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Abstract 
Designing a  fully  secure (adaptive-predicate  unforgeable and  perfectly private)  attribute-based signature 

(ABS),  which allows a signer  to choose a set of attributes in stead  of a single string  representing the signer‘s 

identity, under  standard cryptographic assumption in  the standard model is a challenging problem. Existing 

schemes are either too complicated or only proved in the generic group model. In this paper, we present an 

efficient fully secure ABS scheme in the standard model based on q-parallel BDHE assumption which is more 

practical than the generic group model used in the previous scheme. To the best of our knowledge, our scheme is 

the most efficient one among all the previous ABS schemes in the standard model. Moreover, our proposed 

scheme is highly expressive since it allows any signer to specify claim-predicates in terms of any predicate 

consists of AND, OR, and Threshold gates over the attributes in the system.  ABS has found many important 

applications in secure communications, such as anonymous authentication system and attribute based messaging 

system. 

Keywords 

Attribute-based signature, q-parallel BDHE assumption, standard model, unforgeability, privacy, collusion 

resistance 

INTRODUCTION 

Identity-based signature is a powerful mechanism for providing the authentication of the stored and transmitted 

information where the identity can be an arbitrary string such as an email address or a registration number, etc. 

While this is useful for applications where the data receiver knows specifically the identity of the data signer, in 

many applications the signer will want to have fine-grained control over how much of her personal information 

is revealed by the signature. 

Maji,  Prabhakaran, and  Rosulek (2008) presented   a  new  vision  of identity-based  signature that they called 

Attribute-Based Signature (ABS),  in which a signer is defined by a set of attributes instead of a single string  

representing the  signer‘s  identity. In ABS, a user obtains a set of attributes from one or multiple attribute 

authorities. An attribute-based signature assures the verifier that a signer, whose set of attributes satisfies a 

(possibly) complex predicate, has endorsed the message. The following example illustrates the concept.  

Suppose we have the following predicate:  

Professor OR (((Biology Department OR Female) OR above 50 years old) AND University A). 

Alice‘s attributes are (University A, Female). Bob‘s attributes are (above 50 years old, Professor). Although their 

attributes are quite different, it is clear that Alice and Bob can generate a signature on this predicate, and such a 

signature releases no information regarding the attribute or identity of the signer, i.e. Alice or Bob, except that 

the attribute of the signer satisfies the predicate. 

This kind of authentication required in attribute-based signatures differs from that offered by identity-based 

signatures. An ABS solution requires a richer semantics, including privacy requirements, similar to more recent 

signature variants like group signatures (Chaum; Heyst, 1991), ring signatures (Rivest; Shamir; Tauman, 2001), 

and mesh signatures (Boyen, 2007). All of these primitives share the following semantics: 

 Unforgeability. By verifying the signature, one is assured that the message was indeed endorsed by a party 

who satisfies the condition described in the claim. 
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 Privacy. The signature reveals no information about the signer other than the fact that it satisfies the claim. 

In particular, different signatures cannot be identified as generated by the same party. 

Besides these two semantics, ABS has another important property which is called collusion resistance. It assures 

different parties should not be able to pool together their attributes to sign a message with a claim which none of 

them satisfy alone. For instance, if Alice has  an attribute Female, and  her friend  Bob has an attribute Professor, 

they  should not  be able to sign a message claiming to have both  the attributes. 

ABS has found many important applications. For instance, it helps to provide fine-grained access control in 

anonymous authentication systems (Li; Au; Susilo; Xie; Ren, 2010). Another application of ABS, given by 

(Maji; Prabhakaran; Rosulek, 2008; 2011), is to fulfil a critical security requirement in attribute-based messaging 

(ABM) systems using ABS. 

Related Work 

Attribute-Based Signatures were first introduced by Magi, Prabhakaran, and Rosales (2008) as a way to let a 

signature attest not to the identity of the individual who endorsed a message, but instead to a (possibly complex) 

claim regarding the attributes she possesses. They constructed an ABS scheme that supports a powerful set of 

predicates, namely, any predicate consists of AND, OR, and Threshold gates. However, the security of their 

scheme is weak as their construction is only proved in the generic group model. Since then, there have been lots 

of works on this subject (Escala; Herranz; Morillo, 2011; Khader, 2007a; 2007b; Li; Au; Susilo; Xie; Ren, 2010; 

Li; Kim, 2007; 2010; Maji; Prabhakaran; Rosulek, 2011; Okamoto; Takashima, 2011; Shahandashti; Safavi-

Naini, 2009).  

Recently, Magi, Prabhakaran, and Rosulek (2011) presented an ABS scheme which is proven secure in the 

standard model. But it is much less efficient and more complicated  than  the  scheme  in  (Maji; Prabhakaran; 

Rosulek, 2008), since  it  employs  the  Groth-Sahai NIZK protocols (2008) as building  blocks. Okamoto and 

Takashima (Okamoto; Takashima, 2011) presented a fully secure attribute-based signature (ABS) scheme in the 

standard model. The admissible predicates of the scheme support non-monotone predicates. Escala, Herranz, and 

Morillo (2011) proposed a fully secure attribute-based signature (ABS) scheme in the standard model. This 

scheme supports an additional property of revocability, so that an external judge can break the anonymity of a 

signature when necessary. 

Another related notion to ABS is fuzzy identity-based signature which was proposed and formalized in 

(Shanqing; Yingpei, 2008; Yang; Cao; Dong, 2011). It allows a user with identity ω to issue a signature which 

could be verified with identity ω‘   if and only if ω and ω‘ are within a distance judged by some metric. 

However, this kind of signatures does not consider the anonymity for signer. 

 
Table 1: Comparison Of ABS Systems In Terms Of Signature Size, Model, 

Assumptions, Predicates, Two Examples Of Signature Size 

 MPR08 

(Maji; 

Prabhakaran; 

Rosulek, 2008) 

MPR11 
 (Maji; 

Prabhakaran; 
Rosulek, 2011) 

(Boneh-Boyen 

based) 

MPR11  
(Maji; 

Prabhakaran; 
Rosulek, 2011) 

(Waters  based) 

OT 
(Okamoto; 
Takashima, 

2011) 

EHM  
(Escala; 
Herranz; 
Morillo, 
2011) 

Proposed 

Signature  size (# of  

group elts) 
l + r + 2 51l + 2r+ 

18λl 
36l + 2r 

+9λ + 12 
7l + 11 9l + 7 4l + 1 

Model generic 
group model 

standard 
model 

standard 
model 

standard 
model 

standard 
model 

standard 
model 

Security full full full full full full 

Assmuptions CR   hash q−SDH  and 
DLIN 

DLIN DLIN and 

 
CR   hash 

CHD  and 
Subgroup 

Decision 

q−BDHE 
and 

CR  hash 

Predicates monotone monotone monotone non-monotone monotone monotone 

Sig.   size example  

1 (l=10,r=5, λ = 

128) 

17 23560 1534 81 97 41 

Sig.  size 
example  2 

(l=100,r=50, λ = 

128) 

152 282400 4864 711 907 401 
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Our Contribution 

Maji, Prabhakaran, Rosulek (Maji; Prabhakaran; Rosulek, 2008; 2011) and Okamoto, Takashima  (2011) pointed 

that the future work of ABS, on the theoretical front, is to base the security of ABS on a standard hardness 

assumption, while still preserve the efficiency for the most part. In this paper, we attempt to propose such an 

ABS scheme which is secure in the standard model based on decisional parallel bilinear Diffie-Hellman 

exponent assumption (Waters, 2011) which is more practical than the generic group model of (Maji; 

Prabhakaran; Rosulek, 2008). 

The proposed ABS scheme is efficient and practical.  We compare our scheme with the existing ABS schemes in 

the standard model: Maji, Prabhakaran, and Rosulek‘s (2011) (two typical instantiations), Okamoto and 

Takashima‘s  (2011), and Escala, Herranz, and Morillo‘s (2011), as well as the ABS scheme in the generic group 

model  (Maji; Prabhakaran; Rosulek, 2008) (as a benchmark). All of these schemes can be implemented over a 

pairing group and the size of a group element is about the size of Zp (e.g., 256 bits).  In Table 1 we summarize 

the comparison. 

In Table 1, l and r represent the size of the underlying access structure matrix M for a predicate, i.e. M ∈ Zl×r. 

We also give comparison  of two examples,  the predicate with 4 AND and 5 OR gates as well as 10 variables  

which is expressed by a 10 × 5 matrix, and the predicate with 49 AND and 50 OR gates as well as 100 variables  

which is expressed by a 100 × 50 matrix  (see the appendix  of (Lewko; Waters, 2011)). λ is the security  

parameter (e.g. 128).  

As the above comparison, our construction is the most efficient ABS scheme in the standard model of the 

literature. 

NOTATIONS 
 

We denote the finite field of order q  by
qF . We also denote the group {0,1, , 1}p   under addition modulo 

p  by p , and \{0}p  by
*

p , where p  is a large prime number satisfying 2 1p p   with p  itself 

prime. A vector symbol denotes a vector representation over p , e.g. x  denotes
1

1( , , ) n

n px x   . :y z  

denotes that y  is defined by z . We use 1 2, ,x x  span  denotes the subspace generated by 1, , nx x . For 

two vectors 1( , , )nx x x   and 1( , , )ny y y  , ·x y  denotes the inner-product

1

n

i i

i

x y


 . X T
 denotes the 

transpose of matrix X . ( )det M  denotes the rank of matrix M . We denote a monotone span program (Beimel, 

1996) over a field qF  as : ( , )M M  in which there exists a linear secret sharing scheme (Okamoto; 

Takashima, 2011). We define our attribute-based signature scheme, which consists of four algorithms, namely, 

setup algorithm Setup , private key generation algorithm KeyGen , signing algorithm Sign , and verification 

algorithm Verify , and its security definition as (Maji; Prabhakaran; Rosulek, 2008). We denote G  and TG  

as two multiplicative cyclic groups of prime order p , g  as a generator of G , and e  as a bilinear map, 

: Te  G G G  (Boneh; Franklin, 2003). 

OUR CONSTRUCTION 
 

Our construction is inspired by the attribute based encryption scheme (ABE) of Waters (Waters, 2011). Roughly 

speaking, a secret signing key SSK  with attribute set S  corresponds to a secret decryption key SSK  with S  

in ABE (Waters, 2011). No counterpart of a signature   in our construction exists in the ABE (Waters, 2011). In 

order to meet the privacy condition for  , a novel technique is applied to randomly generate a signature from 

the private key SSK  and the claim-predicate  . And there are many subtleties in the proof of unforgeability, 

e.g., we need to cancel all the unknown terms in order to answer the queries and solve the q  BDHE problem. 

We develop a novel technique to resolve the difficulty. See the proof for more details.  
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Let U  be the universe of possible attributes. A claim-predicate over U  is a monotone boolean function, whose 

inputs are associated with attributes of U . We say an attribute set S  U satisfies a claim-predicate   if

( ) 1S  . 

 

Setup  (U ): The input parameter U  is the number of attributes in the system. Choose suitable cyclic groups 

G  and TG   of prime order p , equipped with a bilinear pairing : Te  G G G . Choose a generator g  and 

U  random group elements 1, , Uh h G  that are associated with the U attributes in the system. Pick random 

number , pa  . Choose a collision resistant hash function
*:{0,1} pH  . The master key is 

MSK g . The public key PK  is a description of the groups , TG G  and their pairing function, as well as,    

1, ( , ) , , , , .a

Ug e g g g h h   

 

KeyGen  (MSK, S): On input the master secret key MSK and a set S  of attributes, the algorithm fist picks a 

random pt  . Create the private key SK  as 

.at t t

x xK g g L g x S K h      

 

Sign  (PK, 
sSK , M ,  ): On input the private key 

sSK  for an attribute set S , a message M ,and a claim-

predicate   such that ( ) 1S  . First convert   to its corresponding monotone span program ( )l n

p

M

, with row labeling function   associates rows of M  to attributes. Computes 1( , , )l     such that 

1i i

i I




 M  and 0,i i I   , where iM  is the vector corresponding to the i th row of M , and 

: { | ( ) }I i i S  . If there is no such 
'

j  and J  that 
' 0j

j J

j M


  , let 1( , , ) (0, ,0)l      . In 

this case, any attribute set from { ( ) |1 }i i l    satisfies the claim-predicate  and the rank of matrix M  is 

less than l . Otherwise, chooses 1( , , )l     randomly from 
*1 l

p


 and solves the equation 

· · T T
M M  to obtain 1, , l    . In addition, the algorithm chooses random 1, , , l pr r r  . 

 

The signature   is computed as follows, 
( || )( )ar HA K g   M

( || ) ( || ) ( || ) ( || )

( ) ( ) ( ) ( )( , , , fo)  r 1i i i i i i i i i i i ir r H r r H H r r H

i i i i i i i iB g C h E K h h F L g g i l
       

   

    
        

M M M M

 

, along with description of  . 

 

Here, three points should be noted. 

 

1. The signer may not have 
( )iK  for every attribute1 i l  . But when this is the case, 0i  , and so the 

value is not needed.  

 

2. ( || ) ( || ) 0i i it H r r H      M M  will not leak any information about the signer's attribute. 

Because this only occurs when 0  , which means any attribute set from { ( ) |1 }i i l    satisfies the 

claim-predicate  . Therefore, i could be zero whether i I  or not, so i  being zero has no relationship 

with the signer holding the attribute ( )i . Because if i  is chosen zero, the remaining ( \{ })j j I i    

still guarantees
\{ }

1
j I i

j j


 M . In this case, when ( || ) ( || ) 0i i it H r r H      M M , the 
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signer may either hold the attribute ( )i  or not hold the attribute ( )i . As a result, people gain no 

knowledge about whether the signer has the attribute ( )i  giving the knowledge of

( || ) ( || ) 0i i it H r r H      M M . 

 

3.   is a random vector from 
1 n

p


 and has no relationship with   ( 0  ). Since 0  , we have

( ) ldet M . Given , there are 
( )lp det M

 possible   for · · T T
M M . Here, ( )det M  is the rank of 

matrix M . Therefore, the probability to deduce i ir
g


 successfully from 1, ,{ }i ir

i ng


   is negligible, since 

p  is a large prime number.  

Verify ( PK, , M ): On input public parameters PK , the message M , and the signature   which is 

generated under the claim-predicate   such that ( ) 1S  . First convert   to its corresponding monotone 

span program ( )l n

p

M  with row labeling function  . Choose a random vector 
1 n

pv  . Computes 

1 0( , , ) , 1ls s s v s v     T T T T
M . Check the following constraints, 

? ?

( ) ( )( , ) ( ,1/ ), ( , ) ( , ), for 1i i i i i ie B g e C h e E g e F h i l      

0

0

?
( || )1

1

( , ) ( , )

( , ) ,

( ( , ) ( , ) ( , ))

i

i

l
s sa

i
H si

sa

i i i

i

i

l

i

e A g e B g

e g g

e C F e g F e B E

 









 





M  

returns accept if the above check succeed, and reject otherwise. 

 

[Correctness] 

0

1

1

( , ) ( , )

( ( , ) ( , ) ( , ))

i

i

l
s sa

i

i

sa

i i i i i

l

i

e A g e B g

e C F e g F e B E






 




 

= 

0( || ) ( || ) ( || )

1

( || ) ( || ) ( || ) ( || ) ( || ) ( || )

( ) ( ) ( ) ( )

1

( , ) ( , )

( ( , ) ( , ) ( , ))

i i i

i i i i i i i i i i i i i i i i i

n
s r sH atH arH a

i

r t H r r H t H r r H r t H r r
l

i

H sa

i i i i

e g g g g e g g

e h g g g e g g g g e g h h h



          

   

  



  



   



 


M M M

M M M M M M

 

= 

*0 0 0( || ) ( || ) ( || )

1 1

( || ) ( || )

1

( , ) ( , ) ( , ) ( , )

( , )

i i j j

i i i i i

l n
r vs H as tH ars H a

i j

l
t H r r H sa

i

e g g e g g e g g e g g

e g g g g



  

   

 



 



  



MM M M

M M

 

= 

*0 0 0

*1 1

( || ) ( || ) ( || )

1 1

( || )
· ( || )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

i i j i

l l

i i i i
i i ji i i

l n
rs H as tH ars H va

i j

H s s
r va t a a rH

e g g e g g e g g e g g

e g g e g g e g g



 


 

   

 








  







M

M

M M M

M
M

 

= 0· ( || )
( , )

s H
e g g

 M
 

Note that * j
M is the jth column of the monotone span program M . 

 

Theorem 1.   Our construction is correct and perfectly private. 

The proof of theorem 1 is given in the full version of this paper. 

 

Theorem 2. Our construction is (adaptive-predicate) unforgeable under the decisional q-parallel BDHE 
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assumption (Waters, 2011) and the existence of collision resistant hash functions. 

Proof: In this proof, we embed a random  attribute  into the public parameters  using parallel 

BDHE assumption. For each row  of  the simulator programs  pieces of information  

into the  related to the attribute assigned to that row. With this method, the simulator is able to cancel the 

unknown terms during private key queries and signature queries, as well as combine the forged signature to 

solve the parallel BDHE problem. 

 

Suppose an adversary  has a non-negligible advantage  advantage in attacking our scheme. We 

show how to build a simulator  that solves the decisional parallel BDHE problem.  

 

Initial Phase: The simulator takes in a decisional parallel BDHE challenge . The simulator randomly 

chooses a 2log 3k U t     attribute predicate  and converts  to its corresponding monotone span 

program , where  has  rows and  columns. Here,     is the round down operation,  is 

the maximum number of private key queries and signature generation queries, and . 

 

Setup Phase: The simulator chooses random  and implicitly sets  by letting 

. We describe how the simulator programs . 

 

For each  where  , it begins by choosing a random value . Let  denotes the set of indices of 

 such that . The simulator programs  as: 

* ** 2 *
*,1 ,2 ,

// /
n

ii i i i i nx
a M baM b a M bz

x

i X

h g g g g


   

If  then we have . Note that  are distributed randomly due to the  value. 

 

The simulator gives to  the public key:  

 

The corresponding master key, , is unknown to the simulator. 

 

Query Phase: In this phase the simulator answers private key queries and signature queries. Suppose the 

simulator is given a private key query for a set . 

 

If  satisfies , then the simulator aborts and randomly chooses its guess  of the parallel BDHE 

problem. Otherwise, the simulator first picks a random . Next it finds a vector 

 such that  and for all  where  we have that . By 

the definition of monotone span program such a vector must exist.  

 

The simulator begins by implicitly defining  as 
* 1

*

1

1 2

a nq q a

n
r w a w a w a

     . It performs this by 

setting .  

 

We observe that by our definition of ,  contains a term  which will cancel out the unknown term in 

 when generating . The simulator can compute  as: 

k *M xh q 

i
*M n * *

,1 ,( , , )i i nM M

xh

q 

A  AdvAò

B q 

q  ,y T
* *

* *( , )M *M *l *n t
* *,l n q

p 1qa   

( , ) ( , ) ( , )
qa ae g g e g g e g g 

 1, , Uh h

x 1 x U  xz X

i
*( )i x  xh

X   xz

xh g xh xz
g

A
1, ( , ) , , , , .a

Ug e g g g h h 

MSK g

S

S *  q 

pr 
*

*

1

1( , , ) n

pn
w w w    1 1w   i

*( )i S  *· 0iw M

t
1

*1, ,

( )
q i

iwr a t

i n

L g g g
 

 

 

t atg
1qag



g
K K
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2

*2, ,

( )
q i

iwar a

i n

K g g g  

 

  . 

 

Now we calculate the key components  for . First, we consider  for which there is no  

such that . For those we can simply let . 

 

The more difficult task is to create keys for attribute , where there exists an  such that  and 

. To compute these keys we must make sure that there are no terms of the form  that we can't 

simulate. Notice that in calculating  all terms of this form come from , where . 

However we have that , all of these terms cancel. 

 

Again, let  be the set of all  such that . The simulator creates  in this case as follows.  

1

**

*
,

1,...

( / ) /

1, ,

( ( ) )
j a j k

i jx i i k
Mz a b r a b w

x

ki X j n n

k j

K L g g
  

   



    . 

 

The simulator  returns  to the adversary . 

 

To answer a signature query on ( , )M . If S  that satisfies   also satisfies 
* , the simulator aborts and 

outputs a random guess for  . Otherwise, the simulator randomly chooses a set S  that satisfies   but does 

not satisfy 
* , and asks the private key generation oracle to get the private key for S . Next, it uses the private 

key to generate the signature on ( , )M , and returns it to the adversary A . 

 

Forgery: After a polynomially bounded number of private key queries and signature queries, the adversary 

outputs a forged signature 
'

1, ,( , ( ) ,i i nA B  
   

' ' ' '

1, ,( , , , ) )i i i i i lC D E F    on message M  for the claim-

predicate  , such that ( , ) M  was never queried to the signature generation oracle and   does not accept 

any S  queried to the key generation oracle. If S  that is accepted by   but not accepted by 
* , the 

simulator aborts and outputs a random guess for  . Otherwise, the simulator can solve the decisional q 

parallel BDHE problem as follows.  

 

First, convert   to its corresponding monotone span program 
* *l n

p

M  with row labeling function  . 

The tricky part is to compute the ias
g  since it contains terms (

ia sg ) that we must cancel out. However, the 

simulator can use secret splitting to make these terms cancel out. Intuitively, the simulator chooses random 

*2 , ,
n

y y   . Then the simulator shares the secret using the vector 

*

2 1 1

2 3( , , , , )n n

pn
v s sa y sa y sa y 

 

       . Next, we define 

*{ | ( ) ( ) , 1, , }iR k k i k i i n       . 

Suppose 
' '

1 , , lr r  are random values, we have the following equations,  

'
' i i i ir r sb

iB g g g
 

  ,
'

( )
i i i ir r sb

i iC h h




 

    

* ' *'
, ( ) ,

* *

· · ·( / )'

( )

2, , 1, ,

( ( ) )( ) ( ( ) )
j

i j j i k ji i i i k

i

M y z Mas r b s a s b ba

i i

k Rj n j n

g C h g g g






   

     

 

Thus, the simulator could compute ias
g  and 

'
irg  as follows, 

xK x S  x S i

*( )i x  xz

xK L

x S i
*( )i x 

*i n
1 /q

ia b
g



t

x xK h
1

,/q
i i j ja b M w

g


*( )i x 
*· 0iw M

X i
*( )i x  xK

B ( , , ( ) )x x SK L K  A
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* ' *'
, ( ) ,· · ·( / ) '

( )

2, , 1, ,

( ( ) )( ) ( ( ) ) /
j

i j j i k ji i i i k

i

M y z Mas r b s a s b ba

i i

j n k R j n

g h g g g C






    

     

'
'/i ir sb

ig g B  

 

Thus, the simulator compute 
'( , )ias

ie F g  and 
'( , )ias

ie B g  as follows. 

'( , )ias

ie F g  

* *
, ( ) ,· · ·( / )' '

( )

2, , 1, ,

( , ) ( , ( ( ) )( ) ( ( ) ) / )
j

i j j i k ji i i k

i

M y z Mr b s a s b ba

i i i i

j n k R j n

e F h e F g g g C


 



 

    

      

* ' *'
, ( ) ,· · ·( / )' ' '

2, , 1, ,

( , ) ( , ( ( ) )( ) ( ( ) ) / )
j

i j j i k ji i i k

i

M y z Mr b s a s b ba

i i i

j n k R j n

e E g e F g g g C

    

      

 
'( , )ias

ie B g  

* ' *'
, ( ) ,· · ·( / )' '

2, , 1, ,

( , ) ( , ( ( ) )( ) ( ( ) ) / )
j

i j j i k ji i i k

i

M y z Mr b s a s b ba

i i i

j n k R j n

e B h e B g g g C



    

      

* *'
, ( ) ,· · ·( / )' ' '

2, , 1, ,

( , ) ( , ( ( ) )( ) ( ( ) ) / )
j

i j j i k ji i i k

i

M y z Mr b s a s b ba

i i i

j n k R j n

e C g e B g g g C 

    

      

 

If 
' ' ( || ) ( || )

1 1

( ( , ) ( , )) / ( , ) ( , )i i

n l
as ass H s H

i i

j i

e A g e B g e F g T e g g     

 

   
M M

, the simulator then outputs 

1   to guess that 
1

( , )
qa sT e g g



 ; otherwise, it outputs 0   to indicate that it believes T  is a random 

group element in TG .  

 

Next, we calculate the lower bound of the probability that the simulator completes without aborting. Without 

loss of generality we can assume the adversary always makes t  queries which are the maximum number of the 

private key query and signature generation query. For any set of t  private key queries on set 1, , tS S  and t  

signature queries on set 1 1( , ), , ( , )t tM M    and the forged matrix M , we have  

* * *

1 1Pr[ ] Pr[( ( ) 0) ( ( ) ( )) ( ( ) ( ))]t t

i i i iS K K K K 
            abort  

Here, ( )K   is defined as the set of all attribute sets that satisfy  . We can then lower bound the probability of 

not aborting as follows. 
* * *

1 1Pr[( ( ) 0) ( ( ) ( )) ( ( ) ( ))]t t

i i i iS K K K K 
             

* * *

1 1(1 Pr[ ( ) 1]) (1 Pr[ ( ) ]) Pr[ ( ) ( )]t t

i i i iS K K K 
                

* * *

1 1

(1 Pr[ ( ) 1]) (1 Pr[ ( ) ]) Pr[ ( ) ( )]
t t

i i

i i

S K K K
 

               

1
(1 ) (1 ) (1.4)

2 2 2U k U k U k

t t
  

      

 

Equations 1.4 comes from the fact that,  

* * * 1
Pr[ ( ) 1] Pr[ ( ) ( )] Pr[ ( ) ( )]

2
i i U k

S K K K K


           . 

 

We can optimize the last equation by setting 2log 3k U t     (as we did in the simulation), where t  is the 

maximum number of private key queries and signature generation queries. Solving for this gives us a lower 

bound 
2

2

log 3
(1 )

2
U U t

t


   
   

2log 3

1

2
U U t   

 . Suppose the adversary succeeds with probability ò  after q  
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private key queries and signature generation queries, and this probability is independent of the random choices 

made by the simulator, we conclude that the simulator succeeds with probability, 

2 2

2

log 3 log 3

1
Pr[ 1| ]Pr[ ] Pr[ ] (1 ) .

2 2
U U t U U t

t


         
    abort abort abortò ò ò  

CONCLUSION 

We have presented an efficient and fully secure attribute-based signature system that is expressive and provably 

secure under decisional q-parallel BDHE assumption (Waters, 2011) in the standard model. We have proved that 

our scheme is (adaptive-predicate) unforgeable against adaptively chosen message attack and perfectly private in 

the standard model. Our method of embedding a monotone span program into the public parameters allowed us 

to create clean, modular proof of security. The new construction is most efficient ABS scheme in the standard 

model comparing with the state-of-the-art (Escala; Herranz; Morillo, 2011; Maji; Prabhakaran; Rosulek, 2011; 

Okamoto; Takashima, 2011) construction. 
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