - Part I. Retrieved from
http://www.slyck.com/news.php?story=1083

Norberg, A. (2009). uTorrent transport protocol. Retrieved from http://bittorrent.org/beps/bep_0029.html

Woodward, A. (2008). What Artefacts do Current BitTorrent Clients Leave Behind? In Proceedings of the 2008
International Conference on Security & Management (SAM '08)

Woodward, A. (2009). Do Current BitTorrent Clients Running on Windows 7 Beta Leave Behind Meaningful
Data? In Proceedings of the 2009 International Conference on Security and Management (SAM'09)

	Edith Cowan University
	Research Online
	2011

	Can current packet analysis software detect BitTorrent activity or extract files from BTP and μTP traffic streams?
	William Pung
	Andrew Woodward

	7th Australian Digital Forensics Conference

