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We report the experimental characterization of high-responsivity plasmonics-based GaAs

metal-semiconductor-metal photodetector (MSM-PD) employing metal nano-gratings. Both the

geometry and light absorption near the designed wavelength are theoretically and experimentally

investigated. The measured photocurrent enhancement is 4-times in comparison with a conventional

single-slit MSM-PD. We observe reduction in the responsivity as the bias voltage increases and the

input light polarization varies. Our experimental results demonstrate the feasibility of developing a

high-responsivity, low bias-voltage high-speed MSM-PD. VC 2011 American Institute of Physics.

[doi:10.1063/1.3625937]

Metal-semiconductor-metal photodetectors (MSM-PDs)

are very attractive devices due to their potential applications

in optical fiber communication systems, high-speed chip-to-

chip interconnects, and high-speed sampling.1,2 Due to their

lateral geometry, MSM-PDs have much smaller capacitance

per unit area in comparison to standard p-i-n photodiode

with same active area. The surface reflectivity and the shad-

owing due to the metal fingers prevent an ideal MSM-PD

from achieving external quantum efficiency greater than

50% for equal electrode width and spacing. On the other

hand, the smaller finger width, the less detector capacitance,

and the shorter external response time.3 By decreasing the

spacing between the electrode fingers down to the optical

diffraction limit, the response times could be in the range of

a few tens of picoseconds.4 However, this downsizing of the

electrode spacing decreases the active area, thus resulting in

photodetector sensitivity degradation.

Since the extraordinary optical transmission (EOT) phe-

nomenon, which was reported by Ebbesen et al.,5 many efforts

have been devoted to exploring the EOT through metallic gra-

tings with various sub-wavelength structures, such as periodic

slit arrays, hole arrays, and corrugated metal films for different

wavelength regions.6–8 It has also been established that the

transmission of light through a hole or sub-wavelength slit in a

metal film can be enhanced by micro-structuring the top or

bottom surfaces of the film with gratings. These gratings cou-

ple the incident light with the surface plasmon polaritons

(SPPs), which are guided into the sub-wavelength slit.11

Several different implementations of SPP-enhanced

MSM-PDs have been reported confirming that the confine-

ment of light in sub-wavelength metal–semiconductor nano-

gratings can be achieved by Fabry–Pérot resonances involving

vertical transverse magnetic (TM) and electric guided waves,

resulting in increasing the quantum efficiency.12,13 Lee

et al.,14 have reported a plasmonic metal photonic crystal

(MPC) integrated on a quantum dot infrared photodetector

demonstrating more than 2-times enhancement in detectivity.

Recently, we reported a semi-analytical model of light absorp-

tion around 830 nm for MSM-PDs with plasmonic nano-gra-

tings using the finite difference time domain (FDTD)

numerical method.17 In that report, we showed that the trans-

mission enhancement strongly depends on several parameters

of the device structure, such as, the shape, height, and grating

period, as well as, the sub-wavelength aperture width.

In this letter, we report on the development of a plas-

monics-based GaAs MSM-PD structure fabricated using

focused ion beam (FIB) milling and demonstrate responsiv-

ity enhancement of 4-times in comparison with conventional

single-slit MSM-PDs, attributed to the SPP-assisted extraor-

dinary optical transmission through the metal nano-gratings.

Figure 1 illustrates the schematic diagram of the plas-

monics-based MSM-PD structure. The sub-wavelength slit

(vW) is etched between the metal nano-gratings of a grating

period (K). The incident electromagnetic field is assumed a

TM polarized wave with magnetic field oscillating in the

direction parallel to the nano-grating grooves. The metallic

sub-wavelength aperture supports a propagating TM mode

with the EOT. Consequently, with an appropriate choice of

its width, the sub-wavelength aperture forms a Fabry–Pérot

resonator; therefore, the light transmission through the sub-

wavelength aperture is resonantly enhanced. On the other

hand, the nano-gratings enhance the light transmission

through the sub-wavelength aperture region by converting

the incident electromagnetic (EM) waves into SPPs propa-

gating on the metallic surface, which can be funnelled into

the sub-wavelength aperture. With an accurate choice of

geometric parameters of the structure, these two mechanisms

can occur at the same time, resulting in an increase in the
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FAX: þ61 8 6304 5302.
b)Present address: Department of Electrical and Computer Engineering,
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electron-hole pair generation rate and leading to a substantial

increase in the overall photodetector responsivity.

The metal nano-gratings etched on both sides of the slit

allow, through momentum difference, collective resonant

coupling between the incident light and oscillating elec-

trons.7 The metal nano-grating period K is obtained using

the following dispersion relation9

kjj ¼ k0sin h 6
2np
K
¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0med

e0m þ ed

s
¼ ksp;

where, kjj, ksp, and k0 represent the parallel component of the

incident light wave vector with respect to the device surface,

the SPPs and free space wave vectors, respectively, n is an in-

teger number and h is the incident angle of the light. The com-

plex dielectric permittivity of the metal is em ¼ e
0
m þ ie

00
m and

that of the air is ed. Using this relation, a period of K¼ 815

nm for the Au/air interface results in an absorption spectrum

of absorption edge around 830 nm for normal light incidence.

A thorough analysis of the plasmonics-based MSM-PD

structure was performed using the two-dimensional FDTD

method. A plane Gaussian-modulated continuous wave with

TM polarization was used as an excitation source, as reported

in Ref. 15. By simulating the electric flux transmitted into the

active area for the same device with and without the nano-gra-

tings, the light transmission enhancement factor (C), defined

as the ratio of the transmitted optical power with the nano-

gratings to that without nano-gratings, was easily calculated.

Figure 2(a) shows the light transmission enhancement

factor versus wavelength for 200 nm, 250 nm, and 300 nm

slit widths. The grating period, grating height, and groove-

to-pitch ratio were kept constant at 815 nm, 50 nm, and 0.5,

respectively. These simulation results show that the light

enhancement factor decreases rapidly with increasing the

aperture width. For a slit width of 300 nm, the light transmis-

sion enhancement factor is more than 6-times. Although the

peak wavelength is shifted to 900 nm, more than 3-times

enhancement in light absorption is still attained at 830 nm.

Density plots of the electric and magnetic field components

(Ex, Hy, and Ez) without and with metal nano-gratings are

shown in Fig. 2(b). The EM field distributions clearly reveal

that with the incorporation of the nano-gratings, SPPs

enhance the light transmission through the sub-wavelength

aperture; much higher EM fields are induced the active area

of the plasmonics-based MSM-PD device than those induced

in a conventional MSM-PD device.

The fabrication process consisted of three steps. Ini-

tially, a stack of titanium/gold (Au/Ti 10:100nm) layers was

sputtered (using an RF magnetron sputtering system) on top

of a semi-insulating GaAs substrate. Then, the top Au film

was patterned using an FEI dual-beam FIB driven with a 10

pA Gaþ ion beam current. Finally, O2 plasma etching and

acid cleaning were used to remove the Gaþ ion implanted

onto the GaAs substrate surface within the slit. Figure 3

shows a 45� tilted SEM image of the 230 nm slit MSM-PD

with 10 nano-corrugation pitches being milled at each side.

The inset of Fig. 3 shows a magnified image of the fabricated

device, revealing a slit width of 230 nm and a grating period

of around 830 nm. A polarized 830 nm laser beam was

focused to illuminate at the center of the active area of the

MSM-PD, and the I-V characteristics for different input laser

power levels were measured using an Agilent 4156C preci-

sion semiconductor parameter analyzer.

Figure 4(a) shows the measured I-V characteristics for

both MSM-PDs (with and without nano-gratings) for two

laser power levels (2 and 3 mW). It is clear that the plas-

monics-based MSM-PD structure (denoted as WG) produces

a higher photocurrent in comparison to the single-slit MSM-

PD without nano-gratings (denoted as WOG). Figure 4(b)

shows the dependency of the photocurrent enhancement fac-

tor (defined as the ratio between the current of the MSM-PD

with a nano-grating (IWG) to the one without nano-grating

(IWOG) for the same applied voltage) for an incident power

of 3 mW. For an optimum bias voltage of 0.5 V, 4-times

enhancement in photodetector responsivity is experimentally

demonstrated. As seen in Fig. 4(b), at a high bias voltage,

the photocurrent enhancement factor drops rapidly due to

breakdown effects, where the electron-hole generation

becomes less dependent on the incident light power. Note

FIG. 1. (Color online) Schematic diagram of the plasmonic MSM-PD

structure.

FIG. 2. (Color online) Simulated (a) light transmission enhancement factor

(C) versus wavelength and (b) field distributions (Ex, Hy, and Ez) of the opti-

mized MSM-PD device without (left) and with (right) nano-gratings.
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that, since the plasmonics-based MSM-PD is a polarization-

sensitive device, a polarization controller was used to ensure

that the device was always illuminated by TM polarized light

and maximum enhancement was attained for all the

measurements.

As reported by Ren et al.,13 in addition to the significant

transmission enhancement, both high speed and low dark

current would result, since; in this case, the response speed

of the MSM-PD is primarily limited by the transit time of

the optically generated carriers and the RC-time constant of

the interdigitated PD structure. Note that etching multiple

nano-size metal fingers results in a higher light power being

absorbed in the semiconductor region. However, this results

in a higher number of alternating thinner metal fingers that

increase both the total capacitance and the total resistance of

the MSM-PD, thus leading to a much lower speed as

reported by Burm et al.,16 and Yuang and Chyi.17 For a slit

width in the order of 200 nm, at low bias the semiconductor

region of the MSM-PD is completely depleted and the elec-

tric field through the slit becomes high enough that the car-

riers drift at near saturation velocities. Under this condition,

the transit time is simply determined by sdr ¼ tv=2v as

shown in Ref. 18, where t is the gap width between the fin-

gers, v is carriers drift mean velocity, and v is carrier drift

distance corrective coefficient. Given the mean velocity of

6.7� 106 cm/s and the carrier drift distance corrective coeffi-

cient v¼ 1.3 for the electron and hole in GaAs, the transit

time of carrier and the frequency response bandwidth (ftr)

are estimated to be 1.9 ps and 83 GHz, respectively.

In conclusion, we have designed and fabricated a plas-

monics-based MSM-PD device employing metal nano-gra-

tings and subwavelength slit. FDTD method has been used to

optimize the various device parameters, and a dual beam FIB/

SEM has been employed for the fabrication of the metal nano-

gratings and slit of the MSM-PD. We have experimentally

demonstrated the principle of plasmonics-based MSM-PDs

and attained a measured photodetector responsivity that is

4-times better than that of conventional single-slit MSM-PDs.
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FIG. 3. An SEM image of the fabricated plasmonics-based MSM-PD struc-

ture. The inset shows a high magnification image of the sub-wavelength slit

with linear nano-gratings at both sides.

FIG. 4. (Color online) (a) Measured I-V characteristics comparing two

GaAs MSM-PDs WGs and WOGs for different illumination power levels.

(b) Photocurrent enhancement factor (IWG/IWOG) versus input voltage for an

input laser power of 3 mW.
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