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Abstract 
Shafiq et al. (2009a) propose a non–signature-based technique for detecting malware which applies data mining 

techniques to features extracted from executable files. Their technique has a high level of accuracy, a low false 

positive rate, and a speed on par with commercial anti-virus products. One portion of their technique uses a 

multi-layer perceptron as a classifier, which provides little insight into the reasons for classification. Our 

experience is that network security analysts prefer tools which provide human-comprehensible reasons for a 

classification, rather than operating as “black boxes”. We therefore build on the results of Shafiq et al. by 

demonstrating a technique which uses decision trees to distinguish packed from non-packed files, producing a 

classification diagram which can be understood by analysts. We show that the resulting detector still provides 

high accuracy and classifies files rapidly. 

Keywords 

Computer security, malicious executable detection, malware detection, data mining, decision tree. 

INTRODUCTION 

Commercial anti-virus and anti-malware software typically relies on a set of signatures – strings of bytes – 

extracted from previously encountered malware, and thus cannot usually detect malware which has not been 

encountered before. Furthermore, malware authors frequently encrypt or pack (compress) their malicious code, 

transforming the original byte sequence into random-looking data (Lyda and Hamrock, 2007). 

Shafiq et al. (2009a) propose a malware detection technique, “PE-Probe”, which, rather than using signature-

based detection, applies data mining to features extracted from Portable Executable (PE) files – the executable 

format used on the Microsoft Windows operating system (Microsoft, 2010). Their technique boasts a high level 

of accuracy, with a true positive rate of approximately 99.5% and false positive rate of 0.6%. Furthermore, the 

time needed to analyse files was comparable with commercial anti-virus products, making their technique 

amenable to use in real-time analysis. However, one portion of their design relies on use of a multi-layer 

perceptron to classify executables as either packed or non-packed. Our experience is that network security 

analysts have a preference for tools which can provide human-comprehensible reasons for a classification, rather 

than operating as “black boxes”, and multi-layer perceptrons provide analysts with little insight into the reasons 

for classification. 

In this paper, therefore, we build upon the results of Shafiq et al. (2009b) by demonstrating a technique which 

distinguishes packed from non-packed files using decision trees, which produce far more understandable output. 

Raftopoulos and Dimitropoulos (2012) highlight this feature of decision trees, noting that:  

“It is important that a security analyst can understand which feature contributed in every step of the 

process of a decision, without requiring expert statistical knowledge …” 

We show that using decision trees to detect packing results in a classifier which provides comprehensible 

reasons for its classification, suitable for use by a human analyst in guiding their investigation of an executable 

file, while still providing reasonably high accuracy and classifying files rapidly. Our intent is that this classifier 

could be used as a quick, “first-pass” filter applied to incoming executable files, and its results could be used by 

analysts to help prioritise their work and guide their investigation. Files flagged by our classifier as likely to be 

malicious could be subjected to more intensive analysis. 
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Figure 1 – The PE-Probe classification process. Adapted from Shafiq et al. (2009a) 

BACKGROUND 

Shafiq et al. (2009a,b,c) proposed two related techniques for detecting malicious PE files. 

The first, “PE-Miner” (Shafiq et al. 2009b,c), worked by extracting distinguishing features from the PE files, 

applying several feature reduction and preprocessing techniques (for example, principal component analysis, or 

PCA) to the features, and using the resulting features as input to multiple classification algorithms implemented 

in Weka, an open source data mining toolkit developed at the University of Waikato (Hall et al., 2009). Shafiq et 

al. aimed to produce a non–signature-based technique with a high detection rate and low false positive rate, 

which could scan executable files with a speed comparable to commercial off-the-shelf anti-virus products (and 

thus was a target for deployment in a real-time environment). 

The authors found, however, that PE-Miner‟s performance dropped significantly when trained on non-packed 

executables, but then tested on packed executables. They therefore proposed a refinement of the technique, “PE-

Probe” (Shafiq et al., 2009a). This first classified executables as either packed or non-packed, and then, 

depending on the result, processed them with one of two possible further classifiers: one specialised to work 

with packed files, and the other with non-packed files. An overview of this process is shown in Figure 1. 

Their packing classifier used a technique proposed by Perdisci et al. (2008a), in which a number of features are 

extracted from the PE file header, the Shannon entropy of various parts of the file is calculated, and the resulting 

features are fed into classification algorithms implemented in Weka. Although Perdisci et al. experimented with 

multiple classification algorithms, Shafiq et al. used a multi-layer perceptron as a classifier, as Perdisci et al. 

reported that this gave the best results when tested on files that could not be detected as packed by a leading 

signature-based packing detector. 

METHOD 

Our aim was to determine whether decision trees could be substituted for multi-layer perceptrons in the 

technique of Shafiq et al. (2009a), thus providing a human-readable explanation of the output classifications, 

while still maintaining a high classification speed and level of accuracy. 

We obtained benign files from the same sources as Shafiq et al. – a fresh installation of the MS Windows 

operating system, the Sourceforge web site (Geeknet, Inc, 2012), and the download.com site operated by 

CNET (CBS Interactive, 2012) – although as Shafiq et al. did not provide a full list of files used, we cannot be 

sure how similar our dataset is to theirs. 

These files were scanned with two commercial anti-virus programs – Kaspersky PURE and Sophos Anti-Virus – 

to ensure they were indeed benign. 

To create a dataset of files known to be benign and non-packed, we excluded from the benign dataset any files 

reported as being packed by the Protection ID tool (CDKiLLER and TippeX, 2010), and any files from which 
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PE features could not be extracted using the Python pefile library (Carrera, 2012). The resulting dataset 

comprised 679 benign, non-packed files. 

To ensure we had a sufficiently large dataset of files known to be benign and packed, we randomly selected non-

packed files from the benign dataset, and manually packed them using freely available packers downloaded from 

the Internet. Each file was packed using the default settings for the packer. If the packer failed with a runtime 

error, a different member of the benign dataset was randomly selected. After packing, we again excluded files 

which could not be processed using pefile, giving a dataset of 330 packed, benign files. 

Malicious files were obtained from two sources – the VX Heavens virus collection (Baranovich, 2012) and the 

Offensive Computing malware collection (Quist, 2012). Both of these collections labelled some of their files as 

being “packed”. Some files labelled as “packed” were not detected as such by Protection ID, but inspection 

revealed that they had a Shannon entropy of close to 8 bits per symbol – the maximum for a binary file (Cover 

and Thomas, 2006, Lyda and Hamrock, 2007) – suggesting that the contents were indeed compressed, 

encrypted, or both. We therefore included these in our dataset. As with the benign datasets, we excluded any 

files unable to be processed by pefile. 

For a dataset of files known to be malicious and packed, we used the subset of the VX Heavens and Offensive 

Computing files which were labelled as being “packed”, and added to these any files which were not expressly 

labelled as packed, but which were detected as such by Protection ID. The result was a total of 500 packed 

malicious files. 

For a dataset of malicious, non-packed files, we used the remainder of the VX Heavens and Offensive 

Computing files – that is, files which were not labelled as packed, and for which Protection ID detected no 

packing. The result was a total of 925 non-packed malicious files. 

A breakdown of the datasets is shown in Table 1. 

 

 

Packing Benign Malware Total 

Non-packed  679  925  1604  

Packed  330  500  830  

Total  1009  1425  2434  

    

Table 1 – Data set breakdown 

 

 

Feature type Explanation 

Number of standard sections Number of sections in the following list of standard 

section names: .text, .data, .rdata, .idata, .edata, .rsrc, 

.bss, .crt, and .tls. 

Number of non-standard sections Number of sections not in the previous list. 

Number of executable sections Number of sections with the ―executable‖ flag set. 

Number of readable/writable/ 

executable sections 

Number of sections with their ―read‖, ―write‖ and 

―execute‖ flags all set. 

Number of entries in the Import 

Address Table (IAT) 

The IAT contains the addresses of library functions 

called by the executable – the more entries in the 

table, the more external functions are called. 

Shannon entropy Shannon entropy was used to calculate four features: 

entropy of the PE file header, entropy of the ―code‖ 

sections of the file, entropy of the ―data‖ sections of 

the file, and entropy of the entire file. 

Table 2 – Packer detection features 
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Feature type Explanation 

DLLs referred to Which of a list of 73 core DLLs are referred to by the 

PE file – giving 73 Boolean features. 

Image file header fields Referred to by Shafiq et al. (2009a,b,c) as the ―COFF 

file header‖. The values of 7 fields from this header, 

which indicate things such as the target processor 

type, the number of sections and the number of 

symbols. 

Optional header fields The content of 9 standard fields, 22 Windows-specific 

fields, and 30 fields relating to data directories. 

Section header fields The content of the 9 header fields from the .text, .data 

and .rsrc sections of the file, for a total of 27 fields. 

Resource directory table & 

resources 

Counts of various types of resources (such as icons 

and dialog boxes) used by the program, giving a total 

of 21 integer attributes. 

Table 3 – Malware detection features 

 

Feature extraction 

We wrote two programs in the Python programming language to extract distinguishing features from the PE files 

in our datasets. In this section, we describe these feature extraction programs and give a brief overview of the 

structure of PE files. 

The first program extracted features to be used for packing detection. It consisted of code developed by Perdisci 

et al. (2008a), modified to output its results in the format used by Weka (Hall et al., 2009). The features used for 

packing detection are listed in Table 2, and explained in detail in Perdisci et al. (2008a), but we briefly discuss 

some of them here. 

Non-packed files normally draw their section names from a standard list, but packers create sections with non-

standard names such as UPX1, .petite, and a4z.pq07. In non-packed files, a section is not normally flagged 

as both writable and executable, whereas in packed files this is necessary for the unpacking to work. Finally, in 

non-packed files, the Shannon entropy of the various portions of the file is usually low, indicating redundancy 

and repetitiveness in the contents, but in packed files is much higher. 

Our second program used pefile to extract features used by Shafiq et al. (2009c) (listed in Table 3) to 

distinguish benign from malicious files – these are explained in detail in Shafiq et al. (2009c) and in the PE 

format specification, but we discuss some of them briefly here. 

Benign files typically make use of a wide range of Dynamic-Link Libraries (DLLs), but malicious files use far 

fewer. Shafiq et al. also note that in their collection of PE files, the malicious files either had far fewer or far 

more symbols than benign files. 

The “Optional Header” of the PE file is optional in that some files – namely, object files – do not require it, 

although executable files do. It consists of three parts: the “standard fields” (which are defined even for some 

UNIX variants of this file format) the “Windows-specific fields” (which support Windows-only features) and 

“data directory” fields – lists of the addresses and sizes of tables contained in the image file, such as the Import 

Address Table or IAT (Microsoft, 2010). 

Malicious files often have atypical values for some of these header fields. For instance, the major version 

number is often set to zero, and the number of resources such as icons and dialogs is typically lower than for 

benign files. 

Each section header consists of one text field (the name) and nine numeric fields describing the attributes of the 

section (for instance, the total size of the section when loaded into memory). 

Classifier construction 

Running our feature extraction programs on our datasets produced, for each file, a list of feature values in the 

format used by Weka. 
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Raw lists of features are typically preprocessed to improve accuracy – for instance, Shafiq et al. (2009b) used 

PCA to preprocess features. However, we avoided using preprocessors which would make the output less 

comprehensible to analysts. Using PCA, for instance, would result in decision trees that did not contain 

references to the original PE file attributes, but to synthetic attributes composed of some linear combination of 

the originals. 

To reduce the dimensionality of the malware detection feature set, information gain was used as a metric to 

evaluate features, and the top 50% of features were retained. For the packing detection feature set, the number of 

features was already low (nine in total) so no feature selection was performed. 

To construct the three decision tree classifiers used in our technique, we applied Weka‟s implementation of the 

C4.5 decision tree creation algorithm (Quinlan, 1993) and used 10-fold stratified cross-validation (Han and 

Kamber, 2006) to test the classifiers. For small datasets such as ours, estimating accuracy using 10-fold stratified 

cross-validation is generally recommended over alternatives such as the “holdout” method (Hastie et al., 2001, 

Witten and Frank, 2005). 

Feature extraction, model building and testing were done on a Windows XP operating system running on an 

Intel Pentium Core 2 Duo 3.16 GHz processor with 8 GB of RAM. The version of Weka used was 3.6.4. 

 

 Total 

instances 

Cross-validation 

accuracy (%) 

FPR (%) ROC area 

Result 2434 93.3 8.6 0.925 

Result of Perdisci  

et al. 

4493 99.6 —
*
 0.996 

 

*
 Not reported 

Table 4 – Packing classification results – comparison with Perdisci et al. (2008a) 

 

  Total 

instances 

Accuracy 

(%) 

TPR 

(%) 

ROC 

area 

FPR 

(%) 

Non-packed Result 1604 96.2 96.4 0.962 3.9 

 Result of 

Shafiq et al. 

—
*
 —

*
 99.4 —

*
 0.8 

Packed Result 830 92.7 92.7 0.924 7.4 

 Result of 

Shafiq et al. 

—
*
 —

*
 99.6 —

*
 0.3 

 

*
 Not reported 

Table 5 – Malware classification results – comparison with Shafiq et al. (2009a) 

RESULTS AND ANALYSIS 

For each of the classifiers in our technique, we give the results of cross-validation and compare them with 

previous results. 

Table 4 shows results for our packing classifier when compared with the results of Perdisci et al. (2008a) for 

decision tree classification. (Perdisci et al. did experiment with other classifiers besides basic decision trees. 

Their highest accuracy was produced using an ensemble of decision trees in a method called “Bagged J48”.) The 

cross-validation accuracy is the proportion of correctly identified samples (Bouckaert et al., 2012). The False 

Positive Rate (FPR) is 

false positives

total benign files
 

or in other words, the proportion of incorrectly identified benign files. 
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A Receiver Operating Characteristic (ROC) graph (Fawcett, 2004) shows the trade-off between true positive and 

false positive rates for a given model – accuracy can be increased (that is, more true positives identified), at the 

cost of introducing more false positives. A model with 100% accuracy and no false positives would have an area 

under the ROC curve of 1; a model with 0% accuracy and all false positives would have an area of 0. 

Overall, our model gave similar results to those of Perdisci et al. (2008a), despite the fact that Perdisci et al. used 

a larger dataset for training. (As previously noted, Perdisci et al. did experiment with other classifiers, but we 

only compare our results with their decision tree classifier.) 

Table 5 compares the results of our malware classifiers with those of Shafiq et al. (2009a). Shafiq et al. do not 

report the accuracy or ROC area for their detector, but instead report the “True Positive Rate” (TPR) –  

detected malicious files

total malicious files
 

and the FPR. 

Our non-packed detector is of comparable accuracy to that of Shafiq et al., but our packed detector is somewhat 

less accurate. 

There are several possible reasons for this. 

Firstly, the dataset we used for construction of the classifiers is much smaller than that used by Shafiq et al. 

Shafiq et al. used “about half a million malicious executables” and “several thousand benign executables”. 

Secondly, Shafiq et al. applied several preprocessing techniques to their data, which we avoided so as not to 

impair the comprehensibility of the decision trees produced. 

Another possible explanation is that Shafiq et al. used a small number of packers to manually pack their benign 

files (they mention only four packers) while their malicious files were packed using a wide range of packers. 

These differences might have resulted in an apparent improvement in the accuracy of their packed malware 

classifier. 

The time taken to construct our models was under one minute each, as was the time taken to test them. Shafiq 

et al. (2009a) do not report the time taken for model construction or testing, and model construction and testing 

time does not affect suitability for real-time deployment, so we have not included detailed analysis of these times 

here. 

 

 

Task Average time per 

file (s) 

Extract packing detection features 0.546 

Extract malware detection features 0.062 

Total extraction time 0.608 

Table 6 – Feature extraction time 

 

Classification speed 

Shafiq et al. (2009b) measured the average classification time per file of PE-Miner and of two commercial anti-

virus programs. With a classification time of approximately 0.25s per file, they concluded their technique was 

“real-time deployable”. 

Our classifier is likewise intended for real-time deployment. Therefore, the time taken to extract the required 

features from a file and classify it should be low – ideally less than a second. 

The average time per file for feature extraction is shown in Table 6. (The time needed to run the classifier on the 

extracted features is extremely short – in the order of milliseconds per file – and does not add significantly to the 

processing time.) 
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Decision trees 

Although the full decision trees produced by our classifier are too large to reproduce here in full, Figures 2-4 

show the top levels of the decision trees produced, and we briefly discuss some of the features used. 

Understanding the trees does require familiarity with the PE format, but it can be expected that security analysts 

will possess this familiarity. 

In the packing classification tree (Figure 2) we can see that entropy of various sections is a major distinguishing 

feature between packed and non-packed files – the decision tree uses the entropy of the “code” and “data” 

sections of the file. The tree classifies a file as packed if its entropy is high (greater than 7.18 bits per symbol) 

and it has more than one section with read, write and execute flags set. As noted in the Method section, having 

all these flags set for a section is unusual for non-packed files. 

 

 

Figure 2 – Top levels of decision tree levels for packing classification 

 

 

Figure 3 – Top levels of decision tree levels for non-packed malware classification 
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Figure 4 – Top levels of decision tree levels for packed malware classification  

 

In the classification trees for distinguishing malicious from benign executables (Figures 3-4), the “DLL 

characteristics field” is a major distinguishing feature. This field consists of a set of binary flags providing 

information about DLL loading and compatibility. Flags in this field refer to properties such as whether code 

integrity checks are forced or whether a DLL can be relocated at load time. If the value is larger than 8192, this 

normally indicates that the file is a device driver. Typical users of a corporate computer network are unlikely to 

download device drivers, so this flag is unlikely to be set. Authors of malicious executables, however, might 

well use this portion of the file header for other purposes. 

WEAKNESSES 

The dataset we used for building and testing our classifiers is different to, and much smaller than, the one used 

by Shafiq et al. (2009a), so we cannot be sure our comparison is purely a comparison of technique. Collecting 

more PE files would at least rule out collection size as a confounding factor. 

Furthermore, we excluded from our analysis files that could not be analysed with the Python pefile module, 

whereas Shafiq et al. mention no such exclusion. Experimentation with other PE analysis tools could identify a 

more robust tool that can process more of our dataset. 

RELATED WORK 

Non–signature-based malware detection techniques such as that of Shafiq et al. (2009a) fall into the general 

category of static heuristic analysis. Heuristic techniques identify features which may indicate malware, without 

definitively doing so.  

Two approaches to heuristic analysis include the statistical analysis of n-grams (that is, all sub-sequences of n 

bytes), and data mining of function call information. Statistical n-gram analysis has been applied to malware 

detection by Perdisci et al. (2008b), Schultz et al. (2001) and Kolter and Maloof (2004).  Data mining of function 

information was used in a technique proposed by Sami et al. (2010). 

An alternative approach to heuristic techniques is dynamic analysis, where executables are actually run in a 

virtualized or sandboxed environment and scrutinized for signs of malicious behaviour.  A recent survey of 

dynamic analysis techniques is provided by Egele et al. (2012). 
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CONCLUSION 

Shafiq et al. (2009a) proposed a non–signature-based technique for detecting malicious PE files which had a 

high detection rate, low false positive rate and low classification time. 

We have demonstrated that a modification of this technique can be used to produce classification decisions 

which are easily interpretable by network security analysts. 

Our accuracy in classifying malicious, packed executables was lower than that reported by Shafiq et al. (2009a), 

suggesting further research is warranted. Increasing the size of the dataset used, and experimenting with the 

preprocessing techniques which Shafiq et al. applied to their extracted features, should help identify the exact 

reasons for the difference. 
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