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ABSTRACT 

 
Personnel working in industry can encounter hot and humid conditions where 

uncompensable heat loads are experienced; an inability to dissipate stored heat increases 

the risk of developing a heat illness.  In order to minimise the incidence of heat illnesses, 

several heat stress reduction interventions have been developed which aim to allow for 

safe repeated bouts of exposure to high thermal heat loads.  These vary from modification 

of the working environment, wearing of personal protective equipment designed to cool, 

heat stress indices and/or hydration regimens.  Despite these interventions, personnel still 

experience heat stress related illnesses.  Consequently, the overall aim of the thesis was to 

quantify the cooling capacity of an ice slurry beverage, and to measure the physiological 

responses of this simple, easily implementable and cost effective cooling intervention. 

Study 1 compared several commonly used heat stress indices in industry against 

actual physiological responses associated with work for both onshore and offshore oil 

workers.  These indices included: ISO 7243, ISO 7933, ISO 8996, and Predicted four 

hour sweat rate (P4SR).  Eight onshore and offshore personnel were investigated for 

gastrointestinal temperature (n=8), mean skin temperature (Tsk) (n=3 onshore and 

offshore), heart rate (HR), urine specific gravity (Usg) and urine colour (Ucol).  Following 

comparison of the heat stress indices, it was identified that the ISO standards under-

predicted workloads measured in personnel, while the P4SR most closely predicted actual 

measurements made for both onshore and offshore personnel.  We also found that 

workers were hypohydrated throughout the testing period. Thus, industry standard heat 

stress indices under-predict heat stress, and miners are likely to be chronically 

hypohydrated.  
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The purpose of Studies 2-6 was to examine if a simple and cost effective 

intervention ,an ice-slurry, can help minimise heat stress and hypohydration typically 

experienced by personnel working in a hot environments.  

Study 2 assessed the effectiveness of ice-slurry to cool men after exercising in the 

heat. Nine male volunteers ran until they reached a rectal temperature of 38.8°C in hot 

and humid conditions (30.1 ± 1.0°C, 75.4 ± 5.7 %RH and 27.3 ± 0.9°C Wet Bulb Globe 

Temperature (WBGT)).   Participants ingested ice slurry (ICE) or a cold liquid (LIQ) to 

reduce body Tre by 1°C.  HR, Tsk and rate of change in rectal temperature from 38.8°C to 

37.8°C at 0.2°C increments were recorded.  No differences (P > 0.05) were observed for 

HR, Tsk and ∆Tre between conditions at each Tre time point. However, a significantly less 

volume of ICE (0.536 ± 0.056 L) was consumed compared to LIQ (1.802 ± 0.205 L) to 

achieve the same rate and amount of cooling (P < 0.05). These findings indicate that if the 

priority is to cool personnel, ice slurry must be used instead of cold water. 

As the previous study investigated the cooling effects of consuming ice slurry 

after exercise, study 3 investigated ice slurry consumption during exercise.  The aim of 

Study 3 was to compare no fluid replacement (NF) with complete (100%) or partial 

(50%) fluid replacement with ICE or LIQ during exercise time to exhaustion (Tlim), rate 

of heat stored and changes in Tre.  Volumes of consumed ICE or LIQ were determined 

from the volume of sweat lost during NF (trial 1).  The order of trials 2 - 5 (100% ICE, 

100%LIQ 50%ICE and 50%LIQ) was randomised for each subject. ICE or LIQ was 

administered every 20 min during exercise in aliquots equalling predicted sweat loss. Tlim 

was 84.3 ± 38.7 min for 100ICE, 79.2 ± 38.7 min for 100LIQ, 68.2 ± 38.7 min for 50ICE, 

59.2 ± 28.3 min for 50LIQ and (46.5 ± 19.9 min for NF, however no differences were 

observed (P > 0.05). Changes in the rate of heat stored was 8.8 ± 2.1 kJ·min
-1 

during NF, 
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6.6 ± 2.7 kJ·min
-1

 in 50LIQ, 6.4 ± 2.6 kJ·min
-1

 in 50ICE, 5.9 ± 3.1 kJ·min
-1

 in 100LIQ 

and 4.5 ± 2.7 kJ·min
-1

 in 100ICE; heat storage in NF was significantly faster than 100ICE 

(P < 0.001), 50ICE (P < 0.05) and 100LIQ (P < 0.05).  ∆Tre was 0.020 ± 0.008°C·min
-1 

for 100ICE, 0.022 ± 0.007°C·min
-1

 for 100LIQ, 0.027 ± 0.008°C·min
-1

 for 50ICE, 0.029 

± 0.008°C·min
-1

 for 50LIQ and 0.034 ± 0.007°C·min
-1

 for CON with significant 

differences observed between CON vs. 100ICE and 100LIQ, as well as 50LIQ vs. 

100ICE and 100LIQ (P < 0.05). Findings from this study indicate that complete (100%) 

rehydration with ICE or LIQ must be encouraged to help minimise thermal stress in 

miners.  

Study 4 investigated the effectiveness of ad libitum consumption of ICE to (1) 

estimate how much ICE miners are likely to consume voluntarily, (2) to test if ad libitum 

consumption of ICE can effectively minimise heat stress and dehydration during exercise 

compared to LIQ, and (3) to test if ad libitum consumption of ICE can increase exercise 

capacity compared to LIQ.  Participants completed three trails during which they 

consumed no fluid (NF), ICE or LIQ ad libitum while dressed in mining attire and 

exercising in a hot and humid environment (28.3 ±
 
1.3°C, 40.3 ± 8.0 %RH). Results 

indicated that significantly more LIQ was ingested than ICE (1.088 ± 0.674 L vs. 0.721 ± 

0.431 L; P < 0.01).  Exercise time to Tre 38.0°C was 61.6 ± 27.6 min, 55.9 ± 26.3 min and 

28.9 ± 15.6 min for ICE, LIQ and NF, respectively, however no differences were 

observed between conditions; P > 0.05.  No differences were measured (P > 0.05) in Tlim 

between ICE, LIQ and NF, 108 ± 20.9 min, 104.4 ± 24.4 min and 87.6 ± 25.8 min, 

respectively.  Ad libitum consumption has shown that consuming ice slurry and a cool 

liquid ad libitum during exercise lead to similar rates of rise in Tre, time to reach a Tre of 

38.0°C and exhaustion while consuming 33% less ice slurry.     
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The results from Studies 2, 3 and 4 indicate that ingesting ICE will increase 

performance and reduce thermal strain in exercising persons.  With these studies being 

performed in a controlled laboratory environment, the in situ applicability remained to be 

answered.  Therefore, the purpose of Study 5 was to test the effectiveness of the ICE 

intervention as a practical method of cooling working personnel in liquefied natural gas 

(LNG) industry.  Seven LNG personnel ingested ICE or LIQ on two separate occasions.  

Gastrointestinal temperature (TGI), Tsk and HR were measured throughout the work day.   

Differences were observed for TGI at times 1100 – 1200 (37.3 ± 0.2°C vs. 37.4 ± 0.0°C; P 

< 0.01) and 1400 – 1500 (37.3 ± 0.4°C vs. 37.5 ± 0.2°C; P < 0.05) and for HR at 900 – 

1000 (85 ± 14 bpm vs. 94 ± 15 bpm; P < 0.05) and 1500 – 1600 (87 ± 14 bpm vs. 101 ± 

15 bpm; P < 0.05) between ice slurry and liquid respectively.  Mean TGI and HR, 

although not significant, were lower in ICE during the entire shift.  No differences were 

observed in Tsk (P > 0.05).  Anecdotally, the volunteers enjoyed ingesting ICE and said 

they would use it as a cooling intervention; however, they followed by saying that they 

would not completely replace current drinking practices. 

In conclusion, the general findings of this thesis were as follows: (1) one heat 

stress index (P4SR) predicted heat strain in workers better than ISO 7243, ISO 7933, ISO 

8996; (2) industry personnel typically arrive at work in a hypohydrated state and stay 

hypohydrated throughout the work day; (3) for a given volume, ICE has a greater cooling 

capacity than LIQ; (4) replacing 100% of the fluid lost during exercise can better 

attenuate the rate of rise in Tre and increase Tlim compared to only replacing 50%, but the 

ability to ingest 100% of fluid lost may be unreasonable; (5) ad libitum ingestion of ice 

slurry elicited similar physiological responses during exercise compared to consuming 

cold liquid, however significantly less fluid volume was required; and (6) ingesting ice 

slurry in the LNG industry can significantly reduce Tre and HR in personnel, however 
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complete replacement of currently implemented drink practices was not favoured.  

Therefore, occupational hygienists should consider administering ice slurry to personnel 

in conjunction with currently implemented hydration practices. 
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SYMBOLS AND ABBREVIATIONS 

∆BV  Change in blood volume 

∆CV  Change in cell volume 

∆HRT Increase in heart rate connected with the thermal strain experienced by the 

worker 

 

∆PV  Change in plasma volume 

BET  Basic effective temperature 

BSA  Body surface area 

DB  Dry bulb 

Hb   Body heat content 

HR  Heart rate 

HRL   Limit of heart rate  

ICE  Ice slurry 

LIQ  Cool liquid 

LNG  Liquefied natural gas 

NF  No fluid 

PO/AH  Preoptic anterior hypothalamus  

Posm  Plasma osmolality 

PPE  Personal protective equipment 

PSI  Physiological strain index 

P4SR  Predicted four hour sweat rate 

pa   Partial vapour pressure  

RPE  Rate of perceived exertion 

Tb   Mean body temperature 

Tc  Core temperature 
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TGI  Gastrointestinal temperature 

Tlim  Time to exhaustion 

Tre  Rectal temperature 

Tsk  Mean skin temperature 

TWL  Thermal work limit 

ta  Air temperature (dry bulb temperature) 

tg  Globe temperature 

tnb  Natural wet bulb temperature 

tr   Mean radiant temperature 

va   Air velocity 

WB  Wet bulb 

WBGT  Wet bulb globe temperature  

Work Definition: physical activity.  Can be used interchangeably as exercise or 

labour 
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CHAPTER ONE 

 

INTRODUCTION 

1.1 Overview 

The expansion of Western Australia’s mining industry has brought with it an 

increased number of personnel required on site (Ye 2008).  As these mining sites tend to 

be located in remote areas exposed to hot and sometimes humid conditions (31.5°C) 

(Donoghue and Bates 2000) and 30.9°C wet bulb globe temperature (WBGT) (Brake and 

Bates 2002), the exposure of more mining personnel to extreme environmental conditions 

is inevitable. Thus, it is important for occupational hygienists and managers to be aware 

of the detrimental consequences of heat-related injuries along with strategies that could be 

employed to lower their incidence in industry.  

1.1.1 Thermoregulation in the Heat 

Mean body temperature (Tb) is continually in a state of adjustment as a result of 

metabolic processes and interactions with the environment (Mekjavic, Sundberg et al. 

1991). The regulatory centre for Tb is located in the brain; more specifically, the preoptic 

anterior hypothalamus (PO/AH).  In response to afferent signals from thermal receptors 

located throughout the body, the PO/AH integrates these signals and effector responses 

are initiated (sweating and/or increased skin blood perfusion during warm conditions) to 

restore Tb or body heat content (Hb).  These thermolytic mechanisms will continue until a 

thermal homeostasis is restored, as seen by an absence of a rising Tb or core temperature 

(Tc). 

Under conditions of thermal neutrality, the net change in Hb approximates zero.  

During conditions of uncompensable heat loads (conditions where heat gain is greater 
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than heat loss), a rise in Tc is observed.  Ultimately, it is the thermal gradient between the 

Tc and skin, and the skin and environment which determines the rate and direction of net 

heat gain or loss; this relationship is illustrated in Figure 1.  This thermal heat exchange 

can be expressed by the following heat balance equation as adapted from (Buskirk 1977): 

S = M ± (R + C) ± W – E    (1.1) 

Where S = rate of net heat storage (either positive or negative)      

M = metabolic heat production (always positive)  

E = evaporative heat loss (always negative)  

R = radiative heat exchange,  

C = conductive heat exchange  

W = mechanical work 

 

 

Figure 1.1 Schematic representation of heat transfer where R 

= radiation, M = metabolism, E = evaporation, C = conduction, 

W = mechanical work 

 

 

 

In Germany, coal miners have experienced WBGT of 29.1°C (Kalkowsky and 

Kampmann 2006), and miners in an Australian metalliferous mine have recorded ambient 

temperatures of 31.5°C (Donoghue and Bates 2000) and 30.9°C WBGT (Brake and Bates 

2002).  In a UK coal mine, Weller (1981) measured a Basic Effective Temperature (BET) 

between 26.6°C and 27.0°C, whereas Chilton and Laird (1982) measured a BET of 

29.4°C.  These reports illustrate the high ambient temperature conditions typically 

experienced by mining personnel. 

In addition to the heat gained by underground mining personnel in these hot 

environments, high metabolic heat loads associated with heavy working tasks have also 

been reported (Mate et al. 2007).  The task of shovelling for example, has been measured 
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to range between 266 W·m
-2

 and 407 W·m
-2

 (Leithead 1964; Bethea 1980), while drilling 

has been found to range from 217 W·m
-2

 to 290 W·m
-2

 (Leithead 1964; Graves, Leamon 

et al. 1981).  Shovelling at 266 W·m
-2

 for a 75 kg individual without the capacity to cool 

would increase Tc by ~0.1°C·min
-1

.  According to the International Standards 

Organization 7243, such work intensities correspond to high and very high metabolic 

rates (ISO 1989). If those work intensities are performed under the environmental 

conditions previously described, the onset of a heat-related illness can occur (Donoghue, 

Sinclair et al. 2000), causing symptoms ranging from central and/or peripheral fatigue 

(Nybo and Nielsen 2001; Todd, Butler et al. 2005; Saldanha, Nordlund Ekblom et al. 

2007; Nybo 2008), decreased focus/concentration, oedema of the periphery (Coris, 

Ramirez et al. 2004), up to a more serious and sometimes fatal heat stroke (Coris, 

Ramirez et al. 2004).  

The upper limit of Tc deemed safe by industrial governing bodies is a 1°C increase 

above resting Tc values (ISO 2004), a maximum Tc of 38.0°C (ISO 2004), and a Tc of 

38.5°C if workers have been medically screened (ISO 2004).  Despite these conservative 

limits, the incidence of heat stress related illnesses remains high, particularly during the 

summer months (43/million-man hours on average throughout the year versus 

147/million-man hours during February) (Donoghue, Sinclair et al. 2000). This indicates 

that current heat stress indices are failing and that alternative heat stress interventions are 

required to reduce the incidences of heat related illnesses.   

Currently used interventions involve, establishing maximal exposure durations to 

stressful environments through heat stress indices (McArdle, Dunham et al. 1947; 

Belding 1955; Yaglou 1957; ACGIH 2005), educating workers on hydration (Brake and 

Bates 2003), and although very costly, modification of the ambient working environment 

(Hardcastle and Kocsis 2004; Mate 2007).  Anecdotal use of salt supplementation to 
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offset salt loss through sweating in the mining industry has also been reported, but the 

effects of such an intervention on work performance and heat strain of mining personnel 

is not known.  Personal protective equipment (PPE) such as cooling garments has been 

used as a means to reduce thermal strain, but success of using this method to attenuate the 

rise of Tc has yielded conflicting results (Hasegawa, Takatori et al. 2005; Johnson BM, 

Somarriba GA et al. 2005).  Continual replacements of melted ice (Heled, Epstein et al. 

2004) may be cumbersome, as refrigeration facilities are typically not readily available in 

remote parts of the mine.  In addition, it has been reported by workers that cooling vests 

are uncomfortable to wear (Corcoran 2002), thus increasing the likelihood that  workers 

will elect not to wear the vests, particularly when unsupervised.  

Environmental conditions in mines, as previously described, can place high and 

sometimes uncompensatable heat loads on workers.  In order to help protect workers from 

experiencing heat stress related illnesses, heat stress indices have been created (i.e. 

WBGT, BET).  Overall, the purpose of heat stress indices is to provide a one-measure 

system which will predict safe, tolerable, and repeated bouts of exposure for workers to 

work in the heat that integrates all relative aspects of climate. These indices are based on 

mathematically derived equations which encompass various environmental, 

physiological, and time variables.  The validity of these indices have been scrutinised by 

various authors (Parsons 1995; McNeill and Parsons 1999; Srivastava, Kumar et al. 2000) 

and as a result, there is not one index that is universally accepted throughout industry. 

Despite the existence of multiple indices, however, typically one index is used in all 

mining occupations within a particular mine irrespective of clothing or PPE worn.   

Statistically, under a normal distribution curve, typically 95% of the population is 

protected.  The outliers from this 95% confidence interval will be either over or under 

protected.  Those individuals who are over protected may not be working at optimal 
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productivity, whereas those who are under-protected are at an increased risk for 

developing a heat stress related illness and could even die.  Therefore, to optimally 

protect workers, specific heat stress indices should be validated under field conditions to 

accommodate the uniqueness of each industrial environment; including the metabolic 

demands of the job, clothing and environmental factors.  

External heat loads experienced by mining personnel have been reported to range 

from 29.1°C to 30.9°C WBGT (Chilton and Laird 1982; Brake and Bates 2002; 

Kalkowsky and Kampmann 2006) and 26.6°C to 29.4°C BET (Weller 1981; Chilton and 

Laird 1982).  However it is uncertain which occupation(s) within a specific industry 

typically experience the most extreme working conditions.  Moreover, whether the use of 

heat stress indices protects workers adequately throughout the array of industrial 

occupations is not known.  The creation of a new heat stress index and related guidelines 

could assist in providing additional protection for workers. This would however, require 

validation of the index, which is a time consuming process.  By identifying occupations 

which experience the highest heat loads, occupational hygienists and managers will be 

more aware of where specific heat stress interventions should be focussed.   

1.1.2 Physiological responses to exercise under different states of hydration 

Maintaining total body water has been shown to provide thermoregulatory 

benefits by reducing the rise of Tc in exercising individuals (Gisolfi and Copping 1974).  

For example, Greenleaf and Castle (1971) showed that hypohydration (-5.2% body mass) 

was associated with the greatest increase in Tb (0.94°C) compared with hyperhydrated 

(+1.2% body mass) (0.39°C), and ad libitum (-1.6% body mass) (0.57°C) fluid 

consumption trials during 70 min of cycling at 49% V& O2max in warm conditions (23.6°C, 

51% relative humidity (%RH), windspeed 0.41 m·sec
-1

).    In a study by Brake and Bates 
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(2003) which examined the hydration status of mining personnel, they observed that 

workers started their shifts in a mildly hypohydrated state (urine specific gravity (Usg) 

exceeding 1.0220).  However, despite extreme ambient conditions, Usg measurements 

taken before, during and after the work shift revealed that workers were able to maintain 

their hydration status throughout the work shift. Therefore, educating workers on the 

importance of attaining and maintaining euhydration would appear to be the simplest and 

most practical option for workers to manage heat loads.   

1.1.3 Physiological Response to the Thermodynamic Properties of Water 

The consumption of cold liquid water (H2O(aq)) results in an expansion of the 

body’s natural heat sink. As the body warms the cooler consumed H2O(aq), heat energy is 

exchanged between the body and the H2O(aq) until a thermal gradient no longer exists.  

Therefore, the heat energy that would have been otherwise stored in the body is now 

transferred into H2O(aq).  The consumption of cooler volumes of H2O(aq) will theoretically 

allow even larger quantities of heat energy to be exchanged away from the body.  If left 

undisturbed, H2O(aq) begins to change physical states from liquid to solid at a temperature 

of approximately 0°C.  However, if H2O(aq) is continuously stirred, the liquid forms small 

ice crystals and changes into a slurry H2O(is). By maintaining both physical states (solid 

and liquid), the H2O(is) drink may provide a subtle, but significant advantage to reducing 

heat strain in thermally challenging conditions.  This advantage is due to the phase 

changing feature of the H2O(is); solid ice (H2O(s)) changes phase into H2O(aq). 

Although the thermodynamic effect of H2O(is) consumption in humans is 

unknown, the influence of H2O(is) infusion has been investigated in animals.  Vanden 

Hoek et al. (2004) infused a 50 ml·kg
-1

 solution of either saline slurry or saline water of 

equal temperature in 11 swine over a 1 hr period.  Brain temperature was reduced by 5.3 

± 0.7°C with saline slurry compared with 3.4 ± 0.4°C using saline water.  Furthermore a 
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study by Merrick and co-workers (2003) showed how phase changing cryotherapy 

modalities were able to produce colder superficial skin temperatures (ice bag; from 35.6 ± 

0.9 to 27.8 ± 3.5°C at 1 cm, 36.3 ± 0.7 to 31.8 ± 2.2°C at 2 cm, wet-ice; from 35.7 ± 0.8 

to 27.2 ± 3.4°C at 1 cm, 36.2 ± 0.7 to 30.6 ± 3.0°C, and gel pack; from 35.49 ± 0.8 to 

29.5 ± 2.4°C at 1 cm, 36.1 ± 0.9 to 32.1 ± 1.5°C at  2 cm) at a depth of 1 and 2 cm 

compared with non-phase changing cryotherapies.  Finally, Kennet and colleagues (2007) 

investigated the cooling efficiency of four different cryotherapeutic agents and showed 

that crushed ice reduced skin temperatures (19.6 ± 3.8°C) more than a gel pack (13.2 ± 

5.1°C), frozen peas (14.6 ± 4.2°C), and ice-water immersion (17.0 ± 2.8°C).  While a 

thermodynamic cooling advantage should theoretically be gained through the phase 

change properties of solid versus liquid water, the physiological effects have yet to be 

reported.  

From the thermodynamic cooling ability of water, topical cooling trials in humans 

(Kennet, Hardaker et al. 2007) and intravenous infusion cooling in animals (Vanden 

Hoek, Kasza et al. 2004), investigation into the effects of an H2O(is) beverage seems 

warranted.  Such a cooling method could provide industrial workers with a simple means 

of attenuating the rise in Tc whilst concomitantly achieving a reduction in cardiovascular 

strain.   

1.2 Purpose of Research 

The overall purpose of this thesis was to investigate the effectiveness of a non-

invasive and cost effective heat stress management intervention for personnel working in 

the resource industry.  Five studies were performed to achieve this objective. The purpose 

of Study 1 was to evaluate the environmental conditions associated with working in the 

oil and gas industry and attempt to identify the most accurate heat stress index for general 

use in this work environment.  Study 2 measured the cooling capacity, in vivo, of the ice 
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slurry and compared it to the consumption of a liquid.   Study 3 compared the effects of 

replacing 100% and 50% of fluid lost by drinking ice slurry and liquid solutions on core 

temperature during simulated mining conditions.  Study 4 aimed to compare ad libitum 

drinking of liquid versus drinking of ice slurry solutions on core temperature during 

simulated mining tasks in a hot environment.  Finally, Study 5 aimed to compare ad 

libitum drinking of liquid versus drinking ice slurry solutions on core temperature in 

industrial workers on an offshore liquefied natural gas (LNG) oil platform in North 

Western region of Western Australia during the summer of 2010.    

1.3 Significance of Research 

Creating a non-invasive and cost-effective method to manage heat stress in situ 

will help reduce the incidence of heat stress related illnesses in the mining industry and 

other heat stressful industries (i.e., military, smelters, fire service). 

1.4 Research questions 

1. Which current single heat stress index most accurately predicts heat strain among 

personnel working in both the on- and offshore liquefied natural gas industry? (Study 

1) 

2. Does drinking ice slurry after exercise in a hot and humid environment provide a 

similar cooling capacity as consuming a cold liquid?   (Study 2) 

3. Will complete and half replacement of sweat loss with ice slurry minimise heat stress 

and prolong exercise performance as compared to the consumption of cold liquid 

during work in a hot and humid environment?    (Study 3) 

4. Does drinking ice slurry ad libitum during exercise minimise heat stress and prolong 

exercise performance compared to performance associated with the consumption of 

liquid?         (Study 4) 
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5. Does the ingestion of ice slurry by LNG personnel better attenuate the rise in Tc than a 

cool liquid during work in situ?      (Study 5) 

1.5 Hypotheses 

1. The P4SR heat stress index can more accurately predict heat strain in both on- and off 

shore liquefied natural gas workers;  

2. Consuming ice slurry after exercise will provide a greater cooling capacity than 

drinking a cold liquid; 

3. Completely offsetting sweat losses with the ingestion of an ice slurry will best 

attenuate rise in Tre and prolong the capacity for exercise the best, followed by liquid, 

half ice slurry and half liquid consumption;   

4. Greater exercise duration and better attenuated rise in Tre will be attained by ad 

libitum ingestion of ice slurry compared to liquid solution; 

5. Better attenuated rise in Tc will be attained by workers consuming ice slurry beverage 

during their shift compared with current industry practice (drinking cool liquids). 

1.6 Limitations 

Measurements recorded in Studies 1 and 5 were collected over several days and 

are not a comprehensive representation of the environmental conditions experienced 

throughout a weather season.   

Study 3 replaced 100% and 50% of fluid losses.  As individual sweat rates do 

vary, the volumes of fluid ingested will also vary; subsequently, the quantity of cooling 

due to slurry consumption would be different for each individual.  In addition, the rate of 

heat gain differs between individuals.   
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In Study 4, the quantity of fluid ingested varied according to individual 

perceptions of thirst and therefore the cooling capacity administered by the fluids also 

differed. 

Study 5 was a field experiment, and despite best efforts, it cannot be assumed that 

industrial personnel maintained normal working and drinking habits during the 

investigation.    

1.7 Delimitations 

There are numerous industries experiencing different levels of mechanisation, 

work requirements and environmental conditions throughout Western Australia. As a 

result, the transfer of experimental findings from these proposed field studies to other 

industries within Western Australia and throughout the world might not be entirely 

accurate. The findings from Study 1 and 2 are delimited to healthy male adults aged 18 to 

45.   
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CHAPTER TWO  

 

REVIEW OF LITERATURE 

2.1 Overview 

The expansion of Western Australia’s resource industry has brought with it an 

increased number of personnel required on site (Ye 2008).  As these industrial sites tend 

to be located in remote areas exposed to hot and sometimes humid conditions, the 

exposure of more personnel to extreme environmental conditions is inevitable.  For 

example, miners have experienced WBGT exposures of 29.1°C to 31.5°C (Brake and 

Bates 2002; Kalkowsky and Kampmann 2006) and a Basic Effective Temperature 

ranging between 26.6°C  and 29.4°C (Weller 1981).  Within the mining industry, 

particularly underground mining, the geothermal gradient contributes to ambient heat.  

With current mining trends, mines are becoming increasingly deeper, and as a result, so 

too are the thermal gradients.  For example, in a South African mine, a geothermal 

gradient of 10 – 22°C·km
-1

 has been recorded (Marx 1998).   As such, a significant 

thermal environment is present thus requiring attention to improving the environmental 

strain experienced by personnel. 

In addition to the heat gained by personnel in these hot environments, high 

metabolic heat loads associated with heavy working tasks have also been reported (Mate 

et al. 2007).  For example, the task of shovelling has been measured to range from 

between 266 W·m
-2

 and 407 W·m
-2

 (Leithead 1964; Bethea 1980), while drilling has been 

found to range from 217 W·m
-2

 to 290 W·m
-2

 (Leithead 1964; Graves, Leamon et al. 

1981).  Shovelling at 266 W·m
-2

 for a 75 kg individual without the capacity to cool could 

increase Tc by ~0.1°C·min
-1

.  According to the International Standards Organization 

7243, such work intensities correspond to high and very high metabolic rates (ISO 1989). 
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If heavy work intensities are performed during environmental conditions previously 

described, the onset of a heat-related illness can occur (Donoghue, Sinclair et al. 2000), 

causing symptoms ranging from central and/or peripheral fatigue (Nybo and Nielsen 

2001; Todd, Butler et al. 2005; Saldanha, Nordlund Ekblom et al. 2007; Nybo 2008), 

decreased focus/concentration, oedema of the periphery (Coris, Ramirez et al. 2004), up 

to a more serious and sometimes fatal heat stroke (Coris, Ramirez et al. 2004).  

Work-related injuries related to fatigue may be caused by dehydration 

(Gopinathan, Pichan et al. 1988), physical exertion and/or an elevated body temperature 

(Nybo 2008).  The deleterious effect of dehydration on running memory and perceptual 

motor coordination functions was found to occur beyond 2% dehydration (Sharma, 

Sridharan et al. 1986).  When observing the effects of 2% body dehydration on word 

recognition, serial addition and trail marking tests, performance was found to decrease 

with increases in dehydration (Gopinathan, Pichan et al. 1988).  Performing prolonged 

activities in the heat can result in altered brain activity.  During prolonged exercise (such 

as during a 12 h work shift), fatigue is thought to occur in the synapses due to excessive 

use, decreased spinal excitability to inputs and reductions in motoneural output from the 

spine resulting in a reduction in peripheral feedback (Saldanha, Nordlund Ekblom et al. 

2007).  Associated with elevated body temperatures are alterations in the central nervous 

system to drive working muscles (Saboisky, Marino et al. 2003; Martin, Marino et al. 

2005; Thomas, Cheung et al. 2006).  With a reduction in working musculature, the ability 

to perform tasks may increase the risk of injury.  Additionally, visual acuity is impaired 

during elevated body temperatures (Hohnsbein, Piekarski et al. 1984) while a reduction in 

mental and simple tasks occurs between a temperature of 30 – 33°C WBGT (Ramsey 

1995).  It was also identified by Nielsen et al. (2001) through alterations in 

electroencephalogram measurements in the frontal cortex during hyperthermia, that the 
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ability to exercise was reduced. These findings indicate that there are some neurological 

perturbations occurring while body temperatures are elevated, which could explain the 

commonly observed reduction in work and coordination.   

International Standards Organization (ISO), World Health Organization (WHO), 

National Institute for Occupational Safety and Health (NIOSH), and the American 

Conference of Governmental Industrial Hygienists (ACGIH) are some of the governing 

bodies that have developed/implemented heat stress guidelines and/or indices to allow for 

safe repeated bouts of heat exposure by industrial personnel.  There are several criteria 

deemed as a safe upper limit of Tc.  These limits which have been developed by industrial 

governing bodies are: (1) a 1°C increase above resting Tc values (ISO 2004), (2) a 

maximum Tc of 38.0°C (ISO 2004), and (3) a Tc of 38.5°C if workers have been 

medically screened (ISO 2004).  Despite these conservative limits, the incidence of heat 

stress related illnesses remains high, particularly in an Australian mine during the summer 

months (43/million-man hours on average throughout the year versus 147/million-man 

hours during February) (Donoghue, Sinclair et al. 2000). Higher cases of heat illness 

during the summer months (May and September (88%)) were also observed among 

marine corps  (Kark, Burr et al. 1996).  With higher cases being reported during hotter 

months, one could suggest that workers and their managers are violating these imposed 

thermal limits and that improved heat stress interventions are required.   

Thus, it seems important for occupational hygienists and managers to be aware of 

the severe consequences of a hot working environment and the potential risk for heat-

related injuries.  Some of the currently implemented interventions involve, establishing 

maximal exposure durations to stressful environments through heat stress indices 

(McArdle, Dunham et al. 1947; Belding 1955; Yaglou 1957; ACGIH 2005), educating 

workers on hydration (Brake and Bates 2003), and modification of the ambient working 
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environment (Hardcastle and Kocsis 2004; Mate 2007).  By complementing these heat 

stress strategies with newer approaches, the incidence of heat related injuries in industry 

may be reducedTherefore, the purpose of this review was to identify some approaches 

already taken to reduce heat stress in industry-highlighting some restrictions these 

interventions may have, and to provide an alternative solution which may compliment 

currently implemented heat stress interventions. 

Environmental conditions in industry, as previously described, can place high and 

sometimes uncompensatable heat loads on workers.  In order to help protect workers from 

heat stress related illnesses, heat stress indices or measurements have been created.  These 

indices can be classed into three general categories; direct, rational and empirical indices.  

Direct indices involve the use of standard ambient measuring equipment.  The more 

popular direct index used in industry is the ISO 7243 – WBGT (ISO 1989).  Rational 

indices are measurements based more on physiological parameters such as sweating, Tc, 

heart rate, and metabolic work.  Examples of rational indices include but are not limited 

to: predicted heat strain (ISO 2004), heat stress index (Belding 1955), and ISO 7933.  

Empirically based indices are those measurements which are based on meteorological 

parameters such as temperature, humidity and wind speed.  Examples of empirically 

based indices are: effective temperature (Houghton 1923), corrected effective temperature 

and the predicted four hour sweat rate (P4SR) (McArdle, Dunham et al. 1947). 

Some approaches in addressing the issue of heat stress range from monitoring and 

manipulation of the ambient working environment (heat stress indices and ventilation 

practices), altering work practices and work schedules (mechanical equipment and  rest to 

work ratios), primary care (acclimation of workers), implementation of safety equipment 

(cooling garments), to education of workers (hydration practices). Some challenges in 

creating a universal heat stress index are the multitude of variables which exist in the 
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working environment.  Such variability includes the identification of metabolic demands 

for tasks between workers, phenotype of workers, health status of the worker, tolerance to 

heat, heat sources (natural and artificial), mechanisation of occupation, interference of 

thermolytic mechanisms, level of intermittent work, and the ambient environment.  

Accounting for each variable in a single heat stress index may not be not feasible for 

industrial applications.  As a result, several indices have been developed to assist with 

protecting the worker and predicting heat loads.  Regardless of its type, as summarized by 

Epstein and Moran (2006), an index should: (1) be feasible and accurate through a range 

of conditions, (2) integrate important variables, (3) represent the workers exposure and 

(4) reflect increased physiological and psychological safety and health.  

Described below are several heat stress indices and other heat stress interventions 

used in industry with a brief review of their function and in some cases, the variables 

measured and limitations. 

 

2.2 Heat stress interventions 

2.2.1 Thermal Work Limit (TWL) – This index is defined as the limiting or 

maximal sustainable metabolic rate that a euhydrated, acclimatized individual can 

maintain in a specific thermal environment within safe limits of both deep body core 

temperature (38.2°C) and sweat rate (< 1.2 kg·hr
-1

) (Brake and Bates 2002).  This index 

has been reported to be more appropriate and realistic than the WBGT during a field 

study performed by Miller and Bates (2007).  The index incorporates various 

physiological limits in thermolysis to define its scale.  From these physiological limits 

and environmental variables (WB, DB, barometric pressure and wind speed), a portable 

electronic device then determines a limit value.  This value is compared to a table which 

then determines a safe sustainable metabolic level.  Although this index may provide 
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better accuracy in determining a safe working limit, the use of this index is difficult 

without the use of the calculating device.  

2.2.2 ISO 7243 - Wet Bulb Glob Temperature (WBGT) – An empirical index 

which is a compromise between an easy to use measure of ambient conditions and a 

reduced precision index for industrial environments.  It is regarded as an exploratory 

method (ISO 1989) to determine heat stress through the calculation of radiative, dry bulb, 

and wet bulb values.   

The WBGT has been generally accepted amongst governing bodies upon which 

their recommendations and standards are founded (Parsons 1995).  This index allows for 

a maximal rectal temperature (Tre) of 38.0°C.  The WBGT is calculated and then 

referenced against a table for tolerable exposure times, metabolic intensities and work 

ratios.  Weighting for spatial variation in temperature accounts for the temperature at the 

head (having a weighting factor of two), abdomen and ankles divided by four.  Also, there 

is a time weighting factor which is based on the work to rest ratio.  The measurement is 

averaged over each work period.  The simplicity of this index makes it an easy field 

assessment tool as it requires minimal equipment and training.In addition to the averaging 

of body segments and time, this index has two variations; the inclusion of radiative or 

solar heat loads.  Typically they are used indoors or outdoors: 

  

 

 

Indoors: 

WBGT = 0.7 tnw + 0.3 tg    (2.1)  

Outdoors: 

  WBGT = 0.7 tnw + 0.2 tg + 0.1 ta    (2.2) 
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Where tnw = natural wet bulb 

  tg = globe temperature 

  ta = air temperature (dry bulb temperature) 

 

In conjunction with WBGT values, estimated metabolic rates are given in five 

broad categories.  This index also provides work/rest ratios adjusting for ambient 

conditions.  The reference values provided are for a normally clothed individual (0.6 Clo), 

physically fit for the activity being considered and in good health  and both acclimated 

and non-acclimated individuals (ISO 1989).  

While the usability of this index is easy, dry bulb measurements towards the top 

end of the scale may be over emphasised (Taylor 2006).  Further, the index may not 

adequately consider air flow during hot and humid conditions, and is insensitive to air 

flows above 1.5 m·s
-1

 (Taylor 2006).  This index is unable to accommodate for 

differences in metabolic rates; however, concomitantly using another ISO standard can 

correct for this shortcoming.  The insulative component of clothing is not accounted for 

during the calculation of this index; although, another ISO standard can be used to correct 

for insulation.  Despite the correction factors available from other indices, constantly 

referring to other indices may make this index cumbersome to use.   

2.2.3 ISO 7933 – Ergonomics of the thermal environment – Analytical 

determination and interpretation of heat stress using calculation of the predicted heat 

strain - Predicting sweat rates and Tc are described by ISO 7933.  The objectives of ISO 

7933 are twofold; (1) to evaluate the working environment where rises in Tc or excessive 

water loss typically occur, and (2) determine exposure times where physiological strain is 

acceptable. 
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As the ISO 7933 index estimates strain in Western populations, this specificity 

may discriminate against other ethnicities based on phenotype.  McNeill and Parsons 

(1999) investigated the accuracy of this heat stress index during a simulated tea leaf 

picking task in conditions similar to those found in India.  They used Western participants 

in the study and observed differences in the accuracy of measured sweat rates, metabolic 

rates and insulative properties of clothing.  The appropriateness of the index was found to 

be mainly directed towards Western countries as opposed to those regions where 

anthropometrically different people habituate.  ISO 7933 states within its introduction that 

it is not applicable to cases where special protective clothing is worn (ISO 2004), which 

include reflective clothing, active cooling and ventilation clothing, impermeable clothing 

and PPE.   

2.2.4 ISO 8996 – Ergonomics of the thermal environment – Determination of 

metabolic rate – Here, the ISO 8996 specifies different methods for determining 

metabolic rates in assessment of working practices, jobs and activities.  These estimates 

are based on an individual of 30 years of age, weighing 70 kg and standing 1.75 m tall 

(BSA 1.8 m
2
) for men, and weighing 60 kg and standing 1.70 m tall (BSA of 1.6 m

2
) for 

women (ISO 2004).   

The index is divided into four different assessment levels for metabolic estimates 

with each level having different levels of accuracy.  Level 1; screening - this assessment 

quickly characterizes the mean workload of the occupation, but contains a high risk of 

error in estimation.  Level 2; observation - a time motion analysis is performed for the 

occupation which includes workload estimates for body segments and postures. The 

accuracy of this level is ± 20%.  Level 3; analysis - the estimation of metabolic rate is 

determined through heart rate.  The accuracy of this level is ± 10%.  Lastly, level 4; 



 19

expertise - indirect calorimetry.   Accuracy of this method is ± 5%, however it is limited 

by the measurement, duration or motion being evaluated.  

Observer experience in the interpretation of task intensity, as defined by ISO 

8996, plays a key role.  Additionally, the grading of an activity can vary with the 

appraiser’s level of fitness, age, experience and training level (Kahkonen, Nykyri et al. 

1992).  It was found that the difference between two groups of appraisers before visual 

training ranged between 18-60%.  After training, the largest difference in a measurement 

was found to be 24%.  These findings highlight the importance of intra-observer 

experience to accurately assess metabolic demands for heat stress purposes. 

2.2.5 ISO 9886 – Ergonomics – Evaluation of thermal strain by physiological 

measurements – several methods are provided to measure physiological parameters which 

are to be used in conjunction with other ISO standards.  The parameters included in this 

standard are: body temperature, skin temperature, heart rate and body mass loss.  The 

index provides several methods to measure each parameter with an emphasis on body 

temperature.  ISO 9886 provides limit values for the various physiological parameters.   

Using heart rate as an indicator of thermal strain may be subjective as heart rate 

increases with work and heat.  Physiological responses to heat may vary between 

individuals and setting an upper limit of an increase in HR of 33 bpm may be 

conservative.  Nielsen and Meyer (1987) attempted to calculate V& O2 from measuring HR 

and observed both over and underestimation in V& O2 due to differences in temperature, 

posture, and whether there were static or dynamic movements and non-steady state types 

of activities performed.  Using HR as a factor to limit work may require further 

investigation.   
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2.2.6 Predicted 4 hour Sweat Rate (P4SR) – developed by McArdle and colleagues 

(1947), with the aim to create a simple index or method of assessing the physiological 

effects of any combination of temperature, humidity, radiation and air movement on 

personnel wearing different clothing types and working at various intensities.  A 

nomograph encompasses these variables for ease of use.  As with all indices, some limits 

were implemented in its derivation. This includes the dry bulb or globe temperature 

range, wet bulb, air movement speeds, metabolic rates and an upper sweat rate limit of 

4.5 L in a four hour period.  Once environmental variables have been obtained, lines are 

drawn on the nomograph and the required sweat rate can be determined along with the 

predicted rise in Tre at the end of a 4 hour period.  

The inherent limitations are described within the index itself, however, the 

application of this index to acclimated individuals can be challenging since such 

individuals can easily achieve a sweat rate of 4.5 L in a period of four hours (1.125    

L·hr
-1

), and in fact, Wyndham et al. (1973) showed acclimated individuals had a P4SR 

range between 4.95 and 5.35 L.  Therefore, a sweat rate of 4.5 L could be an overly 

conservative estimate.  In as much as the investigators provide a nomograph for 

calculating sweat rates and rise in Tre, deciphering the graph provides a further challenge 

to the field use of the index.  Furthermore, this index accounts for partial clothing to be 

worn by personnel, and therefore does not consider fully encapsulating garments, which 

could be problematic. 

2.2.7 Physiological Strain Index (PSI) –an 11 point scale (0 to 10) is used to 

indicate the level of stress which is based on two physiological parameters; heart rate and 

Tre (Moran, Shitzer et al. 1998).  The PSI is simple to use and it does not discriminate 

between environmental conditions, nor the clothing worn by individuals; hence the 

functionality of the index.  The evaluation of heat strain can be preformed instantaneously 



 

by a supervisor or the workers themselves at any time, which is advantageous; however, 

the social acceptance of Tre

PSI = 5(Tret - Tre0) ·  (39.5

Where; Tret and HR

Tre0 and HR

 

Conversely, the PSI could be considered a reactive rather than a proactive 

It is reactive in that, the worker

to high heat loads.  It is only when they stop work 

measured.  These measurements 

temperature could have already been reached.  It has been previously shown that  

modifications to work practices begin to occur as ambient conditions 

Bates 2002), reducing  the 

   

2.2.8 Heart rate – ISO 9886

in workers based on heart rate.  Th

should not be exceeded: 

    

or a sustained heart rate; 

which should not be exceeded.  It is suggested to set the upper limit for 

rate of 33 bpm which is associated to a thermal strain being experienced by the worker 

(∆HRT).  Despite these suggested limits, as with T

limit can be exceeded, provided there is medical supervision.  During these 

circumstances, the upper limit for HR would be 60 bpm.

by a supervisor or the workers themselves at any time, which is advantageous; however, 

re monitoring and its invasiveness are questionable.

(39.5 - Tre0)
1
 + 5(HRt - HR0) ·  (180 - HR0)

1  

and HRt are simultaneous measurements of rectal and heart rate

and HR0 are the
 
initial rectal and heart rate measurements

Conversely, the PSI could be considered a reactive rather than a proactive 

It is reactive in that, the workers would already have been or are currently being exposed 

to high heat loads.  It is only when they stop work that their physiological responses are 

measured.  These measurements could be a misrepresentation as a cr

temperature could have already been reached.  It has been previously shown that  

to work practices begin to occur as ambient conditions increase 

the effectiveness of this index. 

ISO 9886 (ISO 2004) - includes equations to estimate heat strain 

on heart rate.  These equations include a limit of heart rate (HR

      HRL = 185 - 0.65 · age   

HRL, sustained = 180 – age   

should not be exceeded.  It is suggested to set the upper limit for 

33 bpm which is associated to a thermal strain being experienced by the worker 

).  Despite these suggested limits, as with Tc, there are circumstances in wh

limit can be exceeded, provided there is medical supervision.  During these 

circumstances, the upper limit for HR would be 60 bpm. 

21

by a supervisor or the workers themselves at any time, which is advantageous; however, 

questionable. 

  
(2.3) 

are simultaneous measurements of rectal and heart rate 

initial rectal and heart rate measurements    

Conversely, the PSI could be considered a reactive rather than a proactive index.  

would already have been or are currently being exposed 

their physiological responses are 

as a critical core 

temperature could have already been reached.  It has been previously shown that  

increase (Brake and 

includes equations to estimate heat strain 

ese equations include a limit of heart rate (HRL) that 

       (2.4)   

 (2.5)  

should not be exceeded.  It is suggested to set the upper limit for a change in heart 

33 bpm which is associated to a thermal strain being experienced by the worker 

, there are circumstances in which this 

limit can be exceeded, provided there is medical supervision.  During these 
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2.3 Ventilation practices  

Increasing the rate of air movement over the body will typically result in an 

increased rate of heat loss (evaporative heat loss).  By increasing air flow, ventilatory 

engineers facilitate evaporative heat loss; pending the partial pressure of water vapour.  

Reducing heat loads in underground miners via evaporative heat loss is a method 

currently practiced; however, in factories or open cut mines this method of heat 

dissipation may not be practical.  Generally, in underground mines there are two basic 

types of ventilatory cooling methods: forced and sectional, usually used in conjunction 

with each other.  Forced ventilation consists of cooling units, typically on the surface, 

forcing conditioned surface air down into the mine.  To increase the efficiency of this 

method, sections of the mine are blocked off in an attempt to re-direct the flow of 

conditioned air throughout various tunnels.  The importance of wind speed rather than 

decreasing temperature was identified by Mitchell (1972) who observed that increasing 

wind speeds in low wind speed regions can increase the ambient cooling power quicker 

than maintaining the same wind speed but reducing wet bulb (Mtichell and Whiller 1972).  

In an underground mine investigated by Donoghue and colleagues (2000), they concluded 

that if ventilation and refrigeration practices achieved a cooling power of >250 W, then 

heat exhaustion would be unlikely (Donoghue, Sinclair et al. 2000).  As mines are 

becoming deeper in order to reach richer ores, the demand for ventilation increases.  

Accompanying the increasing ventilatory demands are larger economic investments by 

the company (Hardcastle and Kocsis 2004).  Therefore, cooling of the working 

environment is limited by the willingness of the mine to invest monetarily. 

2.4 Individual cooling interventions 

Types of cooling interventions vary from preventative to reactive methods.  

Cooling the body during work in hot environments can  either attenuate or prevent the 
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excessive rise in Tc.  Some of the preventative methods include pre-cooling and wearing 

of ice vests or jackets.  Pre-cooling individuals is typically used in sporting events prior to 

the commencement of the event.  This intervention usually consists of an athlete 

immerged in a water bath for a desired time or until a certain temperature is reached.  The 

general aim of this technique is to delay or offset the time it takes to reach a critical Tc 

(Quod, Martin et al. 2006).  Ice vests or jackets have several pockets with ice or some 

cryogenic material located inside.  The ice is situated close to the skin and acts as a heat 

sink by conduction.   

Irrespective of an ice vest’s ability to cool a person, limitations associated with 

their use include the excess weight, frequent changing of the cooling cartridges, the 

comfort of the vest and the limited cooling duration (Varley 2004).  It has also been 

reported that PPE are viewed as a hindrance rather than a protector by most personnel 

(Meyer and Rapp 1995).   

Hand and forearm cooling is a newer cooling protocol which is gaining popularity 

amongst the fire fighting sector.  While still semi dressed, fire fighting personnel can 

immerse their forearms in a cold water bath in an attempt to transfer heat energy away 

from the core and into the bath via conduction and convection (Barr, et al 2009).  The 

benefit to hand immersion was described by Livingstone, Nolan and Cattroll (1989) 

where they immersed the hands of test volunteers in water baths of 10, 15, 20, 25 and 

30°C for 20 min following 20 min of exercise.  This protocol was performed at two 

different exercise intensities and also at rest.  The largest quantity of heat was observed to 

be removed at the coldest water temperature.  These findings are supported by other 

authors as well (House, Holmes et al. 1997; Giesbrecht, Jamieson et al. 2007).  Intuitively 

these results are justifiable because submersion of the hands in colder water temperatures 

creates a larger thermal gradient between the bath and skin.  A larger thermal gradient 
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would enable larger quantities of heat to be exchanged between the two systems.  

Performance benefits have been measured using hand cooling during a 30 km cycling 

time trial, where the hand cooling trial (60.9 ± 2.0 min) was faster than the no cooling 

trial (64.9 ± 2.6 min; P < 0.01) (Hsu, Hagobian et al. 2005).  The difference in tympanic 

temperature from resting values were 1.6 ± 0.1°C and 1.2 ± 0.2°C (P < 0.05) for no 

cooling and cooling respectively.      

While hand and forearm cooling has been demonstrated to be an effective cooling 

modality in laboratory-based situations, field access to fresh water may not necessarily be 

possible.  In other instances where heat exhaustion had already occurred, reducing body 

temperature as quickly as possible is necessary.  Under such conditions, forearm cooling 

may not be the most practical approach. 

2.5 Acclimation practices  

Usual physiological adaptations during heat acclimation, that occur irrespective of 

the acclimation modality, include: a reduction in resting heart rate in the heat (Yamazaki 

and Hamasaki 2003), decreased resting core temperature (Buono, Heaney et al. 1998), 

increase in plasma volume (Senay, Mitchell et al. 1976), decrease in rectal and skin 

temperature (Shvartz, Magazanik et al. 1974), change in sweat composition (Taylor 

2006), reduction in the sweating threshold (Nadel, Pandolf et al. 1974) and an increase in 

sweating efficiency (Shvartz, Magazanik et al. 1974). 

The process of acclimation is dependent upon several variables such as duration 

and frequency of acclimating sessions, temperature, humidity and exercise intensity.  For 

example, Yamazaki (2003) used a 6 day acclimation protocol with participants exercising 

at 50% V& O2max in ambient conditions of 36°C and 50% RH.   Buono et al. (1998) had a 

protocol which required their participants to exercise for 7 consecutive days for four 



 25

bouts of 25 min with a 5 min rest while treadmill walking (1.34 m·s
-1

 at a 3% grade) and 

cycling (75 W at 35°C at 75% RH).  Shvartz and colleagues (1974) used a bench step 

protocol which equated to a load equal to 85% V& O2max during ambient conditions of 

21.5°C DB, 17.5°C WB, for 12 days.  Two hour treadmill walks for 9 days in humid heat 

(37°C, 74% RH) was used by Garden et al. (1966) for their acclimation protocol. 

Although there are many different acclimation protocols, there is a general consensus 

within literature that the greater the intensity of exercise during acclimation, the quicker 

observable responses will be elicited.   

The effectiveness of acclimation is dependent upon the acclimating conditions.  

Ideally, individuals should be acclimated in environmental conditions and workloads 

similar to those they would typically experience (Yousef, Sagawa et al. 1986).  For 

example, individuals who work in desert type conditions should be acclimated in hot and 

dry conditions whereas those who work in tropical conditions should be acclimated in hot 

and humid conditions (Garden, Wilson et al. 1966; Shvartz, Saar et al. 1973).  A study on 

working capacity under dry and humid heat loads was performed by Nag et al. (1996).  

One group of subjects were acclimated to dry and hot conditions (41.3 ± 0.6°C and 40 – 

50% RH) while another group was acclimated to humid and hot conditions (39.2 ± 0.6°C 

and 70 – 80% RH) for 9 days.  It was found that those individuals who were acclimated in 

humid conditions were able to perform more work in similar conditions than those who 

were acclimated in dry acclimated condition.  Regardless of the acclimation protocol, 

both groups increased their work performance compared to the unacclimated state. 

The benefits of acclimation were eloquently demonstrated by Wyndham and 

colleagues (1970) when they calculated the quantity of work that could be performed 

between acclimated and unacclimated men in a laboratory setting.  It was concluded that 
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unacclimated individuals would reach a critical body temperature (a Tb where voluntary 

cessation of exercise occurs) quicker (600 min) than acclimated individuals (750 min) at 

the same ambient Twb, particularly when initial core temperature was already elevated.  

These changes in sensitivity by the various thermolytic responses facilitate a reduction in 

the net rate of net heat gain.    

The process of acclimating requires several days to weeks of continual exposure 

to specific environmental and working conditions.  Resources such as heat chambers may 

not necessarily be available on work sites which may make the process difficult.  

Consideration must also be made for the decay in heat acclimation status, which can 

range from between 6 days to 4 weeks (Wyndham and Jacobs 1957; Yousef, Sagawa et 

al. 1986). 

Despite the physiological advantage of a lower resting Tre, increased sweat rate, 

reduced sweating threshold, reduction in resting heart rate, and increased blood volume, 

the commitment to induce these physiological responses in acclimation is both time and 

labour intensive.  Even though miners have a good level of acclimatization, as previously 

described, heat stress related illnesses are still experienced despite currently implemented 

heat stress interventions.  This supports the need for further cooling methods in heat 

stressful occupations.   

2.6 Work to rest ratios 

ISO 7243 has incorporated into its standard several work to rest ratios.  These 

ratios are determined on measured WBGT temperatures and estimated metabolic activity.  

As temperatures increase, the ratio of rest to work also increases.  Additionally, if 

metabolic activity increases, so too does the work-to-rest ratio.  These ratios are based on 

estimations made for an individual to work for one hour and for them not to reach a 
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critical core temperature level.  However, work to rest ratios identified by Donoghue and 

Bates (2000) are typically found to be selectively self paced during episodes of increased 

heat stress.  This finding is supported by the works of Kalkowsky and Kampmann (2006) 

who suggested that workers self paced as a result of the absence of a rise in Tre and heart 

rate with increased climactic load (Kalkowsky and Kampmann 2006).  Workers typically 

reduce work output with increasing temperatures (Donoghue and Bates 2000), and 

conscientious effort and strict monitoring would be required to adhere to the work to rest 

ratios set out by the index.  Stringent monitoring of these ratios would be resource 

dependent, and they may therefore not be available or viable.   

For occupations where self pacing is not an option and where working conditions 

and job requirements are comparable, Lind (1970) suggests that workers may be pushed 

to heat illness.  Reasons include less pressure from worker unions (South Africa vs. 

Europe) and lack of worker supervision (particularly in South Africa).  This work practice 

could account for the differences in the rate of occurrence in heat stress related injuries 

between international regions with obvious socioeconomic differences. 

Numerous indices are available which incorporates many different variables. This 

may make it difficult for occupational hygienists to implement only one in their industry.  

Therefore, the most appropriate heat stress index should be investigated for each specific 

industry and for each occupation within that industry. 

Establishing and adhering to heat stress interventions can be relatively easy 

compared to following heat stress indices and may require minimal infrastructure.  

Educating workers on maintaining hydration is a proactive approach to managing heat 

stress.  Self pacing is an additional heat stress strategy which can be tailored to individual 

worker requirements. 
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There have been general recommendations made to improve ambient working 

conditions by a number of authors.  Piekarski (1995) suggests increasing fresh air flow in 

mines to a maximal rate of 6 m·s
-1

, gradually acclimating workers and wearing  heat 

protective clothing or ice cooled jackets.  Donoghue (2004) suggests that more 

preventative measures should be targeted during the summer months, while Meyer and 

Rapp (1995) suggest implementing easy to use standardized heat stress indices for short 

exposures to very hot conditions.  Finally, Minard et al. (1971) suggest mechanizing more 

tasks to reduce the metabolic demands on workers. 

Despite these recommendations, not one heat stress intervention has been agreed 

upon by industry.  Due to the unique working conditions experienced, one general 

intervention may not be adequate.  Therefore, incorporating several approaches to 

reducing heat stress in industry could hold promise.   

2.7 Limitations to current heat stress interventions 

Heat stress interventions typically do not consider individual variability.  As such, 

individuals will respond differently to the same condition.  Therefore, the accuracy of the 

index will vary.  The development of a heat stress index is based on the statistical 

probability that most of the population will be protected and this probability will then 

either over protect or not protect at all. Those individuals who are considered to be at 

either one of the tail ends of the probability curve may not be adequately protected.  Over 

the past century, there have been many indices developed that are aimed at protecting 

workers; however, the one major shortcoming of all indices is that they do not consider 

the unique characteristics of each individual during its prediction.  In addition to the 

limitation of accuracy, a new index can be difficult to implement or regulate.   



 29

Creation of a new heat stress index could take years to accurately develop and 

trial.  Manipulating the working environment can prove to be too costly and 

implementing cooling PPE would provide benefits when adhered to.  As all workers are 

required to drink at rest breaks or during work, therefore supplying personnel with a 

specific type of drink could be an effective cooling intervention to implement.  Drinking a 

solution which changes physical states, solid to liquid, has the potential to provide 

additional cooling to the worker during work.  

2.8 Drinking a cold liquid as a heat stress intervention 

The consumption of cold liquid water (H2O(aq)) results in an expansion of the 

body’s natural heat sink. As the body warms the cooler consumed H2O(aq), heat energy is 

exchanged between the body and the H2O(aq) until a thermal gradient no longer exists.  

Therefore, the heat energy that would have been otherwise stored in the body is 

transferred to the H2O(aq).  The consumption of cooler quantities of H2O(aq) will 

theoretically allow even larger quantities of heat energy to be transferred from the body to 

the solution.  In order to increase the temperature of H2O(aq) by 1°C, approximately 4210 

J·g
-1
·K

-1
 of heat energy is required to be transferred into the liquid.  Thus, the specific heat 

equation 2 is used to calculate the quantity of heat transferred to 500 g (assuming the 

density of water is 1.000 (kg·m
-3

)) of 0°C H2O(aq) consumed by an individual (body 

temperature of 37°C). 

Q = m · Cp · ∆T     (2.6) 

Where:  Q is the quantity of heat gained or lost (kJ) 

m is the mass of the substance (kg) 

Cp is the specific heat capacity of the substance (kJ·kg
-1
·K

-1
) 

∆T is the change in temperature (°K) 
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Using this equation, it can be determined that approximately 77.9 kJ of energy is 

required to equilibrate the water to body temperature.  In other words, by consuming 500 

g of 0°C water, 77.9 kJ of cooling capacity is administered to the individual.   

An ice slurry (combination of both solid (H2O(s)) and H2O(aq) water; H2O(is)) 

results in an even greater thermodynamic potential for heat energy to be exchanged with 

the body.  If left undisturbed, H2O(aq) begins to change physical states from liquid to solid 

at a temperature of approximately 0°C.  However, if H2O(aq) is continuously stirred, the 

liquid forms small ice crystals and changes into an H2O(is). By maintaining both physical 

states (solid and liquid), the H2O(is) drink may provide a subtle, but significant advantage 

to reducing heat strain in thermally challenging conditions  This advantage is due to the 

phase changing feature of the H2O(is) when H2O(s) is converted to H2O(aq). H2O(s) has a 

different specific heat capacity (Cp) (2108 J·g
-1
·K

-1
) to that of H2O(aq).  Comparing H2O(aq) 

and H2O(is), the H2O(is) would have a greater Cp as a result of having both phases of water 

in its solution; this ultimately increases the solution’s heat sink capacity.  Therefore, if the 

Cp of H2O(s) is used as a conservative approximation for H2O(is) at temperatures below 

0°C, and the Cp of H2O(aq) is used for temperatures above 0°C, H2O(is) results in a greater 

heat sink capacity than H2O(aq) alone.   

An additional factor which contributes to the larger H2O(is) heat sink capacity is 

the energy required to change the physical state of a solid to a liquid.  That is, the energy 

required to change the physical state of H2O(s) to H2O(aq) without a change in temperature. 

This is termed the latent heat of melting or ‘enthalpy of transformation’.  For water, the 

energy required is 334 kJ·kg
-1

.  To estimate the cooling capacity of H2O(is) from equation 

5 while incorporating both the enthalpy of transformation and the Cp of H2O(s), the 

cooling capacity for 500 g of H2O(is) at -1°C becomes 245.9 kJ.  Again, using equation 5 
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to determine the change in Tc for a 75 kg individual drinking 500 ml of H2O(aq) or H2O(is), 

a change of 0.299°C and 0.945°C would occur, respectively. 

While the thermodynamic effect of H2O(is) consumption has been investigated in 

animals.  Vanden Hoek et al. (2004) infused a 50 ml·kg
-1

 solution of either saline slurry 

or saline water of equal temperature in 11 swine over a 1 hr period.  Brain temperature 

was reduced by 5.3 ± 0.7°C with saline slurry compared with 3.4 ± 0.4°C using saline 

water.  Another study by Merrick and co-workers (2003) showed how phase changing 

cryotherapy modalities were able to produce colder superficial skin temperatures (ice bag; 

from 35.6 ± 0.9 to 27.8 ± 3.5°C at 1 cm, 36.3 ± 0.7 to 31.8 ± 2.2°C at 2 cm, wet-ice; from 

35.7 ± 0.8 to 27.2 ± 3.4°C at 1 cm, 36.2 ± 0.7 to 30.6 ± 3.0°C, and gel pack; from 35.49 ± 

0.8 to 29.5 ± 2.4°C at 1 cm, 36.1 ± 0.9 to 32.1 ± 1.5°C at 2 cm) at a depth of 1 and 2 cm 

compared with non-phase changing cryotherapies.  Kennet and colleagues (2007) 

investigated the cooling efficiency of four different cryotherapeutic agents and showed 

that crushed ice (19.6 ± 3.8°C) reduced skin temperatures more than a gel pack (13.2 ± 

5.1°C), frozen peas (14.6 ± 4.2°C), and ice-water immersion (17.0 ± 2.8°C).  Lee et al. 

(2008), demonstrated that cold (4°C) versus warm (37°C) drinks administered prior to 

and during cycling exercise lowered mean Tre during exercise (37.3 ± 0.4°C versus 38.0 ± 

0.4°C) and extended time to exhaustion (63.8 ± 4.3 vs. 52.0 ± 4.1 min; cold versus warm 

drink, respectively).  More recently, Siegel et al. (2010) showed that consuming 7.5 

ml·kg
-1

 ice slurry resulted in a lower pre-exercise Tc, which remained lower for the first 

30 min of treadmill running compared with ingesting cool liquid of the same composition.  

This supports the notion of ice slurry having a greater cooling capacity than cool liquids 

of equal volumes.  Additionally, time to exhaustion was significantly (P = 0.001) 

increased in the ice slurry (50.2 ± 8.5 min) versus cold liquid (40.7 ± 7.2 min).  While a 

thermodynamic advantage should theoretically be gained through the phase change 
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properties of solid versus liquid water, the physiological effects of consuming such a 

mixed solution during exercise have yet to be reported. 

With a greater theoretical cooling capacity of an ice slurry over a liquid, ingesting 

this as an additional cooling source should aid in regulating heat during work.  In addition 

to the cooling potential of an ice slurry, the capacity to hydrate also increases as the ice 

slurry provides a source of fluid replacement.  Replacing fluids, as described below, with 

an ice slurry could theoretically better attenuate the rate of rise in body temperature and 

increase exercise performance compared to water alone.   

2.9 Hydration and thermoregulation 

Maintaining total body water level has been demonstrated to provide 

thermoregulatory benefits by reducing the rate of rise in Tc for exercising individuals 

(Gisolfi and Copping 1974).  Greenleaf and Castle (1971) showed that hypohydration     

(-5.2% body mass) was associated with the greatest increase in Tb (0.94°C) compared 

with hyperhydrated (+1.2% body mass) (0.39°C), and ad libitum (-1.6% body mass) 

(0.57°C) fluid consumption trials during 70 min of cycling at 49% V& O2max in warm 

conditions (23.6°C, 51% RH), windspeed 0.41 m·sec
-1

).   

Brake and Bates (2003) investigated the hydration status of mining personnel 

through several time points in a work shift.  They observed workers starting their shifts in 

a mildly hypohydrated state (urine specific gravity (Usg) exceeding 1.0220).  Despite 

commencing work in a hypohydrated state, Usg measurements taken pre, mid and post 

shift revealed that workers were able to maintain their hydration status throughout the 

work shift.  The importance of this study was that it identified the ability of workers to 

maintain hydration status despite experiencing extreme ambient conditions.  Therefore, 

educating workers on the importance of attaining and maintaining euhydration would 
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appear to be the simplest and most practical option for workers to manage their heat 

stress.   

Individuals typically delay replenishing body fluids and this phenomena has been 

termed ‘voluntary dehydration’ (Morimoto and Itoh 1998).  Despite workers typically 

arriving hypohydrated at the beginning of a work shift, mining personnel were able to 

maintain the same level of hypohydration at the end of a work shift (Brake and Bates 

2003). To promote drinking, ingesting palatable fluids (preferred flavour and/or 

temperature) has been shown to increase the volumes of fluid consumed by subjects 

(Bergeron, Waller et al. 2006).  Maintaining adequate body water levels, delays the onset 

of fatigue (Sawka 1992), reduces heart rate during exercise (Barr, Costill et al. 1991) and 

provides an increased source of cooling (Wimer, Lamb et al. 1997).   

Remaining hydrated during hot conditions and heavy metabolic workloads will 

enable better thermolytic responses compared to being hypohydrated.  When Greenleaf 

and Castle (1971) compared hypohyrated, ad libitum and hyperhydrated subjects during a 

1 h cycling session, a significant elevation in Tre and mean body temperature was 

observed between the hypohydrated and hyperhydrated conditions.  Even though the 

hypohydrated trial was not significantly different to ad libitum fluid consumption, Tre and 

mean body temperature were higher while hypohydrated.   

Delivery of fluid into cells is limited by the rate of intestinal absorption.  Initially, 

a person’s voluntary fluid consumption rate depends on fluid palatability (Bergeron, 

Waller et al. 2006).  If palatability of a fluid is dismissed then the major influence on 

gastric emptying is the volume of the contents in the stomach (Maughan and Leiper 

1999).  The rate at which a fluid is emptied from the stomach is dependent on the volume 
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consumed (Mitchell and Voss 1991), the energy density and the intensity level of physical 

activity (Brouns 1998).  

In humans, when larger volumes of liquids are consumed, more quantities are able 

to pass through the stomach and into the small intestine.  This was demonstrated by 

Mitchell and Voss (1991) who had subjects consume three different volumes of fluids 

relative to body weight.  They aspirated the contents of the stomach at the end of exercise 

and found that the greater the volume ingested, the greater that was emptied.  When 

carbohydrates (CHO) are introduced into the fluid being consumed, concentrations of up 

to 8% will have little effect on the rate of gastric emptying (Coyle and Montain 1992).  

Even though CHO concentrations of up to 8% have little effect on gastric emptying rate, 

water will still empty faster than a glucose containing solution (Maughan and Leiper 

1999).  Therefore, lowering the osmolarity of a CHO solution will help to promote gastric 

emptying and eventually the rate of water absorption.    

As exercise intensity increases above 80% V& O2max, the rate of gastric emptying 

has been shown to slow (Convertino, Armstrong et al. 1996).  During intense bouts of 

physical activity, the shunting of blood away from the abdominal region and concomitant 

lowered gastrointestinal motility could explain this decreased rate of stomach emptying.  

These studies suggest that the availability of fluids is not limited by volume but rather by 

CHO concentration and exercise intensity.  This indicates that industrial personnel have 

the capacity to remain hydrated while working as exercise intensity and fluid 

compositions are such that they would at best minimally interfere with fluid absorption. 

Drink temperature has also been suggested to influence the rate of gastric 

emptying.  A study by Ritschel and Erni (1977) investigated the effects of various drink 

temperatures (5°C, 20-25°C and 45°C) on stomach emptying of solid material.  Of the 



 35

three drink temperatures, it was observed that solid material was emptied into the 

duodenum quickest at 5°C (15.91 ± 10.04 min) followed by 20 - 25°C (48.18 ± 28.97 

min) then 45°C (71.42 ± 37.08 min).  

As with the stomach, the osmolarity of a solution in the intestine will influence the 

rate of absorption.  The osmolarity in the small intestine ranges between 270 and 290 

mosmol·kg
-1

 (Leiper 1998).  Consumption of drinks greater than 290 mosmol·kg
-1 

are 

hypertonic and thus draw fluid away from the lumen. Conversely, consuming solutions 

less than 200 mosmol·kg
-1

 slows the absorption of fluids.  Therefore, manipulating CHO 

concentration to the isotonic range of the intestine could enhance intestinal absorption of 

water (Convertino, Armstrong et al. 1996).  Attention to the type of CHO used to promote 

water uptake should however be made.  It has been suggested that sucrose or glucose 

polymers can be substituted for glucose, however fructose can promote less water uptake 

and in excess, can cause gastrointestinal issues (Maughan and Leiper 1999). 

2.10 Cold drinks and ice slurry as a cooling aid 

Using fluids as a method of internal cooling during exercise has not been 

extensively investigated.  Mundel and colleagues (2006) administered two drink 

temperatures (19°C and 4°C) to subjects during a submaximal work trial (65% V& O2max 

until exhaustion.  They observed an increase in performance, a reduced heart rate and Tre 

and greater volume of fluid being ingested in the cold drink condition.  Gisolfi and 

Copping (1974) investigated ingestion of cold (10°C) versus body temperature fluid 

ingestion during exercise in the heat (34°C).  They observed a lower Tre and a smaller 

percentage of weight loss in the cold fluid condition.  In a more recent study by Lee et al. 

(2008), the serial drinking of different fluid temperatures (10°C, 37°C and 50°C) during 

cycling at 50% V& O2max, showed a lower Tre during 10°C fluid ingestion. 
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Drinking cooler liquids has unequivocally been shown to increase performance 

and attenuate the rate of rise in Tre during exercise Lee et al. (2008).  By ingesting fluids 

of a lower temperature, the capacity to create a larger heat sink greatly increases.  A phase 

changing drink could yield such a heat sink.  Infusion of a saline ice slurry bolus (-1 to 

0°C) into swine was conducted by Vanden Hoek et al. (2004). The authors showed a 

greater reduction in brain temperature 5.3 ± 0.7°C versus infusion of a 0 to 1°C liquid 

saline solution (3.4 ± 0.4°C reduction).   Thus, the phase changing ability of an ice slurry 

solution could provide a better cooling ability then typically used hydration practices.  

Therefore, using a phase changing drink could serve the dual purpose of both hydrating 

and cooling personnel working in hot environments. 

  While the ice slurry appears to be a novel method for cooling and rehydrating a 

worker during exercise, the optimal quantity of ice slurry to administer is currently 

unknown.  Additionally, it is not known whether the ingestion of an ice slurry would 

provide the greatest benefits during or after exercise.  Due to the dynamic nature of the 

workplace, laboratory findings may however not adequately describe industry.  

Therefore, confirmation of laboratory results in the field is also needed.  

2.11 Summary 

Heat stress standards are continually being developed, validated and revised 

within industry.  A single heat index has not yet been universally accepted in industry and 

may not be possible due to the economic investment required for the development of new 

indices which encompass the diversity and uniqueness of occupations exposed to heat.  

Thus, heat stress illnesses are still being experienced by personnel despite current 

strategies to reduce heat stress.  Consequently, to protect workers from heat illness, other 

heat reduction strategies must be implemented along with currently practiced methods.  

The predicted thermodynamic cooling estimates presented, along with published data 
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collected in humans (Kennet, Hardaker et al. 2007; Siegel, Mate et al. 2010) and animals 

(Vanden Hoek, Kasza et al. 2004), supports further investigation into the effectiveness of 

ice slurry ingestion as a practical means of controlling rises in body temperature during 

work in hot environments.  Such a cooling method could provide workers in the hot 

industries with a simple means of attenuating the rise in Tc whilst concomitantly 

maintaining their hydration needs.  Such an intervention has the potential to increase the 

workers tolerance of heat stressful conditions, ensure safe exits from dangerous 

situations, and lower the risk of developing a heat stress related injury.   
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 CHAPTER THREE 

 
 
APPROPRIATNESS OF HEAT STRESS INDICES USED IN THE ON- 

AND OFFSHORE LIQUID NATURAL GAS INDUSTRY 
 

 

 

3.1 ABSTRACT 

Background: Heat loads and exposure levels can vary between occupational groups due 

to location, geography and terrain.  Typically, one environmental heat stress index is 

implemented on a work site and this could potentially over- or under-protect workers.  

Purpose: The applicability of several heat stress indices was investigated in order to 

identify an index that can best predict heat stress in onshore and offshore workers in the 

liquid natural gas (LNG) industry.  Methods:  Environmental conditions and 

physiological variables (HR, Tpill, Tsk, and hydration) were measured while personnel 

worked so that the accuracy of each prediction could be assessed against the true 

(measured) heat stress.  The indices were ISO 7243, ISO 7933, ISO 8996, and predicted 

four hour sweat rate (P4SR).  Results:  ISO 7243 and ISO 7933 underestimated heat 

stress for both onshore and offshore personnel, and personnel worked longer in high wet 

bulb globe temperatures than these standards dictate they should.  ISO 8996 did not 

accurately predict metabolic rate for offshore personnel (R
2
 = 0.061; P = 0.718) and was 

only moderately correlated with the observed metabolic rate experienced by onshore 

personnel (R
2
 = 0.339; P = 0.043).  P4SR showed a higher correlation between measured 

and predicted for offshore personnel (R
2
 = 0.756; P = 0.013) with onshore personnel 

observing a significant negative correlation (R
2
 = -0.777; P = 0.014).  Conclusion:  P4SR 

was the most accurate heat stress index for use in both onshore and offshore LNG 
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workers. Occupational hygienists should educate workers appropriately and implement 

the P4SR as a heat stress management tool. 
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3.2 INTRODUCTION 

Many heat stress indices have been developed, all of which aim to safely allow the 

worker to be exposed to repeated bouts of heat-related work.  Initially, the WBGT was 

developed by Yaglou and Minard (1957) for desert military purposes.  This index 

measures wet bulb, dry bulb and globe temperatures.  These variables are then entered 

into an equation and the resultant value determines the intensity/duration of work that can 

be performed.  As this index is simple to use, it has gained popularity in industry and has 

been adopted globally however, there are shortfalls with this index.  Environmental 

variables are measured but physiological responses to work are not considered. Since 

individuals do not all respond similarly to thermal stressors and workloads, this index 

may not be appropriate for continuous monitoring or intermittent work during warm or 

hot conditions.  Other indices which have been developed and/or tested in laboratories, 

such as predicted sweat rates, may be able to predict levels of heat stress in workers. 

However, they may not be the most practical tools for use in industrial settings due to the 

requirements to perform several calculations, decipher complex histograms and purchase 

and maintain expensive monitoring equipment. 

If a heat stress index is able to accurately predict heat loads experienced by 

personnel, it may not necessarily be the most appropriate strategy to apply across all work 

environments. For example, in the case of open cut and underground mining, both groups 

of workers may experience similar total heat loads; however, the open cut miners are 

exposed to high radiative loads from the sun. Similarly, not all land-based personnel are 

exposed to similar heat loads due to geography, terrain, and bodies of water. It could 

therefore be assumed that land-based occupations have the potential to experience 

different ambient working conditions than offshore personnel. 
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Working in the liquefied natural gas (LNG) industry can expose workers to a 

spectrum of environmental conditions.  For the purposes of this investigation, the industry 

has been divided into two distinct groups, onshore and offshore.  Onshore personnel must 

contend with ambient conditions typically experienced by geographic location; which is 

region dependent.  Offshore personnel must also contend with oceanic geography and 

working on a platform in open waters introduces additional thermal challenges such as 

reflection of solar loads and working proximity to hot machinery.   

Both onshore and offshore groups can encounter different work and thermal 

challenges, which questions the appropriateness of using a single index to protect 

workers.  Therefore, the purpose of this investigation was to identify the most appropriate 

heat stress index for the onshore and offshore LNG industry in Western Australia.     
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3.3 METHODOLOGY 

Subjects 

After completing a general health questionnaire, eight personnel who worked both 

onshore and offshore gave their written informed consent to participate in the study.  All 

workers were given an information session by the medical staff and questions were 

answered by the investigator. Clearance from management, union representatives, 

supervisors and the human research ethics committee of Edith Cowan University was 

obtained prior to testing.   

Experimental Procedure 

Onshore Protocol 

The same eight participants volunteered on two consecutive days.  Between 06h30 

and 07h00, participants presented themselves to the medical suite and were asked to 

provide a mid-stream urine sample.  Anthropometric measurements were recorded, 

followed by body mass in underwear.  Participants were then appropriately instrumented 

with dermal patches (skin thermistors) and a data logger (n = 3) and a heart rate monitor 

(n = 8).  Volunteers were then requested to ingest a telemetric pill with tap water.  The 

telemetric pill is a thermistor which measures TGI and is indicative of Tc.  Participants 

took mandatory rest breaks at ~09h00 to 09h930, then ~16h00 to 16h30 with lunch at 

~12h00 to 12h30. 

In order to estimate the metabolic demands associated with the most physically 

demanding job, as determined by workers, one participant (Wharf Logistical Operator) 

was visually monitored by the researcher throughout the work day to record activities 

performed.  Metabolic demands were classified and estimated according to the ISO 7933 
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(ISO 2004) method.  At the end of the work shift participants were de-instrumented and 

body mass was then reassessed. 

Offshore Protocol 

In the medical suite, body composition was determined prior to the investigation.  

Participants presented themselves between 05h15 to 05h45 to ingest the telemetric pill 

before breakfast.  Participants consumed a non-standardized breakfast then proceeded to 

their pre-shift meeting.   

Between 06h00 and 07h00, participants were asked to provide a pre-shift mid-

stream urine sample. They were then weighed in their underwear and appropriately 

instrumented with dermal patches and data logger (n = 3) and a heart rate monitor (n = 7). 

In order to estimate the metabolic demands associated with the jobs being investigated, 

two participants were visually monitored by the investigator from the start to the end of 

their work shift to record activities performed.  These metabolic demands were classified 

and estimated according to ISO 7933 (ISO 2004).  Each hour throughout the work shift, 

thermal sensation and TGI was collected.  These measurements commenced at 08h00. 

Mid-stream urine samples were collected again at lunch and at the end of the work 

shift, when participants were de-instrumented and their body mass reassessed. 

Anthropometric Measurements 

Heights were given by participants while pre and post work shift body mass was 

measured using a standard bathroom scale (Glass Bathroom Scale, China).  Body 

composition was assessed using skin fold callipers (Model HSK-BI-3; Baty International, 

West Sussex, UK) from seven different locations; chest, tricep, axilla, subscapular, 

abdominal, suprailiac and mid thigh.  These values were then entered into seven 

equations (Sloan 1967; Wilmore JH 1969; Forsyth HL 1973; Katch 1973; Jackson 1976; 
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Thorland WG 1984; Withers RT 1987a) where the mean body density was calculated for 

each participant. From the mean body density, the body fat percentage was averaged and 

estimated from the equations of Siri (1961) and Brozek (1963).  Body Surface Area (AD) 

was determined according to the equation of DuBois and DuBois (1916) AD = 0.202m
0.425

 

× height
0.725

, expressed as m
2
. 

Clothing and Personal Protective Equipment (PPE) 

Onshore workers donned safety boots, cotton pants, and a long-sleeved cotton 

shirt.  While working on the wharf, safety glasses, helmet and gloves were worn.  While 

ships were docking, life vests were worn.  Once the ship was tied to the dock, the vests 

were removed.  Upon exiting their living quarters, offshore personnel donned safety 

boots, one piece coveralls, working gloves, safety glasses and helmets.  Safety equipment 

was only removed in designated break rooms or living quarters. 

Urine Analysis 

Start of shift, pre lunch break, and end of shift assessments of urine specific 

gravity was determined with an electronic refractometer (Atago, UG-α, Japan). 

Heart Rate 

Heart rate measurements (RS800 Polar Heart Rate Monitor, Finland) were collected 

continuously throughout the work shift.  Data was collected every 15 seconds and then 

averaged into 1 minute intervals. 

Environmental Measurements 

Data collection took place in during the first week of March 2010; later half of 

Australian summer.  Ambient working conditions were measured using a portable WBGT 

thermometer (Quest temps, USA).  As the jobs evaluated require walking to several 

locations, ambient conditions were measured in the area where workers spent the majority 
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of their work shift.  Daily values recorded for both groups are displayed in Figures 3.1A – 

3.1D.  On shore wind data was provided by the Australian Bureau of Meteorology from 

measurements taken from the local air port located approximately 10 km away; while off 

shore wind measurements were taken from the onsite weather station located 3 m above 

the platform.  

Core Temperature Measurements 

Gastrointestinal temperature was measured using a single use ingestible telemetric 

pill (Mini mitter, USA).  The telemetric pill was ingested after the workers pre-shift 

meeting, approximately 2 hours before the start of shift and measurements.  Mean skin 

temperature was assessed by adhering thermistor patches (Mini mitter, USA) to four 

different sites on the body; namely, the chest, bicep, quadriceps and calf.  Both TGI, and 

Tsk were recorded approximately every 10 seconds.  Mean temperature was calculated 

using a modified Ramanathan’s (Ramanathan 1964) equation.  The remaining five 

participants had their pill temperature assessed at their work stations at approximately 15 

min intervals.  Time between ingesting the telemetric pill and breakfast is a limitation to 

this investigation.   

Heat storage was estimated for participants wearing dermal patches.  Mean body 

temperature (Tb) was calculated using the formulae of Colin et al. (1971): Tb = 0.66 (Tre) 

+ 0.34 (Tsk) for the initial 20 min of data collection, and Tb = 0.79 (Tre) + 0.21 (Tsk) for 

the remainder of the work shift; with the exception of mandatory rest breaks (“smoke-o”) 

and lunch. Heat storage was calculated at 5 min increments using the formula of Adams 

et al. (1992): heat storage = 0.965 × m × ∆Tb/AD, where 0.965 is the specific heat storage 

capacity of the body (W·kg
-1

°C), m the mean body mass (kg) over the duration of the 

trial, and AD (previously defined). 
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Heat Stress Indices 

Many heat stress indices have been developed which are in use throughout 

industry.  This study focused on: ISO 7243 (ISO 1989), ISO 7933 (ISO 2004), ISO 8996 

(ISO 2004) and P4SR.  Detailed descriptions of these indices are presented in section 2.2 

of this thesis.  For ISO 8996, metabolic rates (W·m
-2

) were estimated through the use of 

heart rate, age and weight.  Using the mean age and weights for both groups, the 

following equation was taken from the ISO 8996 (ISO 2004) table to determine metabolic 

rates:  

Metabolic Rate = 5.4 · HR – 326    (3.1) 

The P4SR was estimated from the environmental measurements recorded, and 

then the required sweat rate was determined from the P4SR normograph.   

Statistical Analysis 

A Pearson’s correlation coefficient test was performed to examine relationships 

between observed and predicted Tc for each heat stress index. A Student’s t-test was used 

to decipher differences between interventions at the same time point of the work shift.  

Significance was set at P < 0.05 and all data are presented as means ± standard deviations. 

Data analyses were performed using a statistical software program (SPSS 17.0 for 

windows, SPSS, Inc., Chicago, IL, USA). 
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3.4 RESULTS 

Table 3.1 lists the mean and ± standard deviation (SD) values of the 

anthropometric measurements for on and off-shore groups.  Environmental conditions in 

Figure 3.1 show the fluctuating WBGT (Figure 3.1D) values recorded throughout the day.  

Conditions early in the work day vary between on and off shore locations however the 

environmental conditions tend to be similar from 13h00 onwards.  

Urine specific gravity measurements (Figure 3.2) between the groups were the 

same at start and end of work shift, but mid shift samples were higher in offshore workers 

(P = 0.001).  Usg values were observed to range between 1.019 ± 0.006 to 1.0283 ± 

0.0026. 

ISO 7243 - Hot environments - Estimation of the heat stress on working man, 

based on the WBGT- index (wet bulb globe temperature) and ISO 7933 - Ergonomics – 

evaluation of the thermal strain by physiological measurements.  In Table 3.2, the 

estimated time spent at each of the ISO metabolic workloads and reference WBGT are 

displayed for both onshore and offshore workers.  Duration of the work shift spent at each 

metabolic zone was determined according to ISO 7933 Annex C (ISO 2004).  

Approximately 27.9% of onshore and 33.1% offshore time was spent at resting levels 

while the majority of time (38.7% for onshore and 35.6% for offshore) was spent at 

metabolic rates of 130 ≤ M ≤ 200 W·m
2
.  Measured WBGT ranges as identified by ISO, 

revealed that approximately 60% of onshore time was spent at a WBGT range of 30.0 to 

33.0°C while offshore workers were exposed to similar temperatures for 35.8% of the 

time.  Comparing the time spent at specific metabolic intensities and WBGT values, it 

appears that personnel are working at a higher intensity than what is recommended by 

ISO. 
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ISO 8996 - Ergonomics of the thermal environment — Determination of metabolic rate.  

A correlation between estimated (ISO 8996) and observed metabolic rates for offshore 

personnel (R
2
 = 0.061; P = 0.718) was not significant; however, onshore workers were 

observed to have a significant relationship when comparing ISO 8996 and observer 

measurements (R
2
 = 0.339; 0.043).  The work rate for offshore personnel as identified in 

Figure 3.3A is more variable than for onshore workers (Figure 3.3B).  Most of the work 

shift was spent at a metabolic rate class of 2.   

Predicted Four Hour Sweat Rate (P4SR) 

Based on the P4SR results in Figure 3.4, sweat rates of between 0.5 L to 2.5 L for 

offshore workers and 0.5 L to 3.5 L for onshore workers were required for the current 

ambient working conditions and intensities.  Offshore workers had a fairly consistent 

required sweat rate throughout most of the workday, which then gradually increased 

towards the end of the shift.  An inverse trend was observed for onshore personnel where 

the largest required sweat rate occurred during the initial three hours of work.  

Afterwards, a slight reduction in sweating was required for the environmental conditions 

and work intensities.  

Figure 3.5 compares the measured and P4SR predicted Tre values of offshore and 

onshore workers respectively.  A significant correlation between measured and the 

predicted P4SR for offshore workers (R
2
 = 0.756; P = 0.013) is shown in Figure 3.5A, 

while a significant negative correlation between measured and predicted is shown in 

Figure 3.5B for onshore workers (R
2
 = -0.777; P = 0.014). 
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Table 3. 1 Anthropometric characteristics for on (n=9) and off shore (n=7) personnel 

 

Onshore 1.77 ± 0.10 32 ± 8 2.06 ± 0.23 88.8 ± 16.1 24.5 ± 7.0

Offshore 1.75 ± 0.03 40 ± 7 2.11 ± 0.13 96.0 ± 13.0 29.0 ± 8.6

Height (m) Body Fat (%)Weight (kg)BSA (m
2
)Age (yrs)
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Figure 3. 1 Environmental measures of dry bulb, wet bulb, relative humidity and WBGT 

for offshore and onshore workers.    

Note: On shore day 2 data represent values obtain from one instrument 
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Figure 3. 2 Urine specific gravity measurements conducted in offshore (n = 7) and 

onshore (n=9) workers for the start, mid and end of work shift.    

Note: * signifies a difference (P = 0.001) 
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Table 3. 2 Estimated time spent in each ISO 7933 metabolic range (W·m
2
) and duration of work shift in ISO 7933 reference WBGT zones 

for onshore (n=2) and offshore (n=2) workers.  

 
Note: Metabolic range (M) modified from ISO 7933(ISO 2004).   

Metabolic Range

Reference Value WBGT (°C)

Time in Metabolic Range (%)

Onshore

Offshore

Duration in Reference WBGT (%)

Onshore

Offshore

0.0 0.0

25.6 35.8 18.2 18.2 0.0 2.2

0.0 60.0 35.0 0.0

0.0

33.1 13.8 35.6 11.0 4.9

27.9 28.8 38.7 4.5

>33 30 - 33 28 - 30 26 - 28 25 - 26 <25.0

M ≤ 65 65 ≤ M ≤ 130 130 ≤ M ≤ 200 200 ≤ M ≤ 260 M ≥ 260
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Figure 3. 3 Metabolic rate class of the estimated ISO 8996 and measured observations 

made for offshore (n=2) (A) and onshore (n=2) (B) personnel.    
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Figure 3. 4 Required sweat rate for offshore and onshore personnel throughout a work 

shift. 
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Figure 3.5 Comparison of the actual and four hour sweat rate predicted core temperature 

for offshore (n=14) (A) and onshore (n=18) (B) LNG workers. 
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3.5 DISCUSSION 

The aim of this study was to determine the most appropriate heat stress index to 

be used in both the on and offshore LNG industry.  While several heat stress indices are 

available, this study focused on ISO 7243, ISO 7933, ISO 8996, and P4SR.   It was 

identified that P4SR was best able to predict heat strain in both onshore and offshore 

workers for the days investigated. 

This investigation monitored workers who were self-paced; however ISO 7243 

was found to be inaccurate in protecting workers from heat stressful conditions.  Table 

3.2, shows that workers spent almost a third of their work shift in WBGT values where a 

work to rest ratio of 25:75 was recommended, however workers were still able to 

maintain production without any injury.  This indicates that ISO 7243 is overly 

conservative in predicting heat stress in workers.  With relative humidity ranging between 

40 and 80%, ISO 7243 could possibly not adequately discriminate between dry and 

humid heat.  The lack of discrepancy could be the result of the simplicity and ease of use 

of the index; both factors which makes this index so widely applied (Parsons 2006).   

In support, Pulket et al. (1980) compared several empirical and rational heat stress 

indices under several temperatures, vapour pressures and air velocities.  They concluded 

that the wet globe temperature and corrected effective temperature indices are both better 

predictors of heat strain than the WBGT.  The authors suggested that separate heat stress 

indices should be considered for hot-dry and hot-humid conditions when controlling for 

heat stress. 

To compliment ISO 7243, ISO 7933 attempts to adjust for these environmental 

insensitivities.  Laboratory testing revealed that the ISO 7933 is an inaccurate index 

during conditions of high radiant heat loads (Forsthoff, Mehnert et al. 2001).  Forsthoff 
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and colleagues (2001) developed a correction factor to the index; however they attributed 

the overestimation of radiant heat exchange to be the result of an incorrect sensible heat 

exchange value.  Although a corrected and more accurate equation was developed, the 

mathematical manipulations required make this a cumbersome measure for field 

application.  Sakoi et al. (2006) also developed a correction factor for this index but 

again, there are many correction factors that make the adjustments difficult to determine 

which correction will adequately protect the worker. 

Mairiaux and Malchaire (1995) collated the results from a data base of several 

studies and compared the physiological responses to several heat stress indices.  They 

identified the P4SR to have a better relationship than ISO 7933 and WBGT between 

observed sweating rate and indices and that a good agreement between observed and 

predicted sweat losses may not necessarily be appropriate during transient phases.  The 

reason for this lack of appropriateness could be due to the intermittent type of work 

performed by personnel throughout a work shift.  This would in turn influence the sweat 

rate required for effective heat loss. 

The P4SR and ISO 7933 indices attempt to predict sustained required sweat rates 

over a four hour period, it could then be inferred that the hydration status of a worker is 

an important variable to consider if these indices are to be accurate.  In Figure 3.2, Usg 

data indicate that both offshore and onshore personnel were possibly dehydrated at the 

start and end of their work shift.  Remaining in a state of hypohydration may reduce 

sweat loss, which could reduce the appropriateness of the P4SR and ISO 7933 indices.  If 

workers remain dehydrated, as was evident in a study by Brake and Bates (2003), then an 

alternative heat stress intervention may be required.  Hydration status of workers could 

have played an important role in the accuracy of each of the investigated heat stress 

indices as the level of hydration has been shown to influence thermoregulation. 
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Using heart rate as a method of monitoring heat strain (ISO 8996) may not be a 

suitable approach to managing heat stress, as evidenced by the low R
2
 measured in this 

study. Static or dynamic muscular contractions (Nielsen and Meyer 1987), changes in 

orthostatic pressures (Yamazaki and Hamasaki 2003), heat acclimation (Yamazaki and 

Hamasaki 2003) and psychological state have all been known to influence heart rate.  

Although this index is easily implementable, applying it in isolation to manage heat stress 

is not always appropriate. 

This investigation identified the P4SR as the index which can better predict heat 

strain in onshore and offshore LNG industry, however additional indices should be 

considered to compliment this index. Reason being, seasonal changes in weather can 

present different sources of heat strain on personnel.  Lifestyle factors such as diet, 

smoking and exercise have also been known to influence the ability of the body to 

regulate its temperature.  Therefore, the implemented index should consider these 

changing parameters.  Additionally, the hydration status of personnel when presenting 

themselves for work is concerning.  Hydration status can assist with thermoregulation, 

and therefore may be an additional consideration when selecting the appropriateness of a 

heat stress index.   

In conclusion, this investigation has observed several key findings.  First, the 

predicted four-hour sweat rate was better able to approximate body temperatures in both 

offshore and onshore workers.  Second, heart rate as a heat stress index may not be 

appropriate due non-thermal influences affecting heart rate.  Finally, workers were 

hypohydrated before the start of their shift and throughout.  This level of hypohydration 

may interfere with thermoregulatory processes and could indirectly influence the 

applicability of an applied heat stress index.  Therefore, other methods of managing heat 

stress should be considered. 
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 CHAPTER FOUR  

 
 

COMPARING ICE SLURRY AND LIQUID AS A COOLING 
MODALITY 

 

 

4.1 ABSTRACT 

Background: Decreasing an elevated body temperature post exercise in hot and humid 

conditions can be difficult.  Some methods can be cumbersome for field application. 

Ingestion of ice slurry may be an alternative method but its effectiveness at reducing body 

temperature is unknown. Purpose: To quantify the cooling capacity of ice slurry as a post 

exercise cooling intervention.  Methods: On two separate occasions, nine males 

volunteered to run at approximately 65% of V& O2max until a Tre of 38.8°C.  During 

recovery, participants drank a pre-calculated volume of either an orange flavoured drink 

(LIQ; 1.802 ± 0.205 L, drink temperature of 4°C) or ice slurry (ICE; 0.536 ± 0.056 L, 

drink temperature of -1°C) equivalent to the heat energy required to decrease body 

temperature by 1.0°C.  While seated in an environmental heat chamber (30.1 ± 1.0°C, 

75.4 ± 5.7% relative humidity and 27.3 ± 0.9°C Wet Bulb Globe Temperature), heart rate 

(HR), mean skin temperature (Tsk) and rate of change in Tre (∆Tre ) were measured at 

38.8°C and every 0.2°C until a Tre of 37.8°C was achieved.  Results:  No differences 

were observed in the rate of change in Tre between LIQ and ICE (0.042 ± 0.021°C·min
-1

 

vs. 0.039 ± 0.010°C·min
-1

; P > 0.05, respectively). Time to cool was also similar between 

LIQ and ICE (27:48 ± 9:11 min vs. 27:33 ± 6:57 min; P > 0.05).  No differences in  the 

cooling rate of HR, Tsk and ∆Tre, measured at each Tre time point, were found between 

conditions (P < 0.05).  Conclusion:  It appears that ICE is a more practical method for 

cooling than water because the same cooling can be achieved with one third the volume, 
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and (2) the results indicate that a significantly larger, but still tolerable volume of ICE 

(~1.5 L) could cool hyperthermic individuals at a rate of 0.1
o
C

.
min

-1
. Consequently, 

consumption of ice slurry can be considered as an alternative method to cool 

hyperthermic individuals.  
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4.2 INTRODUCTION 

 The consumption of cold liquid water (H2O(aq)) results in an expansion of the 

body’s natural heat sink. As the body warms the H2O(aq), heat energy is exchanged 

between the body and the H2O(aq) until a thermal gradient no longer exists.  The 

consumption of even cooler volumes of H2O(aq) would theoretically allow for an even 

larger heat sink.  If left undisturbed, H2O(aq) begins to change physical states from liquid 

to solid at a temperature of approximately 0°C.  However, if H2O(aq) is continuously 

stirred, the liquid forms small ice crystals and changes into a slurry H2O(is). By 

maintaining both physical states (solid and liquid), the H2O(is) drink may provide a subtle, 

but significant advantage to reducing heat strain in thermally challenging conditions.  

This advantage is due to the phase changing feature of the H2O(is); solid ice (H2O(s)) 

changes phase into H2O(aq). 

While the thermodynamic effect of H2O(is) consumption in humans during or post-

exercise is unknown, the influence of H2O(is) as a precooling intervention has been 

investigated.  Seigel et al. (2010) showed that consuming 7.5 ml·kg
-1

 ice slurry resulted in 

a lower pre-exercise Tc, which remained lower for the first 30 min of treadmill running 

compared with ingesting cool liquid of the same composition and volume.  Intravenous 

infusion of H2O(is) in animals has also been investigated.  Vanden Hoek et al. (2004) 

infused a 50 ml·kg
-1

 solution of either saline slurry or saline water of equal temperature in 

11 swine over a 1 hr period.  Brain temperature was reduced by 5.3 ± 0.7°C with saline 

slurry compared with 3.4 ± 0.4°C using saline water.  Furthermore a study by Merrick 

and co-workers (2003) showed how phase changing cryotherapy modalities were able to 

produce colder superficial skin temperatures (ice bag; from 35.6 ± 0.9 to 27.8 ± 3.5°C at 1 

cm, 36.3 ± 0.7 to 31.8 ± 2.2°C at 2 cm, wet-ice; from 35.7 ± 0.8 to 27.2 ± 3.4°C at 1 cm, 
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36.2 ± 0.7 to 30.6 ± 3.0°C, and gel pack; from 35.49 ± 0.8 to 29.5 ± 2.4°C at 1 cm, 36.1 ± 

0.9 to 32.1 ± 1.5°C at  2 cm) at a depth of 1 and 2 cm compared with non-phase changing 

cryotherapies.  Finally, Kennet and colleagues (2007) investigated the cooling efficiency 

of four different cryotherapeutic agents and showed that crushed ice reduced skin 

temperatures (19.6 ± 3.8°C) more than a gel pack (13.2 ± 5.1°C), frozen peas (14.6 ± 

4.2°C), and ice-water immersion (17.0 ± 2.8°C).  

The effects of drink temperature (19°C or 4°C) on exercise performance was 

studied by Mundel and colleagues (2006) in subjects exercising at 65% V& O2max until 

exhaustion.  They observed an 11.6% increase in time to exhaustion, a reduced heart rate 

of approximately 5 beats and reduced Tre (0.25ºC) when subjects drank the 4
o
C drink 

compared to the 19
o
C drink.  Gisolfi and Coping (1974) investigated the effects of serial 

ingestion of 10°C fluid versus a fluid at (body temperature) during exercise in the heat 

(34°C).  They observed that the cooler fluid resulted in a lower Tre of approximately 

0.2ºC.  More recently, Lee et al. (2008) investigated serial drinking of different 

temperature fluids (10°C, 37°C and 50°C) on thermoregulatory responses during cycling 

at 50% V& O2max.  The Tre responses were not significant different between drink 

temperatures; however, Tre was lower at the end of 90 min of riding during 10°C and 

37°C (38.11 and 38.10°C respectively) fluid ingestion compared to 50°C (38.21°C).  

These results illustrate the effects of ingesting colder drink temperatures on Tre.  

From the thermodynamic cooling ability of water, topical cooling trials in humans 

(Kennet, Hardaker et al. 2007) and intravenous infusion cooling in animals (Vanden 

Hoek, Kasza et al. 2004), investigation into the effects of an H2O(is) drink seems 

warranted.  Such a cooling method could be used to reduce risk of injury or death by 

hyperthermia. While a thermodynamic cooling advantage should theoretically be gained 
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through the phase change properties of solid versus liquid water, the physiological effects 

have yet to be reported.  Therefore, the purpose of this study is to measure and compare 

the cooling capacity of ice slurry and a cool liquid as post exercise cooling interventions. 
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4.3 METHODOLOGY 

Participants 

Nine healthy, non-acclimated males (age; 27 ± 1 y, height; 176 ± 5 cm, body 

mass; 75.4 ± 6.6 kg, 15.9 ± 2.8% body fat, body surface area of 1.91 ± 0.10 m
2
, and V&

O2max 48.3 ± 4.3 mlO2·kg
-1
·min

-1
) gave written consent and successfully completed the 

PAR-Q and You questionnaire prior to participating in this study.   The study was 

approved by the Edith Cowan University Human Research Ethics Committee. 

Preliminary Measurements 

On their first visit to the laboratory, body mass and height were measured using an 

electronic floor scale (Model ID1; Mettler Toledo, Columbus OH, USA) and stadiometer 

(Seca, Brooklyn N.Y, USA), respectively. Body fat percentage was determined through 

Dual Energy X-ray Absorptiometry (Hologic, Hong Kong).   Under ambient room 

conditions (23.8 ± 1.3°C at 40.4 ± 8.0 %RH) (Microtherm; Casella Measurement Ltd., 

Bedford, UK), a modified Bruce treadmill protocol was used to determine V& O2max.  

Participants began running at 0° incline at 8 km
.
h

-1
 with increases of 2 km

.
h

-1
 every two 

minutes until 16 km
.
h

-1
, after which the incline was increased 2° every two minutes until 

volitional fatigue occurred.  Expired gasses were continuously analysed (ParvoMedics 

TrueOne
 
2400 diagnostic system, Sandy, UT) throughout the test.   

Experimental Design 

Participants visited the laboratory euhydrated on two separate occasions at 

approximately the same time of the day with a minimum of three days and a maximum of 

ten days separating each visit.  Mid stream urine was collected and analysed to ensure that 

subjects were euhydrated, and after instruction, and a rectal thermistor (Monatherm 

Thermistor, 400 Series; Mallinckrodt Medical, St. Louis, MO, USA) was self-inserted 
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approximately 10 cm past their anal sphincter.  Nude body mass was recorded after the 

insertion of  the thermometer.  Participants were then prepared with skin thermistors and 

a heart rate monitor (Model S610i; Polar Electro Oy, Kempele, Finland).  Participants 

donned running shoes, swimming trunks, track pants, and a t-shirt during exercise.  Skin 

temperature was determined by skin thermistors fixed to the mid belly of the left 

gastrocnemius, quadriceps, biceps, and chest and the Ramanathan’s equation was used to 

calculate mean skin temperature ( T sk) (Ramanathan 1964).  Heat storage was estimated 

by using the participants body mass, specific heat capacity of the body (3.47 kJ·kg
-1
·°K

-1
) 

and the equation presented by Colin’s et al. (1971). 

Once instrumented, participants entered the environmental heat chamber (30.1 ± 

1.0°C, 75.4 ± 5.7 %RH and 27.3 ± 0.9°C WBGT) and were seated upright for 15 min 

before exercising.  Thermal sensation measurements were then taken.  Participants then 

ran on a treadmill at approximately 65% of V& O2max until rectal temperature reached 

38.8°C.  Once the designated temperature was achieved, participants disrobed into their 

swimming trunks and sat upright in a chair for the duration of recovery.  In a randomised 

order, they were then asked to ingest either a liquid drink (LIQ) or ice slurry (ICE) as 

quickly as possible.  From pilot testing, 45 min into recovery during a no drink 

intervention, Tre above 37.8⁰C was still being observed.  Therefore, using no drink as a 

control method was deemed not necessary as such an extended recovery time was 

observed.  The quantity of beverage ingested to reduce Tre by 1.0°C was determined 

based on pre-exercise body mass.  Calculations for determining volumes are described 

below.  Post exercise nude body mass was then reassessed.  Metabolic and respiratory 

water losses were not calculated.  
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Urine Analysis 

Confirmation of euhydration was determined by measuring urine osmolarity 

(Uosm) < 286 mOsm·kgH2O
-1

 (Latzka, Sawka et al. 1998) by freezing point depression 

(Advanced Instruments Inc, Massachusetts, USA), and urine specific gravity (Usg) 

between 1.006 and 1.020 (Popowski, Oppliger et al. 2001) by refraction (Refractometer, 

Nippon Optical Works, Tokyo, Japan). All urine analysis was performed in duplicate with 

mean values expressed. 

Rectal and Skin Temperature and Heart Rate and Thermal Sensation  

Tre and Tsk was recorded at 1 Hz via a data-logger (Grant Instruments, Shepreth 

Cambridgshire UK) then calculated into 5 min averages.  Heart rate was sampled every 5 

s via telemetry (RS800 Polar Heart Rate Monitor, Finland) and 5 min average values 

were calculated.  Thermal sensation was recorded by asking the participant their thermal 

sensation on an eight point scale (0 = extremely cold; 8 = extremely hot) (Young, Sawka 

et al. 1987).  Thermal sensation was measured before and at the end of exercise, and 

every 0.2°C decrease in Tre during recovery until a Tre of 37.8°C was achieved. 

Ice Slurry and Liquid Composition and Quantity 

The temperature of the ice slurry was approximately -1°C while the temperature 

of the liquid was approximately 4°C with both being composed of a commercially 

available orange flavoured cordial (Cottee’s Foods, NSW, Australia) which contained 

water and 5% carbohydrate.  Ice slurries were made using a slushy machine (Essential 

Slush Co., QLD, Australia).  

1.802 ± 0.205 L of LIQ and 0.537 ± 0.056 L of ICE were administered to 

participants for cooling.  The differences in these volumes were found to be significant (P 

< 0.001) upon analysis.  Determining the quantity of beverage to administer were 



 

 

 66

computed as follows.  Calculating the quantity of ice slurry ingested was based on the 

required amount of heat energy to be lost which resulted in a decrease of 1.0°C in Tre.  

This calculation was a function of each participant’s pre-exercise body mass.  To 

calculate the quantity of heat to be removed for each participant, the following equation 

was used: 

Q = m · Csp · ∆T     (4.1) 

Where Q is the quantity of energy required to be removed (kJ), m is the body mass of the 

individual (kg), Csp is the estimated specific heat capacity of the body 3.47 kJ·kg
-1
·°K

-1
 

and ∆T is the required change in temperature (°K). 

The specific heat capacity (Csp) of the ice slurry is dependent upon its temperature 

and can be dissected into three different components.  First, when the temperature is ≤ 

0°C, it is assumed to have a Csp of 2.108 kJ·kg
-1
·°K

-1
.  Conversely, when the temperature 

is ≥ 0°C, it is assumed to have a Csp of 4.187 kJ·kg
-1
·°K

-1
.  Finally, during the change of 

physical states, solid to liquid, the enthalpy of fusion is also incorporated in the Csp, and 

this was assumed to be 334 kJ·kg
-1
·°K

-1
.  As these Csp values are that of water, it is an 

estimation of the Csp of the ice slurry.   

While the Csp of the various components of the ice slurry are dependent on 

volume, a linear equation was developed to calculate volume.  Volumes ingested were 

based on the energy required to remove heat from the participant.  This was calculated 

from equation 2: 

y = 499.401x + 0.001      (4.2) 

Where y is the quantity of energy to be removed (determined from equation 4.1), x is the 

volume to be administered.  To apply this equation, several assumptions must be met.  
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These were as follows: (1) the thermodynamic characteristics of the ice slurry are equal to 

water, (2) the ice slurry has a uniform ingestion temperature of -1°C, (3) the end 

temperature of the solution is 38.8°C (equal to end of exercise Tre) once ingested into the 

stomach, (4) errors in rounding Csp are negligible and (5) environmental changes (ice 

slurry machine to thermal chamber) do not influence the thermodynamics of the ice 

slurry.   To determine the volume of liquid to administer, equation 1 was used with the 

‘m’ variable being the unknown.  It was assumed that the mass of the liquid was equal to 

water and thus the volume of liquid was determined. 

Data Analysis 

A Students t-test was performed between conditions (LIQ and ICE) at rest, 38.8°C 

and every 0.2°C until Tre of 37.8°C to identify any changes in thermal sensation.  When 

differences were found, a Tukey’s post hoc analysis was performed.  Significance was set 

at P < 0.05.  All values are presented as means ± SD.  Data analyses was performed using 

a statistical software program (SPSS 17.0 for windows, SPSS, Inc., Chicago, IL, USA) 
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4.4 RESULTS 

Both Uosm and Usg measurements identified all participants as euhydrated upon 

commencement of testing. No hydration differences were observed between conditions (P 

> 0.05); Table 4. 1. 

Subjects exercised for the same duration  to reach a Tre of 38.8°C in LIQ and ICE 

(46.1 ± 17.1 min and 41.4 ± 10.5 min, respectively; P > 0.05), and the transition time 

between exercise and recovery was also the same (P > 0.05) between LIQ and ICE (2.0 ± 

1.0 min and 2.2 ± 0.9 min, respectively). As shown in Figure 4.1, the cooling rate of LIQ 

and ICE was similar (P > 0.05); consequently time to reduce Tre by 1
o
C in the cooling 

phase was also similar between LIQ and ICE (27:48 ± 9:11 min vs. 27:33 ± 6:57 min; P > 

0.05). 

Rest and cooling phase heart rate values for ICE and LIQ were not significantly 

different (P > 0.05) at each time point (Figure 4.2A).  Figure 4.2C shows thermal 

sensation was not significantly different (P > 0.05) between conditions at each time point 

and was highest immediately after exercise, then gradually decreased to resting values as 

Tre fell.  The volume of drink administered to participants between conditions to achieve 

the same 1.0⁰C decrease in Tre was significantly different between ICE and LIQ (0.536 ± 

0.056 L and 1.802 ± 0.205 L; P < 0.05, respectively).   

In Table 4.2, minute changes in Tre and percent change in body mass were not 

significantly different between conditions.   
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Table 4. 1 Pre-exercise urine osmolarity (Uosm) and urine specific gravity (Usg) of 

participants. 

 
 

 

 

 

 

Table 4. 2 Changes in rectal temperature and percent change in body mass from rest. 

 

  

LIQ 301 ± 170 1.007 ± 1.005

ICE 364 ± 227 1.010 ± 1.007

Uosm Usg

Rectal Temperature at rest (°C) 37.08 ± 0.31 37.18 ± 0.26

∆Rectal Temperature (°C·min
-1

) 0.042 ± 0.021 0.039 ± 0.010

Body mass loss (%) 1.97 ± 0.68 1.76 ± 0.44

Ice SlurryLiquid
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Figure 4.1 Time comparison between LIQ and ICE at 0.2°C rectal temperature intervals.  
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Figure 4.2 The mean ± SD for heart rate (A), mean skin temperature (B) and thermal 

sensation (C) at rest before exercise, and after exercise in relation to Tre. 
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4.5 DISCUSSION 

The purpose of this investigation was to quantify the cooling capacity of ice slurry 

versus liquid consumption and compare them as a post exercise cooling intervention.  The 

results show that significantly less volume of ICE (0.536 ± 0.056 L) elicited the same 

physiological responses as LIQ (1.802 ± 0.205 L). Importantly this included cooling rate, 

which was 0.042 ± 0.021°C·min
-1 

and 0.039 ± 0.010°C·min
-1 

for LIQ and ICE, 

respectively. This illustrates the potential magnitude of cooling a phase changing solution 

possesses.  

Administration of cooling and how quickly body temperature is decreased is 

paramount for treatment of persons who suffer from exertional heat stroke (EHS) as this 

condition can result in death or injury (Coris, Ramirez et al. 2004). Consequently, it has 

been recommended by authors that persons who experience EHS should be cooled at a 

rate of no less than 0.078 to 1.0°C·min
-1

 to limit exposure to hyperthermia to within an 

hour after diagnosis (McDermott, Casa et al. 2009). For example, cooling at a rate of 

0.078°C·min
-1 

would take approximately 40 min to cool an individual from 42.20°C to 

38.89°C.   
 

In the present study, the cooling rates of ICE and LIQ indicate that a very large, 

likely intolerable volume of LIQ must be consumed to achieve the recommended cooling 

rate of 0.078 to 0.1
o
C

.
min

-1
.  In contrast however, theoretically a cooling rate of 

0.1
o
C

.
min

-1
 could have been achieved if our participants had consumed three times the 

volume of ICE, which roughly equates to 1.5 L. Importantly, this volume (1.5 L) could be 

tolerable as it is well within the capacity of most adult stomachs.  

An interesting trend was recorded for T sk (Figure 2B) during the ingestion of ICE.  

Temperatures remained relatively constant to temperatures at the end of exercise.  As 
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body temperature increases, skin temperature increases and in turn an increase in 

peripheral blood flow can be seen (Brengelmann, Wyss et al. 1973).  When exercise 

stops, heat production ceases however, temperatures still continues to rise.  This lag 

between the cessation of heat application and continual rise in temperature was noted by 

Webb (1986) during cooling of a leg of beef.  This delay could possibly explain the 

slightly longer, although not significantly different, time to achieve the first Tre time point 

(Figure 1) from 38.8⁰C to 38.6⁰C and then 36.6⁰C to the other time points.  With respect 

to the ingestion of ICE on T sk, ICE as identified earlier, has a greater cooling capacity 

than LIQ per unit volume.  As such, the delayed change in temperature which was 

observed by Webb (Webb 1985) could have been better attenuated by ingesting ICE than 

LIQ.  Hence the marginal difference between T sk for the initial time points immediately 

following exercise. 

Cardiac responses between the cooling modalities as indicted in figure 2a were not 

different which confirms the equal overall cooling capacity administered to participants.  

With equal cooling capacities being administered, this is not an unexpected finding.  

Should different cooling capacities have been delivered to participants (different volumes 

of drink) then different heart rate values would have been observed.  A decrease in heart 

rate was observed by Lee et al. (Lee, Shirreffs et al. 2008) when the same volume of drink 

but different temperature drinks were administered to exercising participants.  This 

difference can be attributed to the different cooling capacities of fluid.  Extending from 

his work, if participants in this study would have consumed equal volumes of drink, it is 

probable that a decrease in heart rate would also be observed.  

Although the observations made in this study are founded on the ingestion of ICE 

and LIQ, a comparison of these drinks could have been better illustrated with a no fluid 
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ingestion to serve as a control.  From pilot work, it was observed following the 

aforementioned protocol, the recovery times lasted more than 45 min.  The participants 

used for piloting were smaller individuals with low body fat, high relative fitness levels 

and large body mass to surface area ratio.  These phenotypical characteristics are 

favourable during thermally stressful conditions as thermolysis is more efficient 

compared to the reciprocal (Faber and Garby 1995; Havenith, Luttikholt et al. 1995; 

Marino, Mbambo et al. 2000). 

In conclusion, it appears that ICE is a more practical method for cooling than 

water because (1) the same cooling can be achieved with one fourth the volume, and (2) 

ICE can potentially cool at a rate of 0.1
o
C

.
min

-1
. Consequently, consumption of ice slurry 

can be considered as an alternative method to cool hyperthermic individuals.   
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 CHAPTER FIVE 
 

 

 

EFFECT OF LIQUID VERSUS ICE SLURRY INGESTION ON CORE 

TEMPERATURE DURING SIMULATED MINING CONDITIONS 
 

 

 

5.1 ABSTRACT 

Purpose: To compare the effects of replacing 100% and 50% sweat losses with a 5% 

carbohydrate liquid or ice slurry solution on core temperature during exercise in the heat.  

Methods: Ten euhydrated male volunteers participated in five randomized conditions: no 

fluid (NF) with no fluid replacement, 100% (100ICE) and 50% (50ICE) sweat loss 

replaced with ice slurry (~ -1°C) solution and 100% (100LIQ) and 50% (50LIQ) sweat 

loss replaced with liquid (~ +4°C) solution.  Participants walked on a treadmill (3.0 

km·hr
-1

, 15° gradient at 28.3 ± 0.4°C, 74.1 ± 3.6 % RH (25.9 ± 0.4°C WBGT)) until 

volitional fatigue.  While walking, solutions were administered every 20 min during 

exercise.  .    Results: Tlim, from longest to shortest, was 100ICE (84.3 ± 38.7 min) 

followed by 100LIQ (79.2 ± 38.7 min), 50ICE (68.2 ± 38.7 min), 50LIQ (59.2 ± 28.3 

min) and NF (46.5 ± 19.9 min) with NF being significantly different from 100ICE, 50ICE 

and 100LIQ (P < 0.05). Rate of heat stored during exercise occurred in the opposite order, 

from 8.8 ± 2.1 kJ·min
-1 

during NF, followed by 50LIQ (6.6 ± 2.7 kJ·min
-1

), 50ICE (6.4 ± 

2.6 kJ·min
-1

), 100LIQ (5.9 ± 3.1 kJ·min
-1

) and 100ICE (4.5 ± 2.7 kJ·min
-1

) with  NF 

being significantly faster than 100ICE (P < 0.001), 50ICE (P < 0.05) and 100LIQ (P < 

0.05).  ∆Tre was 0.020 ± 0.008°C·min
-1 

for 100ICE followed by 100LIQ (0.022 ± 

0.007°C·min
-1

), 50ICE (0.027 ± 0.008°C·min
-1

), 50LIQ (0.029 ± 0.008°C·min
-1

) and NF 

(0.034 ± 0.007°C·min
-1

) with differences shown between NF vs. 100ICE and 100LIQ, as 

well as 50LIQ vs. 100ICE and 100LIQ (all P < 0.05).  Conclusion: Comparatively, 



 

 

 76

ingestion of ice slurry resulted in longer Tlim, slower rates of ∆Tre, and a lower rate of heat 

storage then liquid conditions of equal fluid volume replacement.   Consequently, it is 

recommend that occupational hygienists should consider administering ice slurry to 

personnel to lower heat strain during hot working conditions. 
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5.2 INRODUCTION 

Miners perform physically demanding work in hot ambient working conditions, 

often with minimally exposed skin surface area to dissipate their body heat. For example, 

the task of shovelling has been measured to range from between 266 W·m
-2

 and 407  

W·m
-2

 (Leithead 1964 Bethea 1980) with sitting at ease being approximately 65 W·m
-2

. 

Ambient temperatures in the work environment can range from 29.1°C to 31.5°C WBGT 

(Brake and Bates 2002; Donoghue and Bates 2000; Kalkowsky and Kampmann 2006) or  

26.6°C to 29.4°C BET (Chilton and Laird 1982; Weller 1981). Miners must also 

occasionally wear personal protective equipment that encapsulates them and reduces their 

ability to dissipate heat through evaporative sweat (McLellan, Cheung et al. 1999). 

Consequently, heat-related illnesses are a regular occurrence in the mining industry 

(Donoghue, Sinclair et al. 2000).   

Current interventions used to reduce the development of a heat stress related 

illness in miners include: setting the upper limit on body temperature during work to 

38.5°C (ISO 2004), limiting the work time in hot ambient conditions according to various 

different heat stress indices  (McArdle, Dunham et al. 1947; Belding 1955; ISO 1989; 

ISO 2004; ACGIH 2005), improving ventilation practices to cool the working 

environment (Hardcastle and Kocsis 2004; Mate 2007), wearing cooling garments 

(Corcoran 2002) and educating workers on the importance of fluid replacement (Brake 

and Bates 2003). However, despite these interventions, the incidence of heat stress related 

illnesses in the industrial setting remains high, particularly during the summer months 

(Donoghue, Sinclair et al. 2000). Therefore, there is a need to examine alternative cooling 

methods.  

A potential alternative intervention that is economically viable, easily 

implementable, and could be used in conjunction with those currently in use, are 
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modification of drinking practices so that workers stay euhydrated by drinking ice-slurry 

beverages.  Research has shown that dehydration caused by sweating can impair physical 

and cognitive performance (Cian, Barraud et al. 2001), reduce maximum voluntary 

contraction (Hayes and Morse 2010), and that staying euhydrated by drinking enough 

fluid to offset sweat losses can attenuate the rise in rectal temperature (McConell, Burge 

et al. 1997; Pitts G. C., Johnson R. E. et al. 1944), cardiovascular strain and perceived 

exertion (Murray, Michael et al. 1995) during physical activity in the heat. Likewise, 

research has also shown that ingestion of cool versus warm fluids during exercise 

attenuates the rate of rise in rectal temperature (Tre) (Gisolfi and Copping 1974). I 

speculate that ingestion of ice-slurry solutions during exercise may therefore be more 

effective at cooling than liquid solutions because they offer a larger heat sink due to the 

additional heat required to change phase from solid (ice) to liquid water, known as the 

‘enthalpy of fusion’. The potential effectiveness of consuming an ice-slurry solution 

during exercise was demonstrated in the previous study and also by Siegel et al. (2010) 

who observed a lower Tre for the first 30 min of exercise when subjects consumed ice 

slurry versus a liquid of equal volume and composition prior to exercise.  The 

physiological effects of completely or partially replacing fluid loss during exercise with 

an ice slurry is unknown.   

Thus, the purpose of this investigation was to compare the effects of ingesting ice 

slurry versus liquid beverages on core temperature during simulated mining conditions. I 

hypothesised that offsetting sweat losses and remaining euhydrated by drinking an ice-

slurry beverage would attenuate rises in rectal temperature, cardiovascular strain, and 

perceived exertion, to a greater extent than drinking a cold liquid beverage. 
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5.3 METHODOLOGY 

Participants   

Ten healthy non-acclimated males (height 1.75 ± 0.05 m; age 29 ± 5 y; body mass 

81.8 ± 9.0 kg; 19.2 ± 3.1 % body fat; V& O2max 46.37 ± 5.99 ml·kg
-1

·min
-1

) gave written 

consent and completed a pre-screening questionnaire, PAR-Q and You, prior to 

participating in this study.      The study was approved by the Edith Cowan University 

Human Research Ethics Committee. 

Preliminary Measurements  

On their first visit to the laboratory, each subject’s body mass and height were 

measured using a weight scale (Model ID1; Mettler Toledo, Columbus OH, USA) and 

stadiometer (Seca, Brooklyn N.Y, USA), respectively. Adiposity was determined through 

Dual Energy X-ray Absorptiometry (Hologic, Hong Kong).  Under ambient room 

conditions (25.8 ± 2.0°C at 44.1 ± 8.1 %RH) (Microtherm; Casella Measurement Ltd., 

Bedford, UK), a modified Bruce treadmill protocol was used to determine V& O2max 

(ParvoMedics TrueOne
 

2400 diagnostic system, Sandy, UT).  Calibration of the 

metabolic cart occurred prior to each V& O2max testing session.  Participants began running 

at 0° incline at 8 km
.
h

-1
 with increases of 2 km

.
h

-1
 every two minutes until 16 km·h

-1
, after 

which the incline was increased 2° every two minutes until volitional fatigue occurred.   

Experimental Design 

Participants visited the laboratory on five separate occasions at approximately the 

same time of day with a minimum of 7 days separating each visit.  All participants 

performed their first session, considered the control condition (NF), without any drink 

ingestion.  The difference between pre and post exercise nude body mass was used to 

estimate sweat rate and drink volume to be consumed in the remaining trials.  The 
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remaining four sessions, which were completed in a randomized order, included 100% 

replacement of estimated sweat losses with ice slurry solution (100ICE), 50% 

replacement of estimated sweat losses with ice slurry solution (50ICE), 100% 

replacement of estimated sweat losses with liquid solution (100LIQ) and 50% 

replacement of estimated sweat losses with liquid solution (50LIQ).  As  the solution to 

be drunk will be revealed to the participant upon delivery, blinding the participant to the 

drink is not possible and therefore a limitation to this study. 

Experimental Protocol   

On arrival at the laboratory, urine and blood samples were collected and, 

following instruction, a rectal thermistor (Monatherm Thermistor, 400 Series; 

Mallinckrodt Medical, St. Louis, MO, USA) was self-inserted by subjects, approximately 

10 cm past their external anal sphincter.  Nude body mass was measured before 

participants were instrumented with skin thermistors and a heart rate monitor (Model 

S610i; Polar Electro Oy, Kempele, Finland).  Participants then donned running shoes, 

cotton pants, t-shirt and a mining helmet. Skin temperature (Fixomull, Smith and Nephew 

Ltd., Auckland, New Zealand) was determined by skin thermistors fixed to the mid belly 

of the left gastrocnemius, quadriceps, biceps, and chest; Ramanathan’s equation was used 

to calculate mean skin temperature (Ramanathan 1964).  Heat storage was estimated by 

using the participants body mass, specific heat capacity of the body (3.47 kJ·kg
-1
·°K

-1
) 

and the equation presented by Colin’s et al. (1971). 

Upon entering the climate chamber, participants were seated in an upright chair 

for 15 min prior to exercise.  Exercise then commenced and consisted of walking on a 

treadmill at a constant workload of ~290 W·m
-2

 (3.0 km·hr
-1

 at an inclination of 15°) (ISO 

7243).  Ambient conditions were 28.3 ± 0.5°C, 74.2 ± 4.6% RH (25.9 ± 0.4°C WBGT) 

and wind speed less than 0.1 m·s
-
.  This work intensity and ambient condition does not 
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require an altered rest to work ratio (work 100% without rest) for industrial standards 

(ISO).  

During exercise, drinks were administered to participants after 20 min of exercise 

and every 20 min thereafter; participants were asked to ingest each solution as quickly as 

possible.  Subjects continued walking until either voluntary exhaustion, achieving a Tre of 

39.0°C, or after 120 min of exercise.  In situations where participants completed 120 min 

of exercise, no drink was administered at that time point.  Participants were allowed to 

wipe sweat from their face only.  Immediately after the protocol was completed, nude 

body mass, blood and urine, were reassessed in that order.  Metabolic and respiratory 

water loss was thought to be similar between trials and was therefore not accounted for.  

Urine Analysis  

Confirmation of euhydration was determined by one or all of the following 

criteria: urine osmolarity through freezing point depression (Advanced Instruments Inc, 

Massachusetts, USA) Uosm < 286 mOsm·kgH2O
-1

 (Latzka, Sawka et al. 1998), urine 

specific gravity (Usg) (Refractometer, Nippon Optical Works, Tokyo, Japan) between 

1.006 and 1.020 (Popowski, Oppliger et al. 2001). All urine analysis was performed in 

duplicates pre and post exercise.  

Blood Analysis   

Participants sat upright in a chair for approximately 3 min prior to blood being 

drawn from the antecubital vein.  Plasma osmolality (Sosm), through freezing point 

depression (Advanced Instruments Inc, Massachusetts, USA), was determined by 

collecting 8.5 ml of blood into an SST heprinized tube and centrifuging (Heraeus 

Multifuge 3 S-R, Australia) for 15 min at 3,000 rev·min
-1

 at 4°C.  For measuring changes 

in plasma volume (∆PV), 8.5 ml of blood was collected into a plain clot tube before 
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immediately separating into 2 aliquots (30 µL each) in non-heparinized capillary tubes.  

Capillary tubes were then spun (MED Instruments, MPW-212, Poland) at 12000   

rev·min
-1

 for 5 min at ambient room temperature.  Haemoglobin concentration was 

measured (Hemocue, Hb 201, Sweden) using a sample of blood (10µL each) from the 

same plain clot tube. If sample values differed, then a third analysis was taken.  ∆PV was 

calculated based on the method of Dill and Costil (1974).  All blood analyses were 

preformed in duplicate, unless otherwise stated, with mean data presented.  

Rectal and Skin Temperature and Heart Rate (HR)  

Tre and Tsk was recorded at 1 Hz via a data-logger (Grant Instruments, Shepreth 

Cambridgshire UK); 5 min averages were then calculated. Heart rate (RS800 Polar Heart 

Rate Monitor, Finland) was sampled every 5 s via telemetry and 5 min average values 

were calculated.   

Ice Slurry and Liquid Composition   

Both ice slurry (~ -1°C) and liquid drinks (~ +4°C) were composed of a 

commercially available orange flavoured cordial (Cottee’s Foods, NSW, Australia) with a 

5% carbohydrate concentration.  Ice slurries were made using a commercial slushy 

machine (Essential Slush Co., QLD, Australia).  Volumes of drink administered to 

participants were determined from individual sweat loss.  Participants consumed 

approximately 1.30 ± 0.31 L for 100ICE and 100LIQ conditions while 0.650 ± 0.160 L 

was administered during 50ICE and 50LIQ.  The temperature chosen for the liquid 

solution was based on typical household refrigeration temperature while the warmest 

temperature was used for the ice slurry in an attempt to maintain a low thermal gradient 

between both drinks.   
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Data Analysis  

A condition (NF, 100ICE, 50ICE, 100LIQ and 50LIQ) x time repeated measures 

analysis of variance (ANOVA) was performed to identify any changes in Tre, Tsk, and 

HR.  A 1-way ANOVA was used to examine differences in time-to-exhaustion (Tlim) 

between conditions.  A urine x condition repeated measures ANOVA was performed to 

identify any changes in Uosm, Usg, body mass, sweat rate, and PV.  When differences were 

found, a Tukey’s post hoc analysis was performed.  Significance was set at P < 0.05 for 

all comparisons.  All analyses was performed using a statistical software program (SPSS 

15.0 for windows, SPSS, Inc., Chicago, IL, USA), with values presented as means ± SD. 
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5.4 RESULTS 

Hydration status and serum volume  

Table 5.1 shows the environmental conditions between each condition.  No 

differences were observed.  Hydration markers, Usg, Uosm and Sosm, are given in Table 5.2.  

Change in Usg was significant only in the 50LIQ (P < 0.05) condition.  Changes in blood 

volume for 100ICE were less than in NF (P < 0.05).  The reduction in cell volume was 

greater in NF versus 50ICE (P < 0.001) and NF versus 50LIQ (P < 0.05).  No differences 

were observed for %∆PV between drink interventions.  

Rate of heat storage and change in rectal temperature (�Tre)  

Significant differences in rate of heat storage (Figure 5.1A) occurred between NF 

versus 100ICE (P < 0.05), NF versus 50ICE (P < 0.05) and NF versus 100LIQ (P < 0.05).  

The minute rate of change in Tre (∆Tre) are shown in Figure 5.1B there were significant 

differences being observed for 100ICE and NF (P < 0.05), 100LIQ and NF (P < 0.05), 

100ICE and 50LIQ (P < 0.05) and between 100LIQ and 50LIQ (P < 0.05). 

Time to exhaustion  

As shown in Figure 5.1C, differences in time to exhaustion were observed 

between NF versus 100ICE (P < 0.05) and 50ICE versus 100LIQ (P < 0.05).  Tlim 

increased by approximately 6% when consuming 100ICE versus 100LIQ,  15% between 

50ICE and 50LIQ and 28% between 100% fluid replacement and 50% fluid replacement. 
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Table 5. 1 Environmental dry bulb and relative humidity during each drink intervention   

 

 

 

 

No Fluid 28.3 ± 0.5 75.5 ± 4.6

100% Ice Slurry 28.2 ± 0.4 72.9 ± 4.6

50% Ice Slurry 28.2 ± 0.4 74.9 ± 4.2

100% Liquid 28.5 ± 0.5 73.4 ± 5.0

50% Liquid 28.6 ± 0.5 73.5 ± 3.9

Dry Bulb (°C) Relative Humidity (%)
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Table 5.2 Urine osmolality (Uosm), specific gravity (Usg), plasma osmolality (Sosm), changes in blood volume (%∆ BV), cell volume (%∆ 

CV), plasma volume (%∆ PV),  and changes in body mass for each drink intervention.  

 

Posm (n=9)

No Fluid pre 163 ± 97 1.011 ± 0.009 296 ± 7

post 302 ± 178 1.010 ± 0.008 294 ± 6 -4.10 ± 2.83 -6.44 ± 1.78 -2.81 ± 5.73 1.04 ± 0.53

100%  Ice Slurry pre 169 ± 75 1.006 ± 0.004 291 ± 5

post 239 ± 117 1.007 ± 0.004 290 ± 5 -0.11 ± 2.68(b) -0.53 ± 4.02 0.38 ± 4.68 0.11 ± 0.32(b)

50%  Ice Slurry pre 120 ± 58(a) 1.005 ± 0.005 295 ± 5

post 243 ± 156 1.007 ± 0.005 294 ± 5 -1.58 ± 4.14 -1.35 ± 2.62(b ) -0.58 ± 6.88 0.71 ± 0.39(c )

100%  Liquid pre 156 ± 71 1.005 ± 0.003 293 ± 3

post 255 ± 194 1.007 ± 0.006 292 ± 4 -2.97 ± 3.77 -3.07 ± 1.75 -2.30 ± 6.11 0.13 ± 0.47(b)

50%  Liquid pre 98 ± 64(a) 1.005 ± 0.005 (a) 293 ± 6

post 358 ± 300 1.011 ± 0.010 294 ± 6 -1.89 ± 2.45 -1.43 ± 3.50(b) -1.89 ± 4.62 0.64 ± 0.35(b)

(a) difference between pre and post values (p < 0.05)

(b) different to No Fluid (p < 0.05)

(c) different to 100% Ice Slurry (p < 0.05)

Uosm Usg � Body Mass (kg)%� BV %� CV %� PV 
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Figure 5.1A Estimated rate of heat stored during each drink intervention.  * denotes a 

difference of P < 0.05 from NF while ** denotes a difference of P < 0.051 from NF.  

Figure 5.1B Estimated minute changes in rectal temperature during each of the five drink 

interventions.  * Denotes a difference P < 0.05 to NF, ** Denotes a difference P < 0.05 to 

NF, † Denotes a difference P < 0.05 to 50LIQ and ‡ Denotes a difference P < 0.05 to 

50LIQ. Figure 5.1C Mean (± SD) time to exhaustion for each drink intervention with * 

denoting a difference of P < 0.05 from NF while ** denotes a difference of P < 0.05 from 

NF. 
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Termination Criteria  

Ratings of perceived exertion at the end of exercise were 18 ± 2 (100ICE), 19 ± 2 

(100LIQ), 18 ± 1 (50ICE), 18 ± 2 (50LIQ) and 19 ± 2 NF.  Across all interventions (50 

trials), subjects completed 120 min of exercise in 7 trials; 27 trials were stopped before 

120 min because subjects were exhausted; and 16 trials were stopped before 120 min 

because subjects reached our highest allowable Tre 39.0°C.  No trials were stopped 

because heart rate was too high.  Sixteen individuals reached a critical Tre, with 1 of the 

16 trials (6.3%) occurring for 100ICE, followed by 3 of 16 (18.7%) during 100LIQ and 4 

of 16 (25%) for the remaining conditions of NF, 50ICE and 50LIQ.   

In total, 50 trials were completed by participants with 43 of those finishing due to 

physical exhaustion.  10 of the 10 (100%) trials were stopped during NF and 50LIQ, 9 of 

10 (90%) were stopped for 50ICE, 8 of 10 (80%) during 100LIQ and 6 of 10 (60%) 

during 100ICE.  

Table 5.3 outlines the time to achieve a Tre of 38.0ºC of each participant.  Of the 

50 trials completed, three participants were exhausted before their Tre reached 38.0ºC.  

All mean times between conditions were similar (P > 0.05) except for 100LIQ and 50LIQ 

(P < 0.05) conditions.  

Table 5.4 identifies individual participant time to achieve a Tre of 38.5ºC between 

conditions.  In this table, 14 participants were exhausted before achieving Tre of 38.0ºC.  

Participant 8 during 100ICE was able to complete the entire 2 hour protocol without 

achieving a Tre of 38.0ºC.  Therefore, a value of 120 was allocated.  No differences were 

observed (P > 0.05) between mean end times. 
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Sweat Rate  

Estimated minute sweat rates for each drink condition are shown in  Figure 5.2.  

Sweat rates were similar (P > 0.05) between conditions and ranged from 18.8 ± 4.3 

ml·min
-1

 for 50ICE up to 21.7 ± 5.1 ml·min
-1

 for NF.   

Heart Rate  

No differences were observed between conditions for heart rates.  100ICE 

produced a mean heart rate value of 163 ± 12 bpm followed by 50LIQ (167 ± 11 bpm), 

100LIQ (169 ± 9 bpm), NF (169 ± 15 bpm) and 50ICE (172 ± 6 bpm).   
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Table 5.3 Individual time to reach Tre of 38.0ºC   

 
*difference from 50LIQ (P < 0.05) 

 

Table 5.4 Individual time to reach Tre of 38.5ºC   

 
No significant differences  

NF 100ICE 50ICE 100LIQ* 50LIQ

Subject

1 29.0 31.0 29.0 43.0 28.0

2 33.0 41.0 35.0 37.0 35.0

3 18.0 30.0 21.0 - -

4 14.0 20.0 21.0 22.0 14.0

5 19.0 31.0 24.0 35.0 23.0

6 21.0 26.0 23.0 37.0 31.0

7 32.0 29.0 35.0 33.0 29.0

8 45.0 70.0 41.0 48.0 37.0

9 35.0 21.0 24.0 35.0 17.0

10 27.0 42.0 35.0 34.0

Mean 27.3 34.1 28.8 36.0 26.8

SD 9.4 14.5 7.2 7.1 8.2

NF 100ICE 50ICE 100LIQ 50LIQ

Subject

1 39.0 59.0 42.0 103.0 -

2 50.0 119.0 107.0 88.0 55.0

3 - - - - -

4 23.0 32.0 - - 27.0

5 30.0 63.0 39.0 70.0 40.0

6 32.0 46.0 40.0 62.0 46.0

7 48.0 69.0 73.0 64.0 50.0

8 - - 66.0 83.0 -

9 - 40.0 - - 34.0

10 - - 54.0 - -

Mean 37.0 61.1 60.1 78.3 42.0

SD 10.6 28.7 24.5 15.9 10.4
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Figure 5.2 Estimated sweat rates for the five drink conditions. 
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5.5 DISCUSSION 

 

It was hypothesised that 100ICE would have the most cooling capacity during 

exercise between conditions because of the large cooling capacity associated with the 

larger enthalpy of fusion.  However, contrary to our hypothesis, both 100ICE and 100LIQ 

provided similar physiological responses in participants.  Complete replacement of sweat 

loss increased Tlim, reduced the rate of ∆Tre and reduced the rate of heat stored when 

comparing to replacement of half sweat loss during simulated mining conditions. 

Although there was an increase in Tlim and an attenuated rise in Tre during exercise 

for both 100% sweat replacement conditions, this is in disagreement with the theoretical 

cooling capacities of the solutions.  The theoretical cooling capacity was calculated from 

sweat rates of each participant during NF.  For each condition, the order of greatest 

cooling capacity was as follows: 100ICE (594.2 ± 104.7 kJ), 50ICE (320 ± 76.2 kJ), 

100LIQ (179.8 ± 42.8 kJ), 50LIQ (89.9 ± 21.4 kJ) and NF (0 kJ).  Therefore, it is 

hypothesized that Tlim and the attenuated rise in Tre would follow the same order as the 

drink’s cooling capacities.  This was contrary to what was observed.  Possible 

explanations could be due to the thermal inertia within the body.  As 50ICE has half the 

volume as 100LIQ, the inertial heat energy contained in the body was enough such that 

the additive effect of the enthalpy of heat did not reduce the rate of heat production.  If a 

large enough heat sink was ingested (i.e., 100ICE), then this energy could affect the heat 

stored within the body.  Webb, (1985) observed a similar thermal inertial phenomenon 

while measuring in several locations the cooling and warming gradient in a leg of beef 

submerged in a cold (16°C) and warm water (42°C) bath.  He observed quicker 

temperature changes from the outside of the leg and slower changes within.  Upon 

rewarming, an after-drop was noticed from the inner layers until a point where the deeper 
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thermometers began to warm.  This would suggest that a specific quantity of heat must be 

removed before a temperature change is observed.  As the participants in the present 

study were not static, such as the leg of beef, the total quantity of solution provided 

(100% versus 50%) may not have been sufficient to overcome the gradient. 

 Our findings extend upon the work of Lee et al. (2008), who demonstrated that 

cold (4°C) drinks administered prior to and during cycling exercise lowered mean Tre 

during exercise (37.3 ± 0.4°C versus 38.0 ± 0.4°C) and extended time to exhaustion (63.8 

± 4.3 versus 52.0 ± 4.1 min; cold versus warm drink, respectively) compared to warm 

drinks (37°C).  The most likely explanation for the slower rate of rise in Tre seen in our 

participants during the 100 percent fluid replacement conditions is the greater heat sink 

associated with the larger volumes of fluid ingested.  The rate of rise in Tre was lowest 

and Tlim was longest for 100ICE and 100LIQ conditions.  It could be assumed that 

hydration status of the participants could account for our results however, upon closer 

examination of hydration status post exercise; differences were only observed in the 50 

percent fluid replacement conditions.  Both NF and 100 percent fluid replacement 

conditions identified participants as not differing in hydration status; rather, they differ 

only in heat sink quantity administered.  This would then suggest that the results observed 

are due solely to the heat sink ingested.  This heat sink increased the total capacity of heat 

to be stored, hence the observable slower rise in Tre and greater Tlim in 100ICE and 

100LIQ compared to 50ICE and 50LIQ.  A reduction in work rate is often observed with 

an elevated body temperature (Caputa, Feistkorn et al. 1986; Thomas, Cheung et al. 2006; 

Tucker, Marle et al. 2006) and could possibly explain the differences observed in Tlim 

between 100 and 50 percent fluid replacement conditions.  Therefore, the reduced rate of 

rise in Tre can be attributed to the cooling capacity of the larger fluid volumes.  This does 

not however explain the similarities observed between 100ICE and 100LIQ.  The 
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approximate cooling capacities were 639.4 ± 147.5 kJ for 100ICE and 180.6 ± 41.7 kJ for 

100LIQ.  This equates to an approximate 3.5 fold increase in cooling capacity for 

100ICE.  This provides evidence that the additional cooling provided by the 100 % fluid 

replacement was delivered to other regions of the body compared to 50 percent fluid 

replacement. 

Siegel et al. (2010) showed that consuming 7.5 ml·kg
-1

 ice slurry resulted in a 

lower pre-exercise Tc, which remained lower for the first 30 min of exercise compared 

with ingesting cool liquid (4ºC) of the same composition.  Although their study had 

participants ingest the solutions before exercise in a thermoneutral environment, the study 

confirms that drinking ice slurry has a greater cooling capacity then cool liquids of equal 

volumes.  Additionally, time to exhaustion was significantly (P = 0.001) increased during 

ice slurry (50.2 ± 8.5 min) versus cold liquid (40.7 ± 7.2 min) condition.  The findings 

from Seigel et al. (2010) are not congruent withour observations possibly due to the fact 

that our participants ingested the ice slurry while exercising and their participants 

ingested the ice slurry pre-exercise.    Mundel and colleagues (2006) administered two 

drink temperatures (19°C and 4°C) ad libitum to subjects cycling at 65% of their peak 

maximal aerobic power until exhaustion.  They observed an increase in performance from 

55 ± 4 min to 62 ± 4 min, a reduction in heart rate of approximately 5 bpm and a 

reduction in Tre of approximately 0.25°C during the second half of exercise when 

consuming the colder drink.  Furthermore, there was a greater volume of fluid consumed 

during the cold drink condition (1.3 ± 0.3 L·h
−1

 vs. 1.0 ± 0.2 L·h
−1

; P <0.05).  Consuming 

a cooler beverage resulted in an increased time to exhaustion and lowered cardiovascular 

strain; a finding, although not statistically significant, mirrors that of the present study. 

The deleterious effects of dehydration can potentially be offset by increasing 

evaporative heat loss (Saunders, Dugas et al. 2005).  However, due to low air flow 
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conditions in an underground mine (Donoghue, Sinclair et al. 2000), this thermolytic 

avenue can become limited.  While comparing 100% and 50% fluid replacement on 

performance and hydration status in the current study, 100% sweat loss replacement 

resulted in increased performance.  Both 100% fluid replacement conditions resulted in a 

slower rate of rise in Tre, heat storage, increased Tlim, and produced higher sweating rates, 

compared to 50% and NF.  As the fluid replacement volumes were equivalent, the 

thermolytic and performance based responses could be attributed to the greater 

availability of fluids, for increased rates of sweating between 100% and 50% conditions, 

while the slight increase in performance could be attributed to the ice slurry.  

Heart rate increases under increasing thermal stress (Gonzalez-Alonso, Teller et 

al. 1999). In the present study, although not significant, 100ICE had the smallest increase 

in heart rate during exercise.  A smaller increase in heart rate could be attributed to the 

larger heat sink provided by the ingestion of the cooler ice slurry (Mundel, King et al. 

2006).  Reducing thermal strain could decrease sweat rates and in turn preserve blood 

volume.  As seen in Table 5.2, 100ICE produced the smallest change in blood volume.  

Further support to blood volume sparing is given by similar before and after Usg and Uosm 

values seen in Table 5.2.  As blood volume remained close to pre-exercise values (Table 

5.2), cardiac output may therefore have been preserved.  This conclusion is indirectly 

supported with similar heart rate data values recorded between all conditions.  .     

Industrial best practices are focused on maintaining a core temperature below that 

of approximately 38.0°C; however there are circumstances where Tc can be 38.5°C (ISO 

2004). Should Tc rise above set upper limits, production is halted and the worker must 

rest until Tc returns to a safer temperature.  As we have shown, replacing 100% sweat loss 

can prolong time to achieve both 38.0°C and 38.5°C better than replacing 50% sweat loss 

while working in the heat.  Although greater thermal relief can be observed by drinking 



 

 

 96

100ICE than 50ICE, participants complained of bloating while consuming the larger 

bolus drinks.  Such stomach discomfort may hinder production. Additionally, 100% fluid 

replacement is not usually practiced in industry. Therefore future investigations should 

examine the effect of a more practical ad libitum drinking protocol on exercise time and 

Tre.   

In summary, this investigation has demonstrated that the ingestion of 100ICE or 

100LIQ during exercise at rates equivalent to sweat rate can increase the time to 

exhaustion, reduce the rate of heat stored, and in turn attenuate the rate of rise in rectal 

temperature in hot and humid conditions when compared to ingesting 50ICE and 50LIQ. 

Therefore, replacing 100% of lost fluids will provide greater thermal relief during work in 

hot and humid conditions, which may be a practical and effective cooling strategy which 

Occupational Hygienists may wish to consider. 
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 CHAPTER SIX 
 

 

 

COMPARISON OF AD LIBITUM DRINKING OF LIQUID VERSUS 
ICE SLURRY SOLUTIONS ON CORE TEMPERATURE DURING 

SIMULATED MINING CONDITIONS 
 

 

6.1 ABSTRACT 

Purpose: To quantify and compare the effects of ad libitum consumption of ice slurry 

and liquid on core temperature (Tre) and time to exhaustion (Tlim) during exercise in the 

heat.  Methodology: Eight males consumed either no fluid (NF), ad libitum ice slurry 

(ICE) or ad libitum liquid (LIQ) on three different occasions while walking on a treadmill 

at approximately 50% of V& O2max until exhaustion.  Volume of fluid ingested, time for Tre, 

to reach 38°C and Tlim were measured for each condition.  Results:  More LIQ was 

ingested than ICE (1.088 ± 0.674 L vs. 0.721 ± 0.431 L; P<0.01).  No differences (P > 

0.05) in exercise time to 38.0°C were seen between ICE (61.6 ± 27.6 min) LIQ (55.9 ± 

26.3 min) and NF (28.9 ± 15.6 min).  Tlim was ICE; 108 ± 20.9 min, LIQ; 104.4 ± 24.4 

min and NF; 87.6 ± 25.8 min (P > 0.05).  Conclusion: Ad libitum consumption of ICE 

elicited similar changes in Tre and Tlim per unit volume compared to LIQ despite ingesting 

33% less volume of ICE compared to LIQ.   Occupational hygienists should encourage 

personnel to add ICE to their current drink practices to help cool while working in order 

to help manage heat loads in hot environments.  
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6.2 INTRODUCTION 

 

Industrial personnel can experience high thermal heat loads, particularly in the 

summer months (Donoghue and Bates 2000).  Heat loads can be further exacerbated by 

wearing personal protective equipment such as nuclear, biological and chemical 

protective clothing or by being in a hypohydrated state.  By removing the ability to 

dissipate heat, there will be a tendency for it to be stored in the body.  Several 

interventions have been developed (i.e. heat stress indices, personal and environmental 

cooling devices, education) to reduce heat loads experienced by industrial personnel 

however, many of these cooling interventions are complex, expensive to implement or 

require continual monitoring.  

Maintaining euhydrated during hot conditions and heavy metabolic workloads 

will enable efficient thermolytic responses during strenuous conditions.  This was 

demonstrated by Greenleaf and Castle (1971) when they compared hypohyrated, ad 

libitum and hyperhydrated subjects during a 1 hr cycling session.  They observed a 

significant elevation in Tre and mean body temperature between the hypohydrated and 

hyperhydrated conditions.  Despite the lack of significance, Tre and mean body 

temperature were higher in the hypohydrated trial than in the ad libitum condition.   

Typically, drinking to achieve hyperhydration is not practiced (Brake and Bates 

2007); rather, ad libitum is representative of drink practices.  Although individuals tend to 

drink fluids, typically not all lost fluid is replaced.  This is termed ‘voluntary dehydration’ 

(Morimoto and Itoh 1998).  Therefore, the benefits of ingesting will vary according to the 

volume consumed by individuals. 

Research into the thermoregulatory benefits of using fluids as a method of cooling 

during exercise is increasing.  Mundel and colleagues (2006) administered two drink 
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temperatures (19°C and 4°C) to subjects while cycling at 65% of peak power until 

exhaustion.  They observed an increase in performance, a reduced heart rate and Tre and a 

greater volume of fluid being ingested for the colder drink condition.  Gisolfi and Coping 

(1974) investigated serial ingestion of fluids (10°C versus body temperature) during 

exercise in the heat (34°C).  They found that the cold fluid elicited a lower Tre and a 

smaller percentage of weight loss.  In a more recent study, Lee et al. (2008) investigated 

serial drinking of fluids at different temperature (10°C, 37°C and 50°C) on 

thermoregulatory responses during cycling at 50% V&O2max.  Although the results were not 

significant, Tre tended to be lowest during 10°C (38.11ºC) followed by 37ºC (38.10ºC) 

and 50 ºC (38.21ºC) fluid ingestion while heart rate was significantly higher (P < 0.05) in 

the 50°C fluid condition. 

When ingesting a cold fluid compared to a very cold fluid, a larger heat sink is 

created.  A phase changing drink could therefore provide a greater cooling capacity over 

non-phase changing therapies.  Using a phase changing cryotherapy has been 

demonstrated by several authors to provide greater cooling capacity over non-phase 

changing therapies.   Kennet et al. (2007) compared four different therapies, gel pack (-

14.5ºC), frozen peas (-10ºC), crushed ice (0ºC) and water immersion of the ankle (10ºC) 

directly on skin temperature of the right ankle.  They observed the greatest reduction in 

skin temperatures with the phase changing therapy.  More recently, Siegel et al. (2010) 

observed an increased time to exhaustion when drinking ice slurry (-1ºC) versus a cold 

liquid (4ºC) before exercising in the heat.  Exercise times increased from 40.7 ± 7.2 min 

to 50.2 ± 8.5 min when drinking 7.5 g·kg
-1

 of ice slurry versus cold water.  These 

observations were attributed to the phase changing ability of the ice slurry to lower Tre 

more than cold water. Therefore, using a phase changing drink during exercise could 

provide a greater cooling capacity than traditional liquid drink replacement practices.   
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  Extending from the previous study in this thesis, and in light of the fact that 

workers would typically not follow a prescribed fluid ingestion, the aim of this study was 

two-fold. Firstly, to measure the volume of ad libitum fluid ingested and secondly, to 

compare ad libitum ingestion of liquid versus ice slurry solutions on core temperature 

during simulated mining tasks in a hot environment.   
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6.3 METHODOLOGY 

Participants 

Eight healthy, non-acclimated males (age 26 ± 1 y; height 176 ± 5 cm, body mass 

70.0 ± 10.9 kg, body fat 17.5 ± 2.1%) gave written consent and completed a pre-screening 

questionnaire, PAR-Q and You, prior to participating in this study.   The study was 

approved by the Edith Cowan University Human Research Ethics Committee. 

Preliminary measurements 

On their first visit to the laboratory, the participant’s body mass and height were 

measured using a floor scale (Model ID1; Mettler Toledo, Columbus OH, USA) and 

stadiometer (Seca, Brooklyn N.Y, USA), respectively. Adiposity was determined through 

Dual Energy X-ray Absorptiometry (Hologic, Hong Kong).   Under ambient room 

conditions (23.8 ± 1.3°C and 40.4 ± 8.0 %RH) (Microtherm; Casella Measurement Ltd., 

Bedford, UK), a modified Bruce treadmill protocol was used to determine participants   

V& O2max.  Participants began running at 0° incline at 8 km·h
-1

 with increases of 2 km·h
-1 

every two minutes until 16 km·h
-1

, after which the incline was increased 2° every two 

minutes until volitional fatigue occurred.  The participants expired gasses were 

continuously analysed (ParvoMedics TrueOne
 

2400 diagnostic system, Sandy, UT) 

throughout the test with calibration of the metabolic cart occurring approximately one 

hour before each testing session. 

Experimental design and protocol 

Participants visited the laboratory on three separate occasions at approximately the 

same time of the day with four or five days separating each visit.  All participants 

completed three sessions in random order.  These sessions included: no drink which 
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served as a control (NF), ad libitum ice slurry ingestion (ICE) and ad libitum liquid 

ingestion (LIQ). 

On arrival at the laboratory, the participant’s urine and blood samples were 

collected and after instruction, a rectal thermistor (Monatherm Thermistor, 400 Series; 

Mallinckrodt Medical, St. Louis, MO, USA) was self inserted approximately 10 cm past 

the external anal sphincter.  Nude mass was then recorded before participants were 

instrumented with skin thermistors and a heart rate monitor (Model S610i; Polar Electro 

Oy, Kempele, Finland).  The participants donned running shoes, cotton pants, t-shirt and a 

helmet.  Skin temperature was determined by skin thermistors fixed to the mid belly of 

the participant’s left gastrocnemius, quadriceps, biceps, and chest and the Ramanathan’s 

equation was applied to calculate mean skin temperature (Tsk) (Ramanathan 1964).  Heat 

storage was estimated by using the participants body mass, specific heat capacity of the 

body (3.47 kJ·kg
-1
·°K

-1
) and the equation presented by Colin et al. (1971). 

Upon entering the climatic chamber, participants were seated upright in a chair for 

15 min prior to exercise.  Exercise consisted of walking on a treadmill at approximately 

50% of V& O2max.  Ambient conditions were 28.6 ± 0.5°C and 74.2 ± 4.8 %RH (26.2 ± 

0.5°C WBGT).     

During exercise, drinks were administered in approximately 125 ml aliquots.   

Participants were encouraged to drink as much of the aliquot and as frequently as they 

wanted.  Participants continued walking until either voluntary exhaustion, achieving a Tre 

of 39.0°C, or after 120 min of exercise.  Participants were allowed to wipe sweat from 

their face only.  Once the participants stopped walking, they towel dried themselves and 

nude body mass was measured; urine and blood measurements were then reassessed.   
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Urine analysis 

Confirmation of euhydration was determined by one or all criteria: urine 

osmolarity through freeze point depression (Advanced Instruments Inc, Massachusetts, 

USA) Uosm < 286 mOsm·kgH2O
-1

 (Latzka, Sawka et al. 1998) and  urine specific gravity 

(Usg) (Refractometer, Nippon Optical Works, Tokyo, Japan) between 1.006 and 1.020 

(Popowski, Oppliger et al. 2001).  All urine analysis was performed in duplicate before 

and after exercise. 

Blood analysis 

Before and after exercise, blood was drawn from an antecubital vein after the 

participants had sat upright in a chair for approximately 3 min.  8.5 ml of blood was 

collected in an SST heparinised tube, immediately centrifuged (Heraeus Multifuge 3 S-R, 

Australia) after collection for 15 min at 3,000 rev·min
-1

 at 4°C. serum osmolality (Sosm) 

was determined through freezing point depression (Advanced Instruments Inc, 

Massachusetts, USA).  8.5 ml of blood was also collected into a plain clot tube where 2 

aliquots (30 µL each) were extracted into non-heparinized capillary tubes and an 

additional 2 aliquots (10 µL each) were collected into microcruvettes.  The capillary tubes 

were spun (MED Instruments, MPW-212, Poland) at 12000 rev·min
-1

 for 5 min at 

ambient room temperature to measure changes in plasma volume (∆PV) while the 

microcruvette samples were analysed immediately (Hemocue, Hb 201, Sweden) for 

haemoglobin concentration.  ∆PV,  changes in blood volume (∆BV) and changes in cell 

volume (∆CV) were calculated based on the methods of Dill and Costil (Dill and Costill 

1974).  All blood analyses were preformed in duplicate.   

 

 

 



 

 

 104

Core Temperature, Skin Temperature and Heart rate  

Tre and Tsk were recorded at 1 Hz via a data-logger (Grant Instruments, Shepreth 

Cambridgshire UK); from which 5 min averages were calculated.  Heart rate was 

measured via telemetry (RS800 Polar Heart Rate Monitor, Finland) and was sampled 

every 5 s from which 5 min average values were calculated.   

Ice slurry and liquid temperature and composition 

The temperature of the ice slurry was ~ -1°C and the liquid was ~ +4°C; both ice 

slurry and liquid drinks were composed of a commercially available orange flavoured 

cordial (Cottee’s Foods, NSW, Australia) with a 5% carbohydrate concentration.  Ice 

slurries were made using a commercial slushy machine (Essential Slush Co., QLD, 

Australia).  The temperature selected for the liquid solution was based on typical 

household refrigeration temperature while the warmest temperature possible was used for 

the ice slurry in an attempt to reduce temperature discrepancies between both drinks. 

Data analysis 

A condition (NF, ICE and LIQ) x time repeated measures analysis of variance 

(ANOVA) was performed to identify differences in the change of Tre, Tsk and HR to LIQ 

or ICE.  A 1-way ANOVA was performed to assess differences in Tlim over the different 

conditions.  A Students t-test was used to determine any differences between pre and post 

exercise measurements in Uosm, Usg, body mass, sweat rate, and PV.  Significance was set 

at P < 0.05 for all comparisons.  All analyses were performed using a statistical software 

program (SPSS 15.0 for windows, SPSS, Inc., Chicago, IL, USA), with values presented 

as means ± SD. 
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6.4 RESULTS 

Rate of Change in Tre during Exercise 

As shown in Figure 6.1, the rate of ∆Tre between conditions was not different (P > 

0.05) despite observing a rate of 0.018 ± 0.007°C·min
-1

 in NF compared to ICE (0.012 ± 

0.004°C·min
-1

) and LIQ (0.012 ± 0.004°C·min
-1

). 

Hydration Status and Blood Analysis 

Results for Uosm, Usg, and Sosm are shown in Table 6.1.  Several differences were 

measured in pre/post Uosm Usg , and Sosm, however no differences were measured between 

conditions. All participants were hydrated upon presentation to the laboratory as 

illustrated in table 6.1. 

Sweat rates and fluid consumed 

As shown in Table 6.2, no differences in sweat rates were shown between 

conditions. However, significantly less fluid consumed during ICE compared with LIQ (P 

< 0.05).  Consequently, subjects lost more mass in NF than both ICE and LIQ, and lost 

more mass in ICE than LIQ (P < 0.01).  Participants replaced 75.1 ± 36.3 % of fluid lost 

in LIQ, and 48.4 ± 25.1 % in ICE; P < 0.01.   

Exercise duration and heart rate at Tre of 38.0°C and at exhaustion  

Exercise duration and heart rate at a Tre of 38.0°C were not different between 

conditions (P > 0.05).  Likewise, time to exhaustion and Tre were not different between 

conditions (P > 0.05).  Tre at exhaustion was 38.4 ± 0.4°C in NF, 38.3 ± 0.3°C in ICE, and 

38.3 ± 0.4°C in LIQ.  Exercise duration and heart rate at Tre of 38.0°C and at exhaustion 

are illustrated in Table 6.3.   
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Figure 6.1 Rate of change in rectal temperature (∆Tre°C·min
-1

) no fluid, ice slurry and 

liquid interventions. 
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Table 6. 1 Pre and post exercise urine osmolarity (Uosm), specific gravity (Usg) and 

plasma osmolality (Sosm) measurements. 

 
 

 

Table 6. 2 Sweat rates (SR), volume consumed, percent body mass lost (%BML) and 

percentage of fluid replaced (%FR). 

 
 

 

Table 6.3 Exercise duration and heart rate at Tre of 38.0°C and at exhaustion and Tre at 

start and end of exercise. 

 
Note: no differences were observed between conditions 

 

Control pre 188 ± 49 1.002 ± 0.002(a) 293 ± 4(a)

post 434 ± 249 1.014 ± 0.007 296 ± 4

Ice Slurry pre 131 ± 40(b) 1.004 ± 0.001(b) 295 ± 4

post 384 ± 188 1.012 ± 0.006 293 ± 6

Liquid pre 196 ± 64(a) 1.007 ± 0.004 292 ± 6

post 384 ± 139 1.012 ± 0.004 290 ± 4

(a) difference between pre and post values (p < 0.05)

(b) difference between pre and post values (p < 0.01)

Uosm (mmol·kg
-1

) Usg Sosm (mmol·kg
-1

)

No Fluid 0.731 ± 0.171 0.00 ± 0.00 1.4 ± 0.6 0.0 ± 0.0

Ice Slurry 0.681 ± 0.148 0.721 ± 0.431(a) 0.7 ± 0.6(a) 48.4 ± 25.1

Liquid 0.721 ± 0.136 1.088 ± 0.674(a,b) 0.2 ± 0.9(a,b) 75.1 ± 36.3(c)

(a) different from Control (p < 0.01)

(b) different from Ice Slurry (p < 0.05)

(c) different from Ice Slurry (p < 0.01)

%BML %FRSR (L·h 
-1

) Volume Consumed (L)

Control 48.9 ± 15.6 87.6 ± 25.8 147 ± 17 155 ± 24 37.0 ± 0.2 38.4 ± 0.4

Ice Slurry 61.6 ± 27.6 108.0 ± 20.9 145 ± 15 152 ± 22 37.0 ± 0.4 38.3 ± 0.3

Liquid 55.9 ± 26.3 104.4 ± 24.4 142 ± 20 146 ± 23 37.1 ± 0.2 38.3 ± 0.4

Rectal Temperature (ºC )

Start EndExhaustion38.0°C

Exercise Time (min) Heart Rate (bpm)

Exhaustion38.0°C
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6.5 DISCUSSION 

The purpose of the study was to compare the effects of ad libitum drinking of ice 

slurry and liquid solutions on Tc during exercise.  There were three main findings in this 

study: (1) the ingestion of ice slurry during exercise to achieve a Tre of 38.0°C was ICE 

(61.6 ± 27.6 min), LIQ (55.9 ± 26.3 min) and NF (48.9 ± 15.6 min) and time to 

exhaustion was ICE (108 ± 20.9 min), LIQ (104.4 ± 24.4 min) and NF (87.6 ± 25.8 min); 

(2) percent of fluid replaced between conditions was greatest for LIQ compared to ICE 

(75.1 ± 36.3% versus 48.4 ± 25.1%, respectively); (3) sweat rates were statistically 

significantly not lower while consuming ICE (0.681 ± 0.148 L·hr
-1

)
 
followed by LIQ 

(0.721 ± 0.136 L·hr
-1

)
 
and NF (0.731 ± 0.171 L·hr

-1
).    

In our previous study, completely replacing fluid losses with ICE caused gastric 

distress in some of our participants.  During this investigation, no gastric distress was 

reported from any of the volunteers.  Despite a greater cooling capacity with ICE 

compared to LIQ, similar end physiological responses were observed.  Conversely, in this 

study, less ICE was consumed and similar physiological responses were measured with 

no distress being reported.  Based on the results from the previous study, theoretically, 

ICE per unit volume cools more efficiently than LIQ. Consequently if personnel can be 

trained to drink more ICE to offset sweat loss, they would then experience less thermal 

and cardiovascular strain and which in turn would delay the onset of fatigue.  

Complete fluid replacement was not observed in any of the trials of this 

investigation.  There are a number of possible explanations for this.  Firstly, participants 

were ingesting fluids ad libitum and the ice slurry contains a larger volume per unit of 

drink.  It is assumed that for 1 ml of water, the equivalent volume is 1 mm
3
.  When 1.088 

± 0.674 L of liquid was consumed, the volume was 1.088 ± 0.674 dm
3
, conversely when 
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0.721 ± 0.431 L of ice slurry was consumed, the volume was 0.813 ± 0.486 dm
3
.  This 

represents an approximate 12.8 % increase in volume.  Therefore, stretch receptors in the 

participant’s stomach may have partially signalled for fullness (Villanova, Azpiroz et al. 

1997) and stopped participants from drinking more.   

Secondly, thermal receptors located at the posterior aspect of the tongue could 

have possibly influenced the perception of body temperature as this region is innervated 

by the ninth cranial nerve.  Cold efferent signals from this region, due to the ingestion of 

the ice slurry, may have altered the brain’s perception of heat (Benzinger, 1964).  The 

authors theorise that that it is this afferent signal could then alter the behavioural response 

to the rate of heat being stored.   

Finally, so called ‘voluntary dehydration’ is a common occurrence (Morimoto and 

Itoh 1998).  While plasma osmolality and total body water were not measured in this 

study, it is possible that these markers remained within a normal range throughout the 

exercise trials.  Indeed, as heart rate and rate of change in rectal temperature were not 

different between either ad libitum trials, despite differences in fluid consumption, there 

is little evidence to suggest that hydration status had any major influence on fatigue in 

this study.  Had hydration status played a more dominant role over body temperature (or 

brain temperature); a trend towards a longer time to exhaustion during the ad libitum fluid 

trial would have been expected.  

Alterations in the central nervous system to drive working muscles (Martin, 

Marino et al. 2005; Saboisky, Marino et al. 2003; Thomas, Cheung et al. 2006) are 

associated with elevations in body temperature.  Additionally, dehydration beyond 2% 

has been shown to affect running memory and perceptual motor coordination (Sharma, 

Sridharan et al. 1986). To combat the effects of dehydration and indirectly an elevated 
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body temperature, it has been suggested that workers should consume approximately 250 

ml of fluids every 20 min during a work shift (Kenefick and Sawka 2007).  As most 

industries have ad libitum practice which are insufficient to replace total fluid lost, 

workers should therefore drink prescribed volumes or monitor intake and increase intake 

accordingly to avoid dehydration.  The ad libitum practices of mining personnel 

consuming ice slurry in situ is unknown and requires further investigation; however, 

current evidence suggests that ad libitum ICE ingestion may better attenuate heat strain 

associated with working in a hot and humid environment. 

Attenuation of the increase in body temperatures in various industries is of 

particular importance for the maintenance of a worker’s health.  Several criteria have 

been developed by governing bodies which take into account ‘safe upper limits’ for core 

temperature (Tc).  These limits are: (1) a 1°C increase above resting Tc values (ISO 2004); 

(2) a maximum Tc of 38.0°C; and (3) a Tc of 38.5°C if workers have been medically 

screened (ISO 2004).  The results of this study show, although not statically significant, 

that the time to reach 38.0°C and 38.5°C (if participants could achieve that temperature) 

was greatest while consuming ICE followed by LIQ.  This increased time can be 

attributed to the greater cooling capacity of ICE (361.6 ± 216.2 kJ) versus LIQ (154.9 ± 

96.0 kJ) and a reduced rate of heat gained, despite less ice slurry being consumed.  Blood 

perfusion to the stomach, small intestine and local regions may have been conductively 

cooled more by ICE than LIQ.  It is thought that colder temperatures increase rates of 

gastric emptying, which could assist to cool the small intestines and other deep tissues.  

Ritschel and Erni (1977) investigated the effects of various drink temperatures (5°C, 20 - 

25°C and 45°C) on stomach emptying of solid material.  Of the three drink temperatures, 

it was observed that solid material was emptied into the duodenum significantly quicker 

at a drink temperature of 5°C (15.91 ± 10.04 min), followed by 20 - 25°C (48.18 ± 28.97 
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min) then 45°C (71.42 ± 37.08 min).  As the temperature of the ice slurry was ~-1.0°C 

compared to liquid at ~4.0°C, the ice slurry may have entered the small intestine at a rate 

quicker than liquid.  The implications of an increased time to achieve a safe upper core 

temperature include increased productivity and less down time. 

In conclusion the present investigation has shown that consuming ice slurry is a 

more efficient method (per unit volume) to the gain the same physiological responses 

than a cool liquid during ad libitum drinking while exercising.  Similar rates of rise in Tre, 

time to reach a Tre of 38.0°C and exhaustion while consuming 33% less ice slurry was 

recorded. As workers in industry often do not drink to levels that replace lost fluids, it is 

recommended that Occupational Hygienists substitute ice slurry for liquid in order to 

facilitate the thermolytic responses for personnel working during heat stressful 

conditions. 
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 CHAPTER SEVEN 
FIELD INVESTIGATION OF A LABORATORY TESTED HEAT 

STRESS INTERVENTION USING AN ICE SLURRY DRINK  
 

 

7.1 ABSTRACT 

 

Background:  Australian offshore LNG workers in the North West Shelf are frequently 

exposed to heat stressful conditions.  Consuming ice slurries during exercise has been 

shown to attenuate heat loads in laboratory trials, but field studies are currently lacking.  

Purpose:  To validate a laboratory tested ice slurry intervention in the LNG industry in 

vivo as a practical cooing modality.  Methods:  Seven workers (age 40 ± 7 yrs; height 

1.75 ± 0.03 m; body mass 96.0 ± 13 kg; body fat 29.0 ± 8.6%) performed ad libitum 

drinking practices on two separate days with either an ice slurry (ICE) or liquid (LIQ).  

Heart rate (HR), deep tissue temperature (TGI) via an ingestible pill and skin temperature 

(Tsk) via dermal patch were all measured telemetrically throughout the work shift.  

Results:  Mean TGI were different between ICE and LIQ (37.2 ± 0.4°C versus 37.4 ± 

0.3°C; P < 0.001).  Mean HR was also different (P < 0.001) between ICE (91 ± 18 bpm) 

and LIQ (95 ± 15 bpm). Conclusion: ICE appears to lower TGI and reduce HR compared 

to LIQ, therefore it is recommended that workers compliment current drink practices with 

ICE in order to reduce the chances of experiencing a heat-related injury.   
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7.2 INTRODUCTION 

Australian offshore LNG workers in the North West Shelf are frequently exposed 

to high ambient temperatures, humidity and solar loads. With limited space on an oil 

platform, LNG personnel must also work in close proximity to heat generating 

machinery.  In addition to these high thermal heat loads, personal PPE must be worn 

while working.  The combination of both hot ambient conditions and PPE in conjunction 

with work activities facilitates a high endogenous heat load for personnel. To assist in 

reducing exposure to these conditions, heat stress indices are used on the oil platform.  

Typically, the WBGT is utilised.  Although this heat stress index may provide adequate 

protection for personnel onshore, its appropriateness for offshore use is questionable.  

Due to the possible hydrocarbon environment on an oil platform, traditional onshore 

devices used to facilitate heat loss (fans or misters) may not be possible; therefore 

alternative methods to cool personnel should be considered.   

Performance benefits associated with the consumption of cold compared to 

thermoneutral or warm beverages during exercise have been observed (Gisolfi and 

Copping 1974; Lee, Shirreffs et al. 2008; Mundel, King et al. 2006), and may be 

explained by the larger heat sink generated. In a recent laboratory study, Siegel et al. 

(2010) showed that time to exhaustion and the rate of rise in rectal temperature were 

attenuated when ice slurry compared to drinking cold fluids was ingested prior to exercise 

in the heat; however, this study provides evidence to indicate that ice slurries could be 

used as an alternative heat stress intervention, whether or not ice slurries would be of 

benefit in a field setting is unknown.   

With fluids readily available for LNG workers and literature identifying the 

thermodynamic benefits of ice slurry consumption during work, ingesting ice slurries 
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could be an easily implementable heat stress intervention for workers.  Therefore, the 

purpose of this investigation was to validate the effectiveness of ice slurry ingestion in the 

LNG industry in vivo as a practical cooing modality. 
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7.3 METHODOLOGY 

Subjects 

Seven subjects (age 40 ± 7 yrs; height 1.75 ± 0.03 m; body mass 96.0 ± 13 kg; 

body fat 29.0 ± 8.6%) gave their written informed consent prior to participating in the 

study.  All workers were given an information session by the medical staff and an 

additional information session was delivered to the participants with any/all questions 

being answered by the investigator. Clearance from management, union representatives, 

supervisors and the human research ethics committee of Edith Cowan University was 

obtained prior to testing.  

Experimental Procedure 

Participants presented themselves to the medical suite on two consecutive days 

between 05h15 to 05h45 to ingest a telemetric pill before breakfast.  Participants 

consumed a non-standardized breakfast then proceeded to their pre-shift meeting.   

Between 06h00 and 07h00, participants were asked to provide a pre-shift urine 

sample. They were then weighed in their underwear and appropriately instrumented with 

dermal patches and data logger (n = 3), and a heart rate monitor (n = 7).  At this point 

participants were randomised and instructed to drink either ad libitum ice slurry (ICE) or 

liquid (LIQ) drink throughout the work shift.  During mandatory rest breaks (~09h00 to 

09h930, and ~16h00 to 16h30) “smoke-o” and lunch periods (~12h00 to 12h30), 

participants were not required to drink the control or intervention drink.  This was done to 

‘normalise’ work conditions.  Typical fluids consumed with meals were, water, 

carbonated drinks, coffee or cordial.  Volumes of drink consumed by personnel 

throughout the work day were not measured, along with the time between ingestion of the 

telemetric pill and initial TGI measurements; as such, these are potential sources of 

limitations to this investigation. 
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During each hour throughout the work shift, both thermal sensation (Young, 

Sawka et al. 1987) and TGI values were measured.   

Urine samples were collected again at lunch and at the end of the work shift.  At 

the end of the work shift, participants were then de-instrumented and body mass was 

reassessed.  A schematic timeline is presented in Figure 7.1. 

 

Figure 7. 1 Experimental timeline for offshore personnel  

 

Anthropometric Measurements 

Body composition was assessed from seven different locations using skinfold 

callipers (Model HSK-BI-3; Baty International, UK).  These sites included: chest, tricep, 

axilla, subscapular, abdominal, suprailiac and mid thigh the day before testing 

commenced.  Values were then entered into seven different equations (Sloan 1967; 

Wilmore JH 1969; Forsyth HL 1973; Katch 1973; Jackson 1976; Thorland WG 1984; 

Withers RT 1987a) to calculate mean body density which was used to estimate body fat 

percentage from the equations of Siri (1961) and Brozek (1963).  Body Surface Area (AD) 

was determined by the equation of DuBois and DuBois (1916) AD = 0.202m
0.425

 × 

height
0.725

, expressed as m
2
. 

 



 

 

 117

Urine Analysis 

Start of shift, lunch break, and end of shift assessments of urine specific gravity 

were determined by using an electronic refractometer (Atago, UG-α, Japan).     

Ratings of Thermal Sensation and Heart Rate 

Participants were familiarised on how to use the thermal sensation scale before the 

start of the work shift.  They were then presented at their work location with the scale and 

were asked to rate their thermal sensation for each working hour of their shift.  Heart rate 

measurements via telemetry (RS800 Polar Heart Rate Monitor, Finland) were collected 

continuously throughout the work shift.  Data was collected every 15 seconds and then 

averaged into 1 hour intervals. 

Environmental Measurements 

Ambient conditions were measured in the area where workers spent the majority 

of their shift using a portable WBGT thermometer (Quest temps 34, USA).  

Measurements were recorded every minute throughout the work shift. 

Temperature Measurements 

Gastrointestinal temperature (TGI) was measured using a onetime use ingestible 

telemetric pill (Mini mitter, USA).  The pill was ingested between 15 – 45 min before 

breakfast.  Tsk was assessed by adhering skin thermistors to four different sites on the 

body, including chest, bicep, quadriceps and calf and was used to determine changes in 

the rate of heat stored.  Tsk was calculated using a modified Ramanathan’s (1964) 

equation.  Both pill and patch transmissions were received by a data logger that was worn 

by three participants throughout the work shift.  The signal was continually collected and 

then converted into 1 hour averages which included rest periods.  The remaining four 
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participants had their TGI measured by having the researcher measure them at their work 

location approximately every 30 min.  

Heat storage was estimated only for three participants wearing skin thermistors.  

T b was then calculated using the formula of Colin et al. (1971): Tb = 0.66 (Tre) + 0.34      

(Tsk) for the initial 20 min of data collection, and Tb  = 0.79 (Tre) + 0.21 (Tsk) for the 

remaining of the work shift, with the exception of mandatory rest breaks (“smoke-o”) and 

lunch. Heat storage was calculated at 1 min increments using the formula of Adams et al. 

(1992): heat storage = 0.965 × m × ∆Tb/AD, where 0.965 is the specific heat storage 

capacity of the body (W·kg
-1

°C), m the mean body mass (kg) over the duration of the 

trial, and AD was determined by the equation of DuBois and DuBois (1916) AD = 

0.202m
0.425

 × height
0.725

, expressed as m
2
.  Heat storage was then averaged into 1 hour 

intervals which included rest periods.     

Statistical Analysis 

A Student’s t-test was performed on mean environmental conditions, and hourly 

time points for HR, TGI, and thermal sensation between ice slurry and liquid conditions.  

As the sample size was small for Tsk, all values are expressed as means and standard 

deviation.  A one-wayway repeated measured ANOVA was used to determine differences 

between urine measures.  If differences were found, a Tukey’s post-hoc analysis was 

performed.  Significance was set at P < 0.05 and all data are presented as means ± 

standard deviations. Data analyses were performed using a statistical software program 

(SPSS 17.0 for windows, SPSS, Inc., Chicago, IL, USA). 
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7.4 RESULTS 

 No differences (P > 0.05) were observed between mean dry bulb, relative 

humidity or WBGT between testing days.  Mean values are presented in Table 7. 1. 

Tsk (Figure 7.2A) at time points 10h00-11h00 and 14h00-15h00, both conditions 

showed decreases in temperature.  Generally, the physiological responses appeared to be 

similar between both interventions.  As expected, TGI and HR were lowest at the 

beginning of the shift, and then progressively increased for both conditions.   

Daily mean Tc was significantly lower during ice slurry ingestion compared to 

liquid (37.2 ± 0.4°C versus 37.4 ± 0.3°C; P < 0.001 respectively).  A post-hoc testing 

revealed Tc was different between trials at 11h00 – 12h00 (P = 0.01) and 14h00 – 15h00 

(P = 0.021; Figure 7.2B). Daily mean heart rate values were also significantly lower (P < 

0.001) during the ICE trial.  Mean heart rate for ICE was 91 ± 18 bpm while LIQ was 95 

± 15 bpm. Changes in HR did not appear to coincide with changes in TGI or Tsk.  Rather, 

Figure 7.2C identifies differences near the beginning of the work shift (9h00 – 10h00; P = 

0.021) and 15h00 – 16h00 (P = 0.042). 
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Table 7.1 Mean ± (SD) ambient environmental conditions in the area where workers 

spent most of their time during each trial. 

 

  

Testing Day

1 28.0 ± 0.7 54 ± 11 30.7 ± 1.8

2 28.8 ± 1.2 50 ± 23 31.9 ± 3.2

WBGT (°C)Relative Humidity (%)Dry Bulb (°C)
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Figure 7. 2 Mean skin temperature (n=3) (A) core temperature (n=7) (B) and heart rate  

(n=7) (C) between Ice Slurry and Liquid conditions in one hour segments throughout the 

work shift.    

*denotes a difference (P < 0.05) 
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No differences were measured in thermal sensation between conditions any time 

point.  Values ranged from 4 ± 1 to 6 ± 0 in ICE 3 ±1 to 6 ± 1 in LIQ.   Peak thermal 

sensation values were measured at 9h00 (4 ± 1) and 18h00 (6 ± 0) for ICE and 12h00 (3 ± 

1) and at 14h00 (6 ± 1) and 18h00 (6 ± 0) for LIQ. 

Figure 7.3 shows the Usg for both cooling interventions. In both Figures, the mode 

of samples were found to be between 1.0251 – 1.0300 category.  One participant 

presented himself to work (pre-shift urine sample) with a Usg in the range of 1.0101 – 

1.0150 for both interventions.    Mean Usg values for pre-shift, lunch and post-shift are 

presented in Table 7.2.    
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Table 7.2 Mean ± SD pre-shift, lunch and post shift measures of urine specific gravity 

(Usg) between conditions (n=7). 

 
Note: no differences (P > 0.05) were observed in urine measures  

  

Ice Slurry 1.0251 ± 0.008 1.0249 ± 0.0036 1.0278 ± 0.0036

Liquid 1.0244 ± 0.005 1.0263 ± 0.0037 1.0287 ± 0.0022

PostshiftLunchPreshift
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Figure 7. 3 Frequency distribution of urine specific gravity for offshore workers who 

consumed liquid (A) and ice slurry (B) during their shift. Samples were collected pre-

shift, mid-shift and post-shift (n=7).   

Note: The Usg categories created are grouped in 0.005 unit increments with no bias towards classification or 

results 
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7.5 DISCUSSION 

 
The overall purpose of this investigation was to test a laboratory validated heat 

stress intervention (an ice slurry beverage) in LNG workers working on an offshore oil 

platform.  It was found, although not statistically significant, that ad libitum consumption 

of ICE resulted in a lower body temperature, heat storage and heart rate in those 

personnel during their work shift compared to when they consumed cold liquid (LIQ).  

Overall, workers were dehydrated from the beginning and throughout the work shift on 

each days tested. 

The phase changing ability of ICE provided a greater thermal heat sink which was 

then reflected in differences in Tc. Although the total volume of fluid ingested by 

participants may have varied, it was shown previously in this thesis that a smaller volume 

of ingested ice slurry can provide similar thermolytic abilities.  This could be explained 

by the phse changing ability of ICE compared to LIQ.  When comparing 1 L of ICE (-

1°C) to LIQ (4°C) and raising drink temperature to 37.0°C, ICE requires approximately 

484 kJ whereas LIQ requires 138 kJ.  This difference in cooling capacity is predominately 

due to the enthalpy of fusion which is the additional energy required to change physical 

states of solid to liquid.  Assuming ICE has similar characteristics to water (2.108 

kJ·kg·K
-1

 for ice and 4.187 kJ·kg·K
-1 

for liquid); an additional 334 kJ of energy is required 

to change the drink from solid to liquid.  In a study by Lovell et al. (2004), no thermal 

benefits associated with the consumption of drinks at different temperatures (4°C and 

50°C) during exercise at 60% VO2 at 24°C and 37% relative humidity were observed.  

Even though there is a large thermal gradient between drinks, unlike in this study, no 

differences were seen.    

  Typically, increasing blood skin perfusion is associated with greater cardiac 

demand which could then be indirectly interpreted as an increased HR (Brengelmann, and 
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Johnson, et al. 1977; Roberts and Wenger, 1979).   As the mean HR measurements were 

significantly lower while ingesting ice slurry during the investigation, this could suggest 

that the cooling capacity of ICE is better at decreasing cardiac strain than a cool liquid.  

With a small sample size used in this study, further investigations are warranted to 

confirm these findings. 

A lower mean TGI and HR could provide an explanation for the elevated Tsk 

observed in Figure 7.2A during the later portion of the work shift.  With warmer blood 

being redirected to the periphery for heat loss, the concomitant result would be a reduced 

Tc.  With metabolic tasks assumed to be similar during both conditions, an observed 

increased Tsk could be associated with the ice slurry providing greater internal cooling 

than liquid.  This cooling capacity then redirects blood to the skin to facilitate 

thermolysis.   

An interesting finding of the study was the dehydration level in workers.  Two of 

the seven participants arrived to work euhydrated but three workers presented themselves 

in a hypohydrated with a Usg of 1.0251 – 1.0300. The remaining two workers were 

slightly hypohydrated with a Usg (1.0201 – 1.0250).  During any point in the work day, 

only two workers were in a euhydrated state.  It is important to note that the first urine 

samples were collected before work.  This finding is concerning because hypohydration 

can impair performance (Sawka 1992) increase heart rate (Barr, Costill et al. 1991) and Tc 

during exercise.  Thus, increasing the likelihood of reducing productivity and increasing 

the risk of a heat stress related illness.  Even though these findings are concerning, they 

are comparable to observations made by Brake and Bates (2003) who identified that over 

half of the workers they studied, arrived to work hypohydrated.  Additionally, we 
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observed that hypohydrated workers stayed hypohydrated throughout the shift with some 

incurring additional dehydration.   

It is therefore important for workers to ingest adequate volumes of fluid 

throughout the work shift. Anecdotally, the workers enjoyed the ice slurry intervention; 

however, they were not supportive of having ice slurry completely substitute their normal 

fluid replacement practices.  By having a palatable drink available, more fluids tend to be 

ingested.  Bergeon et al. (2006) observed 1736.5 ± 543.3 ml and 1896.6 ± 644.8 ml of 

water versus carbohydrate drink, respectively, being consumed during a 120 min training 

session. This may be one approach occupational hygienists may take to encourage fluid 

replacement in workers.  

This investigation has confirmed that a laboratory tested heat stress intervention of 

consuming ice slurry can provide similar in situ physiological responses among LNG 

workers.  However, fully substituting an already implemented drink practice with ice 

slurries may not be palatable for all workers and is therefore not recommended.  

Alternatively, using ice slurry to compliment current cooling strategies is a heat stress 

intervention should be considered by occupational hygienists. 
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CHAPTER EIGHT 
 
8.1 General Discussion  

Working in extreme environments, in particular during uncompensable conditions, 

the body’s ability to regulate its temperature becomes compromised.  Fatigue and 

dehydration are some of the effects of a continuously elevated body temperature, which 

indirectly result in a heat stress illness.  Industry has developed methods to help workers 

manage heat while working, however, these methods can sometimes be impractical or 

economically non-viable to implement.  It is therefore necessary to develop an alternative 

method to help workers manage heat loads experienced during work in hot and humid 

environments.  As drinking cool beverages during exercise has been observed to attenuate 

the rate of rise and absolute increase in Tre in individuals, it was hypothesized that 

drinking an even cooler beverage could further reduce heat loads experienced in persons 

exercising.  Thus, the purpose of this thesis was to quantify the cooling capacity of an ice 

slurry post exercise and then to measure the cooling effects while working both in vivo 

and in situ.  Through the in vivo and in situ quantification of the ice slurry, it was aimed 

to validate the ice slurry as a practical and economically viable alternative to cool 

personnel working in a hot and humid environment.  The major findings from this thesis 

were: (1) current preventative methods, ie. heat stress indices, did not adequately predict 

thermal stress in workers; (2) personnel arrived to work hypohydrated and remained in 

that state throughout the work shift; (3) personnel were working at greater than acceptable 

ambient conditions as determined by currently implemented heat stress indices; (4) to 

administer the same cooling capacity between an ice slurry (-1°C) and liquid (4°C), the 

volume required is significantly less (P < 0.001) for an ice slurry; (5) replacing 100% 

fluid loss with either liquid or ice slurry will increase time to exhaustion when compared 

to replacing 50% or 0%; (6) during ad libitum consumption of liquid or ice slurry, more 
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liquid was consumed (P < 0.01) compared to ice slurry, however the rate of heat stored 

was similar; and (7) in situ comparison of liquid and ice slurry ingestion resulted 

significantly lower (P < 0.05) Tc and HR during the work shift when ice slurry was 

consumed compared to liquid with anecdotal evidence supporting greater perceptual relief 

of thermal strain while consuming ice slurry. 

Working in hot and humid environments can challenge the body’s thermolytic 

processes.  Physiologically, the metabolic heat created by work and the ability to dissipate 

this generated heat is dependent on the thermal and partial pressure gradients between the 

body and the environment.  In order to protect personnel working under such extreme 

conditions, heat stress indices have been developed.  Invariably, some of these indices 

account for metabolic activity, ambient conditions, clothing, and/or the physiological 

responses associated with these changes (Brake and Bates 2002; ISO 2004; ISO 2004; 

ISO 1989; McArdle, Dunham et al. 1947; Moran, Shitzer et al. 1998). Despite the 

development of several heat stress indices, the WBGT has generally been accepted by 

industry and is widely used, even though the shortcomings of the index have been well 

documented (McNeill and Parsons 1999; Mutchler, Malzahn et al. 1976; Taylor 2006).  

Acknowledging these criticisms, Study 1 of this thesis aimed at identifying a single heat 

stress index which could best predict the heat load experienced by personnel working in 

the LNG industry both on-and offshore.  The results from that study revealed that the 

WBGT was in fact not the best index to predict heat strain among LNG workers and that 

the P4SR is the preferred index.  A significant correlation between measured responses 

and the P4SR for off and onshore was observed.  Although this index provides 

recommended sweat rates during specific ambient conditions for both acclimated and 

non-acclimated individuals, this index has also received criticism (Wyndham, Strydom et 

al. 1973).  The LNG personnel investigated in this thesis were acclimated and wore lose 
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fitting clothing; both aspects of which aided in evaporative heat loss.  Additionally, work 

was self-paced which allowed personnel to self-manage heat loads. These aspects of the 

working environment should be incorporated when considering a heat stress index to be 

implemented. Attention should be directed towards the hydration status of personnel as 

water loss has been known to influence performance (Sawka 1992). This study reaffirms 

the predictive inaccuracies and the variability of using a single heat stress index or index 

that isn’t site specific for all types of industry.  Therefore, it is recommended that each 

industry or occupational group should be evaluated in order to ensure that the most 

appropriate index for that population is being applied.  It is acknowledged that this 

recommendation is resource intensive; hence alternative methods to manage heat stress 

have been developed and have been evaluated and are presented in this thesis. 

Understanding the various shortcomings of heat stress indices along with 

alternative methods to reduce heat strain in personnel that are both economically viable 

and easily implementable were developed and investigated.  It has been shown that the 

ingestion of a cool liquid can attenuate the rate of rise of body temperature (Gisolfi and 

Copping 1974; Lee, Shirreffs et al. 2008; Mundel, King et al. 2006).  During cryotherapy, 

the greatest reduction in skin temperature was achieved by using a phase changing 

material (Kennet, Hardaker et al. 2007; Merrick, Jutte et al. 2003).   When a phase 

changing material (ice slurry) was infused into swine, the results indicated that the ice 

slurry cooled the brain more effectively than liquid of equal temperature (Vanden Hoek, 

Kasza et al. 2004).  More recently, when an ice slurry was ingested by humans as a pre-

cooling method at ambient room temperature, the ice slurry reduced body temperature by 

0.66°C ± 0.14°C as compared with cold liquid 0.25°C ± 0.09°C (P = 0.001) (Siegel, Mate 

et al. 2010).  These findings suggest that drinking an ice slurry to reduce rectal 

temperature (Tre) would be greater than ingestion of a cold liquid.  Therefore, the purpose 
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of Study 2 was to quantify the cooling capacity of ice slurry as a post exercise cooling 

intervention. Using the ingestion of an ice slurry and cold liquid as a heat sink, a specific 

quantity of heat to be removed was predetermined for each participant, thus accounting 

for the different cooling capacities of ice slurry and the cold liquid lead to different 

volumes of drink being consumed.  As expected, the physiological responses to the rate of 

change in Tre, heart rate and thermal sensation were not different (P > 0.05) between 

conditions, however, the volumes administered were (ice slurry 0.536 ± 0.056 L and 

liquid 1.802 ± 0.205 L; P < 0.001).  The ice slurry is composed of both liquid (H2O(aq)) 

and solid (H2O(s)) phases.  To increase the temperature of 1 g of H2O(s) requires 

approximately 2108 J·g
-1
·K

-1
, while to increase 1 g of H2O(aq) requires approximately 

4210 J·g
-1
·K

-1
.  The greater heat sink capacity of the ice slurry is attributed to the energy 

required to change physical states from H2O(s) to H2O(aq).  This is termed enthalpy of 

fusion.  The energy required to melt H2O(s) into H2O(aq) is approximately 334000 J·g
-1

.    It 

then becomes evident that the volume required to remove heat is significantly less for the 

ingestion of ice slurry compared to a cold liquid.  From this study, it is now understood 

that ingesting ice slurry is useful as a post-exercise cooling modality compared to other 

cooling methods.   

All work sites provide drinking water ad libitum for personnel; therefore using an 

ice slurry to assist in the cooling of workers seems warranted.  Study 2 investigated the 

cooling capacity of the ice slurry as a post exercise cooling intervention and identified 

that consuming a significantly smaller volume of ice slurry will result in similar 

physiological responses as drinking a cool liquid; however, these same physiological 

responses to ice slurry compared to cold liquid occur during simulated mining conditions 

are unknown. 
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Maintaining body water levels has been shown to delay decrements in 

performance (Sawka 1992), reduce cardiovascular strain during exercise (Barr, Costill et 

al. 1991) and increase thermolytic responses compared to hypohydration.  In Study 2 it 

was observed that the ingestion of an ice slurry could cool an individual equally 

compared to a cold liquid while requiring significantly less volume.  Understanding the 

physiological benefits of hydration and the cooling capacity of the ice slurry post 

exercise, investigating these effects during physical activity was deemed necessary.  

Therefore, replacing 100%, 50% or 0% of sweat loss with either ice slurry or cool liquid 

was performed as Study 3.  Replacing 100% sweat rate with ice slurry or liquid enabled 

participants to exercise the longest (Tlim) and attenuated the rate of rise in Tre compared to 

50 % and 0 % sweat replacement.  A reduction in work rate is often observed with an 

elevated body temperature (Caputa, Feistkorn et al. 1986; Thomas, Cheung et al. 2006; 

Tucker, Marle et al. 2006) and could possibly explain the different Tlim observed between 

100 and 50 percent fluid replacement conditions.  Hence, the reduced rate of rise in Tre 

could be attributed to the cooling capacity of the larger fluid volumes.  The practicality of 

using an ice slurry to assist in reducing heat loads experienced by personnel is feasible as 

central drink stations are provided by the employer which could in turn house an ice 

slurry machine.      

Although the volumes ingested in Study 3 were predetermined by the researchers, 

complete replacement of lost fluids is typically not observed in situ.  This incomplete 

fluid replacement is termed ‘voluntary dehydration’ (Morimoto and Itoh 1998).  Ingesting 

palatable fluids (preferred flavour and/or temperature) increases ad libitum fluid 

consumption (Bergeron, Waller et al. 2006), however it is not known if the ad libitum 

intake of ice slurry compares favourably (to delay dehydration) or unfavourably (to incur 

dehydration) to cold liquid.  Consequently, Studies 2 and 3 necessitated Study 4 which 
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aimed to measure the volume of fluid ingested ad libitum during simulated mining tasks 

in a hot environment and to compare the effects of ad libitum ingestion of liquid versus 

ice slurry solutions on core temperature.   

Participants ingested less ice slurry than liquid (0.721 ± 0.431 L versus 1.088 ± 

0.674 L; P < 0.01), exercise time to 38.0°C was longest for ICE, LIQ then NF (61.6 ± 

27.6 min; 55.9 ± 26.3 min and 28.9 ± 15.6 min; respectively P > 0.05) and rate of heat 

storage was similar between ICE and LIQ, 3.1 ± 1.3 kJ·min
-1

 and 3.0 ± 1.5 kJ·min
-1

; P > 

0.05 respectively.   

The results from Study 4 indicate that the cooling capacity of an ice slurry is 

greater than consuming a cold liquid ad libitum.  This study supports findings from 

Studies 2 and 3 that ingesting an ice slurry is a practical method to cool physically active 

individuals.  Although the laboratory studies show promise that an ice slurry cooling 

intervention can cool exercising individuals, the applicability of an ice slurry cooling 

intervention in situ is still questionable. 

Therefore, the purpose of study 5 was to assess the practical application of using 

an ice slurry as a cooling intervention in situ, a field analysis was performed under hot 

and humid conditions on an LNG platform located of the coast of North Western region 

of Western Australia.  I found that, Tc and HR were significantly lower during the work 

shift when ice slurry was consumed compared to when cold liquid was consumed.  

Thermal sensation ratings were similar between conditions, even where differences were 

observed in Tc and HR, however, participants suggested that they would prefer a 

combination of ice slurry and cold liquid to increase palatability and encourage fluid 

replacement.   
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8.2 Directions for Future Research 

The general findings from the studies conducted in this thesis are as follows:  

1) there is not one single heat stress index that can protect all industrial personnel;  

2) in creating a heat sink, significantly less ice slurry compared to cold liquid is required;  

3) ad libitum ingestion of ice slurry during laboratory and in situ investigations resulted in 

a reduced rate of rise of Tc in participants.   

Although these findings contribute to the current body of thermophysiology, 

questions still remain which require further research. 

The volumes administered in Study 2 indicated that replacement of 100% sweat 

loss better attenuated the rate of rise in Tre than 50 and 0%.  As complete sweat loss 

replacement is typically not practiced in the field, optimal strategies for fluid replacement 

that incorporate ice slurry requires attention.  Additionally, the anecdotal evidence 

provided by LNG workers suggests that full substitution of ingested fluid with ice slurry 

would like to be implemented in the foreseeable future; therefore research into the ideal 

ratio of ice slurry and liquid ingestion during a work shift is justified.   
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8.3 Conclusion  

The main findings from this thesis were that:  

(1) current preventative methods, heat stress indices, did not adequately predict 

thermal stress in workers;  

(2) personnel arrived to work hypohydrated and remained in that state throughout 

the work shift;  

(3) personnel were working at greater than acceptable ambient conditions as 

determined by currently implemented heat stress indices;  

(4) to administer the same cooling capacity between an ice slurry (-1°C) and 

liquid (4°C), the volume required is significantly less (P < 0.001) for an ice slurry;  

(5) replacing 100% fluid loss with either liquid or ice slurry will increase time to 

exhaustion when compared to replacing 50% or 0%;  

(6) during ad libitum consumption of liquid or ice slurry, more liquid was 

consumed (P < 0.01) compared to ice slurry, however the rate of heat stored was 

similar; and  

(7) in situ comparison of liquid and ice slurry ingestion resulted significantly 

lower (P < 0.05) Tc and HR during the work shift when ice slurry was consumed 

compared to liquid with anecdotal evidence supporting greater perceptual relief of 

thermal strain while consuming ice slurry. 

Cooperatively, this thesis has demonstrated that ice slurry is effective to manage 

heat and must be adopted to protect workers from hyperthermia.  A gap still remains in 

the ability to manage heat stress among personnel working in hot and humid 
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environments and that additional interventions are required.  Further, consuming ice 

slurry can provide significant cooling while ingesting significantly less volume in a 

laboratory setting.  Thus, ingesting such a solution can provide a modest heat sink for 

personnel.  This method of cooling is both a simple and cost effective heat stress 

intervention.  Although the results of this thesis are encouraging for individuals working 

in hot and humid environments, further research is required for personnel working in 

other extreme environments where different clothing types are donned.  It is therefore 

recommended that workers compliment current drink practices with ice slurry in order to 

reduce the probability of experiencing a heat stress related injury. 
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APPENDIX A 

 

BACKGROUND INFORMATION TO THE PARTICIPANT 
 

Field validation of a laboratory developed heat stress 
intervention in the Australian liquid natural gas sector 

 
Investigators: 

Mr. Joseph Mate – chief investigator 

Senior Lecturer. Dr. Jacques Oosthuizen – chief investigator 

Edith Cowan University, School of Exercise, Biomedical and Health Sciences 

 

 

This investigation has been approved by ECU Human Research Ethics Committee 

 

 

This research is being conducted for a Doctorate Degree in the School of Exercise, 

Biomedical and Health Sciences and is being supervised by Dr. Jacques Oosthuizen 

(6304 5876) 

 

BACKGROUND 

The Western Australian resource boom and its lure of financial reward have resulted in an 

increased number of personnel working in this State’s resource industry.  This industry 

requires personnel to perform metabolically high workloads under hot and sometimes 

humid conditions.  However, working in such extreme environmental situations can 

increase the risk of heat stress related illnesses and even death.   

 

In order to prevent workers succumbing to heat illness, several heat stress management 

interventions aimed at controlling or reducing the rise in core temperature (Tc) of the 

worker have been implemented.  These include work environment modification (i.e., air 

conditioning), worker education, and use of heat indices. Despite these interventions, heat 

stress related illnesses still occur, particularly during the summer months.   

 

Despite the enhanced predictability of heat stress indices, it is still necessary to continue 

to investigate ways of reducing heat strain in personnel.  Educating workers on the 

importance of maintaining their hydration level may be the simplest and most cost-

effective method to reduce heat strain, as cold ingested fluids act as a heat sink to absorb 

heat from the body.  While ice slurry infusion has been shown to reduce brain 

temperatures in swine compared with an equal temperature saline, the effect of ice slurry 

consumption on the body temperature response in humans working in hot environments is 

not known.  As such, a cost effective heat stress intervention may be revealed through the 

combined effects of an ice slurry solution’s enhanced cooling capacity.   

 

The purposes of these two studies are; 

1) to measure heat strain experienced during work and 

2) to compare the effect of a ice slurry drink to normal drink in situ.  
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Protocol 
 

Study 1 – measuring heat strain during work 

 

Participants will arrive 2 hours prior to the beginning of the work shift for pre shift 

measurements.  Measurements will include urine (color and specific gravity, height, 

weight, and skin folds. 

 

Participants dressed in their working attire will present themselves to the researcher 

approximately 2hr before their work shift.  Body mass, height, and body composition (9 

skin fold sites) will be measured.  Pre shift urine will then be collected.  Deep tissue 

temperature will be measured with a one time use disposable telemetric pill (Mini Mitter, 

USA).  The telemetric pill will be ingested with room temperature water.  Skin 

temperature (Mini Mitter, USA) will be measured with sensors located on the body.  

Heart rate (RS800 Polar Heart Rate Monitor, Finland) will be recorded throughout the 

work shift using a heart rate monitor strapped to the chest.  Work performed throughout 

the work shift will be estimated using a tri-dimensional force transducer.  The participant 

will then begin their normal work day with the researcher observing the tasks performed.  

Each hour during work the participant will be asked to rate their perceived level of 

exertion and thermal comfort on a scale provided.  All fluids and food consumed during 

the shift will be weighed and recorded.  Mid day urine samples will again be collected. 

Once the work shift has finished, post body weight and urine samples will be taken. 

Study 2 – Comparing the effects of an ice slurry drink to a normal drink on core 

temperature 

Day 1 - Measuring the physiological responses to regular drink practices 

Day 2 - Measuring the physiological responses to a ice slurry drink 

Note: the same participants will be used for days 1 and 2 

 

Day 1 - Heat stressful occupations will be targeted as identified by Woodside.  Protocol 

and instrumentation will be identical as per Study 1. 

 

Day 2 - The same participants, protocol and instrumentation will be used as in Day 1 with 

the exception of the drink intervention.  Participants will be required to drink an ice slurry 

solution as a replacement to their typical drink. 

 

Instrumentation 
 

Deep Tissue Temperature: Using a telemetric “pill”, the temperature is transmitted as 

the “pill” moves through the stomach and intestines. The “pill” is naturally eliminated 

during the bowel movement 24 – 48 hours later. The transmitter pills are disposable and 

not recycled. The signal is captured and recorded in the portable data logger carried in a 

small back pack under your outer clothing layer.  No discomfort is associated to 

swallowing the “pill”.   

 

Skin Thermistors:  Eight skin probes will be taped to the skin surface with 

hypoallergenic tape. These probes give an indication of skin temperature and heat loss 

from the skin surface. Some hair may need to be shaved in order to secure the probes 

adequately to the skin surface. Some discomfort may be experienced upon removing the 

tape.  The skin thermistors will be located at: left upper chest, left upper arm, left front 

thigh, and left calf. 
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Heart Rate:  Heart rate will be monitored by a strap placed around the chest (Polar 

S610i, Finland).  No discomfort is associated from wearing a heart rate monitor. 

 

Rating of Perceived Exertion: A 10 point scale which the participant can rate their 

perceived level exertion.  No discomfort is associated from being asked exertion level. 

 

Thermal Comfort: An 8 point scale which the participant can rate their thermal comfort.  

No discomfort is associated from being asked thermal comfort level. 
 

Your anonymity is ensured as much as is possible during the investigation and, by the 

assigning of number codes to subjects by the investigators. Only pooled data will be 

published and you will not be identified in any written reports or publications. 

 

Confidentiality will be ensured to the extent that raw data will be seen only by the 

investigators. Data will be stored on a single computer (password protected - with limited 

access). Hardcopy (electronic data and data sheets) data will be stored in a locked cabinet. 

 

The hardcopy data will be kept for a period of 5 years after publication of results and then 

destroyed.   

 

If you agree to participate in this project, you will be given a copy of this background 

information and consent form to keep for future reference.   

  

Your participation in this research project is entirely voluntary and you may refuse to 

participate or withdraw from the study at any time without adverse consequence. If you 

have any further questions regarding this project or the nature of the protocol, at any time 

before, during or after your consenting to participate, please contact: 

 

Mr. Joseph Mate 

School of Exercise,  

Biomedical and Health Sciences  

Faculty of Computing and Health 

Sciences 

Edith Cowan University 

Joondalup, Western Australia 

6027, Australia 

Email: j.mate@ecu.edu.au  

Phone: +61 (08) 6304 5152 

 

Senior Lecturer  

Dr Jacques Oosthuizen (COH) 

School of Exercise, 

Biomedical & Health Sciences 

Faculty of Computing and Health 

Sciences 

Edith Cowan University 

Joondalup, Western Australia 

6027, Australia 

Email: j.oosthuizen@ecu.edu.au 

Phone: +61 (08) 6304 5876 

 

 

Or if you would like to speak with an independent person, if you have any ethical 

concerns with regards to your participation this study, you may contact the Research 

Ethics Officer of Edith Cowan University, Kim Gifkins at 6304 2170. 
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APPENDIX B 
 

 

INFORMED CONSENT OF THE PARTICIPANT 
 

Edith Cowan University – School of Exercise, Biomedical and 

Health Sciences 
 

Investigators: 

Mr. Joseph Mate – chief investigator 

Senior Lecturer. Dr. Jacques Oosthuizen – chief investigator 
Edith Cowan University, School of Exercise, Biomedical and Health Sciences 

 

 
This investigation has been approved by ECU Human Research Ethics Committee 

 

 
This research is being conducted for a Doctorate Degree in the School of Exercise, 

Biomedical and Health Sciences and is being supervised by Dr. Jacques Oosthuizen 

(6304 5876) 

 

Having read the background information provided to me, I understand that the purpose of 

this original study (title: Field validation of a laboratory developed heat stress intervention 

in the Australian liquid natural gas sector) is to enhance our understanding of practical 

methods to cool the body during work in hot environments. To study this, 2 different 

drink cooling methods will be measured during work.  These drink conditions being; 1) 

the participants drink their own typical drink solution and 2) water ice slurry.    

 

I have read and understood the information presented in the letter of information and I 

understand all the risks involved with each of the 2 test sessions and the instrumentation 

that will be used in the testing procedure. I understand that if I need any further 

explanation I can seek the advice of a qualified medical practitioner or consult the 

investigators before participating. 

  

I am aware that participation in this study will involve reporting to the work site 2 hours 

prior to the start of a work shift on 2 separate days.  Before I participate, I understand that 

I will be given an information session regarding the instruments and protocol.  During 

Day 1, I will have signed and returned a completed consent form and I also understand 

that I will have my body composition assessed.  Following this assessment, I will be 

equipped with 4 skin temperature probes and will ingest a telemetric “pill” to measure 

stomach temperature.  I understand that urine samples will be taken and used solely for 

the purposes described in the information form.  I am also aware that I will be asked to 

substitute my usual drinking beverage for water ice slurry for one of the two testing 

sessions. 

  

I understand that my anonymity will be maintained at all times through the assignment of 

specific codes. Access will be restricted to only the investigators and the data will be 

presented in pooled form. In any written reports or publications I will not be identified. 

The only benefit to me in participation is gaining the knowledge of my body composition 
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and learning about the research process. However, the investigator may learn more about 

the physiological controls of the cardiovascular system and may share this information 

upon request. 

 

I understand that my participation and the results obtained in this study will have no 

influence on my employment status. 

 

I attest that I have never been made aware of heart pathologies (murmurs, arrhythmias, 

cardiac anomalies) that could put me at risk in this experiment. 

 

I attest that I have never been made aware of blood pressure irregularities that could put 

me at risk in this experiment.   

 

I am currently not taking medications for any blood pressure or heart conditions.   

 

I attest that I had a medical evaluation in the past year and am unaware of such heart or 

blood pressure problems. 

  

I have talked with Joseph Mate and/or Dr. Jacques Oosthuizen about this study and my 

questions have been answered. If I have any other questions I may call Joseph Mate at 

6304 5152, Dr. Jacques Oosthuizen at 6304 5876 or the Research Ethics Officer, Kim 

Gifkins at 6304 2170 

 

I have been given a copy of this consent form and of the background information sheet. 

My participation in this research is voluntary. I may decline to participate in the study at 

any time and may withdraw without prejudice or discrimination of any form. All raw data 

collected at termination of the study will be destroyed within 5 years of termination of the 

study. 

 

 

 

 

 

 

            

Volunteering Participant      Signature of Researcher  

 

Date _____________      Date______________ 
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APPENDIX C 
 

BACKGROUND INFORMATION TO THE PARTICIPANT 
 

Heat stress in the mining industry: 
A practical approach to reducing heat strain in miners 

 

 
Investigators: 

Mr. Joseph Mate – lead investigator 

Assoc. Prof. Paul Laursen – co-investigator 

Edith Cowan University, School of Exercise, Biomedical and Health Sciences 
 

 

This investigation has been approved by ECU Human Research Ethics Committee 

 

 

BACKGROUND 

The Western Australian resource boom and its lure of financial reward have resulted in an 

increased number of personnel working in this State’s mining industry.  This industry 

requires personnel to perform metabolically high workloads under hot and sometimes 

humid conditions.  However, working in such extreme environmental situations can 

increase the risk of heat stress related illnesses and even death.   

 

In order to prevent workers succumbing to heat illness, several heat stress management 

interventions aimed at controlling or reducing the rise in core temperature (Tc) of the 

worker have been implemented.  These include work environment modification (i.e., air 

conditioning), worker education, and use of heat indices. Despite these interventions, heat 

stress related illnesses still occur, particularly during the summer months.   

 

Despite the enhanced predictability of heat stress indices, it is still necessary to continue 

to investigate ways of reducing heat strain in miners.  Educating workers on the 

importance of maintaining their hydration level may be the simplest and most cost-

effective method to reduce heat strain, as cold ingested fluids act as a heat sink to absorb 

heat from the body.  While ice slurry infusion has been shown to reduce brain 

temperatures in swine compared with an equal temperature saline, the effect of ice slurry 

consumption on the body temperature response in humans working in hot environments is 

not known.  The ergogenic benefits of salt supplementation are also known.  Salt 

supplementation has been shown to lower cardiovascular strain by expanding plasma 

volume. Moreover, an aqueous solution of salt and water has a greater cooling capacity 

compared with water alone.  As such, a cost effective heat stress intervention may be 

revealed through the combined effects of an ice/salt-slurry solution’s enhanced cooling 

capacity along with its plasma volume expanding qualities.   

 

Thus, the aim of this study is to compare the combined and interactive effects of salt 

supplementation and ice slurry consumption during exercise in hot conditions.   
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Protocol 

Day 1 – Signing of consent forms and familiarization to protocol and apparatus 

(Approximately 1 hour) 

Day 2 - 8 – Acclimation protocol     (Approximately 3 hours) 

Day 9 – Maximal oxygen consumption test and DEXA  (Approximately 1.5 hours) 

Day 10 - 14 – Experimental sessions (5 conditions; no drink, water drink, sodium with 

water drink, ice slurry drink, or sodium ice slurry drink)  (Approximately 4 hours each) 

Note: participants will perform all conditions only once in a randomized order 

   

You may not participate in this study if you have any history of heart or blood pressure 

irregularities nor if you are currently taking any medication for heart or blood pressure 

conditions.  

   

 

Day 1: The procedures will be reviewed and the experimental instruments that will be 

used will be described/explained.  At this point you will be asked to provide written 

informed consent and you will be asked to partake in a short screening process.  You will 

be required to fill out a health, fitness history questionnaire and physical activity 

readiness questionnaire (PAR-Q and you).  If you do not meet the criteria you will be 

ineligible for the study. 

 

Day 2-8: As a participant you will be asked to participate in 7 heat acclimation protocol 

(after the screening session) to be conducted on 7 consecutive days. For each acclimation 

session, it will be required that you are clothed in shorts, a t-shirt and running shoes. For 

all experimental sessions it will be necessary to equip you with instruments to measure 

heart rate and core temperature probes to ensure safety.  

 

You will be instructed to walk on a treadmill at 1.34m·s
-1

 on a 3% grade for four 25min 

sessions separated by 5min rests.  The temperature at which this will be performed will all 

be at 35°C, 75%RH and wind speed of 0m·s
-1

.  

 

Day 9: We will assess your body composition via Dual Energy X-ray Absorptiometry 

(DEXA) (Hologic, Hong Kong)  In this procedure you will lay face up on a table while a 

low dose x-ray scans the body.  The dose of radiation is equivalent to spending one day 

out doors.  Following this evaluation, you will then perform a maximal exercise test ( V&

O2max) on a treadmill at room temperature.   

An automated metabolic system (ParvoMedics TrueOne 2400 diagnostic system, USA), 

which will require participants to wear a nose plug and a mouth piece, will be used to 

measure oxygen consumption during the progressive exercise test.  The mouth piece is 

attached to a small hose (1mm in diameter) that draws a sample of their expired air and 

then is analyzed by the automated system.  The said automated metabolic system then 

analyzes the oxygen and carbon dioxide content of the expired gas sample.  This 

information is used to determine the speed of walking for the subsequent test.  

The protocol for the V& O2max will require the participant begin jogging at 8 km·h
-1

 for 2 

min at a zero percent gradient.  Speed will increase by 2km·h
-1

 every 2min until 16km·h
-1

 

is reached.  Two minutes after the 16km·h
-1

 speed is reached, and if the subject is still 

running, the gradient will be increased by 2 % every 2 min until volitional fatigue.  

Participants heart rate will be recorded throughout the test 
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Finally, participants will be informed of the necessary pre-experimental preparations to 

ensure that they are in good physical health and condition to perform the experimental 

sessions.   

 

They will be instructed to prepare for experimental sessions as follows:  

 

Obtain adequate sleep (at least 8 hours) prior to each session  

Avoid alcohol or the use of non-prescription medication 

Maintain adequate hydration (at least 250mL/hr in the evening and morning prior to the 

experimental sessions) 

Eat a well-balanced meal 

Refrain from strenuous physical activity for 12 hours prior to the experimental sessions 

 

 

Day 10 – 13:  Participants will report to the laboratory no more than 3 days following any 

previous experimental session. Participants will be asked to present themselves in a 

euhydrated state by drinking approximately 250ml of water for every waking hour prior 

to the experimental session.  Participants will don running shoes, cotton pants, and a 

cotton t-shirt.  Pre experimental urine and blood measurements will then be taken.    

After voiding their bladder, participants will be weighed and instrumented with rectal 

(Tre), tympanic (Tty), skin thermometers and a heart rate monitor.  Blood pressure will 

then be taken.  Participants will then enter the climatic chamber with ambient conditions 

set at 31.0°C WBGT (31.0°C and 50%relative humidity).  Participants will sit quietly on 

a chair and once steady state temperature has been achieved (Tre ± 0.1°C for 5min) blood 

pressure will again be taken followed by commencement of exercise on a treadmill at 

~290W·m
-2

 (approximately 3.5km·hr
-1 

as determined from V& O2max test).  The inclination 

will be set and maintained at 15°.  This energy expenditure corresponds to a heavy 

workload in industry which does not require an altered rest to work ratio (work 100% of 

shift without any stoppage except for scheduled lunch and ‘coffee’ breaks).   

Except for the control condition, participants will consume 194mL of solution every 

20min for the duration of the exercise protocol (2hr) or until Tre reaches 39.0°C.  Sodium 

chloride concentration will be 9.58 g/L.  Once either a Tre of 39.0°C has been achieved 

for 5 consecutive minutes, or 2hr of activity has been completed, the subject will be asked 

to cease exercising and commence 30min of recovery while seated in the climatic 

chamber.  Blood pressure will be measured every 10 min during recovery. 

Post recovery, the participant will exit the chamber and body mass, urine and blood 

samples will once again be taken. 

 

 

 

 

Instrumentation: 

 

Skin  thermistors:  Eight skin probes will be taped to the skin surface with 

hypoallergenic type. These probes give an indication of skin temperature and heat loss 

from the skin surface. Some hair may need to be shaved in order to secure the probes 

adequately to the skin surface. Some discomfort may be experienced upon removing the 

tape.  The skin thermistors will be located at: forehead, right scapula, left upper chest, 

right upper arm, left lower arm, left wrist, right from thigh, and left calf. 
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Rectal probe:  A flexible probe (2 mm in diameter) will be inserted through the anus into 

the rectum (~10 cm).  This probe provides us with an indication of the accumulated heat 

storage in the core.  The participant will be responsible for the insertion of this probe. 

Lubricating gel will also be used to insert the rectal probe in order to facilitate the 

insertion and minimize any risks.  For all experimental sessions, rectal temperature will 

be used as our indices of core temperature as it relates to terminating the experimental 

sessions.  A rectal temperature of 39.0C will be used as a cut off temperature to stop the 

testing session. 

 

Tympanic probe:  A probe will be inserted in the participants’ ear canal by the 

participant.  The probe will be pushed gently until such a time as it touches the tympanic 

membrane.  At this point, the participant will sense a slight discomfort and the probe will 

then be retracted slightly.  The probe will be secured in its position by packing the ear 

with cotton balls held in place with hypoallergenic surgical tape.  The auditory canal 

temperature will be used as an index of brain and core temperature.  The insertion of the 

tympanic probe is comparable to inserting a Q-Tip in the ear.  The insertion of the probe 

itself poses minimal risk to the subject.  The probe is inserted with the participant actively 

participating with the researcher to indicate any discomforts associated with the insertion.  

It should be noted that the tympanic probe is inserted in the aural canal and NOT the 

tympanic membrane.  The only discomfort associated with the implant is the point of 

contact with the membrane that is significantly reduced by slow insertion of the probe.  

Once the membrane has been contacted it is withdrawn slightly such that the participant 

feels no discomfort. 

 

Oxygen consumption: An automated metabolic cart (ParvoMedics TrueOne 2400 

diagnostic system, USA) will be used to assess oxygen consumption.  The participants 

will be required to wear a breathing valve connected to the metabolic cart and a nose plug 

for the majority of this test.   

 

Heart rate:  Heart rate will be monitored by a strap placed around the chest (Polar S610i, 

Finland). 

 

Blood Sampling:  A qualified person will be taking 2 (two) blood samples during each 

experimental session, 1 (one) pre experiment and 1 (one) post experiment.    Blood 

samples will be taken from the antecubital vein in the arm while the participant is in a 

seated position.  A small pricking feeling may occur while a small blood sample is taken.  

This sensation will quickly subside. 

 

Blood Pressure:  An automatic blood pressure cuff will inflate around the upper arm.  

There maybe slight discomfort during the inflation of the blood pressure cuff.  This 

sensation will quickly subside.  

  

There is negligible risk of physical harm while recording the different body temperatures 

and the oxygen consumption.  There is some risk of minor irritation associated with the 

placement of the temperature probes on the skin and in the, rectum or ear canal. In 

general these risks are considered to be minimal. 

 

There will be no direct benefit to you from these procedures or from your participation in 

this study outside of your V& O2max and DEXA results.  However, the investigators may 
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learn about the energy cost of mine work and will share these results at the end of the 

study, upon your request. 

 

Your anonymity is ensured as much as is possible during the investigation and, by the 

assigning of number codes to subjects by the investigators. Only pooled data will be 

published and you will not be identified in any written reports or publications. 

 

Confidentiality will be ensured to the extent that raw data will be seen only by the 

investigators. Data will be stored on a single computer (password protected - with limited 

access). Hardcopy (electronic data and data sheets) data will be stored in a locked cabinet. 

 

The hardcopy data will be kept for a period of 5 years after publication and then 

destroyed.   

 

If you agree to participate in this project, you will be given a copy of this background 

information and consent form to keep for future reference.   

  

Your participation in this research project is entirely voluntary and you may refuse to 

participate or withdraw from the study at any time without adverse consequence. If you 

have any further questions regarding this project or the nature of the protocol, at any time 

before, during or after your consenting to participate, please contact: 

 

Mr. Joseph Mate 

School of Exercise,  

Biomedical and Health Sciences  

Faculty of Computing and Health 

Sciences 

Edith Cowan University 

Joondalup, Western Australia 

6027, Australia 

Email: j.mate@ecu.edu.au  

Phone: 6304 5152 

 

Assoc. Prof. Paul Laursen 

School of Exercise,  

Biomedical and Health Sciences  

Faculty of Computing and Health 

Sciences 

Edith Cowan University 

Joondalup, Western Australia 

6027, Australia 

Email: p.laursen@ecu.edu.au  

Phone: 6304 5012 

 

 

 

If you have any ethical concerns with regards to your participation this study, you may 

contact the Research Ethics Officer of Edith Cowan University, Kim Gifkins at 6304 

2170. 
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APPENDIX D 
 

INFORMED CONSENT OF THE PARTICIPANT 
 

Edith Cowan University – School of Exercise, Biomedical and Health Sciences 

 

Investigators: 

Mr. Joseph Mate – lead investigator 

Assoc. Prof. Paul Laursen – co-investigator 
Edith Cowan University, School of Exercise, Biomedical and Health Sciences 

 

 
This investigation has been approved by ECU Human Research Ethics Committee 

 

  
This research is being conducted for a Doctorate Degree in the School of Exercise, 

Biomedical and Health Sciences and is being supervised by Assoc. Prof. Paul Laursen 

(6304 5012) 

 

Having read the background information provided to me, I understand that the purpose of 

this original study (title: Heat stress in the mining industry: A practical approach to 

reducing heat strain in miners) is to enhance our understanding of practical methods to 

cool the body during work in hot environments. To study this, 5 different drink cooling 

methods will be used during exercise.  These drink conditions being; 1) no drink, 2) water 

drink, 3) water with sodium chloride, 4) water ice slurry and 5) water ice slurry with 

sodium chloride.    

 

I have read and understood the information presented in the letter of information and I 

understand all the risks involved with each of the 5 test sessions and the instrumentation 

that will be used in the testing procedure. I understand that if I need any further 

explanation I can seek the advice of a qualified medical practitioner or consult the 

investigators before participating. 

  

 I am aware that participation in this study will involves reporting to the laboratory for 

testing after the screening session on 14 separate days for total time ranging between 1.5 

hours to 4 hours.  During Day 1 I understand that I will be given an information session 

regarding the instruments and protocol.  On Day 2, I will have signed and returned 

completed consent forms and will begin the acclimation protocol of four bouts of 25 min 

with 5 min rest periods for 7 consecutive days during which I will be instrumented with a 

heart rate monitor and rectal thermometer.  Day 8 I understand that I will have my body 

composition assessed followed by instrumentation of a nose plug and a mouth piece while 

performing a peak oxygen consumption test.  On Days 9 -14, I will be equipped with 8 

skin temperature probes, heart rate monitor, rectal and a tympanic temperature probes. I 

will also have my blood pressure taken during the sessions. I should be aware that there is 

some risk associated with the insertion of the rectal probe. Perforation of the rectum could 

occur during insertion of the rectal probe (potentially causing inflammation and 

infection). However, such an incident is rare and no such incident has ever occurred in 

this laboratory and the researchers are unaware of any such occurrences. The risk of 

transmission of infectious disease is negligible as each participant has his own one time 

use sterile probe that will be disposed of once each test have been completed.  
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I also understand that I will be required to perform exercise and that there are some risks 

associated with physical activity. The exercise component of the study will involve 

exercise on a treadmill at an intensity approximate to 50% V02 peak  in a thermal chamber 

set at an ambient wet bulb globe temperature of 31.0°C (31.0°C at 50% relative 

humidity). There are essentially no risks for young, active healthy people performing 

exercise at submaximal intensities. When performing maximal intensity exercise, there is 

a very minor risk of cardiovascular dysfunction. All tests will be conducted under 

standard exercise conditions for human exercise experiments as laid out by the Canadian 

Society for Exercise Physiology and the American College of Sports Medicine. 

  

I understand that my anonymity will be maintained at all times through the assignment of 

specific codes. Access will be restricted to the investigators and the data will be presented 

in pooled form. In any written reports or publications I will not be identified. The only 

benefit to me in participation is gaining the knowledge of my maximal oxygen uptake and 

body composition and learning about the research process. However, the investigator may 

learn more about the physiological controls of the cardiovascular system and may share 

them upon request. 

 

I attest that I have never been made aware of heart pathologies (murmurs, arrhythmias, 

cardiac anomalies) that could put me at risk in this experiment. 

 

I attest that I have never been made aware of blood pressure irregularities that could put 

me at risk in this experiment.   

 

I am currently not taking medications for any blood pressure or heart conditions.   

 

I attest that I had a medical evaluation in the past year and am unaware of such heart or 

blood pressure problems. 

  

I have talked with Joseph Mate and/or Assoc. Prof. Paul Laursen about this study and my 

questions have been answered. If I have any other questions I may call Joseph Mate at 

6304 5152, Assoc. Prof. Paul Laursen at 6304 5012 or the Research Ethics Officer, Kim 

Gifkins at 6304 2170 

 

I have been given a copy of this consent form and of the background information sheet. 

My participation in this research is voluntary. I may decline to participate in the study at 

any time and may withdraw without prejudice or discrimination of any form. All raw data 

collected at termination of the study will be destroyed within 5 years of termination of the 

study. 

 

 

 

            

Volunteering Participant      Signature of Researcher  

 

Date _____________      
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APPENDIX E 
Thermal Sensation Scale 

 

 
0.0 – EXTREMELY COLD 

0.5 

1.0 – VERY COLD 

1.5 

2.0 – COLD 

2.5 

3.0 – COOL 

3.5 

4.0 – COMFORTABLE 

4.5 

5.0 – WARM 

5.5 

6.0 – HOT 

6.5 

7.0 – VERY HOT 

7.5 

8.0 – EXTREMELY HOT 

 


