
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2012 

1-1-2012 

Using Monte Carlo Tree Search for Replanning in a Multistage Using Monte Carlo Tree Search for Replanning in a Multistage 

Simultaneous Game Simultaneous Game 

Daniel Beard 

Philip Hingston 
Edith Cowan University 

Martin Masek 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2012 

 Part of the Computer Sciences Commons 

10.1109/CEC.2012.6256428 
This is an Author's Accepted Manuscript of: Beard, D. R., Hingston, P. F., & Masek, M. (2012). Using Monte Carlo 
Tree Search for Replanning in a Multistage Simultaneous Game. Proceedings of 2012 IEEE Congress on 
Evolutionary Computation. (pp. 1-8). Brisbane, Australia. IEEE. Available here 
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
This Conference Proceeding is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2012/199 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2012
https://ro.ecu.edu.au/ecuworks2012?utm_source=ro.ecu.edu.au%2Fecuworks2012%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks2012%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CEC.2012.6256428
http://dx.doi.org/10.1109/CEC.2012.6256428


Using Monte Carlo Tree Search for Replanning in a
Multistage Simultaneous Game

Daniel Beard, Philip Hingston and Martin Masek
School of Computer and Security Science

Edith Cowan University
Perth, Western Australia, 6050

Email: d.beard@our.ecu.edu.au;p.hingston@ecu.edu.au;m.masek@ecu.edu.au

Abstract—In this study, we introduce MC-TSAR, a Monte
Carlo Tree Search algorithm for strategy selection in simultane-
ous multistage games. We evaluate the algorithm using a battle
planning scenario in which replanning is possible. We show that
the algorithm can be used to select a strategy that approximates
a Nash equilibrium strategy, taking into account the possibility
of switching strategies part way through the execution of the
scenario in the light of new information on the progress of the
battle.

I. INTRODUCTION

In recent years, Monte Carlo Tree Search (MCTS) has been
very successfully applied to certain kinds of adversarial plan-
ning, notably for the game of Go [1] and for General Game
Playing [2], but also for other games and in other domains.
A recent survey paper provides an up to date overview of
MCTS [3]. Most research to date has been focussed on move
selection in sequential games.

In this paper, we introduce a new MCTS-like algorithm,
MC-TSAR (Monte Carlo Tree Search for Adversarial Replan-
ning). MC-TSAR is an algorithm for planning and replanning
in an adversarial contest in which the adversaries simultane-
ously select high-level strategies, and, from time to time, have
the opportunity to replan, in the sense of changing strategy in
response to unfolding events.

This new algorithm is applicable to certain types of games,
such as Real Time Strategy (RTS) games, in which moves
are carried out in the context of an overall high-level strategy,
where competing sides choose their strategies simultaneously
rather than sequentially, and where a change in strategy may
be required as the game progresses and new or updated infor-
mation becomes available. See, for example, [4] and [5], which
both argue that a competent player of an RTS game needs to
plan at multiple, hierarchically nested levels. Many real-world
adversarial planning domains have similar characteristics. An
obvious example is military planning (obvious because of
similarities with RTS games). Others include counterterrorism
and security (e.g. [6]), and computer network security [7].

The rest of this paper is structured as follows: in the next
section we review recent work that uses Monte Carlo methods
in domains similar to those we are interested in. We then
describe our new algorithm, MC-TSAR, and explain how it
differs from earlier work. We then introduce a tactical battle
planning scenario on which to test the algorithm. We are able

to estimate analytically the performance of MC-TSAR against
less capable planners applied to this scenario. We then present
actual results from a series of simulations using the scenario, to
verify that MC-TSAR performs as expected. We then introduce
a more complex scenario that provides the opportunity for
better planning, and present results showing that MC-TSAR
is able to obtain better outcomes in this scenario. In the final
section, we conclude with some discussion on how MC-TSAR
could be further developed and combined with other methods,
expanding its range of applicability both to more complex
problems and to more detailed planning.

II. RELATED WORK

There have been several previous studies investigating the
use of Monte Carlo methods for planning in RTS games -
which provide one example of the kind of adversarial planning
problem that we are interested in.

Chung et al. [8] introduced MCPlan, a Monte Carlo planner
for RTS games, and tested it in a Capture the Flag scenario
simulated using ORTS [9]. MCPlan simply generates random
plans and simulates each plan against randomly generated
opponent plans for some number of steps, using a heuristic
evaluation function to evaluate the final states. It then chooses
the plan that has the statistically best results. Plans can be at
whatever level of abstraction the implementor chooses. Com-
pared to our proposed method, MCPlan does not explicitly
account for replanning, and does not simulate to the end of
the game, relying instead on domain knowledge in the form of
an evaluation function. It also does not consider the opponent’s
reasoning processes.

In [10], this idea was extended to take into account the
(simultaneous) choices of the opponent, proposing to use mul-
tiple simulations to evaluate each player’s strategies against
those of the opponent, and then choosing a Nash equilibrium
strategy (which may be a mixed strategy) based on these eval-
uations, and using this chosen strategy until the next decision
point. The whole procedure is repeated at each decision point.
This is quite similar to our proposal except that, as in [8],
replanning is only done in a reactive way, whereas we take the
possibility of future replanning into account when planning.
Also, their system is designed for constant updating of plans
in real time, whereas we envisage planning and replanning
only at a few key points.



In [11], the authors proposed and tested a Monte Carlo
based planner that uses UCT (Upper Confidence Bound ap-
plied to Trees) [12], and assigns abstract actions to groups of
agents in the context of tactical assault planning in an RTS
game. They found that the tactical planner performed well
in a variety of test scenarios, without making use of human
domain knowledge. Their planner is designed to be used at
specific decision points within the larger game. This work
differs from ours in a number of respects: firstly, our approach
is able to support and account for replanning; secondly, we aim
to plan at strategic level or at least at a high level, rather than
attempting to select specific actions; and lastly, their planner
treats the game as a turn-based game and does not account
for simultaneous choices by the two players. As they are
when working with short times between decision points at
the tactical level, this is a reasonable simplification.

A number of authors have investigated the use of UCT for
simultaneous games, with Finnsson et al. [13] showing how
this can be done. Sturtevant [14] showed that UCT converges
to a mixed strategy equilibrium, but as shown in [15], not
necessarily to a Nash equilibrium.

III. THE PLANNING ALGORITHM - MC-TSAR

MC-TSAR (Monte Carlo Tree Search for Adversarial Re-
planning) is a new algorithm for planning and replanning in
an adversarial contest in which the adversaries simultaneously
select their strategies, and, from time to time, have the oppor-
tunity to change strategy in response to unfolding events.

We follow a common practice and view the contest as a
game, in which the adversaries are players, and the problem
is to select a player’s actions so as to maximise his expected
payoff at the end of the game. In board games like chess,
checkers, or go, players take turns in choosing their actions
(or moves), and choose a new move at each step in the
game. In these kinds of games, especially those with moderate
branching factors and strong evaluation functions, minimax
game tree search and its many variants have been very popular
and successful. A game tree is built starting from the current
game state, and with a branch for each legal choice for the next
move in that state. The tree is expanded to a certain depth, and
the leaves are evaluated using a heuristic evaluation function.
These values are then propagated up the tree to the root, using
a minimax rule, and finally the player chooses a move that
leads to a subtree with the most favourable evaluation for his
side.

More recently, Monte Carlo-based tree search (MCTS)
algorithms have been developed and applied to games with
high branching factors, where there is no strong evaluation
function. MCTS is similar to a minimax game tree search,
except that paths in the game tree are continued to the end
of the game, with statistical estimates of success replacing
state evaluation. Efficient versions of MCTS, using UCT to
determine which subtrees to explore most thoroughly, have
been used with great success on a variety of games. The main
steps in Monte Carlo Tree Search are shown in Figure 1.

A partial game tree is constucted, and is then expanded
and refined as much as possible during the allowed planning
time. As shown in Figure 1, in each expansion step, the
tree is traversed until an unexpanded game state is reached
(selection), a move is proposed and a new game state is added
to the tree (expansion), rollouts or fast simulated games are
played out starting from this state to estimate the value of this
state (simulation), and this value is backpropagated up the tree
to update the estimated values of other nodes in the tree, using
minimax (backpropagation). These estimated state values are
used to select the next move for the player.

MC-TSAR is similar to - it might be considered a variant
of - Monte Carlo Tree Search (MCTS). Like MCTS, our
algorithm is based on a game tree. Figure 2 shows the main
structure of the part of the algorithm that expands the game
tree. The key differences between our algorithm and MCTS
are

1) At decision nodes, there are branches corresponding to
each possible choice of a pair of strategies: one strategy
for the player and one for the opponent;

2) At decision nodes, a Nash equilibrium is computed
(rather than a minimax solution), and the resulting
payoff values are propagated up the tree; and

3) When expanding a node of the tree, the chosen pair of
strategies is used to select moves in the game for each
side, until either the game ends, or the next decision
point is reached. The intermediate states are not stored
in the tree, just the state at the next decision point.

Thus MC-TSAR is aimed at choosing strategies, rather
than moves, and the players are assumed to select Nash
equilibrium strategies at each decision point. Note that this
is a safe assumption for each player to make : if the opponent
does not play a Nash equilibrium, he cannot get a better
outcome. On the other hand, if a player has knowledge of
his opponent’s likely play (i.e. if he has a useful opponent
model), then he may forego a better outcome by playing
the Nash equilibrium, so MC-TSAR may not be appropriate.
We describe the algorithm in pseudocode below. Algorithm 1
shows the overall idea - a game tree is built with the starting
state at the root, and multiple subtrees for each subsequent
decision point. The tree is expanded as much as allowed in the
given planning time, by carrying out multiple “rollouts” of the
game, and then expected payoffs are propagated backwards up
the tree, recursively solving subgames at each decision point,
until the game is solved at the root node, providing the optimal
mixed strategy Nash equilibrium based on the results of the
game rollouts.

Algorithms 2 through to 5 give more detail in pseudocode
form. Note that there are several choices to make in Algo-
rithm 3 - which pair of strategies to select for a rollout, and
then whether to follow a previous rollout to the next decision
point, or to start a new subtree for this rollout. Together, the
rules for making these choices determine a default policy. In
this initial work, we use random selection to choose a strategy
pair, and a simple rule to decide whether to start a new subtree



Selection Simulation Backpropagation

Repeated

Expansion

Fig. 1. Game tree expansion in MCTS. First a path from the root to a leaf is traversed. The selected leaf is then expanded by one move, adding another
node to the tree. A rollout is executed starting at this node, and finally, the score at the end of the rollout is propagated back up the tree. (Based on Figure 1
of [16])

Selection Simulation and Expansion Backpropagation

Repeated

N
as

h
N

as
h

Fig. 2. Game tree expansion in MC-TSAR. Only some branches are shown. First, a path is traversed starting at the root. At each step, a pair of strategies
is chosen, and a branch with that strategy pair is followed, until some pair is selected for expansion. In the figure, the path is shown in red, and the chosen
pair is at depth 2. Next, the tree is expanded, adding a new subtree by executing a rollout using the selected strategies, until either the next replanning point
is reached, or the simulation ends. If a replanning point was reached, a new subtree is built for each strategy pair, as in the figure. Finally, scores from final
states are backpropagated up the tree, updating values by averaging scores for each strategy pair, and finding Nash equilibria at each decision point.

- we start a new one 10% of the time.

Input: state (the current game state)
Output: A mixed strategy to play

1 begin
2 t ⇐ buildInitialGameTree(state);
3 while planningT imeRemaining > 0 do
4 growGameTree(t);
5 end
6 return solveGameTree(t);
7 end
Algorithm 1: select(state): select a mixed strategy to play
from the current state until the next decision point

IV. THE TEST SCENARIO

To test MC-TSAR, we designed a simple battle scenario
(see Fig 3). This scenario is simple enough that we can

approximate it with an even simpler theoretical model, for
which we can “solve” the strategy selection problem (see
subsection IV-A). This allows us to check whether MS-TSAR
is able to determine “correct” strategy choices. The solution
methods for the simplified scenario mirror those of MC-TSAR,
except that in MC-TSAR, Monte Carlo methods are used to
estimate expected outcomes, whereas the simplified model
can be solved analytically. We emphasise that, in general,
any reasonably complex scenario cannot be solved using the
analytical method.

In this battle scenario, there are two teams, which we call
Red and Blue. The Blue team’s goal is to defend three valuable
sites, X, Y and Z. Red’s goal is to capture one of these sites.
The three sites are assigned relative values of 2:3:5, which
might represent lesser or greater strategic value in a larger
conflict, for example.

At the start of the scenario, each team has a squad of agents



Input: state (the current game state)
Output: A game tree

1 begin
2 t ⇐ a new game tree for this state with no branches;
3 if state is not final then
4 strategyPairs ⇐

all pairs of candidate strategies;
5 foreach pair ∈ strategyPairs do
6 play the game starting at state, using the

strategies in pair, until the next decision
point is reached or the game ends;

7 s
′ ⇐ the new game state;

8 t
′ ⇐ buildGameTree(s

′
);

9 add t
′

as a branch of t;
10 end
11 end
12 return t;
13 end

Algorithm 2: buildGameTree(state): build an initial game
tree starting from the given state

Input: tree (a game tree)
1 begin
2 state ⇐ the state at the root of tree;
3 if state is not final then
4 pair ⇐ select a pair of candidate strategies;
5 if start a new subtree then
6 play the game starting at state, using the

strategies in pair, until the next decision
point is reached or the game ends;

7 s
′ ⇐ the new game state;

8 t
′ ⇐ buildGameTree(s

′
);

9 add t
′

as a branch of tree;
10 end
11 else
12 t ⇐ select a subtree;
13 growGameTree(t);
14 end
15 end
16 end

Algorithm 3: growGameTree(tree): expand a game tree by
executing another game rollout. There are several choices to
make here - which strategies to select, and whether to start
a new subtree.

(squads are evenly matched) located at its respective team base
(R for Red or B for Blue). Each team can order its squad to
march from its base to one of the target sites, X, Y or Z. For
the Blue team, there are four possible routes from the Blue
base, via either of two intermediate locations S or T, to one of
the target sites: B-S-X, B-S-Y, B-T-Y, B-T-Z. Similarly, there
are four possible routes from the Red base via either of two
locations U or V: R-U-X, R-U-Y, R-V-Y or R-V-Z.

The routes are designed so that choosing the first part of a

Input: tree (a game tree)
Output: A pair of mixed strategies

1 begin
2 strategyPairs ⇐ all pairs of candidate strategies;
3 foreach pair ∈ strategyPairs do
4 calculate score(tree, pair);
5 end
6 construct a payoff matrix using these scores;
7 return a mixed strategy Nash equilibrium derived

from this payoff matrix
8 end
Algorithm 4: solveGameTree(tree): find a pair of mixed
strategies forming a Nash equilibrium for playing the game
from this point

Input: tree (a game tree), pair (a pair of strategies)
Output: An expected score

1 begin
2 total ⇐ 0;
3 foreach branch b of this tree for this strategy pair do
4 state ⇐ the state at the root of b;
5 if state is final then
6 total ⇐ total + payoff ;
7 end
8 else
9 pair

′ ⇐ solveGameTree(b);
10 total ⇐ total + score(b, pair

′
);

11 end
12 end
13 return total

number of branches ;

14 end
Algorithm 5: score(tree, pair): calculate an expected score
when this pair of strategies is used to play the game from
this point

strategy (an intermediate location) restricts the choices avail-
able for the second part of the strategy (the final destination).
Thus, each side gains valuable knowledge about the possible
options for the enemy side during the execution of the scenario
- knowledge that is not available before the action begins. Once
this knowledge is available, a subsequent change of strategy
could be advantageous.

When the scenario is executed, the two opposing squads
follow their chosen routes to their chosen target sites. Each
agent’s movement is determined by its current position, the
position of the next waypoint, and the locations of nearby
teammates and enemies, using simple flocking rules. When
an agent comes within close range of enemy agents, combat
ensues and continues until either the agent is killed or all
nearby enemies are killed. If the two squads of agents arrive
at different destinations, Red is considered to have captured
the site that the Red squad arrived at. If they arrive at the same
destination, the two squads engage in battle until one squad
is eliminated. If (any agent of) the Red squad survives, then



Fig. 3. Test Scenario - The white shape represents passable terrain: brown
and black are impassable. At the bottom, near B, a Blue squad of 5 agents
is on its way to T, and from there will be able to proceed to either Y or Z.
Likewise, near the top, a Red squad is on its way to V.

Red is considered to have captured that site.
In the experiments to follow, we examine two variations on

this scenario. In one variant, both teams must (simultaneously)
select their strategy at the beginning of the scenario and then
stick to it. In the other variation, the teams have an opportunity
to change strategy when both squads have reached one of the
intermediate locations. In other words, in the second variation,
replanning is possible. This will allow us to investigate the
ability of our algorithm to exploit the opportunity of replan-
ning once some information on the enemy strategy is known.
For example, if the Blue squad moves to intermediate location
T, then Red knows that Blue can only defend either Y or Z:
X cannot be defended. Red then has the option to change his
intended target based on this new knowledge.

We also consider another set of variations in which the two
squads can suffer some (stochastic) losses during the course of
their travel. Specifically, with some probability, up to half the
agents in the squad are lost to an IED (Improvised Explosive
Device) when a squad arrives at one of the intermediate
locations. These variations are included to allow us to evaluate
how well our algorithm is able to replan in response to random
events. For example, if one team suffers less losses than the
other, then that team’s chances of capturing a contested site
are improved, changing the risk/reward equation.

A. Theoretical solutions

As mentioned above, the scenario, at least the version with-
out IEDs, can be approximated by a simplified, more abstract
one, which can be solved using game theoretic methods. We
can then predict approximate expected outcomes for conflicts
between teams that use various planning methods. Here we
describe the approximation and tabulate theoretical solutions
and expected outcomes. The calculation method mirrors the
calculations used by MC-TSAR, except that in these theoreti-
cal calculations, exact payoffs are known, whereas MC-TSAR

uses approximations derived from executing multiple rollouts.
In this simplified scenario, individual agents and their de-

tailed movements are not modelled. Instead, each team chooses
its route, and then both squads are moved in one step to
their chosen intermediate waypoints. If replanning is allowed,
then at this point, the teams simultaneouly choose the final
destination for their squad – otherwise the final destination
will be as chosen at the start. Both squads are then moved
in one step to their final destinations. If the final destinations
of the two squads are different, then Red is deemed to have
captured its destination site, as in the full scenario. If the two
squads have the same final destination, then Red is awarded
half the value of that site, simulating equal chances of victory
for each team.

1) Solving the game: Using these rules, we can derive the
payoff matrix for the case when no replanning is allowed,
shown in Table I. Nash equilibrium strategies for Red and Blue
can then be found by deriving a linear programming problem
from this payoff matrix. The solution is for Red to choose
R-U-Y with probability 5/8 and R-V-Z with probability 3/8,
and Blue to choose B-S-Y with probability 1/8 and B-T-Z
with probability 7/8, for an expected payoff of 2.8125.

TABLE I
PAYOFFS FOR THE SIMPLIFIED SCENARIO WITHOUT REPLANNING

Blue
B-S-X B-S-Y B-T-Y B-T-Z

Red

R-U-X 1 2 2 2
R-U-Y 3 1.5 1.5 3
R-V-Y 3 1.5 1.5 3
R-V-Z 5 5 5 2.5

We can also derive solutions for the case where replanning is
allowed. First, we consider the subproblem of choosing a new
strategy after both squads are at their intermediate locations.
For example, suppose that Blue initially chose B-S-X or B-S-
Y i.e. one of the routes with S as the intermediate location, and
Red chose an intermediate location of U. We can then derive
a payoff matrix for the possible final destinations of the two
players as in Table II (a). The solution for this subproblem
is for Red to choose X with probability 3/5 and Y with
probability 2/5, and for Blue to choose X with probability
1/5 and Y with probability 4/5. The expected payoff is 1.8.

By solving each subproblem in a similar manner, we can
derive a payoff matrix for each possible choice of intermediate
location for the two teams, as in Table II, and use the payoffs
to derive an overall payoff matrix as in Table III. The solution
for the whole scenario including replanning, as derived from
this payoff matrix, is for Red to always move first to V, and
Blue to always move first to T. After the two teams have
chosen and moved to V and T respectively, Red next goes
to Y with probability 5/8 and Z with probability 3/8, while
Blue moves to Y with probability 1/8 and Z with probability
7/8. The expected overall payoff is 2.8125, the same as for
the no-replanning case, with the same distribution of final
destinations, but via different routes.



Blue
S-X S-Y

Red U-X 1 2
U-Y 3 1.5

(a) Red has moved to U and Blue
has moved to S

Blue
T-Y T-Z

Red U-X 2 2
U-Y 1.5 3

(b) Red has moved to U and Blue
has moved to T

Blue
S-X S-Y

Red V-Y 3 1.5
V-Z 5 5

(c) Red has moved to V and Blue
has moved to S

Blue
T-Y T-Z

Red V-Y 1.5 3
V-Z 5 2.5

(d) Red has moved to V and Blue
has moved to T

TABLE II
PAYOFF MATRICES (SIMPLIFIED SCENARIO) FOR FINAL MOVES, AFTER
RED AND BLUE HAVE MOVED TO THEIR INTERMEDIATE LOCATIONS.

TABLE III
PAYOFFS (SIMPLIFIED SCENARIO) FOR INITIAL MOVES, ASSUMING BOTH
PLAYERS MAKE THEIR FINAL MOVES USING THE NASH SOLUTIONS FOR

THE RESULTING SUBPROBLEMS

Blue
B-S B-T

Red R-U 1.8 2
R-V 5 2.8125

2) Predicting performance: We can extend this analysis
to calculate expected outcomes of contests between various
players that use different planning methods. First, we consider
the case in which the scenario is executed without replanning
- the two players must select their respective strategies at the
start and then stick with their choices throughout execution of
the scenario. The calculated outcomes are shown in Table IV.

TABLE IV
CALCULATED EXPECTED PAYOFFS FOR RED, WHEN NO REPLANNING IS

ALLOWED (SIMPLIFIED SCENARIO)

Blue
random planner

Red random 2.65625 2.609375
planner 3.046875 2.8125

The random player simply randomly chooses any strategy
with equal probability, while the planner players choose a
strategy based on the Nash solution derived from Table I. It
can be seen that in all cases, planning is beneficial (the Red
player gets a higher payoff when planning than when playing
randomly, and Blue is able to force a lower payoff for Red by
planning).

Second, we consider the case where replanning is allowed
– that is, the players are permitted to change their plan part
way through the scenario. A new kind of player, the replanner
actually takes into account that replanning will be allowed,
when choosing their initial strategies (using the values in
Table III). The calculated outcomes are shown in Table V.
Once again, more planning is seen to be beneficial in nearly
all cases.

V. EXPERIMENT 1 - ADJUSTING TO ENEMY CHOICES

In this first experiment, we tested the performance of the
three players (random, planner and replanner) on the test

TABLE V
CALCULATED EXPECTED PAYOFFS FOR RED, WHEN REPLANNING IS

ALLOWED (SIMPLIFIED SCENARIO)

Blue
random planner replanner

Red
random 2.65625 2.311719 2.28125
planner 2.65234 2.391602 2.30469

replanner 3.90625 3.085938 2.81250

scenario, as implemented in the multi-agent simulation toolkit,
MASON [17], without the complication of IEDs. The planner
and replanner players do not have exact information on payoffs
available. Instead, at each decision point, they use MC-TSAR
to build and grow a simulation tree, and to select a strategy. In
these experiments, each squad has five agents, and 100 rollouts
were used for each decision. For each pair of players, 100
games were played and the mean red payoffs were calculated,
along with the standard errors of the means. Scenarios with
and without replanning were run.

We expected the results to be similar to those in Table IV
and Table V. However, because the planners are using payoffs
estimated using a limited number of rollouts, their calculated
Nash equilibrium probabilities will not be exactly the same
as the theoretical ones used in the calculations above. This
is explained further below. The corresponding experimental
results are given in Tables VI and VII.

TABLE VI
EXPERIMENTALLY OBTAINED PAYOFFS FOR RED, WHEN NO REPLANNING

IS ALLOWED (NO IEDS)

Blue
random planner

Red random 2.620± 0.170 2.680± 0.125
planner 2.960± 0.198 2.790± 0.182

TABLE VII
EXPERIMENTALLY OBTAINED PAYOFFS FOR RED, WHEN REPLANNING IS

ALLOWED (NO IEDS)

Blue
random planner replanner

R
random 2.620± 0.170 2.300± 0.164 2.130± 0.159
planner 3.460± 0.175 2.770± 0.165 2.530± 0.142

replanner 3.900± 0.162 2.990± 0.171 2.790± 0.185

Note that most of the results match the theoretical ones
within standard error, but red payoffs in the middle row in the
scenario with replanning are higher than expected. However,
the trends are as expected - in nearly every case, deeper
planning is beneficial. The reason that the middle row has
higher than expected payoffs is that the theoretical payoff
matrix in Table I has some symmetries - for example, the
payoffs for the Red strategies R-U-Y and R-V-Y are the
same. Therefore there are many equivalent Nash equilibria
with different probabilities for these two strategies. The solver
we used happened to choose one in which R-V-Y has zero
probability. With noisy estimates of the payoff, however, this
symmetry is broken, and R-U-Y and R-V-Y are equally likely



to be chosen. This leads to higher payoffs for Red, because
at the replanning point, he can switch from a final destination
of Y to a final destination of Z. Note that the planner does
not anticipate this when making his initial plan because he
does not take replanning into account - he just caught a lucky
break.

VI. EXPERIMENT 2- ADJUSTING TO RANDOM EVENTS

In this second experiment, we introduce the complication of
IEDs into the MASON simulation, as described in Section IV.
This is much more complex to analyse theoretically, and we
haven’t attempted to do so. A “real-world” scenario would
likely be even more complex and much too complicated for a
theoretical analysis. However, a lot of complexity can easily
be included in a simulation model, and we expect that MC-
TSAR will make strong strategy choices so long as the model
reflects the important features of the scenario. Experimental
results using the MASON simulation including IEDs are given
in Tables VIII and IX.

TABLE VIII
EXPERIMENTALLY OBTAINED PAYOFFS FOR RED, WHEN NO REPLANNING

IS ALLOWED (WITH IEDS)

Blue
random planner

Red random 2.580± 0.160 2.630± 0.159
planner 3.370± 0.187 2.880± 0.184

TABLE IX
EXPERIMENTALLY OBTAINED PAYOFFS FOR RED, WHEN REPLANNING IS

ALLOWED (WITH IEDS)

Blue
random planner replanner

R
random 2.580± 0.160 2.490± 0.150 2.130± 0.159
planner 3.470± 0.166 2.730± 0.176 2.590± 0.163

replanner 3.240± 0.203 3.040± 0.160 2.770± 0.165

These results show the expected pattern, with more planning
giving better outcomes. MC-TSAR is able to competently
handle uncertainty due to random events as well as that due
to lack of prior knowledge of the opponent’s strategy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new Monte Carlo
Tree Search algorithm for multistage simultaneous games.
The algorithm uses Monte Carlo simulation to build a game
tree, which can be solved recursively to select a strategy that
approximates a Nash equilibrium strategy. This strategy takes
into account replanning by both sides. We have tested the new
algorithm using an agent-based simulation of a battle planning
scenario.

In the future, we plan to further develop MC-TSAR and
apply it to more complex and realistic problems. While we
believe the approach is very promising, there remain many
challenges and opportunities in terms of scaling and efficiency.

During the growing phase of the algorithm, several choices
have to be made to decide which subtrees to explore and

expand. UCT has been used very successfully for this purpose
in MCTS, but it is not clear whether or how a similar method
could be applied for MC-TSAR, as it is not clear how to best
to ensure sufficiently accurate estimates of Nash equilibrium
solutions for each subgame.

Intuitively, more rollouts should lead to more accurate
estimates of payoffs, but there are at least two unknowns in
this respect: how does the strength of the decision making
scale with the number of rollouts performed? and how can the
game tree be kept to a feasible size as the number of rollouts
is increased? We intend to investigate the idea of clustering
of game states, in order to combine and collapse subtrees for
similar states. We hope that this will limit the size of the game
tree without greatly affecting accuracy. It will also have the
advantage that, as the game progresses, a new game tree can
be built using an existing subtree as a starting point (as is
possible with MCTS), rather than building a new game tree
from scratch at each decision point.

Another unanswered question for future research: the algo-
rithm allows a player to select from a small set of possible
strategies, but how can we determine a suitable set of strategies
to select from for a complex scenario? In our test scenario, the
possible actions for each side can conveniently be described
at a high level in terms of the routes taken by their agents,
but in a real scenario things may not be so simple, and the
strategy search space may be large. One possible approach that
we intend to test is to use a coevolutionary algorithm to find a
small set of strong candidate strategies for each side, and then
to apply MC-TSAR to select from among those strategies.

REFERENCES

[1] T. Cazenave and B. Helmstetter, “Combining tactical search and Monte-
Carlo in the game of Go,” in Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2005, pp. 171–175.

[2] Y.Björnsson and H. Filmar, “Cadiaplayer: A simulation-based general
game player,” IEEE Transactions on Computational Intelligence and AI
in Games, vol. 1, no. 1, pp. 4–15, March 2009.

[3] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of monte carlo tree search methods,” Computational Intelligence and AI
in Games, IEEE Transactions on, vol. PP, no. 99, p. 1, 2012.

[4] J. McCoy and M. Mateas, “An integrated agent for playing real-time
strategy games,” in Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, 2008, pp. 1313–1318.

[5] B. Weber and M. Mateas, “Building human-level AI for real-time
strategy games,” in AAAI Fall Symposium Series, Advances in Cognitive
Systems, 2011.

[6] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe,
“Stackelberg vs. Nash in security games: An extended investigation of
interchangeability, equivalence, and uniqueness,” Journal of Artificial
Intelligence Research, vol. 41, pp. 5297–327, 2011.

[7] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu,
“A survey of game theory as applied to network security,” in Hawaii
International Conference on System Sciences, 2010.

[8] M. B. M. Chung and J. Schaeffer, “Monte Carlo planning in RTS
games,” in Proc. IEEE Symposium on Computational Intelligence and
Games, 2005, pp. 117–124.

[9] ORTS - Open Real-Time Strategy. [Online]. Available: http://www.cs.
ualberta.ca/mburo/orts

[10] F. Sailer, M. Buro, and M. Lanctot, “Adversarial planning through
strategy simulation,” in Proceedings of the IEEE Symposium on Com-
putational Intelligence and Games, April 2007, pp. 80–87.



[11] R. K. Balla and A. Fern, “UCT for tactical assault planning in real-time
strategy games,” in Proc. Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI-09). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009, pp. 40–45.

[12] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Machine Learning: ECML 2006, ser. Lecture Notes in Computer
Science, J. Frnkranz, T. Scheffer, and M. Spiliopoulou, Eds. Springer
Berlin / Heidelberg, 2006, vol. 4212, pp. 282–293. [Online]. Available:
http://dx.doi.org/10.1007/11871842 29

[13] H. Finnsson and Y. Björnsson, “Simulation-based approach to general
game playing,” in Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, 2008, pp. 259–264.

[14] N. Sturtevant, “An analysis of UCT in multi-player games,” in In
Computers and Games, 2008.

[15] M. Shafiei, N. Sturtevant, and J. Schaeffer, “Comparing UCT versus
CFR in simultaneous games,” in Proceedings of the IJCAI-09 Workshop
on General Game Playing (GIGA’09), 2009.

[16] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree
Search: A new framework for game AI,” in Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Conference,
M. Mateas and C. Darken, Eds. AAAI Press, Menlo Park, CA, USA,
2008, pp. 216–217.

[17] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan,
“MASON: A Multi-Agent Simulation environment,” Simulation: Trans-
actions of the Society for Modeling and Simulation International, vol. 82,
no. 7, pp. 517–527, 2005.


	Using Monte Carlo Tree Search for Replanning in a Multistage Simultaneous Game
	tmp.1383533644.pdf.YuQA0

