
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2009

A Max-Min Multiobjective Technique to Optimize Model Based A Max-Min Multiobjective Technique to Optimize Model Based

Test Suite Test Suite

Usman Farooq
Edith Cowan University

Chiou P. Lam
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/SNPD.2009.33
This is an Author's Accepted Manuscript of: Farooq, U. , & Lam, C. P. (2009). A Max-Min Multiobjective Technique to
Optimize Model Based Test Suite. Proceedings of International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing. (pp. 569-574). Daegu, Korea. IEEE Computer Society.
Available here
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/171

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/SNPD.2009.33
http://dx.doi.org/10.1109/SNPD.2009.33

A Max-Min Multiobjective Technique to Optimize Model Based Test Suite

Usman Farooq, C. P. Lam
School of Computer and Information Science

Edith Cowan University
Perth, Australia

ufarooq@student.ecu.edu.au, c.lam@ecu.edu.au

Abstract— Generally, quality software production seeks timely
delivery with higher productivity at lower cost. Redundancy in
a test suite raises the execution cost and wastes scarce project
resources. In model-based testing, the testing process starts
with earlier software developmental phases and enables fault
detection in earlier phases. The redundancy in the test suites
generated from models can be detected earlier as well and
removed prior to its execution. The paper presents a novel
max-min multiobjective technique incorporated into a test
suite optimization framework to find a better trade-off
between the intrinsically conflicting goals. For illustration two
objectives i.e. coverage and size of a test suite were used
however it can be extended to more objectives. The study is
associated with model based testing and reports the results of
the empirical analysis on four UML based synthetic as well as
industrial Activity Diagram models.

Keywords-Model Based Testing; Multobjective Evolutionary
Algorithm; Test Suite Optimization; UML;

I. INTRODUCTION
The model-based random testing technique is agile, immune
to the pesticide-paradox [2], and characterized by its
simplicity and readiness efficacy. While this technique can
produce as many test cases as one needs, ironically it can
pollute the test suite with an inordinate number of
unintentional redundant test cases. A test suite with
redundant test cases increases the test suite size, takes far
longer to complete without providing any obvious
advantage or enhanced confidence. The additional time and
effort needed to execute these unwarranted test cases
obviously raises the testing cost, diminish overall
productivity and waste often-scarce project resources.
Moreover, the redundant test case denies the quality of good
test case [3].

The process of identifying and discarding redundant test
cases that finally yields a minimal test suite can be defined
as test suite optimization. As the redundancy of a test case is
relative and dependent on the test criteria and other test
cases in a test suite, the optimization process may needs to
evaluate all possible combinations of the test cases in a test
suite and calculate their cumulative coverage. For a test
suite with ‘n’ test cases, the number of evaluations will be
the order of ‘n’ potential combinations. The process of
manual identification and removal of redundant test cases is
both overwhelmingly complex and erratic. Similarly,

exhaustive analysis even with an automated tool would
handle only relatively trivial test suites and is deemed
impractical for industrial-scale test suites. The complexity
of test suite optimization problem is exponentially related to
the original test suite size. Thus, because of this
combinatorial explosion problem, test suite optimization
cannot be attained in polynomial time except for a trivial
test suite.

The analogy between the test suite optimization and
combinatorial optimization was defined by Harman and
Jones [4]. The purpose of applying search-based techniques
in software testing is to find optimal solutions for problems
where analytical algorithms are either infeasible or too
complex owing to huge solution space. Various studies have
already demonstrated the prospects of metaheuristic
techniques in various software testing problems. Zheng et
al. (2007) evaluated various search algorithms for
regression test case prioritization [5]. Their study concludes
that the genetic algorithm is equivalent to greedy algorithms
in terms of performance and even more suitable for a
situation when the fitness of the test suite is not
predetermined. The work presented in this paper is different
from their work in two ways. First, our approach aims to
minimize the generated test suite and secondly, it is focused
on model based testing as compared to code based testing
used in their work.

Most of the research reported with the application of
metaheuristic techniques is focused on test case
prioritization and more specifically code-based techniques
[6]. The optimization of test suite is a controversial topic,
mainly because of the compromising effects on the fault
detect-ability of the reduced test suite. So far, the
proposition about the fault detect-ability of optimized test
suite is limited to the code-based regression test suite (For
more detail please see [7, 8]). One study regarding
specification based test suite minimization was conducted
but enormous difference between specification techniques
and test generation mechanisms indicate that those results
are not necessarily applicable to other model based
technique. However, this fact highlights the need for further
study.

In this paper, we present a novel solution for test suite
optimization by means of multiobjective evolutionary

978-0-7695-3642-2/09 $25.00 © 2009 IEEE

DOI 10.1109/SNPD.2009.33

569

2009 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing

978-0-7695-3642-2/09 $25.00 © 2009 IEEE

DOI 10.1109/SNPD.2009.33

569

technique. We reformulate the optimization of model-based
test suite as a travelling salesman problem with profits
(TSPP) [7]. The TSPP is a generalization of the travelling
salesman problem (TSP) where the objective is the
maximization of profit without the necessity of visiting all
cities. To our knowledge, this work is a first attempt to
formalize and automate the model-based test suite
optimization process with multiobjective evolutionary
metaheuristic. We demonstrated the test suite optimization
through an example. Empirical study was conducted with
industrial scale models and results are compared with those
produced by other algorithms. We postulate that a test case
is redundant in accordance with a specific criterion if it fails
to add extra information or coverage.

The remaining paper is organized as follows. Section 2
describes test suite optimization problem. Multiobjective
evolution based test suite optimization technique is
introduced in section 3. Experiment, corresponding results
and discussion are presented in Section 3.1 and 3.2.
Summary and future work is given in Section 4.

II. TEST SUITE OPTIMIZATION
Generally, the efficiency of a test suite is measured w.r.t. a
particular test requirement metric i.e. structural coverage,
fault coverage and mutation score; however here we will use
the structural coverage as a surrogate measure of efficiency.
We postulate that a test suite is inefficient if it has
redundancy (as it will waste resources) and ineffective if it
has gaps in the coverage (as it will leave untested
functionality in the system). A test case is considered
redundant in a test suite in accordance with a specific
criterion if it fails to improve consolidated coverage of the
test suite. Consider a model-based test suite T contains ‘m’
test cases, and each test case is a sequence of model
elements representing an execution path in the model. These
test cases are evaluated with respect to a coverage criterion
M that identifies ‘n’ elements in the artifact under test
(AUT). When a subset S of T containing ‘x’ test case is
executed, it traverses ‘p’ of the ‘n’ AUT elements and attain
‘p/n’ percent coverage. To quantify the efficiency and
coverage of a test suite, following definitions are stated.

Definition 1: The efficacy of a test suite T w.r.t. a criterion
M is a ratio of p to n.

Definition 2: The efficiency of a test suite T w.r.t. a criterion
M is a ratio of p to m.

The efficacy metric in definition-1 can be used to measure
the effectiveness of a test suite in terms of selected criteria
i.e. structural coverage and mutation score. When this value
is less than 1 (in terms of ratio) or 100%, it indicates the
deficiency in the test suite and the need to generate more
test cases. The efficiency metric scales the test suites in
terms of execution cost i.e. size and time. The efficiency
metric is obvious and the high score indicates relative higher
redundancy in a test suite. It is explained as following:

Given a test suite TS with test cases t1- t7 to execute a set of
seven elements {A, B, …G} in a AUT. The test suite yields
efficacy = 1 (complete coverage) and efficiency = 7/6.
However, a closer look at the table-1 reveals that the
redundancy in a test suite can exist in three forms: 1) a test
case duplicates one or more test cases; 2) a test case
subsumes the coverage of several test cases and 3) a
combination of test cases subsumes the coverage of several
test cases. For example in table 1, t7 is a duplication of t4, t7
spares both t3 and t4, and combination of t1 and t5
subsumes the coverage of all other test cases. Skipping the
redundant test cases can improve the test suite efficiency
e.g. the subset TSsub={t1,t5} of TS can improve the
efficiency from 7/6 to 7/2 without compromising its
efficacy.

TSP is one of the most intensely studied problems in
combinatorial optimization. In the basic version of the TSP,
the objective is to find a most cost effective round trip path
for a given number of cities with traveling cost between
them. Profitable Tour Problem (PTP) is a multiobjective
type of TSP with profits (TSPP) and formally defined as
follows [9]. Consider G = (V, E) be a complete undirected
graph where V = {v1, v2, . . . , vn} is a set of n vertices and E
is a set of edges. A profit pi is associated with each vertex vi
∈ V (with p1 = 0) and a distance cij with each edge (vi, vj) ∈
E. The objective is to find a tour with two conflicting
objectives: (1) minimize the travel cost and (2) maximize
the total profit.

Table 1: Example test suite with coverage illustration

 A B C D E F G

t1 x x x x

t2 x x x x x

t3 x x x

t4 x x x x x

t5 x x x x x

t6 x x x x x

t7 x x x x x

In analogy to the PTP, the model-based test suite
optimization problem can be defined as finding a subset of
test suite TS with minimum number of test cases and
maximum coverage. For instance, the test suite has ‘n’ test
cases that correspond to cities in PTP. Each test case ‘i’ has
coverage that corresponds to the profit ‘pi’ associated with a
city. Like PTP, the selection of a city to visit, a binary
variable ‘yi’ is used to indicate the inclusion or exclusion of
a test case. The traveling cost ‘ce’ associated with an edge in
PTP implies the utility value of a test case and a binary
variable ‘xe’ associated with the edge indicates if the
corresponding edge is used in the solution or not. As the

570570

objective is to find a subset of test suite TS with maximum
coverage at minimum cost, formally the problem can be
stated as [9]: ݉݅݊݅݉݅݁ݖ ෍ ܿ௘ݔ௘ െ ෍ ாא௏௘א௜௩೔ݕ௜݌ ሺ1ሻ

The requirements to be satisfied are ෍ ௘ݔ ൌ ௜ݒ௜ ሺݕ2 א ܸሻ ሺ2ሻ௘אఋሺሼ௩೔ሽሻ

subtour elimination constraints, (3) ݕଵ ൌ 1, ሺ4ሻ ݔ௘ א ሼ0,1ሽ ሺ݁ א ௜ݕ ሻ ሺ5ሻܧ א ሼ0,1ሽ ሺݒ௜ א ܸሻ ሺ6ሻ

III. MULTIOBJECTIVE EVOLUTION BASED TEST SUITE
OPTIMIZATION

Evolutionary Computation (EC) is a metaheuristic, inspired
by the natural process of evolution. Generally, the EC
algorithms are designed to optimize only a single objective
or decision variable. However, most of the real world’s
optimization problems have more than one decision
parameter involved and often the good tradeoffs are
searched for competing constraints. For these problems,
usually more than one equally good solution exists and
choosing the best one always depends upon the application
context. However with single-objective EC algorithms,
these problems are optimized with only one objective while
others are handled as constraints. In multiobjective
algorithms, all objectives are optimized simultaneously.
Formally, the multiobjective optimization can be stated as
follows: ݉݅݊݅݉݅ܨ ݁ݖሺݔሻ ൌ ൫ ଵ݂ሺݔሻ, … , ௡݂ሺݔሻ൯ ሺ7ሻ ݔ ݋ݐ ݐ݆ܾܿ݁ݑݏ א ሺ8ሻ ܦ

where F(x) is the vector of objectives; n ≥ 2 is the number of
objective functions; x = (x1, x2, . . . , xr) is the vector of
decision variables; and D is the feasible solution space.

Generally, the multiobjective evolution based algorithms
(MOEA) are classified according to the underlying solution
propagation mechanism, i.e. pareto and non-pareto based
techniques. The pareto based techniques e.g. NGPA, NSGA
and SPEA, produce multiple distinct solutions a.k.a. pareto
optimal (solution) set at each iteration. However, the non-
pareto class of techniques i.e. VEGA and Min-Max,
designed to propagate a global unique solution. For more
details about pareto and non-pareto based techniques, see
[10, 11].

For test suite optimization, we adapted a non-pareto based
min-max technique [12] and called it multiobjective
evolutionary technique MOET. However, other MOEA

techniques could be chosen instead as well. The
incorporation of min-max approach needs the formulation of
a fitness function based on the goal points to guide the
underlying heuristic search. The goal points are the upper
bounds of the desired objectives. For instance, with
coverage objective the fitness of the test suite fitness is
computed as per its proximity to the maximum coverage.
The maximum test suite size is relative to the search space
which means solution subset in worst case could be equal to
the original test suite. So, for size objective the fitness of the
test suite is based on its deviation from the maximum test
suite size. Similar to the min-max dominance strategy, we
devise an annealing weight function for coverage objective
relative to the distance from that goal point. Following is the
expression of objective function: ݌ܮሺ݂ሻ ൌ ෍ ݅ݓ อ݂0݅ െ ݂݅ሺݔሻ݅ߩ อ݊

݅ൌ1 ሺ9ሻ

where n is the number of objectives; ݅ݓ is the weight
associated with each objective; and depending on which
gives maximum value for ݌ܮሺ݂ሻ, either of the ݂0݅ and ݂݅ሺݔሻ will be used for ݅ߩ.
The incorporation of the evolution based algorithm needs a
number of careful design decisions i.e. fitness function,
offspring generation and selection mechanism, and then
further refinement is needed in parametric values to balance
the convergence and divergence of the search. For parent
selection, tournament selection was preferred over roulette-
wheel and elitism due to its proven superior performance.
Crossover is a mechanism to combine parent to produce
new solution. As we are using steady-state version so only
offspring are produced. Offspring are randomly modified
according the given mutation rate. Initially, the population is
randomly generated and the parametric values are used as
suggested in [13]. However, the parametric values are then
refined to improve the performance of the algorithm. The
final parametric values for the MOET are mentioned in the
table 2.

Table 2: Parametric settings for the MOET
Parameters Value
Objective 1 Minimize test suite size
Objective 2 Maximize test suite

coverage
Population size 50
No. of Generations 500
Replacement scheme Steady state
Crossover rate 0.9 (double point)
Mutation rate 0.2 (single point)
Tournament size 10
Multiobjective strategy Min-max

571571

A. Experiment
In order to investigate the feasibility of multiobjective
optimization of model based test suite, we conducted the
experiment with four models of various sizes and
complexity levels. The AD model shown in fig. 1, describes
an Enterprise Customer Commerce System (ECCS) taken
from [1]. It describes the process of online purchasing of
products that is comprised of two sub-processes:
authentication and shopping. The first process authorizes the
existing users for shopping and configuration. However, in
case of new customers, it enables them to register first. The
shopping process facilitates the user to order the selected
products and configure his/her account if required. The
Automatic Teller Machine (ATM) model is a popular case
study. For our experiment, we adapted it from a report [14].
The ATM model comprises on an activity diagram with top
level view of ATM operations that is further decomposed
into low level AD diagrams with details of the operations
i.e. withdraw cash, deposit money, transfer funds and check
balance. The experiment also includes the two industrial
scale models of a module in an Intelligent Transport System
(ITS), Edit Trend Properties (ETP) and Delete Trend
Properties (DTP). Both models respectively describe the
step by step editing and deletion of existing trending reports
from archived or real-time data. We use the model (ECCS)
as a running example. It is a small but not simple as its
structural cyclomatic complexity is 11, which is higher than
ATM and DTP models. For more detail of each model see
table 1. These models are used in the experiments and
results are presented in the following sections.

Test suites are generated for all models using a Random-
walk based test sequence generation (TSG) algorithm
proposed in [15]. For example, 20 test cases are generated
for ECCS model. Given the stochastic nature of the TSG
technique, it is assumed that the generated test suites
incurred few redundant test cases. The generated sequences
of model constructs, formally referred to as paths, are
usually evaluated according to a specified criterion. An AD
based branch coverage criteria defined in [15] is used to
evaluate and optimize the test suite as it is minimum
requirement for software in aviation industry. The branch
coverage criterion requires that there would be at least one
test case for each branch that causes it to execute.

Table 3: Characteristics of sample models

Model Nodes Branches Edges Complexity

ECCS 23 17 33 11
ATM 135 28 141 16
ETP 77 26 89 14
DTP 52 37 57 21

 The heart of the Evolution based technique is the fitness
function that calculates the fitness of an individual test suite

w.r.t. a given criterion by obtaining its phenotypic properties
(i.e. coverage and size) by mapping it on the search space of
the randomly generated test cases. In analogy to the PTP,
the multiobjective optimization for model-based test suite is
formulated as:

Find a subset of the test suite which satisfy the constraints
and optimize following criteria:

1. Size of the subset by removing redundant test cases;
and

2. Coverage of the subset w.r.t. given branch criterion.

The first objective is to minimize the test suite size while the
second objective is to maximize the coverage. The vector of
decision variables is x = [size, coverage].

Given the fact that the upper bound of the coverage CUB that
a subset (solution test suite) can attain w.r.t. to a particular
criterion is 100%, and the upper bound for a subset size SUB
is the size of original test suite so the objective functions can
be expressed as follows:

1. Size: f1(x) = SUB - Sx

2. Coverage: f2(x) = CUB - Cx

For analysis, the performance of the multiobjective
technique proposed in this paper is compared with that of
single objective GA w.r.t. branch coverage criterion. For
single objective GA (SGA), the test suite optimization
problem is transformed into Quota Traveling Salesman
Problem (QTSP) which is another variant of PTP [8]. In
QTSP, the minimum allowed profit is imposed as a bound
and the goal is to find a minimal length tour whose total
collected profit is not smaller than this bound. We specified
the minimum coverage as a lower bound and problem is
defined to find a subset with minimal number of test cases
and the total coverage of the subset is not smaller than the
lower bound.

The results of the experiments and discussion are presented
in the next section. Given the stochastic nature of the
optimization algorithm, a small variation is expected in the
results. Therefore, experiment is designed to run for 10
iterations for each criterion to determine the stability and
effectiveness of the optimization framework.

B. Results and Discussion
The results of the experiments are presented in table 4 and
5. The size column shows the test suite size and efficiency
column is calculated according to definition 2 specified in
section 2. The efficiency of un-optimized and optimized test
suites is calculated by 100% coverage of the branches given
in table 3 and size of un-optimized and optimized test suite
respectively. The efficiency in table 5 is calculated in
similar fashion, however, the number branches traversed by
the specific test suite is used with the size of that test suite.

572572

Table 4: Coverage maximization and Size Reduction w.r.t. Branch Criterion (Test suite with complete coverage)

Model Un-Optimized TS Optimized TS
Size Efficiency Algorithm Size (reduction%) Efficiency

ECCS 19 17/19 SGA 3 (85.0%) 17/3
 19 17/19 MOET 3 (85.0%) 17/3

ATM 89 28/89 SGA 7 (92.1%) 28/7
 89 28/89 MOET 7 (92.1%) 28/7

ETP 27 26/27 SGA 6 (77.8%) 26/6
 27 26/27 MOET 6 (77.8%) 26/6

DTP 28 37/28 SGA 6 (78.6%) 37/6
 28 37/28 MOET 7 (75.0%) 37/7

Table 5: Test Suite Optimization w.r.t. Branch criterion (Test suite with less than 100% coverage)

Model Un-Optimized TS Optimized TS
Size Efficiency Algorithm Size (reduction%) Efficiency

ECCS 13 17/13 SGA 3 (76.9%) 16/3
 13 17/13 MOET 3 (76.9%) 16/3

ATM 62 28/62 SGA 7 (88.7%) 27/7
 62 28/62 MOET 7 (88.7%) 27/7

ETP 25 26/25 SGA 5 (80.0%) 21/5
 25 26/25 MOET 5 (80.0%) 21/5

DTP 25 37/25 SGA 5 (80.0%) 36/5
 25 37/25 MOET 5 (80.0%) 36/5

The results exhibit two important phenomena: 1) the
removal of redundant test cases improves the test suite
efficiency without compromising its efficacy; and 2) both
SGA and MOET are competitive in terms of performance.
From data, the test suite efficiency is quite obvious. As it
can be seen that the reduction in test suite size of each
example model is quite significant Although, there is no
significant difference in both SGA and MOET, however, the
MOET has the advantage that it can optimize multiple
objectives in parallel. The result confirms the feasibility of
the multiobjective optimization of the model based test
suites. As in the experiment, four different models were
used. The test suite generated for these models also varies in
terms of size and redundancy. However, both SGA and
MOET performance proved robust and scalable.

IV. SUMMARY
The field of search-based software engineering is new and
the incorporation of various metaheuristic techniques has
heralded a new era of research and development. In
software testing and particularly in structural testing several
researchers have successfully incorporated these techniques
for test data generation to regression test suite prioritization.
However, in terms of model based testing still much need to
be done. In this paper we proposed a multiobjective
optimization framework for model based test suites. We
formulated the test suite optimization as travelling sales man
with profit problem. A multiobjective min-max technique
was implemented with evolutionary technique and results
are compared with classical single objective GA. The

 Figure 1: AD model of an Enterprise Customer Commerce System (ECCS)[1]

573573

experimental results show the robustness of the proposed
technique that optimizes the test suites generated from AD
model w.r.t. the branch and edge coverage criterion. The
study confirms the test suite optimization by eliminating the
redundant test cases without compromising its coverage.

REFERENCES
[1] J. M. Küster, J. Koehler, and K. Ryndina, "Improving
Business Process Models with Reference Models in Business-
Driven Development," presented at Business Process Management
Workshops, 2006.
[2] B. Beizer, Software testing techniques, 2nd ed. New
York: Van Nostrand Reinhold, 1990.
[3] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer
Software 2nd ed: International Thomson Computer Press, 1993.
[4] M. Harman and B. F. Jones, "Search based software
engineering.," Information and Software Technology, vol. 43, pp.
833-839, 2001.
[5] Z. Li, M. Harman, and R. Heirons, "Search Algorithms
for Regression Test Case Prioritisation " IEEE Transactions on
Software Engineering. , vol. 33, pp. 225-237, 2007.
[6] M. Harman, "The Current State and Future of Search
Based Software Engineering," in Int. Conference on Software
Engineering, Future of Software Engineering (FOSE'07).
Minneapolis, USA: IEEE, 2007.
[7] W. E. Wong, J. R. Horgan, L. London, and A. P. Mathur,
"Effect of Test Set Minimization on Fault Detection

Effectiveness," presented at 17th International Conference on
Software Engineering, 1995.
[8] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, "An
Empirical Study of the Effects of Minimization on the Fault-
Detection Capabilities of Test Suites," in International Conference
on Software Maintenance (ICSM 1998). Bethesda, MD, 1998.
[9] F. Dominique, D. Pierre, and G. Michel, "Traveling
Salesman Problems with Profits," Transportation Science, vol. 39,
pp. 188-205, 2005.
[10] E. Zitzler, "Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications," in Computer
Engineering and Networks Laboratory, vol. Doctrate. Zurich:
Swiss Fedral Institute of Technology, 1999, pp. 118.
[11] C. A. C. Coello, "An updated survey of GA-based
multiobjective optimization techniques," ACM Comput. Surv., vol.
32, pp. 109-143, 2000.
[12] C. A. C. Coello and A. D. Christiansen, "Two New GA-
based methods for multiobjective optimization," Civil Engineering
and Environmental Systems, vol. 15, pp. 207-243, 1998.
[13] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning: Addison-Wesley, 1989.
[14] R. Chandler, C. P. Lam, and H. Li, "UML Models with
Activity Diagrams: for Case Studies," SCIS, Edith Cowan
University, Perth, Technical Report TR-SERG-06-02, 2006.
[15] U. Farooq, C. P. Lam, and H. Li, "Towards Automated
Test Sequence Generation," presented at 19th Australian Software
Engineering Conference (ASWEC'2008), Perth, Australia, 2008

574574

	A Max-Min Multiobjective Technique to Optimize Model Based Test Suite
	A Max-Min Multiobjective Technique to Optimize Model Based Test Suite

