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Fig. 4.22(g). 

 

Fig. 4.22(h). 
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Fig. 4.22(i). 

 

 

Fig. 4.23(a). 
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Fig. 4.23(b). 

 

 

 

Fig. 4.23(c). 
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Fig. 4.23(d). 

 

Fig. 4.23(e). 
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Fig. 4.23(f). 

 

 

Fig. 4.23(g). 
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Fig. 4.23(h). 

 

 

Fig. 4.23(i). 
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Fig. 4.24(i). 

 

Height of the rock slope,    H = 10 m 

Unit weight of rock,            = 20 kN/m3 

Surcharge pressure,       q = 100 kN/ m2   

Stabilizing force,            T = 100 kN/m   

Depth of the tension crack,    z = 2.5 m 

Depth of water in the tension crack, zw = 2.5 m  

Angle of inclination of stabilizing force to the normal at the failure plane,  = 40º 

Angle of shearing resistance of the joint material,     = 25º 

Angle of inclination of stabilizing force to the normal at the failure plane,  = 40º 

Angle of shearing resistance of the joint material,     = 25º 

Cohesion of the joint plane material, c = 32 kN/m2 

Angle of inclination of the slope face to the horizontal, f  = 50º 

Angle of inclination of the joint plane/failure plane to the horizontal, p = 35º 

Horizontal seismic coefficient, kh = 0.2 

Vertical seismic coefficient, kv = 0.1 
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Nondimensional parameters can be calculated as: 

Nondimensional unit weight of rock,  כ ൌ  /௪ ൌ ଶ଴

ଵ଴
ൌ 2 

Nondimensional cohesion, ܿכ ൌ ௖

 ு
ൌ ଷଶ

ଶ଴ൈଵ଴
ൌ 0.16 

Nondimensional surcharge, כݍ ൌ ௤

 ு
ൌ ଵ଴଴

ଶ଴ൈଵ଴
ൌ 0.5 

Nondimensional stabilizing force, ܶכ ൌ ்

 ுమ ൌ ଵ଴଴

ଶ଴ൈଵ଴ൈଵ଴
ൌ 0.05 

Nondimensional depth of tension crack, כݖ ൌ ௭

ு
ൌ ଶ.ହ

ଵ଴
ൌ 0.25 

Nondimensional depth of water in tension crack, כݖ ൌ ௭ೢ

ு
ൌ ଶ.ହ

ଵ଴
ൌ 0.25 

Using the design chart as shown in Fig. 4.23(e) with the above values, factor of 

safety, FS = 1.17, which is also obtained directly from Eq. (3.24).  

 

 

4.5 CONCLUSIONS 

 

A detailed parametric study has been carried out in order to investigate the effect of 

parameters that govern the stability of rock slope. The list of parameters include: 

angle of inclination of the slope face to the horizontal, angle of inclination of the 

failure plane to the horizontal, depth of tension crack, depth of water in tension 

crack, unit weight of rock, surcharge load, stabilizing force,  angle of inclination of 

stabilizing force to the normal at the failure plane, angle of shearing resistance of the 

joint material along the sliding surface, cohesion of the joint material along the 

sliding surface,  horizontal seismic coefficient, vertical seismic coefficient.  

Many observations have been noted and discussed in details. Attempt has 

been made to explain the possible reasons of variation of factor safety of the rock 

slope when a specific parameter is varied. It is observed that with an increase in 

vertical seismic coefficient in the downward direction, factor of safety of the rock 

slope decreases almost linearly, whereas with an increase in vertical seismic 

coefficient in the upward direction,  it increases almost linearly, and  is greater than 

unity for any value of horizontal seismic coefficient lower than 0.25. 

The generalised expression presented has been used to develop design charts 

for the estimation of factor of safety of the anchored rock slope against plane failure 
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under surcharge and seismic loading conditions. An Illustrative example has been 

presented to explain the steps for the estimation of factor of safety. The design charts 

indicate that the factor of safety of the rock slope increases with an increase in both 

angle of shearing resistance and cohesion of the joint material. For the higher factor 

of safety of the rock slope against plane failure under surcharge and seismic loading 

conditions, greater values of shear strength parameters and/or the stabilizing force 

must be available.  
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CHAPTER 5 

 

MULTI-DIRECTIONAL ANCHORED ROCK SLOPE: 

ANALYTICAL FORMULATION 

 

 

5.1 GENERAL  

 

Civil and mining engineers often deal with projects involving excavated or natural 

slopes designed and built in rock masses. The stability analysis of the rock slope is 

generally an indeterminate problem, mainly because of the discontinuities present 

and their expected variation with time within the rock mass. Therefore, no slopes 

made in rock can be regarded as fully guaranteed for their stability during their 

service lives over a period of many years (Jumikis, 1983). However, it is a general 

engineering practice to classify the rock slope failures in some idealised failure types, 

such as plane failure, wedge failure, circular failure, toppling failure and buckling 

failure   (Hoek and  Bray, 1981; Goodman, 1989; Goodman and Kieffer, 2000; 

Wyllie and Mah, 2004; Hoek, 2007). The plane failure is observed in field situations 

when the discontinuity is in the form of joint planes inclined to the horizontal. There 

are several parameters that govern the stability of the rock slope against plane 

failure, such as inclination of the slope face, inclination of the joint or discontinuity 

plane, depth of tension crack, depth of water in tension crack, shear strength 

parameters of the joint material at the failure plane, unit weight of rock, stabilizing 

force and its inclination, seismic load, surcharge, etc (Hoek and  Bray, 1981;  Ling 

and Cheng, 1997; Wyllie and Mah, 2004; Hoek, 2007;  Shukla et. al, 2009). For 

increasing the factor of safety of the slope, rock slopes are often stabilized by 

different methods. Rock anchoring is one of the common methods of rock slope 

stabilization (Kliche, 1999; Wyllie and Mah, 2004). The installation steps of rock 

anchors have been clearly described in the literature (Littlejohn and Bruce, 1977; 

Federal Highway Administration (FHWA), Washington DC, 1982; British Standards 

Institute (BSI), London, 1989; Xanthakos, 1991; Post Tensioning Institute (PTI), 
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1996; Wyllie, 1999; Wyllie and Mah, 2004). It is quite possible that there can be 

more than one set of anchors with different orientations to completely stabilize the 

slope in an economical way; such anchored slopes may be called multi-directional 

anchored rock slope (MDARS) as considered in the present chapter. There is 

currently no analytical expression available for the factor of safety against plane 

failure of a multi-directional anchored rock slope subjected to surcharge and seismic 

loads, which are often expected in field conditions. Therefore, in this chapter, an 

attempt is made to develop such an analytical expression considering most of the 

field parameters as mentioned above for its application by engineers in field projects. 

 

 

5.2 ANALYTICAL FORMULATION 

 

Fig. 5.1 shows a multi-anchored rock slope of height H inclined to the horizontal at 

an angle f. The sliding rock mass block A1A2A3A4 is separated by a vertical tension 

crack A3A4 of depth z and the joint/failure plane A2A3, which is inclined to the 

horizontal at an angle p. The tension crack is filled with water to a depth zw. The 

slope is anchored with two sets of anchors, directed in different directions; T1 are T2 

are the resultant anchor/stabilizing force for the first and second sets, inclined to the 

normal at the failure plane at angles 1 and 2, respectively. Though only two sets of 

anchors are shown in the figure, the analysis is carried out with n number of multi-

directional anchor sets. B( = A1A4)  is the top width of the slope and W is the weight 

of the sliding rock mass block. The slope is subjected to surcharge q. The horizontal 

and vertical seismic loads (khW and kvW, and khqB and kvqB) are considered to act on 

the slope, where kh and kv are horizontal and vertical seismic coefficients, 

respectively. 

Considering a slice of unit thickness through the slope, the stability of the 

rock block is analysed with destabilising and stabilising forces acting on it.  Only the 

force equilibrium is considered without any resistance to sliding at the lateral 

boundaries of the sliding block. The total force available to resist the sliding block is 

 

௥ܨ ൌ  (5.1)                                                                ܣ߬
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where ߬ is the shear strength of the sliding failure plane, and A is the area of the base 

A2A3 of       the sliding rock block given as 

 

ܣ ൌ ܪ ቀ1 െ ௭

ு
ቁ  ௣                                                      (5.2)߰ܿ݁ݏ݋ܿ

 

 
 

Fig. 5.1. Multidirectional-anchored rock slope. 

 

 

The top width B is calculated as  

 

ܤ ൌ ܪ ቄቀ1 െ ௭

ு
ቁ ௣߰ݐ݋ܿ െ  ௙ቅ                           (5.3)߰ݐ݋ܿ

 

The Mohr-Coulomb failure criterion provides (Lambe and Whitman, 1979; Das, 
2008) 
 
                                                                                                                                             

  

߬ ൌ ܿ ൅ ௡ߪ ݊ܽݐ ߶                                                                              (5.4) 
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where n is the normal stress on the failure plane, and c and   are, respectively, 

cohesion and angle of internal friction of the joint material. It is assumed that the 

joint plane material obeys the Mohr-Coulomb failure criterion. From Eqs. (5.1) and 

(5.4), 

 

௥ܨ ൌ ܣܿ ൅                                                                                         (5.5)݊ܽݐ௡ܨ                        

       

where ܨ௡ ൌ  is the normal force on the failure plane. Considering equilibrium of ܣ௡ߪ

forces acting on the rock block, ܨ௡is obtained as 

  

௡ܨ  ൌ ܹ ݏ݋ܿ ߰௣ െ ݇௛ܹ ݊݅ݏ ߰௣ േ ݇௩ܹ ݏ݋ܿ ߰௣ െ ଵܷ ݊݅ݏ ߰௣ െ ܷଶ ൅ ∑ ௜ܶ
௡
௜ୀଵ ݏ݋ܿ ௜ߙ ൅

ܤݍ             ݏ݋ܿ ߰௣ െ ܤݍ  ݊݅ݏ ߰௣ േ ݇௩ܤݍ ݏ݋ܿ ߰௣           

    

  ൌ ሺܹ ൅ ሻ൛ሺ1 ܤݍ േ ݇௩ሻ ݏ݋ܿ ߰௣ െ ݇௛ ݊݅ݏ ߰௣ൟ െ ଵܷ ݊݅ݏ ߰௣ െ ܷଶ ൅ ∑ ௜ܶ
௡
௜ୀଵ ݏ݋ܿ      ௜ߙ

                                                                                                                                 (5.6) 

 

where ௜ܶ (i = 1, 2, 3,…n) is the stabilizing tensile force in the ith set of anchors 

inclined to the normal at the joint plane A1A4 at an angle ߙ௜ (i = 1, 2, 3,…n), U1 is the 

horizontal force due to water pressure in the tension crack, and U2 is the uplift force 

due to water pressure on the joint plane.  

 

The weight of the sliding rock block is 

 

 ܹ ൌ ଵ

ଶ
ଶܪߛ ቂቄ1 െ ൫೥

ಹ
൯

ଶ
ቅ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቃ                                                             (5.7) 

 

 Horizontal force on the sliding block due to water pressure in the tension 

crack is  

                                                                                                            

ଵܷ ൌ ଵ

ଶ
௪ݖ௪ߛ ൈ ௪ݖ ൌ ଵ

ଶ
௪ݖ௪ߛ

ଶ                                                  (5.8)                        

 

where w is the unit weight of water. 
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Uplift force on the sliding block due to water pressure on failure plane is     

                                                            

 ܷଶ ൌ ଵ

ଶ
൫1ܪ௪ݖ௪ߛ െ ೥

ಹ
൯ܿ߰ܿ݁ݏ݋௣                                                                  (5.9) 

 

Substituting values from Eqs. (5.2), (5.3), (5.6), (5.7), (5.8), (5.9), into Eq. 

(5.5),  

   

௥ܨ   ൌ ܪࢉ ቀ1 െ
௭

ு
ቁ ௣߰ܿ݁ݏ݋ܿ ൅ ቈቂଵ

ଶ
ଶܪߛ ቂቄ1 െ ൫೥

ಹ
൯

ଶ
ቅ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቃ ൅ ܪݍ ቄቀ1 െ

          
௭

ு
൯ ݐ݋ܿ ߰௣ െ ݐ݋ܿ           ߰௙ቅቃ ሺ1 േ ݇௩ሻ ቄܿݏ݋ ߰௣ െ

௞೓

ሺଵേ௞ೡሻ
݊݅ݏ ߰௣ቅ െ

         
ଵ

ଶ
௪ݖ௪ߛ

ଶ ݊݅ݏ ߰௣ െ
ଵ

ଶ
൫1ܪ௪ݖ௪ߛ െ  ೥

ಹ
൯ܿ߰ܿ݁ݏ݋௣ ൅           ∑ ܶ݅

݊
݅ൌ1 ݏ݋ܿ ൨݅ߙ ݊ܽݐ ߶   

                                                                                                           

 

  ൌ ܪࢉ ቀ1 െ
௭

ு
ቁ ௣߰ܿ݁ݏ݋ܿ ൅ ൤ቂଵ

ଶ
ଶܪߛ ቂቄ1 െ ൫೥

ಹ
൯

ଶ
ቅ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቃ ൅ ܪݍ ቄቀ1 െ

௭

ு
ቁ ݐ݋ܿ ߰௣ െ

ݐ݋ܿ        ߰௙ቅቃ ሺ1 േ ݇௩ሻ൛ܿݏ݋ ߰௣ െ ߠ݊ܽݐ ݊݅ݏ ߰௣ൟ െ  
ଵ

ଶ
௪ݖ௪ߛ

ଶ ݊݅ݏ ߰௣ െ
ଵ

ଶ
൫1ܪ௪ݖ௪ߛ െ

        ೥
ಹሻܿ߰ܿ݁ݏ݋௣ ൅      ∑ ܶ݅

݊
݅ൌ1 ݏ݋ܿ ൨݅ߙ ݊ܽݐ ߶                            

                                                                                                                                                                

ൌ ܪܿ ቀ1 െ
௭

ு
ቁ ௣߰ܿ݁ݏ݋ܿ ൅ ൤ሺ1 േ ݇௩ሻ ቂଵ

ଶ
ଶܪߛ ቂቄ1 െ ൫೥

ಹ
൯

ଶ
ቅ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቃ ൅ ܪݍ ቄቀ1 െ

     
௭

ு
൯ ݐ݋ܿ ߰௣ െ ݐ݋ܿ    ߰௙ቅቃ

௖௢௦൫ఏାట೛൯

௖௢௦ ఏ
െ  

ଵ

ଶ
௪ݖ௪ߛ

ଶ ݊݅ݏ ߰௣ െ
ଵ

ଶ
൫1ܪ௪ݖ௪ߛ െ ೥

ಹ
൯ܿ߰ܿ݁ݏ݋௣ ൅

     ∑ ܶ݅
݊
݅ൌ1 ݏ݋ܿ ቃ݅ߙ ݊ܽݐ ߶                                                                                          (5.10)         

 

Where 

 

ߠ ൌ െ1݊ܽݐ ቀ ݄݇
ሺ1േ݇ݒሻ

ቁ                                                                                                          (5.11)         

 

 

 

From Fig. 1, the total force tending to induce sliding is calculated as 
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௜ܨ      ൌ ൤
1
2

ଶܪߛ ൤൜1 െ ቀ௭
ு

ቁ
ଶ

ൠ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙൨ ൅ ܪݍ ቄቀ1 െ
ݖ
ܪ

ቁ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቅ൨ 

                    ൛ሺ1 േ  ݇௩ሻ݊݅ݏ ߰௣ ൅               ݇௛ ݏ݋ܿ ߰௣ൟ ൅
ଵ

ଶ
௪ݖ௪ߛ

ଶ ݏ݋ܿ ߰௣ െ ∑ ܶ݅
݊
݅ൌ1 ݊݅ݏ         ݅ߙ

            ൌ ሺ1 േ ݇௩ሻ ቂଵ

ଶ
ଶܪߛ ቂቄ1 െ ൫೥

ಹ
൯

ଶ
ቅ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቃ ൅ ܪݍ ቄቀ1 െ

௭

ு
ቁ ݐ݋ܿ ߰௣ െ ݐ݋ܿ  ߰௙ቅቃ 

                   ቄ݊݅ݏ ߰௣ ൅         
௞೓

ሺଵേ௞ೡሻ
ݏ݋ܿ ߰௣ቅ ൅

ଵ

ଶ
௪ݖ௪ߛ

ଶ ݏ݋ܿ ߰௣ െ ∑ ܶ݅
݊
݅ൌ1 ݊݅ݏ                                                  ݅ߙ

                                                             

            ൌ  ሺ1 േ ݇௩ሻ ቂଵ

ଶ
ଶܪߛ ቂቄ1 െ ൫೥

ಹ
൯

ଶ
ቅ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቃ ൅ ܪݍ    ቄቀ1 െ ௭

ு
ቁ ݐ݋ܿ ߰௣ െ

ݐ݋ܿ                   ߰௙ቅቃ ൫݊݅ݏ ߰௣ ൅ ߠ݊ܽݐ ݏ݋ܿ ߰௣൯ ൅ ଵ

ଶ
௪ݖ௪ߛ

ଶ ݏ݋ܿ ߰௣ െ ܶ ݊݅ݏ          ߙ

                             

     ൌ ൤
1
2

ଶܪߛ ൤൜1 െ ቀ௭
ு

ቁ
ଶ

ൠ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙൨ ൅ ܪݍ ቄቀ1 െ
ݖ
ܪ

ቁ ݐ݋ܿ ߰௣ െ ݐ݋ܿ ߰௙ቅ൨ 

              
௦௜௡൫ఏାట೛൯

௖௢௦ ఏ
൅     ଵ

ଶ
௪ݖ௪ߛ

ଶ ݏ݋ܿ ߰௣ െ ∑ ௜ܶ
௡
௜ୀଵ ݊݅ݏ       ௜                                        (5.12)ߙ

                                                         

 

The factor of safety FS of the rock slope is defined as failure   (Hoek and 

Bray, 1981; Wyllie and Mah, 2004; Hoek, 2007):   

 

ܵܨ  ൌ ிೝ

ி೔
                                                                                                                 (5.13) 

 

Substituting ܨ௥ and ܨ௜ from Eqs. (5.11) and (5.12), respectively into Eq. 

(3.13),    

 

ܵܨ   ൌ
ଶ௖כ௉ାሼሺଵേ௞ೡሻሺொାଶ௤כோሻ 

೎೚ೞ൫ഇశഗ೛൯

೎೚ೞഇ
 ି ೥ೢ

మכ

ംכ ௦௜௡ట೛ି  ೥ೢ
כ

ംכ  ௉ା ଶ ∑ ்೔
௖௢௦ఈ೔ ೙כ

೔సభ ሽ ௧௔௡థ 

ሺଵേ௞ೡሻሺொାଶ௤כோሻ 
ೞ೔೙൫ഇశഗ೛൯

೎೚ೞ ഇ
ା   

೥ೢ
మכ

ംڅ  ௖௢௦ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ

            (5.14)  

    

where ܿڅ ൌ ௖

ఊு 
څݖ   ,  ൌ ௭

ு
௪ݖ  , 

כ ൌ ௭ೢ

ு
څߛ  ,  ൌ ఊ

ఊೢ
څݍ  ,  ൌ ௤

ఊு
   and  ௜ܶ

څ ൌ ்೔

ఊுమ  are 

nondimensional forms of c, z, zw, , q and T, respectively, and  

 

ܲ ൌ ሺ1 െ      ௣                                                                                         (5.15a)߰ܿ݁ݏ݋ሻܿڅݖ
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ܳ ൌ ሺ1 െ ݌߰ݐ݋2ሻܿڅݖ െ                       (5.15b)                                                                    ݂߰ݐ݋ܿ

 

ܴ ൌ ሺ1 െ ݌߰ݐ݋ሻܿڅݖ െ       (5.15c)                                                                             ݂߰ݐ݋ܿ

 

Eq. (5.14) is the general expression for the factor of safety of the rock slope 

against plane failure. This can be used to observe the effect of any individual 

parameter on the factor of safety of the rock slope and to carry out a detailed 

parametric study as required in a specific field situation. 

 

 

5.3 SPECIAL CASES AND DISCUSSION 

 

The general equation [Eq. (5.14)] developed for the factor of safety of the 

rock slope against the plane failure can have several special cases as explained below 

 

Case 1: The joint material is cohesionless, and there is no surcharge loading, 

stabilizing force, seismic forces and water in the tension crack, that is,  c* = 0,   0, 

q* = 0,  ௜ܶ
௪ݖ ,kh = 0, kv = 0,  = 0 ,0 = כ

כ ൌ 0. Here, Eq. (5.14) reduces to the 

expression given as 

 

ܵܨ   ൌ ௧௔௡థ 

௧௔௡ట೛
                                                                                                          (5.16)  

   

Case 2: The joint material is cohesionless, and there is no surcharge loading, 

seismic forces   and water in the tension crack, that is,  c* = 0,   0, q* = 0, ௜ܶ
 , 0 כ

kh = 0, kv = 0,  = 0, ݖ௪
כ ൌ 0. Here, equation Eq. (5.14) becomes  

 

ܵܨ   ൌ
ሺொ௖௢௦ట೛ା ଶ ∑ ்೔

௖௢௦ఈ೔ ೙כ
೔సభ ሻ௧௔௡థ

ொ௦௜௡ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ
                                                                        (5.17)    

 

Case 3: The joint material is cohesionless, and there is no seismic forces and 

water in the tension crack, that is,  c* = 0,   0, q*  0, ௜ܶ
 , 0, kh = 0, kv = 0,  = 0 כ

௪ݖ
כ ൌ 0. Here, Eq. (5.14) becomes  
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ܵܨ ൌ
ሼሺொାଶ௤כோሻ௖௢௦ట೛ାଶ ∑ ்೔

௖௢௦ఈ೔ ೙כ
೔సభ ሽ௧௔௡థ

ሺொାଶ௤כோሻ ௦௜௡ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ
                                                               (5.18)      

 
 

Case 4: The joint material is cohesive, and there is no seismic forces and 

water in the tension crack, that is,  c*  0,  = 0, q*  0, ௜ܶ
 , 0, kh = 0, kv = 0,  = 0 כ

௪ݖ
כ ൌ 0. Here, Eq. (5.14)  becomes  

 

ܵܨ   ൌ ଶ௖כ௉ 

ሺொାଶ௤כோሻ௦௜௡ట೛ ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ
                                                                       (5.19)      

 
 

Case 5: The joint material is c -  material, and there is no seismic forces and 

water in the tension crack, that is,  c*  0,   0, q*  0, ௜ܶ
 , 0, kh = 0, kv = 0,  = 0 כ

௪ݖ
כ ൌ 0. Here, Eq. (5.14) becomes  

 

ܵܨ   ൌ
ଶ௖כ௉ାሼሺொାଶ௤כோሻ ௖௢௦ట೛  ା ଶ ∑ ்೔

௖௢௦ఈ೔ ೙כ
೔సభ ሽ ௧௔௡థ 

ሺொାଶ௤כோሻ ௦௜௡ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ
                                                 (5.20)      

 
Case 6: The joint material is c -  material, and there is no seismic forces, 

that is,  c*  0,   0, q*  0, ௜ܶ
௪ݖ , 0, kh = 0, kv = 0,  = 0 כ

כ ് 0. Here, Eq. (5.14) 

becomes  

 

ܵܨ   ൌ
ଶ௖כ௉ାሼሺொାଶ௤כோሻ ௖௢௦ట೛ ି  ೥ೢ

మכ

ംכ ௦௜௡ట೛ି  ೥ೢ
כ

ംכ  ௉ା ଶ ∑ ்೔
௖௢௦ఈ೔ ೙כ

೔సభ ሽ ௧௔௡థ 

ሺொାଶ௤כோሻ ௦௜௡ట೛ା  
೥ೢ

మכ

ംڅ  ௖௢௦ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ

                         (5.21)      

 
Case 7: The joint material is c -  material, and there is only horizontal 

seismic force, that is,  c*  0,   0, q*  0, ௜ܶ
 , 0, kh  0, kv = 0,  = tan-1 (kh) כ

௪ݖ
כ ് 0. Here, Eq. (5.14) becomes  

 

ܵܨ   ൌ
ଶ௖כ௉ାሼሺொାଶ௤כோሻ 

೎೚ೞ൫ഇశഗ೛൯

೎೚ೞഇ
 ି  ೥ೢ

మכ

ംכ ௦௜௡ట೛ି  ೥ೢ
כ

ംכ  ௉ା ଶ ∑ ்೔
௖௢௦ఈ೔ ೙כ

೔సభ  ሽ ௧௔௡థ 

ሺொାଶ௤כோሻ 
ೞ೔೙൫ഇశഗ೛൯

೎೚ೞ ഇ
ା  

೥ೢ
మכ

ംڅ  ௖௢௦ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ

                    (5.22)     

 

For a generalised case when the joint material is c -  material, that is,  c*  0, 

  0,    q*  0, T*  0, kh  0, kv  0,  ߠ ൌ ଵି݊ܽݐ ቄ ௞೓

ሺଵേ௞ೡሻ
ቅ, ݖ௪

כ ് 0, Eq. (5.14) is 
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applicable. It    should be noted that some of the above special cases have been 

presented in similar forms in the literature (Hoek and Bray, 1981;  Ling and Cheng, 

1997; Hoek, 2007;  Shukla et. al, 2009).  

Fig. 5.2 shows the variation of the factor of safety (FS) of the slope with 

stabilizing force T1
* contributed by the first set of rock anchors for different values of 

stabilizing force T2
* from the second set of rock anchors, considering a particular set 

of governing parameters in their nondimensional form as: f  = 50, p = 35,   = 25 

,  c*= 0.1, q*= 0.5,  z* = 0.1,  ݖ௪
כ  = 0.05,  * = 2.5,   kh = 0.1,  kv = 0.05 and  1  = 40, 2  

= 20  It is observed that the factor of safety increases nonlinearly with an increase in 

T1
*and is greater than unity in all cases for  T1

* larger than 0.01; the rate of increase is 

higher for larger value of T1
*.  

  Fig. 5.3 shows the variation of the factor of safety (FS) of the rock slope with 

angle of inclination 1 for the first set of  rock anchors for different values of angle 

of inclination 2 of the second set of rock anchors, considering specific values of 

governing parameters in their nondimensional form as:  f  = 50 ,  p = 35 ,   = 25  

,  q* =  0.5,  T1
* = 0.05, T2

* = 0.05, z*= 0.1,  ݖ௪
כ  = 0.05,   * = 2.5,   kh = 0.1,  kv = 0.05 

and   c*= 0.1. It is observed that for any value of 2, FS increases nonlinearly at it 

becomes the highest for 1  70. It is also noted that for any value of 1, an increase 

in the value of 2 beyond 60 does not bring a significant change in the FS. This 

trend of variation of FS is clearly noticeable from the concept of mechanics in the 

form of force components, which is experienced easily in Fig. 5.1. It indicates that 

with a fixed inclination of one set of anchors, the inclination of the second set is not 

essentially required to be fixed precisely for its values greater than approximately 

60. 

 

 

5.4 CONCLUSIONS 

 

Eq. (5.14) presents a general expression for the factor of safety of the multi-

directional    anchored rock  slope  against  plane failure,  incorporating  most  of  the  
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Fig. 5.2. Variation of factor of safety (FS) of the rock slope with stabilizing force 

( ଵܶ
 .(כ

 

 
Fig. 5.3. Variation of factor of safety (FS) of the rock slope with angle of inclination 

(1). 
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practically occurring destabilizing forces including surcharge and seismic loads. 

Several special cases of this general expression based on possible field situations 

have been described; some of which have been presented in similar forms in the 

literature. The graphical presentation for a particular set of specific values of 

parameters shows that factor of safety increases nonlinearly with an increase in 

inclination of the stabilizing force to the normal at the failure plane, and it becomes 

the highest for about 70. It is also noticed that with a specific inclination of one set 

of anchors, the inclination of the second set of anchors is not essentially required to 

be fixed precisely for its values greater than about 60 because this task does not 

cause any significant change in the factor of safety of the slope. It is important to 

note that the numerical observations presented here are valid for typical values of 

parameters considered in the graphs. For investigating the variation of the factor of 

safety over a wide range of parameters, the developed analytical expression in the 

explicit form can be used conveniently. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

 

 

 

6.1 SUMMARY 

 

Rock masses including even intact rocks are generally heterogeneous and anisotropic 

mainly because of presence of discontinuities within them. Therefore, getting the 

realistic values of factor of safety of the excavated or natural rock slopes has been a 

challenging task for civil and mining engineers. It is a general engineering practice to 

classify the rock slope failures in some idealised failure types, such as plane failure, 

wedge failure, circular failure, toppling failure and buckling failure. There are 

several parameters that govern the stability of the rock slope against plane failure, 

such as inclination of the slope face, inclination of the joint or discontinuity plane, 

depth of tension crack, depth of water in tension crack, shear strength parameters of 

the joint material at the failure plane, unit weight of rock, stabilizing force and its 

inclination, surcharge, and seismic loads. For maintaining a stable slope in excavated 

or natural rock mass, stabilization is preferred. Rock anchoring is the most common 

methods of rock slope stabilization. Anchor force as well as anchor orientation both 

plays an active role in achieving the required slope stability. A rock slope can be 

stabilized by installing a set of anchors with a single orientation; in this case, the 

stabilized slope may be called single-directional anchored rock slope (SDARS). If 

the slope is stabilized with several sets of anchors with different orientations; it may 

be called multidirectional anchored rock slope (MDARS). 

Various methods are utilized for the analysis of rock slope stability. The 

most frequently used methods are limit equilibrium analyses and numerical 

analyses. The analytical limit equilibrium approach for the estimation of factor of 

safety of the rock slope against plane failure is well accepted by the engineers, 

mainly because of simplicity in the development of explicit expressions and their 

frequent applications over a long period of time.  Hoek and Bray (1981) presented 
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most of the basic methods of limit equilibrium analysis for rock slope failures. Ling 

and Cheng (1997) presented an analytical expression for the factor of safety of the 

rock slope against plane failure induced by seismic force, ignoring the possibility of 

upward direction of vertical inertial seismic force, and without considering the 

surcharge and the anchoring force. Recently, Hoek (2007) described the idealisation 

of the rock slope failures in Hong Kong as plain failures and presented an analytical 

expression for estimating the factor of safety, considering many practical aspects 

including seismic loadings. This analytical model was improved by Shukla et al. 

(2009) to investigate the effect of surcharge on the stability of rock slopes, ignoring 

the seismic inertial forces applied by the surcharge on the slope. In the earlier works, 

the vertical seismic inertial force has also not been considered with their all possible 

directions for the generalized case. Therefore, a derivation of an analytical 

expression for the factor of safety (FS) of a single-directional anchored rock slope 

(SDARS) against the plane failure is derived, considering most of the factors that 

may be expected in field conditions under earthquakes and dynamic activities 

including the stabilizing forces for the stabilized slopes. The expression for FS is 

ܵܨ ൌ
ଶ௖כ௉ାሼሺଵേ௞ೡሻሺொାଶ௤כோሻ 

೎೚ೞ൫ഇశഗ೛൯

೎೚ೞഇ
 ି 

೥ೢ
మכ

ംכ ௦௜௡ట೛ି  
೥ೢ

כ

ംכ  ௉ା ଶ்כ௖௢௦ఈ ሽ ௧௔௡థ 

ሺଵേ௞ೡሻሺொାଶ௤כோሻ 
ೞ೔೙൫ഇశഗ೛൯

೎೚ೞ ഇ
ା   

೥ೢ
మכ

ംڅ  ௖௢௦ట೛ିଶ்כ௦௜௡ఈ
                                 (3.24)    

where 

ܲ ൌ ሺ1 െ   ௣                                                                                                     (3.25a)߰ܿ݁ݏ݋ሻܿڅݖ

ܳ ൌ ሺ1 െ ݌߰ݐ݋2ሻܿڅݖ െ    (3.25b)                                                                       ݂߰ݐ݋ܿ

ܴ ൌ ሺ1 െ ݌߰ݐ݋ሻܿڅݖ െ       (3.25c)                                                                                        ݂߰ݐ݋ܿ

where ܿڅ ൌ
௖

ఊு 
څݖ   ,  ൌ

௭

ு
௪ݖ  , 

כ ൌ
௭ೢ

ு
څߛ  ,  ൌ

ఊ

ఊೢ
څݍ  ,  ൌ

௤

ఊு
   and  ܶڅ ൌ

்

ఊுమ  are 

nondimensional forms of c, z, zw, , q and T, respectively. c is cohesion of the joint 

material along the sliding surface; FS is factor of safety against sliding; H is height of 

the rock slope; kh is horizontal seismic coefficient; kv is vertical seismic coefficient; q 

is surcharge pressure; T  is stabilizing force; W  is weight of the sliding block; z is 

depth of the tension crack; zw is depth of water in the tension crack;  is angle of 

inclination of stabilizing force to the normal at the failure plane;  is angle of 



 
C h a p t e r   6 :   S u m m a r y   a n d   C o n c l u s i o n s  

 

95 | P a g e  
 

shearing resistance of the joint material;  is unit weight of rock; w is unit weight of 

water;  is an angle equal to tanିଵ ቄ ௞೓

ሺଵേ௞ೡሻ
ቅ ; f  is angle of inclination of the slope 

face to the horizontal; p is angle of inclination of the joint plane/failure plane to the 

horizontal. Several special cases of this general expression based on possible field 

situations have been described; some of which have been presented in similar forms 

in the literature.  

The graphical presentations for typical values of governing parameters in the 

parametric study indicate that the factor of safety of the rock slope increases with an 

increase in both angle of shearing resistance and cohesion of the joint material. The 

rate of increase in the factor of safety increases with an increase in angle of shearing 

resistance, whereas it remains constant for any increase in cohesion. The vertically 

upward direction of the inertial seismic force results in an increase in factor of safety, 

but the vertically downward direction of the inertial seismic force causes a decrease. 

The factor of safety of the rock slope decreases with an increase in angle of 

inclination of the slope face to the horizontal whereas it increases with an increase in 

angle of inclination of the failure plane to the horizontal. For the higher factor of 

safety of the rock slope against plane failure under seismic loading conditions, 

greater values of shear strength parameters and/or the stabilizing force must be 

present. The orientation of stabilizing force to the normal at the failure plane plays a 

very important role on factor of safety of rock slope and it is higher for greater values 

of angle of inclination which becomes maximum for   ≈ 70º beyond which it 

decrease. It is also realised that surcharge and water pressure in the tension crack 

decrease the factor of safety significantly.  

A general expression has also been derived for the factor of safety of the 

multi-directional anchored rock slope against plane failure, incorporating most of the 

practically occurring destabilizing forces including surcharge and seismic loads.  

ܵܨ   ൌ
ଶ௖כ௉ାሼሺଵേ௞ೡሻሺொାଶ௤כோሻ 

೎೚ೞ൫ഇశഗ೛൯

೎೚ೞഇ
 ି 

೥ೢ
మכ

ംכ ௦௜௡ట೛ି  
೥ೢ

כ

ംכ  ௉ା ଶ ∑ ்೔
௖௢௦ఈ೔ ೙כ

೔సభ ሽ ௧௔௡థ 

ሺଵേ௞ೡሻሺொାଶ௤כோሻ 
ೞ೔೙൫ഇశഗ೛൯

೎೚ೞ ഇ
ା   

೥ೢ
మכ

ംڅ  ௖௢௦ట೛ିଶ ∑ ்೔
௦௜௡ఈ೔ ೙כ

೔సభ

                      (5.14)   
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where  ௜ܶ
څ ൌ

்೔

ఊுమ  and Ti is stabilizing force in the ith set (i = 1, 2, 3,…n); i is angle 

of inclination of stabilizing force to the normal at the failure plane (degrees) in the 

ith set (i = 1, 2, 3,…n).   

Several special cases of this general expression based on possible field 

situations have been described some of which have been presented in similar forms 

in the literature. The graphical presentation for a particular set of specific values of 

parameters shows that the factor of safety increases nonlinearly with an increase in 

inclination of the stabilizing force to the normal at the failure plane, and it becomes 

the highest for about 70. It is also noticed that with a fixed inclination of one set of 

anchors, the inclination of the second set of anchors is not essentially required to be 

fixed precisely for its very high values. For investigating the variation of the factor 

of safety over a wide range of parameters, the developed analytical expression in the 

explicit form can be used conveniently. 

 

 

6.2 CONCLUSIONS 

 

Based on the present study, the following general conclusions are made. 

 

1. The derived analytical expression [Eq. (3.24)] can be used for the estimation 

of the factor of safety of a single-directional anchored rock slope (SDARS) 

against the plane failure, subjected to the most practically occurring 

destabilizing forces including surcharge and both horizontal and vertical 

seismic inertial forces. 

2. Several special cases of Eq. (3.24) based on possible field situations have 

been described; some of which have been presented in similar forms in the 

literature. 

3. The graphical presentations of Eq. (3.24) representing several field situations 

show that the factor of safety of the rock slope increases with an increase in 

both angle of shearing resistance and cohesion of the joint material. The rate 

of increase in the factor of safety increases with an increase in angle of 

shearing resistance, whereas it remains constant for any increase in cohesion. 
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4. The parametric study shows that the effect of vertical seismic coefficient on 

the stability of the rock slope for practical ranges of parameters governing the 

stability of the slope. With an increase in vertical seismic coefficient in the 

downward direction, the factor of safety of the rock slope decreases almost 

linearly, whereas with an increase in vertical seismic coefficient in the 

upward direction, it increases almost linearly. 

5. The factor of safety of the rock slope decreases nonlinearly with an increase 

in angle of inclination of the slope face to the horizontal whereas it increases 

nonlinearly with an increase in angle of inclination of the failure plane to the 

horizontal. 

6. Both stabilizing force and its orientation (i.e. angle of inclination of 

stabilizing force to the normal at the failure plane) play a significant role in 

achieving the required slope stability. The factor of safety of the rock slope 

increases nonlinearly with an increase in stabilizing force as well as with an 

increase in angle of inclination of stabilizing force to the normal at the failure 

plane and it becomes maximum for   ≈ 70º beyond which it decreases. 

7. The factor of safety of the rock slope is not much affected by variation in unit 

weight of rock, and it decreases with an increase in horizontal seismic 

coefficient. It is also observed that surcharge and water pressure in the 

tension crack decrease the factor of safety significantly. 

8. Developed design charts can be used for the estimation of factor of safety of 

the anchored rock slope against plane failure under surcharge and seismic 

loading conditions. The design charts indicate that the factor of safety of the 

rock slope increases with an increase in both angle of shearing resistance and 

cohesion of the joint material. 

9. The numerical example illustrates the steps for the estimation of factor of 

safety using design charts. 

10. The general expression [Eq. (5.14)] for the factor of safety of the multi-

directional anchored rock slope (MDARS) against plane failure is derived to 

evaluate the effect of multi-directional anchors on the stability of rock slopes.  

11. Several special cases for general expression Eq. (5.14) have been described, 

based on possible field situations, some of which have been presented in 

similar forms in the literature. 
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12. The graphical presentation of Eq. (5.14) for a particular set of specific values 

of parameters shows that the factor of safety increases nonlinearly with an 

increase in inclination of the stabilizing force to the normal at the failure 

plane, and it becomes the highest for about 70, which is similar to the single-

directional anchored rock slope system. 

13. With a fixed inclination of one set of anchors, the inclination of the second 

set of anchors is not essentially required to be fixed precisely for its very high 

values (e.g. 65, 70, etc.). 

14. For a higher factor of safety of the rock slope against plane failure under 

surcharge and seismic loading conditions, greater values of shear strength 

parameters and/or the stabilizing forces should be available. 

15. The accepted values of safety factors for various special cases discussed in 

the thesis is 1.2-1.5 as reported in the research literature as well as in 

standards and codes of practice.   

 

 

6.3 RECOMMENDATIONS FOR FUTURE WORK 

 

For the success of many civil and mining engineering projects, especially in hilly and 

rocky terrains, and for mining excavations, it often becomes essential to know the 

realistic values of factor of safety of the rock slopes. Because of this fact, the subject 

area of the present work has been one of the important research topics in civil and 

mining engineering disciplines. The current research work can be extended further to 

consider the following: 

 

 Development of a generalised expression for other failure modes including 

wedge failure under surcharge and seismic loading conditions. 

 More design charts can be prepared for specific field situations following the 

approach described in the present work. 

 Comparison of the analytical results with results obtained from finite 

element/numerical modelling. 
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 Experimental model studies, though difficult to carry out, especially in 

laboratory environments, to compare the mathematical values of the factor of 

safety of safety. 

 Effect of dynamic loads other than earthquakes on rock slope stability. 

 Rock slope stability analysis using pseudo-dynamic approach. 

 Effect of other reinforcing techniques on the stability of rock slopes. 
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