
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2012 

1-1-2012 

Real-Time Evolutionary Learning of Cooperative Predator-Prey Real-Time Evolutionary Learning of Cooperative Predator-Prey 

Strategies Strategies 

Mark Wittkamp 

Luigi Barone 

Philip Hingston 
Edith Cowan University 

Lyndon While 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2012 

 Part of the Computer Sciences Commons 

This is an Author's Accepted Manuscript of: Wittkamp, M., Barone, L., Hingston, P. F., & While, L. (2012). Real-Ttme 
Evolutionary Learning of Cooperative Predator-Prey Strategies. Proceedings of The 35th Australian Computer 
Science Conference (ACSC) 2012. (pp. 81-90). Melbourne, Australia. Australian Computer Society Inc. Available 
here 
This Conference Proceeding is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2012/122 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2012
https://ro.ecu.edu.au/ecuworks2012?utm_source=ro.ecu.edu.au%2Fecuworks2012%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks2012%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dl.acm.org/citation.cfm?id=2483664


Real-time Evolutionary Learning of Cooperative Predator-Prey
Strategies

Mark Wittkamp1 Luigi Barone1 Phil Hingston2 Lyndon While1

1 School of Computer Science and Software Engineering
University of Western Australia,

Crawley, Western Australia
Email: {wittkamp,luigi,lyndon}@csse.uwa.edu.au

2 School of Computer and Security Science
Edith Cowan University,

Mount Lawley, Western Australia
Email: p.hingston@ecu.edu.au

Abstract

Despite games often being used as a testbed for
new computational intelligence techniques, the ma-
jority of artificial intelligence in commercial games is
scripted. This means that the computer agents are
non-adaptive and often inherently exploitable because
of it. In this paper, we describe a learning system de-
signed for team strategy development in a real time
multi-agent domain. We test our system in a prey and
predators domain, evolving adaptive team strategies
for the predators in real time against a single prey
opponent.

Our learning system works by continually training
and updating the predator strategies, one at a time
for a designated length of time while the game us be-
ing played. We test the performance of the system for
real-time learning of strategies in the prey and preda-
tors domain against a hand-coded prey opponent. We
show that the resulting real-time team strategies are
able to capture hand-coded prey of varying degrees of
difficulty without any prior learning. The system is
highly adaptive to change, capable of handling many
different situations, and quickly learning to function
in situations that it has never seen before.

Keywords: evolution, learning, multi-agent, predator-
prey

1 Introduction

Games are often used as test-beds to further the de-
velopment of computational intelligence techniques.
They are suitable for this task because they involve
similar problems to those encountered in real life, but
are simpler and more clearly defined, generally with a
well understood goal. Video games present a partic-
ularly interesting problem domain in that they typ-
ically have a far greater number of actions available
for players to make and these actions have tempo-
ral significance. The development of adaptive be-
haviour using opponent modeling with evolutionary
algorithms has been demonstrated before (Wittkamp
2006), (Wittkamp 2006), but the problem becomes

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

much more difficult when we require the learning to
occur in real-time, as the game itself is being played.

Artificial players that train offline (generally by
playing the game) can have a near limitless amount of
training time available to them. The learning and fine
tuning of artificial players could run continuously for
many days or weeks until desirable behaviours have
been found. Contrast this with real-time learning,
where there is very little time to run simulations and
the processor must also be shared with the game en-
gine itself. Computational intelligence techniques re-
quire many iterations and many more test cases for
the evolution process to yield desirable results. In or-
der for a real-time approach to be feasible, standard
computational intelligence techniques will need to be
sped up.

1.1 The Case For Real-Time Learning

Despite a large amount of research in the field of
video game AI, the majority of AI strategy in com-
mercial games is still in the form of scripted be-
haviour (Berger 2002). Developers turn to scripts for
a number of reasons; they are understandable, pre-
dictable, easy to modify and extend, and are usable by
non-programmers (Tozour 2002). Scripts often have
parameters that may be optimised using computa-
tional intelligence techniques offline, but the learning
aspect is rarely a component in the released prod-
uct (Charles 2007).

While scripts can respond to the actions of human
players, artificial agents (or “bots”) are often inher-
ently exploitable due to their inability to adapt. Once
an agent’s weakness has been discovered it can be ex-
ploited time and time again and soon the game fails
to remain challenging or realistic and human play-
ers may lose interest. No matter how thorough the
training process, in many modern games there are too
many possible scenarios to expect that a hand-coded
player will be able to handle them all equally well.

Scripted bots and their predetermined behaviour
are susceptible to being overly repetitive or unrealis-
tic, especially if the bots find themselves in a situation
that the developers did not foresee. Stochastic sys-
tems can be used to introduce some variety into the
behaviour of artificial players, but they may offer only
slight variation to some predetermined strategy. Too
much variation has the potential for creating seem-
ingly random or irrational behaviour which adversely
affects a human player’s sense of immersion in the
game environment.

Another common limitation of current game AI is

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

81



that teams of agents tend to be overly self-interested.
While many good agents may be useful for a team,
this is very different from team-interested agents who
can understand and prioritise the good of the team
over individual gain. Without team based learning,
artificial players run the risk of being overly “greedy”
to the detriment of the team. No matter how well the
individual parts may be tuned, certain team strate-
gies may never arise — a self-interested individual
would not sacrifice itself to draw fire away from team-
mates or to lead opponents into an ambush, for ex-
ample. Team based learning is useful where the goal
to be accomplished is too complex to be achieved by
individuals without team coordination, RoboCup soc-
cer (Kitano 1997) is a good example.

The real-time learning and continuous adaptation
of a team of artifical agents is desirable for a number
of reasons. An agent capable of real-time learning
would be inherently robust just as strategies learnt
offline are inherently exploitable. Ideally, an adapt-
ing agent could be expected to perform in situations
never considered by the game developers. Quinn et
al demonstrated the use of a real-time evolutionary
learning system for the task of cooperative and co-
ordinated team behaviour for robots (Quinn 2002).
The aim was for the team to move to a new location
while remaining within sensor range of each other all
times. Despite being a relatively simple task, it is an
encouraging result.

Our previous work in the domain of Pac-
man (Wittkamp 2008) was a proof-of-concept study
in “simulated” real-time — that is, the learning was
continuous and took place in parallel with the agents
acting in the environment, but the environmental sim-
ulation was paused to allow the learning system to
explore strategies. This paper takes the next step
and investigates to what extent sufficent learning is
possible in real-time. We explore the use of compu-
tational intelligence techniques for real-time learning
in a simple prey and predators domain. Focusing on
team-work development, we examine how these tech-
niques can be used to evolve strategies for a team of
predators aiming to capture a single prey opponent.

The real-time system we propose makes use of
continuous short-term learning to regularly update
predator strategies. Our approach aims to paral-
lelise offline learning through lookaheads and simu-
lations with actual game play. Constant adaptation
over short time periods means the predators need not
learn complex general strategies, but rather focus all
attention on current the state of the game.

2 The Iterative Real-time Team Learning
System

Our real-time learning system is a novel implementa-
tion of an Evolutionary Algorithm, designed to run in
parallel with the game environment and to iteratively
evolve a team of agents via an analogy of Darwinian
selection. Learning takes place continuously within
discretised time slices; during each time slice, a role
is selected for training.

The system first looks ahead to the predicted state
at the start of the next time-slice (ESt+1). This state
is used to determine which role to train and from
which population (each role maintains its own pop-
ulation). Each time-slice, a single role is trained in
a round-robin fashion. How these roles map to the
agents is up to the implementation, but for this study
we use a direct one-to-one mapping of each role to a
unique predator. It may be advantageous to organise
the mapping of roles to predators in a more meaning-

ful way (such as by distance to the prey) and then
automatically switch the strategies used by predators
as their circumstances change, but we plan to address
these considerations in future work.

The lookahead state (ESt+1) contains the ex-
pected state of the environment and all agents one
time-slice into the future. The learning system has ac-
cess to the predator strategies, and also the prey strat-
egy — that is, simulations run have accurate models
of how the enivironment and all agents contained will
behave. When training a particular role, the role is
replaced in the lookahead state and then a simulation
from this state (ESt+1) is completed. Even though
only a single predator is traiing during any given time
slice, the fitness measure used evaluates the team as a
whole rather than sanctioning the individual directly.
The individuals in the population are each evaluated
by their contribution to the predator team’s predicted
performance at the end of the next time slice. The
evolutionary algorithm uses this performance data to
create the next generation of strategies.

The evolutionary process takes place in real-time,
in parallel with actual events in the game environ-
ment. As many generations as possible are completed
during the time slice, with the fittest individual from
the evolving population being used to replace the role
for play in the next time slice. We use the same fit-
ness function as that of (Yong 2001) as described be-
low where d0 is the sum of all predator’s starting dis-
tances to the prey, and de is the sum of the ending
distances. The system is depicted visually in Figure 1
and written up as pseudo-code in Algorithm 2.1.

f =

{
d0 − de/10 if prey not caught
200− de/10 if prey caught

We use an elitist selection scheme where the top
half of the population reproduces by one-point cross-
over and mutation to replace the bottom half of the
population. Mutation is applied randomly to a sin-
gle weight of the individual, with 0.4 strength. We
cap our simulation time at 600 game ticks (roughly
40 seconds). Though we are interested in completing
a capture far sooner than that, we allow the simula-
tions to run up to 600 game ticks for data collection
purposes.

We allow our learning system to have access to a
perfect simulation model. While playing, the preda-
tors do not explicitly communicate. For the looka-
head and training simulations the predator currently
undergoing a learning cycle has access to every other
predator’s agent model. That is, the learning system
will have a perfect understanding of what each of its
team mates will do in any given scenario and these
are used to train a predator. This is possible due to
predators being completely deterministic given any
scenario.

Given the learning system’s intimate knowledge to
all agents’ strategies and that the game environmemt
is completely deterministic, the prey opponent model
is the only remaining uncertainty in the lookahead
and simulation process. In this paper, in order to
completely remove noise in our simulations, we as-
sume access to a perfect model of the prey opponent.
Having a perfect opponent model is no small assump-
tion, but the aim of this paper is to demonstrate the
effectiveness of our real-time learning system com-
pared to an offline approach. If our predators were
learning offline by training against a particular prey,
then the offline learning system would also have ac-
cess to a perfect prey model. In a real-time scenario
this may be infeasible because the opponent may be

CRPIT Volume 122 - Computer Science 2012

82



Figure 1: Pictorial representation of the real-time learning system

“black box” or simply not available for use in simu-
lations — consider the case when playing against a
human opponent in real-time. Section 6 discusses our
intended future work with respect to inaccurate op-
ponent models and other sources of simulation noise.

3 Experimental Domain

Figure 2: The prey and predators environment

We have developed a system for learning effec-
tive team strategies in real-time as a game is being
played. We allow for no prior offline learning; all
learning takes place while the game is being played.
To test our system, we use the prey and predators
domain studied in (Rawal 2010, Yong 2001). We are
interested in evolving a team of predator strategies to

coordinate their movements to trap and capture the
prey in real-time.

3.1 Prey and Predators Environment

The game environment we use is closely modelled
from that of (Yong 2001). In this predators-prey en-
vironment, we have a single prey and a team of 3
predators. The goal of the predators is to catch (mak-
ing contact with) the prey. The prey’s aim is simple;
avoid being caught by the predators.

We are interested in training the team of predators
in real-time to cooperate with each other towards the
goal of catching the prey. In all but one experiment
the predators and prey move at the same speed, thus
making the task of capturing any competent prey im-
possible without some degree of cooperation — in the
remaining experiment, the prey is given a powerful
advantage by being able to move at 3 times the speed
of the predators.

The environment for all experiments is a 100 ∗ 100
toroidal grid without obstacles where agents (prey
and predators) are represented by circles of radius
6. In this an environment a simple hand-coded prey
could quite easily evade 2 predators indefinitely, thus
the task of capturing the prey will need the coop-
erative actions of all 3 predators working together.
The initial setup places the 3 predators in a corner of
the toroid grid (being a toroid, they are all one and
the same) and the prey is randomly positioned. The
speed of all agents is fixed — each is either moving at
this speed or stationary; there is no in between.

A predator travelling across the toroid diagonally
from corner to corner (the longest straight-line path
across the toroid) takes 150 game ticks, which takes
10 seconds in real-time. This time was chosen as this
seemed a realistic speed for the game if it where made
to be playable by a human. What this means is that in
the time taken for a predator to cover this distance,
there are 150 decision points for every agent. The
number 150 was chosen to match that of (Yong 2001)
for which we aim to compare results.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

83



Algorithm
2.1: Real-Time Evolutionary Team Learning System( )

comment: Initialise a population (Pr) of individuals for each identified role (r)

for each r ∈ Environment.Roles
do {Pr ← CreatePopulationOfIndividuals( )

for each t ∈ Time− slices

do



comment:Capture the current state of Environment to St

St ← Environment.GetState( )

comment: Look ahead from the captured state to the next expected state ESt+1

ESt+1 ← LookAhead(St, OpponentModel)

MarkedRole← ChooseRole(ESt+1)

for g ← 1 to NumGenerations

do



in parallel for each individual i ∈ PMarkedRole

do


StartStates[i]← ESt+1

StartStates[i].ReplaceRole(Environment.Roles[MarkedRole],
PMarkedRole[i])

ESt+2[i]← RunSimulation(StartStates[i])

comment: Evaluate PMarkedRole by inspecting expected end states (ESt+2)

Fittest ← Evaluate(PMarkedRole, ESt+2)

comment: Evolve the next generation of individuals for Pr

Epoch(Pr)

Environment.ReplaceRole(Environment.Roles[MarkedRole], F ittest)

3.2 Hand-coded Prey Controllers

In order to test our domain we have created some
hand-coded opponents capable of evading the preda-
tors to varying degrees. The 3 different prey strate-
gies we have created are Simple, Repelled, and Fast.
These are listed in increasing order of how difficult
they are to capture, as comfirmed by the results in
Section 4.1.

1. Simple: our most basic of preys; its strategy is
to always head directly away from the predator
closest to it. This prey always travels at the same
speed as the predators. The Simple opponent is
based on the description of the prey opponent
used in Yong and Miikkulainen’s work (Yong
2001); we use this prey as a simple starting point
and to allow more meaningful comparisons be-
tween our approaches.

2. Repelled: a more complex prey that aims to
avoid predators proportionate to their proxim-
ity. For all predators, the prey applies a force
of repulsion equal to 1/d2 in the direction of the
predator, where d is the minimum toroidal dis-
tance from the prey to that predator. This prey
moves at the same speed as the predators, head-
ing in a direction determined by the sum of the
repulsive forces. Our aim in creating the Re-
pelled prey was to create a strong training part-
ner for the bulk of our experiments, after initial
experiments seemed to indicate that capturing
the Simple prey did not sufficiently challenge our
system.

3. Fast: a prey that employs the same strategy
as the Repelled prey, but one that travels at 3
times the speed of the predators rather than at
the same speed. This prey provides a very diffi-
cult capture task intended to push our learning
system beyond its limits.

3.3 Predator Controller

A predator takes the form of a randomly initialised
feed-forward neural network with 2 inputs, 5 outputs,
and a hidden layer of size 10. The only inputs to
the predators are their x and y toroidal distances to
the prey. The predator’s x and y coordinates on the
toroidal grid do not factor into its decision making
process. The outputs are North, South, East, West
and Stationary.

The predator will remain still if the Stationary out-
put exceeds that of all other outputs. Otherwise, the
difference between the East and West outputs deter-
mines the x component of the predator’s direction
vector and the dfference between North and South
determines y. The predator travels at a fixed speed,
equal to that of the Simple and Repelled prey types
(and one third the speed of the Fast prey). While
this network representation could be used to define
an agent that is capable of varying its speed, here we
are only using it to describe the predator’s direction,
not magnitude. Like the prey, predators will always
be either motionless or travelling at their predefined
maximum speed.

CRPIT Volume 122 - Computer Science 2012

84



4 Experiments and Results

4.1 Prey Strategy Evaluation

We have designed the Simple, Repelled, and Fast prey
to be used as training partners to our real-time sys-
tem. These strategies are described in Section 3.2.
In this experiment we aim to confirm that the 3
prey strategies have a range of skill levels that make
the problem increasingly difficult. We trial the prey
against our real-time system with a fixed configura-
tion. The experimental setup uses a population of
200, running for as many generations as real-time
will allow — on average, the system made it through
roughly 33 generations per time-slice.

Elapsed time Simple Repelled Fast
n (game ticks) prey prey prey
100 14 1 0
200 88 24 3
300 100 58 6
400 100 76 11
500 100 81 16
600 100 86 22

Table 1: Percentage of runs resulting in capture
against various prey strategies by n game ticks.

Table 1 shows the results of each prey performing
against our real-time adaptive predator team in an
identical experimental setup averaged over 100 runs.
The rates of capture are reported for various points
of elapsed time and are therefore cumulative.

As expected, the Simple prey is the easiest strat-
egy to capture. By 260 game ticks the real-time sys-
tem managed captured the Simple prey in all 100
runs. Even at the time the simulations were capped
at 600 game ticks, 100% was not achievable for this
experiment against either the Repelled or the Fast
prey, indicating that the Simple prey is clearly the
least formidable opponent.

The real-time system took much longer to form an
effective counter strategy to the Repelled prey than
it took against the Simple prey. In the time that the
Simple prey was completely dominated, the Repelled
prey was only being captured 46% of the time, and
reached an ultimate capture rate of 86% after 600
game ticks.

The Fast prey, employing the same strategy as the
Repelled prey but at triple the speed, is clearly the
most difficult prey to capture. This prey has the un-
fair advantage of being able to travel at 3 times the
speed of the predators. The real-time system only
manages to achieve capture in 22% of games after 600
game ticks — far lower than that achieved against
the other hand-coded prey opponents. The aim in
designing this opponent was to purposely create an
extremely difficult task for our system; the results
suggest that we have succeeded; this is indeed a very
difficult prey to capture.

The results show that the real-time system is cer-
tainly very capable of producing effective predator
team strategies in order to catch the prey without
any prior learning. Within the time taken to move
from one corner to the other (150 game ticks), the
real-time controlled predator team manages to cap-
ture the Simple prey 60% of the time; this is a good
result. Recall that 2 predators are not capable of cap-
turing even the Simple prey and, due to the iterative
learning construct of our system, it is not until after 3
time-slices (120 game ticks) that the real-time system

has been given an opportunity to learn a strategy for
each of the 3 predators.

This experiment’s configuration was arbitrarily se-
lected as a means of comparing the hand-coded prey
strategies and to confirm that they are increasingly
difficult prey to capture as intended. To observe
a 100% capture rate being achieved after 260 ticks
against the Simple prey is a most encouraging result.

The real-time evolved predator team manages to
capture the more advanced Repelled prey strategy in
86% of cases and even manages to capture the Fast
prey (a prey moving at 3 times the speed of the preda-
tors) 22% of the time. As previously mentioned, this
experiment was not geared towards testing our hand-
coded prey strategies and establishing a baseline, but
rather towards achieving the most optimal configu-
ration for learning. We expect our system’s perfor-
mance to improve in Section 4.2, when we aim to
determined how the length of our time-slices affects
learning performance.

4.2 Time-slice Experient

In this experiment, we investigate the effect of vary-
ing the length of the time-slice. The time-slice length
affects both the rate at which new strategies are
“plugged in” to the game as well how long the fitness
evaluations are run. As the game progresses, learning
takes place continuously across time slices, with each
slice marking an insertion point for learnt strategies
into the game.

Which length we use for the time slice has the po-
tential to substantially impact the learning system.
The length of the lookahead and the time taken un-
til all predators have been given an opportunity to
train are very significant factors both implied by the
selection of a time-slice length.

Consider the case where we train using a time-slice
of length 20. Random strategies are plugged in for all
3 predators and the training begins at 0 game ticks.
The learning system looks ahead to the expected state
of the game at 20 ticks, from here simulations begin in
parallel for as many generations as time permits until
the game reaches 20. At this point, the first preda-
tor strategy is inserted into the game and learning
continues for the next predator which will be inserted
into play at 40 game ticks, and then the final predator
at 60. If our time-slice length was 40, then our learnt
strategies would be more likely to see past myopic op-
tima and be able to develop more effective long term
strategies. However, we would be forced to wait until
120 game ticks until all predators had been given an
opportunity to learn; an inherent tradeoff is seen.

In Figure 3 we see that all time-slice lengths except
for the extremes of 20 and 200 managed to achieve a
100% capture rate after 600 game ticks against the
Simple prey. When running our real-time system us-
ing a time-slice length of 20, 95% capture is achieved,
and 96% for a time-slice length of 200. The fact that
the system does not reach 100% capture after 600
game ticks under a time-slice length of 200 is not
surprising at all. The 3rd predator strategy is only
plugged in at 600 game ticks, meaning that only 2
of the 3 predators have had an opportunity to learn
at the game’s end. From 400 game ticks onwards
the system is running with 2 learned predators and 1
predator still unchanged from its original random ini-
tialisation. Impressively, the high performance result
shows that 2 trained predator strategies are able to
make use of their randomly intialised team-mate.

The rate of learning for the real-time system ap-
pears to be the same against the Simple prey across
all time-slice lengths. The general pattern we see is a

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

85



Figure 3: Effect of time-slice length on performance
against Simple prey

Figure 4: Effect of time-slice length on performance
against Repelled prey

steep rise at about 3 times the time-slice length (once
all predators have been given an opportunity to learn
a strategy). The longer time-slice length runs suf-
fer inherently because the time between insertions is
longer, and the time until all 3 predators have learnt
a strategy is also longer.

Against the Repelled prey, the most effective cap-
ture strategy at 150 game ticks was trained using a
time-slice of 20, despite it not performing as well as
the others, ultimately. A shorter time-slice length
allows all predators to get through a learning cycle
much sooner, but they will be limited in their under-
standing of the environment due to the short time-
slice length. This almost always manifests itself in all
3 predators being bunched together and chasing the
prey around the toroid over and over again as seen
against the Repelled prey using a time-slice length of
20 in Figure 6. With an identical starting point (all
predators beginning at the same location) but instead
using a time-slice length of 80, after a few time-slices
the predators learn to surround the prey and even-
tually capture as seen in Figure 7. While not as
stark a relationship as we had expected, the tradeoff
between forming effective strategies and the delay of
actually being able to utilise them in the actual game
is apparent.

If the time-slice is too short then the rewards of
certain strategies are too distant to be recognised by
the fitness function and thus will never be used as

Figure 5: Effect of time-slice length on performance
against Fast prey

predator strategies in actual play — i.e. the learning
becomes trapped within local optima. For example,
consider the case where all predators have converged
upon chasing the prey and effectively acting as a sin-
gle predator. If we now wish to evaluate a candidate
predator strategy that breaks away from the other
predators and head in the opposite direction in order
to cut off the prey from the other side of the toroid.
If the time-slice is too short then the fitness would
be evaluated at a time where this predator had bro-
ken away from the others but had not yet caught up
with the prey from the other side. The fitness func-
tion would then find this strategy to be ineffective
because it is unable to see past the temporary hit to
the fitness function required to make an improvement.

We observe that a steep improvement, relative to
time-slice length, occurs earlier when the time-slice
length is longer. One would expect to see a strong per-
formance increase after the third time-slice because
this is when all predators have had a chance to learn.
With longer time-slices, we see that this increase oc-
curs before the final predator strategy is plugged into
the game. This suggests that with a longer time-slice
to train under, the 2 predators are able to formu-
late strategies that are highly effective and able to
make use of the randomly initialised strategy still be-
ing used by the third predator.

The time-slice is so long that at most only 2 preda-
tors have had a chance to learn By the time the final
predator strategy has been trained and is ready to be
plugged into the game at 600, the simulation is over.
The trend seems to be that longer the time-slice, the
better the resulting team-strategy. Also, the more dif-
ficult an opponent is to capture, the more benefit can
be expected from increasing time-slice length. From
Figure 5, against the Fast prey, we see a far more var-
ied performance result at the end of 600 game ticks.

Figure 6: Short-sighted predator strategies fail to cap-
ture the Repelled prey using a time-slice length of 20
game ticks.

CRPIT Volume 122 - Computer Science 2012

86



Figure 7: Predator strategies converge and capture
the Repelled prey using a time-slice length of 80 game
ticks.

For a counter strategy to the Simple prey, Figure 3,
we observe that 20 ticks is not enough to produce
an effective counter strategy. At 40 ticks, the preda-
tors are doing a lot better — reaching 100% capture
rate after 260 game-ticks when training in real-time.
Against the more difficult Repelled prey, 40 ticks was
no longer enough to achieve a high capture percent-
age.

These results are in tune with what we would ex-
pect; with a more competent prey there would be
more benefit to having a longer time-slice length.
This is because a longer time-slice length means that
predators are evaluated based on relatively long-term
performance, encouraging and avoiding short term
strategies that may be trapped within local optima.
Indeed, this is exactly what we observe in the graph
against the Simple opponent — we saw that a time-
slice length of 20 game ticks was insufficiently short,
and that a length of 40 seemed about right. Against
the Repelled prey, we now observe that 20 ticks is far
too short, achieving only a capture rate of 50% by the
end of the game.

4.3 Real-time vs Paused

In this experiment, we compare our real-time sys-
tem to a “paused” version of the same system. Our
real-time system follows Algorithm 2.1, completing
as many generations as it as able to within the time
available.

The paused version works almost exactly the same,
except it is guaranteed to complete a predetermined
number of generations. This is possible because the
game is paused in its execution at the end of each
time-slice and waits for the learning to complete its
desired number of generations. The paused version is
able to tell us is how well we can expect our real-time
version to perform given more powerful hardware that
is capable of running more simulations in a given time.

Elapsed time (ticks) Percentage captured
40 0.44
80 4.11
120 26.67
160 62.44
200 82.33
240 91.22
280 95.89
320 98.44
360 99.22
400 99.78
440 99.89

Table 2: Real-time adaptive prey’s performance in
the benchmark cases from (Yong 2001).

Tables 4.3 and 4.3 show the result of both the
paused and real-time versions of our system playing
against the Repelled and Fast prey strategy, respec-
tively. What we found was that, there was no statis-

tically significant difference between the paused and
real-time systems in performance. The only statisti-
cally significant difference is in Table 4.3 against the
Fast prey and for a population size of 10. In this
instance, the paused version performs better.

These results are extremely encouraging; the real-
time system manages to do just as well as the paused
system against our best prey agents. What we found
with the real-time version was that simulations were
not very computationally expensive at all for this
game, but the operations of creating a new genera-
tion from the previous one is. This explains why the
real-time system manages to get through so many to-
tal simulations when the population size is high.

4.4 Comparison with Yong and Miikkulainen

Here we compare our real-time learning system with
the offline approach of (Yong 2001). We train in real-
time but then freeze our learnt strategies and pit them
against 9 fixed starting states to assess how applica-
ble the team strategies are to general situations. We
model our game environment as close as possible to
that of this study in order to make comparisons as
meaningful as possible.

Yong and Miikkulainen experimented with a dis-
tributed and central control system for the prey. One
conclusion made was that a distributed system was
more effective than a centralised approach. Also,
communication between predators was deemed un-
necessary and that it overburdened the learning sys-
tem. Without communication between the evolving
predators, they learned faster and performed better
with the emergence of more distinctive roles. The best
predator strategies from (Yong 2001) were trained in
the non-communicating, distributed system which we
will refer to as the Yong-Miikkulainen system, from
this point on.

Yong and Miikkulainen trained their predator
teams using 1000 trials per generation, with each trial
being 6 simulations against prey beginning in a ran-
domly determined position. A layered learning ap-
proach was used by Yong and Miikkulainen, which
saw predator strategies being evolved in 6 stages:
from a stationary prey, to incrementally faster prey
until reaching the same speed as the predators. Our
real-time system does not have the time to imple-
ment a layered learning approach such as this, so
our system must tackle the full speed prey immedi-
ately. Once learnt, the strategies were tested in a set
of 9 benchmark cases to determine how effective the
predator team is at capturing the prey. These bench-
mark cases involve the predator teams all beginning in
the corner of the toroid, with the prey beginning at 9
evenly spaced starting positions on the toroid. The 9
positions the centre-positions of each sub-square when
the toroid is split up into a 3 ∗ 3 grid.

Table 4.3 shows the result of our real-time adap-
tive predator team when thrown into the same bench-
marking as used in (Yong 2001). In these benchmark
cases, the Yong-Miikkulainen system took an aver-
age of 87 generations to be able to solve 7 out of 9
benchmark cases, and this was done within 150 game
ticks. At 150 ticks our system averaged 54% capture.
Our real-time system falls slightly behind in this re-
sult, managing to achieve 7 out of 9 a bit later at 190
game ticks.

When compared in this way the real-time system
falls behind. At each time-slice of 40 ticks one preda-
tor is given the opportunity to train so it is not until
120 game ticks that the real-time system is operat-
ing with a full set of learnt predator strategies. The
team trained under the Yong-Miikulainen approach

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

87



Population size Generations Total simulations Average capture time
Paused 10 500 5000 348.63
Real-time 10 48.81 488.61 336.21
Paused 50 100 5000 275.61
Real-time 50 45.64 2281.88 309.09
Paused 100 50 5000 315.72
Real-time 100 42.31 3287.38 311.84
Paused 200 25 5000 293.53
Real-time 200 32.87 8461.38 307.91
Paused 500 10 5000 296.41
Real-time 500 25.23 12612.86 307.88
Paused 1000 5 5000 274.03
Real-time 1000 11.36 11358.83 272.84
Paused 2500 2 5000 271.29
Real-time 2500 5.91 14781.84 281.39
Paused 5000 1 5000 269.76
Real-time 5000 2.24 11204.0 274.86

Table 3: Real-time vs Paused, against Repelled prey

Population size Generations Total simulations Average capture time
Paused 10 500 5000 510.97
Real-time 10 49.94 499.41 557.95
Paused 50 100 5000 536.61
Real-time 50 46.09 2302.43 518.63
Paused 100 50 5000 503.53
Real-time 100 43.13 4312.98 515.86
Paused 200 25 5000 503.23
Real-time 200 36.97 7393.77 521.36
Paused 500 10 5000 525.86
Real-time 500 23.68 11840.86 498.61
Paused 1000 5 5000 467.13
Real-time 1000 14.33 14326.31 500.19
Paused 2500 2 5000 498.14
Real-time 2500 5.62 14043.09 470.78
Paused 5000 1 5000 499.63
Real-time 5000 2.11 10557.44 532.60

Table 4: Real-time vs Paused, against Fast prey

has all 3 predators plugged in from the start because
of the offline learning it has already undertaken. If
we consider the elapsed time of 270 ticks (120 + 150)
so that our real-time system has had the opportunity
to play the same number of game ticks with a full
team of predator strategies, then it achieves a 95.67%
capture rate.

The Yong-Miikulainen predator team had its pop-
ulation of 1000 individuals run through an average
of 87 generations 6 times (each evaluation consists of
play in 6 random games). The total number of simula-
tions to achieve 7 out of 9 capture in the benchmarks
is 522000. The moment when our real-time system
achieves 7 out of 9 in the bench mark cases is at 190
game ticks. At this time, the system has run our pop-
ulation of 2500 individuals through an average of 6.1
generations 4 times (once for each time-slice that has
completed). This is a total of about 61100 total sim-
ulations, fewer than one eighth that required by the
best predator team of (Yong 2001).

Our system uses the same neural network inputs
and outputs as (Yong 2001) and the same training
partner (the Simple prey), and achieves the same per-
formance in less than one eighth of the simulations,
and in real-time. The one weakness of our system is
that the initial learning takes time to slot predator
strategies into the game. While (Yong 2001) finished
their simulation at 150 game ticks, their predators
were all employing their strategies from the onset.

At 150 ticks, our system averaged 54% captures but,
of course, has spent a considerable portion of these
ticks learning strategies for its predators.

4.5 Generalisation

In Section 4.3 we demonstrated that our real-time
system was able to evolve team strategies to play with
no prior learninng.

In this experiment, we allow the predators to
evolve in real time (one after another in their allo-
cated time-slices) and then “freeze” the predators’
learning once the game is over. The “frozen” (no
longer learning) predator strategies are then tested in
a number of different starting configurations. This
experiment is to determine how effective the frozen
predator strategies are for the game in general.

We take the strategies learnt in real-time from Sec-
tion 4.2 and freeze their learning after the game has
come to an end. The predators are placed in 9 new
game environments, with only the starting position
of the prey being varied in each in order to assess the
team’s ability for general play in the prey and preda-
tors domain against an identical prey. The 9 prey
starting positions are such that if the toroid were to
be divided into a 3∗3 grid as described in Section 4.3,
the prey begins in the center of each cell. We run tri-
als against all 3 prey types, each time training against
that particular prey in real-time and then testing for

CRPIT Volume 122 - Computer Science 2012

88



general ability against that same prey in each of the
starting positions.

Averaged over 100 runs of the real-time training,
we recorded the total capture rate at various points
in the game’s play time. The results across all 3
prey types are similar — the strategies learnt in real-
time completely fall apart when frozen and placed in
the 9 new game environments. Not a single capture
was achieved in any experiment, even in those where
real-time learning routinely achieved perfect or near-
perfect capture. While this may at first seem like a
negative result, it is exactly what we expected to see.

When training in real-time, the predators vary
their strategies to restrict the prey, and slowly sur-
round and close in on the prey. At the time of cap-
ture, at least 2 of the prey (and most often, all 3)
converge on the strategy of heading directly towards
the prey. The reason this strategy is effective at the
end is due to the higher level strategies of surrounding
and restricting the prey’s movement that were learnt
earlier and have since been discarded. When these
predators’ highly specialised end-game strategies are
then frozen and placed in new game environments,
what typically results is the same endless traversal of
the toroid that we observed in Section 4.2.

The benefit of our real-time system is that the
strategies formed are not necessarily robust or sound
strategies for the game in general and can thus be
simple to learn. A general strategy must be com-
plex enough to deal with every game situation it
may encounter; learning in real-time through contin-
uous adaptation allows the system to learn highly
situation-specific strategies without being overbur-
dened by being required to learn how to play in all
other situations. The predator strategies that are
evolved in real-time are constantly changing to match
the current state of the game environment. To de-
velop this level of specialisation offline for all possible
game scenarios would require far more learning and
a more complex predator representation. The team
strategies learnt in real-time always perform badly
in the 9 scenarios due to the final strategy that the
predators had at the time they were frozen.

The resultant strategies are bound to the specific
game scenario at the time it is encountered. The team
strategies become so specifically tailored to the task at
hand that any hope for generality is lost. Depending
on the domain, a system that behaves well in general
may be very difficult to create and may not even be
possible. A real-time learning system that can change
itself to new game conditions alleviates the need to
solve such a difficult task, when all that is required is
for the predators to be able to focus on what it needs
to do, when it needs to do it.

5 Conclusion

The results of this study are extremely encouraging.
We have shown that the real-time team strategy is
able to learn, in a reasonable amount of time to cap-
ture hand-coded prey of varying degrees of difficulty.
It is capable of achieving competitive results with the
paused version.

Not surprisingly, the strategies formed to not make
for very robust, general strategies. The strategies
formed by the real-time system are extremely spe-
cialised to whichever situation currently presented to
it. The strength of this system is in its ability to
adapt. This real-time learning system simulates a
higher level strategy capable of handling many dif-
ferent situations, and indeed, situations that it has
never seen before.

6 Future Work

For this paper, we have shown that our system is
capable of discovering real-time cooperative strate-
gies for the task of controlling predators in the Prey
and Predators domain. The results of these exper-
iments depend on the learning system’s access to a
perfect opponent model. This is ultimately an unre-
alistic assumption for the problem that we wish to
extend our approach into — play against a human-
controlled prey opponent. How accurate must our
opponent model be before our learning system is able
to form effective team counter-strategies? How (and
when?) do we try to improve our opponent model in
real-time? In future work, we intend to investigate
the answers to these questions among others.

For ease of implementation, one thing we have
done is to run simulations for the length of a time-
slice. This means that the predator strategies are
trained to play for the length of one time-slice but
because there are 3 predators, these strategies are ac-
tually in play for 3 time-slices. Since a long time-slice
length hinders the initial learning curve so much a
possible solution would be to have initially short slices
which could grow one all predators have had the op-
portunity to learn at least some sort of strategy. Or,
rather than being discretised to these time-slices, it
may be beneficial to have an “any time” approach to
when new strategies could be plugged into the game.

Intuitively, it seems to make sense to train in the
environment that one wishes to play in, however there
are several reasons why this may not be the best or
only solution. For real-time learning we are greatly
restricted in how much training we can get through;
increasing the simulation length will put even more
strain on our system and limit how many simulations
we can get through. When combined with our goal
to account for noise in the opponent model, a longer
simulation length may be far too noisy to provide
any benefit at all. A successful approach may be one
that has a variable time-slice length depending on the
perceived accuracy of the opponent model.

References

M. Wittkamp and L. Barone: Evolving adaptive play
for the game of spoof using genetic programming,
in Proceedings of the 2006 IEEE Symposium on
Computational Intelligence and Games, IEEE Pub-
lications.

M. Wittkamp, L. Barone, and L. While: A com-
parison of genetic programming and look-up table
learning for the game of spoof, in Proceedings of
the 2006 IEEE Symposium on Computational In-
telligence and Games, IEEE Publications.

Wittkamp, M. and Barone, L. and Hingston, P.: Us-
ing NEAT for continuous adaptation and teamwork
formation in Pacman. In: Computational Intelli-
gence and Games, 2008. CIG ’08. IEEE Symposium
On, pp. 234–242, Perth.

Quinn, L. Smith, G. Mayley, and P. Husband: Evolv-
ing teamwork and role allocation with real robots,
In Proceedings of the 8th International Conference
on The Simulation and Synthesis of Living Systems
(Artificial Life VIII), 2002.

ML. Berger: Scripting: overview and code generation,
in AI Game Programming Wisdom. MIT Press,
2002, vol. 1, pp. 505510.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

89



H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E.
Osawa: RoboCup: the robot world cup initiative,
in Proceedings of the First InternationalConference
on Autonomous Agents (Agents’97). ACM Press,
58, 1997, pp. 340347.

P. Tozour: The Perils of AI Scripting, Charles River
Media, Inc.

Yong C. and Miikkulainen, R.: Cooperative Coevolu-
tion of Multi-Agent systems, University of Texas,
Technical Report, 2001.

Yong C. and Miikkulainen, R.: Coevolution of role-
based cooperation in Multi-Agent systems, IEEE
Transactions on Autonomous Mental Development,
2010.

Rawal, A. and Rajagopalan, P. and Miikkulainen, R.:
Constructing Competitive and Cooperative Agent
Behavior Using Coevolution, 2010.

Smith, T.F., Waterman, M.S.: Identification of Com-
mon Molecular Subsequences, 1981. J. Mol. Biol.
147, 195–197.

May, P., Ehrlich, H.C., Steinke, T.: ZIB Structure
Prediction Pipeline: Composing a Complex Bio-
logical Workflow through Web Services. In: Nagel,
W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par
2006. LNCS, vol. 4128, pp. 1148–1158. Springer,
Heidelberg.

Foster, I., Kesselman, C.: The Grid: Blueprint for
a New Computing Infrastructure, 1999. Morgan
Kaufmann, San Francisco.

Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman,
C.: Grid Information Services for Distributed Re-
source Sharing. In: 10th IEEE International Sym-
posium on High Performance Distributed Comput-
ing, 2001, pp. 181–184. IEEE Press, New York.

Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The
Physiology of the Grid: an Open Grid Services
Architecture for Distributed Systems Integration,
2002. Technical report, Global Grid Forum.

D. Charles, C. Fyfe, D. Livingstone, and S.
McGlinchey: Biologically Inspired Artificial Intel-
ligence for Computer Games, Medical Information
Science Reference, 2007.

National Center for Biotechnology Information:
http://www.ncbi.nlm.nih.gov

CRPIT Volume 122 - Computer Science 2012

90


	Real-Time Evolutionary Learning of Cooperative Predator-Prey Strategies
	Microsoft Word - Denghui-feas_revised.docx

