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Abstract— Generally, quality software production seeks timely 
delivery with higher productivity at lower cost. Redundancy in 
a test suite raises the execution cost and wastes scarce project 
resources. In model-based testing, the testing process starts 
with earlier software developmental phases and enables fault 
detection in earlier phases. The redundancy in the test suites 
generated from models can be detected earlier as well and 
removed prior to its execution. The paper presents a novel 
max-min multiobjective technique incorporated into a test 
suite optimization framework to find a better trade-off 
between the intrinsically conflicting goals. For illustration two 
objectives i.e. coverage and size of a test suite were used 
however it can be extended to more objectives. The study is 
associated with model based testing and reports the results of 
the empirical analysis on four UML based synthetic as well as 
industrial Activity Diagram models. 

Keywords-Model Based Testing; Multobjective Evolutionary 
Algorithm; Test Suite Optimization; UML; 

I.  INTRODUCTION 
The model-based random testing technique is agile, immune 
to the pesticide-paradox [2], and characterized by its 
simplicity and readiness efficacy. While this technique can 
produce as many test cases as one needs, ironically it can 
pollute the test suite with an inordinate number of 
unintentional redundant test cases. A test suite with 
redundant test cases increases the test suite size, takes far 
longer to complete without providing any obvious 
advantage or enhanced confidence. The additional time and 
effort needed to execute these unwarranted test cases 
obviously raises the testing cost, diminish overall 
productivity and waste often-scarce project resources. 
Moreover, the redundant test case denies the quality of good 
test case [3].  

The process of identifying and discarding redundant test 
cases that finally yields a minimal test suite can be defined 
as test suite optimization. As the redundancy of a test case is 
relative and dependent on the test criteria and other test 
cases in a test suite, the optimization process may needs to 
evaluate all possible combinations of the test cases in a test 
suite and calculate their cumulative coverage. For a test 
suite with ‘n’ test cases, the number of evaluations will be 
the order of ‘n’ potential combinations. The process of 
manual identification and removal of redundant test cases is 
both overwhelmingly complex and erratic. Similarly, 

exhaustive analysis even with an automated tool would 
handle only relatively trivial test suites and is deemed 
impractical for industrial-scale test suites. The complexity 
of test suite optimization problem is exponentially related to 
the original test suite size. Thus, because of this 
combinatorial explosion problem, test suite optimization 
cannot be attained in polynomial time except for a trivial 
test suite.  

The analogy between the test suite optimization and 
combinatorial optimization was defined by Harman and 
Jones [4]. The purpose of applying search-based techniques 
in software testing is to find optimal solutions for problems 
where analytical algorithms are either infeasible or too 
complex owing to huge solution space. Various studies have 
already demonstrated the prospects of metaheuristic 
techniques in various software testing problems. Zheng et 
al. (2007) evaluated various search algorithms for 
regression test case prioritization [5]. Their study concludes 
that the genetic algorithm is equivalent to greedy algorithms 
in terms of performance and even more suitable for a 
situation when the fitness of the test suite is not 
predetermined. The work presented in this paper is different 
from their work in two ways. First, our approach aims to 
minimize the generated test suite and secondly, it is focused 
on model based testing as compared to code based testing 
used in their work. 

Most of the research reported with the application of 
metaheuristic techniques is focused on test case 
prioritization and more specifically code-based techniques 
[6]. The optimization of test suite is a controversial topic, 
mainly because of the compromising effects on the fault 
detect-ability of the reduced test suite. So far, the 
proposition about the fault detect-ability of optimized test 
suite is limited to the code-based regression test suite (For 
more detail please see [7, 8]). One study regarding 
specification based test suite minimization was conducted 
but enormous difference between specification techniques 
and test generation mechanisms indicate that those results 
are not necessarily applicable to other model based 
technique. However, this fact highlights the need for further 
study.  

In this paper, we present a novel solution for test suite 
optimization by means of multiobjective evolutionary 
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technique. We reformulate the optimization of model-based 
test suite as a travelling salesman problem with profits 
(TSPP) [7]. The TSPP is a generalization of the travelling 
salesman problem (TSP) where the objective is the 
maximization of profit without the necessity of visiting all 
cities. To our knowledge, this work is a first attempt to 
formalize and automate the model-based test suite 
optimization process with multiobjective evolutionary 
metaheuristic. We demonstrated the test suite optimization 
through an example. Empirical study was conducted with 
industrial scale models and results are compared with those 
produced by other algorithms. We postulate that a test case 
is redundant in accordance with a specific criterion if it fails 
to add extra information or coverage.  

The remaining paper is organized as follows. Section 2 
describes test suite optimization problem. Multiobjective 
evolution based test suite optimization technique is 
introduced in section 3. Experiment, corresponding results 
and discussion are presented in Section 3.1 and 3.2. 
Summary and future work is given in Section 4. 

II. TEST SUITE OPTIMIZATION 
Generally, the efficiency of a test suite is measured w.r.t. a 
particular test requirement metric i.e. structural coverage, 
fault coverage and mutation score; however here we will use 
the structural coverage as a surrogate measure of efficiency. 
We postulate that a test suite is inefficient if it has 
redundancy (as it will waste resources) and ineffective if it 
has gaps in the coverage (as it will leave untested 
functionality in the system). A test case is considered 
redundant in a test suite in accordance with a specific 
criterion if it fails to improve consolidated coverage of the 
test suite. Consider a model-based test suite T contains ‘m’ 
test cases, and each test case is a sequence of model 
elements representing an execution path in the model. These 
test cases are evaluated with respect to a coverage criterion 
M that identifies ‘n’ elements in the artifact under test 
(AUT). When a subset S of T containing ‘x’ test case is 
executed, it traverses ‘p’ of the ‘n’ AUT elements and attain 
‘p/n’ percent coverage. To quantify the efficiency and 
coverage of a test suite, following definitions are stated. 

Definition 1: The efficacy of a test suite T w.r.t. a criterion 
M is a ratio of p to n. 

Definition 2: The efficiency of a test suite T w.r.t. a criterion 
M is a ratio of p to m. 

The efficacy metric in definition-1 can be used to measure 
the effectiveness of a test suite in terms of selected criteria 
i.e. structural coverage and mutation score. When this value 
is less than 1 (in terms of ratio) or 100%, it indicates the 
deficiency in the test suite and the need to generate more 
test cases. The efficiency metric scales the test suites in 
terms of execution cost i.e. size and time. The efficiency 
metric is obvious and the high score indicates relative higher 
redundancy in a test suite. It is explained as following: 

Given a test suite TS with test cases t1- t7 to execute a set of 
seven elements {A, B, …G} in a AUT. The test suite yields 
efficacy = 1 (complete coverage) and efficiency = 7/6. 
However, a closer look at the table-1 reveals that the 
redundancy in a test suite can exist in three forms: 1) a test 
case duplicates one or more test cases; 2) a test case 
subsumes the coverage of several test cases and 3) a 
combination of test cases subsumes the coverage of several 
test cases. For example in table 1, t7 is a duplication of t4, t7 
spares both t3 and t4, and combination of t1 and t5 
subsumes the coverage of all other test cases. Skipping the 
redundant test cases can improve the test suite efficiency 
e.g. the subset TSsub={t1,t5} of TS can improve the 
efficiency from 7/6 to 7/2 without compromising its 
efficacy.  

TSP is one of the most intensely studied problems in 
combinatorial optimization. In the basic version of the TSP, 
the objective is to find a most cost effective round trip path 
for a given number of cities with traveling cost between 
them.  Profitable Tour Problem (PTP) is a multiobjective 
type of TSP with profits (TSPP) and formally defined as 
follows [9]. Consider G = (V, E) be a complete undirected 
graph where V = {v1, v2, . . . , vn} is a set of n vertices and E 
is a set of edges. A profit pi is associated with each vertex vi 
∈ V (with p1 = 0) and a distance cij with each edge (vi, vj) ∈ 
E. The objective is to find a tour with two conflicting 
objectives: (1) minimize the travel cost and (2) maximize 
the total profit.  

Table 1:  Example test suite with coverage illustration 

 A B C D E F G 

t1 x  x x x   

t2 x x  x x  x 

t3 x  x   x  

t4 x x x x  x  

t5 x x  x  x x 

t6 x  x  x x x 

t7 x x x x  x  

 

In analogy to the PTP, the model-based test suite 
optimization problem can be defined as finding a subset of 
test suite TS with minimum number of test cases and 
maximum coverage. For instance, the test suite has ‘n’ test 
cases that correspond to cities in PTP. Each test case ‘i’ has 
coverage that corresponds to the profit ‘pi’ associated with a 
city. Like PTP, the selection of a city to visit, a binary 
variable ‘yi’ is used to indicate the inclusion or exclusion of 
a test case. The traveling cost ‘ce’ associated with an edge in 
PTP implies the utility value of a test case and a binary 
variable ‘xe’ associated with the edge indicates if the 
corresponding edge is used in the solution or not. As the 
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objective is to find a subset of test suite TS with maximum 
coverage at minimum cost, formally the problem can be 
stated as [9]:           ݉݅݊݅݉݅݁ݖ ෍ ܿ௘ݔ௘ െ ෍ ாא௏௘א௜௩೔ݕ௜݌                ሺ1ሻ 

The requirements to be satisfied are          ෍ ௘ݔ ൌ ௜ݒ௜    ሺݕ2 א ܸሻ                ሺ2ሻ௘אఋሺሼ௩೔ሽሻ  

subtour elimination constraints,   (3)                           ݕଵ ൌ 1,                                     ሺ4ሻ                      ݔ௘ א ሼ0,1ሽ     ሺ݁ א ௜ݕ                      ሻ                 ሺ5ሻܧ א ሼ0,1ሽ     ሺݒ௜ א ܸሻ               ሺ6ሻ 
 

III. MULTIOBJECTIVE EVOLUTION BASED TEST SUITE 
OPTIMIZATION 

Evolutionary Computation (EC) is a metaheuristic, inspired 
by the natural process of evolution. Generally, the EC 
algorithms are designed to optimize only a single objective 
or decision variable. However, most of the real world’s 
optimization problems have more than one decision 
parameter involved and often the good tradeoffs are 
searched for competing constraints. For these problems, 
usually more than one equally good solution exists and 
choosing the best one always depends upon the application 
context. However with single-objective EC algorithms, 
these problems are optimized with only one objective while 
others are handled as constraints. In multiobjective 
algorithms, all objectives are optimized simultaneously. 
Formally, the multiobjective optimization can be stated as 
follows:        ݉݅݊݅݉݅ܨ ݁ݖሺݔሻ ൌ ൫ ଵ݂ሺݔሻ, … , ௡݂ሺݔሻ൯      ሺ7ሻ                  ݔ        ݋ݐ ݐ݆ܾܿ݁ݑݏ א  ሺ8ሻ                       ܦ
 
where F(x) is the vector of objectives; n ≥ 2 is the number of 
objective functions; x = (x1, x2, . . . , xr) is the vector of  
decision variables; and D is the feasible solution space.  

Generally, the multiobjective evolution based algorithms 
(MOEA) are classified according to the underlying solution 
propagation mechanism, i.e. pareto and non-pareto based 
techniques. The pareto based techniques e.g. NGPA, NSGA 
and SPEA, produce multiple distinct solutions a.k.a. pareto 
optimal (solution) set at each iteration. However, the non-
pareto class of techniques i.e. VEGA and Min-Max, 
designed to propagate a global unique solution. For more 
details about pareto and non-pareto based techniques, see 
[10, 11].  

For test suite optimization, we adapted a non-pareto based 
min-max technique [12] and called it multiobjective 
evolutionary technique MOET. However, other MOEA 

techniques could be chosen instead as well.  The 
incorporation of min-max approach needs the formulation of 
a fitness function based on the goal points to guide the 
underlying heuristic search. The goal points are the upper 
bounds of the desired objectives. For instance, with 
coverage objective the fitness of the test suite fitness is 
computed as per its proximity to the maximum coverage. 
The maximum test suite size is relative to the search space 
which means solution subset in worst case could be equal to 
the original test suite. So, for size objective the fitness of the 
test suite is based on its deviation from the maximum test 
suite size. Similar to the min-max dominance strategy, we 
devise an annealing weight function for coverage objective 
relative to the distance from that goal point. Following is the 
expression of objective function:           ݌ܮሺ݂ሻ ൌ ෍ ݅ݓ อ݂0݅ െ ݂݅ሺݔሻ݅ߩ อ݊

݅ൌ1               ሺ9ሻ 

 

where n is the number of objectives; ݅ݓ is the weight 
associated with each objective; and depending on which 
gives maximum value for ݌ܮሺ݂ሻ,  either of the ݂0݅  and  ݂݅ሺݔሻ  will be used for  ݅ߩ.  
The incorporation of the evolution based algorithm needs a 
number of careful design decisions i.e. fitness function, 
offspring generation and selection mechanism, and then 
further refinement is needed in parametric values to balance 
the convergence and divergence of the search. For parent 
selection, tournament selection was preferred over roulette-
wheel and elitism due to its proven superior performance. 
Crossover is a mechanism to combine parent to produce 
new solution. As we are using steady-state version so only 
offspring are produced. Offspring are randomly modified 
according the given mutation rate. Initially, the population is 
randomly generated and the parametric values are used as 
suggested in [13]. However, the parametric values are then 
refined to improve the performance of the algorithm. The 
final parametric values for the MOET are mentioned in the 
table 2. 

Table 2: Parametric settings for the MOET 
Parameters Value 
Objective 1 Minimize test suite size 
Objective 2 Maximize test suite 

coverage 
Population size 50 
No. of Generations 500 
Replacement scheme Steady state 
Crossover rate 0.9 (double point) 
Mutation rate 0.2 (single point) 
Tournament size 10  
Multiobjective strategy Min-max 
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A. Experiment 
In order to investigate the feasibility of multiobjective 
optimization of model based test suite, we conducted the 
experiment with four models of various sizes and 
complexity levels. The AD model shown in fig. 1, describes 
an Enterprise Customer Commerce System (ECCS) taken 
from [1]. It describes the process of online purchasing of 
products that is comprised of two sub-processes: 
authentication and shopping. The first process authorizes the 
existing users for shopping and configuration. However, in 
case of new customers, it enables them to register first. The 
shopping process facilitates the user to order the selected 
products and configure his/her account if required. The 
Automatic Teller Machine (ATM) model is a popular case 
study. For our experiment, we adapted it from a report [14]. 
The ATM model comprises on an activity diagram with top 
level view of ATM operations that is further decomposed 
into low level AD diagrams with details of the operations 
i.e. withdraw cash, deposit money, transfer funds and check 
balance. The experiment also includes the two industrial 
scale models of a module in an Intelligent Transport System 
(ITS), Edit Trend Properties (ETP) and Delete Trend 
Properties (DTP). Both models respectively describe the 
step by step editing and deletion of existing trending reports 
from archived or real-time data. We use the model (ECCS) 
as a running example. It is a small but not simple as its 
structural cyclomatic complexity is 11, which is higher than 
ATM and DTP models. For more detail of each model see 
table 1. These models are used in the experiments and 
results are presented in the following sections.  

Test suites are generated for all models using a Random-
walk based test sequence generation (TSG) algorithm 
proposed in [15]. For example, 20 test cases are generated 
for ECCS model. Given the stochastic nature of the TSG 
technique, it is assumed that the generated test suites 
incurred few redundant test cases. The generated sequences 
of model constructs, formally referred to as paths, are 
usually evaluated according to a specified criterion. An AD 
based branch coverage criteria defined in [15] is used to 
evaluate and optimize the test suite as it is minimum 
requirement for software in aviation industry. The branch 
coverage criterion requires that there would be at least one 
test case for each branch that causes it to execute.  

Table 3: Characteristics of sample models 

Model Nodes Branches Edges Complexity 

ECCS 23 17 33 11 
ATM 135 28 141 16 
ETP 77 26 89 14 
DTP 52 37 57 21 

 

 The heart of the Evolution based technique is the fitness 
function that calculates the fitness of an individual test suite 

w.r.t. a given criterion by obtaining its phenotypic properties 
(i.e. coverage and size) by mapping it on the search space of 
the randomly generated test cases. In analogy to the PTP, 
the multiobjective optimization for model-based test suite is 
formulated as:  

Find a subset of the test suite which satisfy the constraints 
and optimize following criteria: 

1. Size of the subset by removing redundant test cases; 
and 

2. Coverage of the subset w.r.t. given branch criterion. 

The first objective is to minimize the test suite size while the 
second objective is to maximize the coverage. The vector of 
decision variables is x = [size, coverage].  

Given the fact that the upper bound of the coverage CUB that 
a subset (solution test suite) can attain w.r.t. to a particular 
criterion is 100%, and the upper bound for a subset size SUB 
is the size of original test suite so the objective functions can 
be expressed as follows: 

1. Size:  f1(x) = SUB - Sx 

2. Coverage:  f2(x) = CUB - Cx 

For analysis, the performance of the multiobjective 
technique proposed in this paper is compared with that of 
single objective GA w.r.t. branch coverage criterion. For 
single objective GA (SGA), the test suite optimization 
problem is transformed into Quota Traveling Salesman 
Problem (QTSP) which is another variant of PTP [8]. In 
QTSP, the minimum allowed profit is imposed as a bound 
and the goal is to find a minimal length tour whose total 
collected profit is not smaller than this bound. We specified 
the minimum coverage as a lower bound and problem is 
defined to find a subset with minimal number of test cases 
and the total coverage of the subset is not smaller than the 
lower bound.  

The results of the experiments and discussion are presented 
in the next section. Given the stochastic nature of the 
optimization algorithm, a small variation is expected in the 
results. Therefore, experiment is designed to run for 10 
iterations for each criterion to determine the stability and 
effectiveness of the optimization framework. 

B. Results and Discussion 
The results of the experiments are presented in table 4 and 
5. The size column shows the test suite size and efficiency 
column is calculated according to definition 2 specified in 
section 2. The efficiency of un-optimized and optimized test 
suites is calculated by 100% coverage of the branches given 
in table 3 and size of un-optimized and optimized test suite 
respectively. The efficiency in table 5 is calculated in 
similar fashion, however, the number branches traversed by 
the specific test suite is used with the size of that test suite. 
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Table 4: Coverage maximization and Size Reduction w.r.t. Branch Criterion (Test suite with complete coverage) 

Model Un-Optimized TS Optimized TS 
Size Efficiency Algorithm Size (reduction%) Efficiency 

ECCS 19 17/19 SGA 3  (85.0%) 17/3 
 19 17/19 MOET 3  (85.0%) 17/3 

ATM 89 28/89 SGA 7  (92.1%) 28/7 
 89 28/89 MOET 7  (92.1%) 28/7 

ETP 27 26/27 SGA 6  (77.8%) 26/6 
 27 26/27 MOET 6  (77.8%) 26/6 

DTP 28 37/28 SGA 6  (78.6%) 37/6 
 28 37/28 MOET 7 (75.0%) 37/7 

 
Table 5: Test Suite Optimization w.r.t. Branch criterion (Test suite with less than 100% coverage) 

Model Un-Optimized TS Optimized TS 
Size Efficiency Algorithm Size (reduction%) Efficiency 

ECCS 13 17/13 SGA 3  (76.9%) 16/3 
 13 17/13 MOET 3  (76.9%) 16/3 

ATM 62 28/62 SGA 7  (88.7%) 27/7 
 62 28/62 MOET 7  (88.7%) 27/7 

ETP 25 26/25 SGA 5  (80.0%) 21/5 
 25 26/25 MOET 5  (80.0%) 21/5 

DTP 25 37/25 SGA 5  (80.0%) 36/5 
 25 37/25 MOET 5  (80.0%) 36/5 

 

 

 

The results exhibit two important phenomena: 1) the 
removal of redundant test cases improves the test suite 
efficiency without compromising its efficacy; and 2) both 
SGA and MOET are competitive in terms of performance. 
From data, the test suite efficiency is quite obvious. As it 
can be seen that the reduction in test suite size of each 
example model is quite significant Although, there is no 
significant difference in both SGA and MOET, however, the 
MOET has the advantage that it can optimize multiple 
objectives in parallel. The result confirms the feasibility of 
the multiobjective optimization of the model based test 
suites. As in the experiment, four different models were 
used. The test suite generated for these models also varies in 
terms of size and redundancy. However, both SGA and 
MOET performance proved robust and scalable. 

IV. SUMMARY 
The field of search-based software engineering is new and 
the incorporation of various metaheuristic techniques has 
heralded a new era of research and development. In 
software testing and particularly in structural testing several 
researchers have successfully incorporated these techniques 
for test data generation to regression test suite prioritization. 
However, in terms of model based testing still much need to 
be done. In this paper we proposed a multiobjective 
optimization framework for model based test suites. We 
formulated the test suite optimization as travelling sales man 
with profit problem. A multiobjective min-max technique 
was implemented with evolutionary technique and results 
are compared with classical single objective GA. The 

 Figure 1: AD model of an Enterprise Customer Commerce System (ECCS)[1] 
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experimental results show the robustness of the proposed 
technique that optimizes the test suites generated from AD 
model w.r.t. the branch and edge coverage criterion. The 
study confirms the test suite optimization by eliminating the 
redundant test cases without compromising its coverage. 
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