
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs 2012

1-1-2012

Noise Tolerance for Real-time Evolutionary Learning of Noise Tolerance for Real-time Evolutionary Learning of

Cooperative Predator-Prey Strategies Cooperative Predator-Prey Strategies

Mark Wittkamp

Luigi Barone

Philip Hingston
Edith Cowan University

Lyndon While

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2012

 Part of the Computer Sciences Commons

10.1109/CIG.2012.6374134
This is an Author's Accepted Manuscript of: Wittkamp, M., Barone, L., Hingston, P. F., & While, L. (2012). Noise
Tolerance for Real-time Evolutionary Learning of Cooperative Predator-Prey Strategies. Proceedings of IEEE
Conference on Computational Intelligence and Games (CIG). (pp. 25-32). Granada, Spain. IEEE. Available here
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks2012/200

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2012
https://ro.ecu.edu.au/ecuworks2012?utm_source=ro.ecu.edu.au%2Fecuworks2012%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks2012%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CIG.2012.6374134
http://dx.doi.org/10.1109/CIG.2012.6374134

Noise Tolerance for Real-time Evolutionary Learning of
Cooperative Predator-Prey Strategies

Mark Wittkamp, Luigi Barone, Philip Hingston, and Lyndon While

Abstract—Learning team-based strategies in real-time is a
difficult task, much more so in the presence of noise. In
our previous work in the Prey and Predators domain we
introduced an algorithm capable of evolving cooperative team
strategies in real-time using fitness evaluations against a perfect
opponent model. This paper continues our work within the
same domain, training a team of predators to capture a
prey. We investigate the effect of varying degrees of opponent
model noise in our learning system. In the presence of and
in the effort to mitigate the effects of such noise we present
modifications to our baseline system in the forms of Rescaled
Mutation, Conservative Replacement and a combination of the
two techniques. The results of the modifications are extremely
promising. The combined approach in particular real-times a
vast improvement and decreased variance in the performance of
our team of predators in the presence of opponent model noise.
Additionally, the noise-mitigating strategies employed do not
adversely affect the performance of the real-time team learning
system in the absence of noise.

I. INTRODUCTION

Games are often used as test-beds to further the devel-
opment of computational intelligence techniques. They are
suitable for this task because they involve similar problems
to those encountered in real life, but are simpler and more
clearly defined, generally with a well understood goal. Video
games present a particularly interesting problem domain
because they typically have a much larger number of ac-
tions available for players to make with these actions often
having temporal significance. The development of adaptive
behaviour using opponent modeling with evolutionary algo-
rithms has been real-timed before [1], [2], but the problem
becomes far more difficult when we require the learning to
occur in real-time, as the game itself is being played.

Artificial players that train offline (generally by playing
the game) can have a near limitless amount of training time
available to them. The learning and fine tuning of artificial
players could run continuously for many days or weeks
until desirable behaviours have been found. Contrast this
with real-time learning, where there is very little time to
run simulations and the processor must also be shared with
the game engine itself. Computational intelligence techniques
require many iterations and many more test cases for the
evolution process to yield desirable results. In order for a
real-time approach to be feasible, standard computational
intelligence techniques need to be sped up.

In our previous work [3] we created a learning framework
that, through continuous adaptation and without any prior
learning, learned to coordinate a team of predators to catch
a single prey opponent. Beginning with randomly generated
predator strategies, our system was capable of outperforming

an offline approach in many tests by evolving and replacing
predators one strategy at a time. Since our learning frame-
work is able to learn and replace the predator strategies
continuously, each individual strategy need not be overly
complex — this is what helps make learning in such a short
space of time possible. Through continuous adaption, many
short term strategies piece together to form a more complex
overall playing strategy.

Our previous work assumed a perfectly accurate model of
the opponent’s behaviour in order to learn a strategy for the
next “time-slice”. In this paper, we relax the assumption of
a perfect opponent model and examine the behaviour of the
system under varying amounts of error in the prediction of
the opponent’s location. Rather than aiming to reduce the
amount of noise in the opponent model, in this paper we
work towards improving the performance of our system in
its presence. Creating an accurate opponent model (in this
case, of the prey) is often difficult and obtaining a perfect
opponent model may not always be possible – a model of
a human player, for example. We will see in Section V that
noise does indeed cause a problem for learning. Section VI
discusses our approaches to learning in the presence of noise
and real-times a great improvement in noise tolerance for our
learning framework.

A. The Case For Real-Time Learning

Despite a large amount of research in the field of video
game AI, the majority of AI strategy in commercial games
is still in the form of scripted behaviour [4]. Developers turn
to scripts for a number of reasons; they are understandable,
predictable, easy to modify and extend, and are usable by
non-programmers [5]. Scripts often have parameters that may
be optimised using computational intelligence techniques
offline, but the learning aspect is rarely a component in the
released product [6].

While scripts can respond to the actions of human players,
artificial agents (or “bots”) are often inherently exploitable
due to their inability to adapt. Once an agent’s weakness has
been discovered it can be exploited time and time again and
soon the game fails to remain challenging or realistic and
human players may lose interest. No matter how thorough
the training process, in many modern games there are too
many possible scenarios to expect that a hand-coded player
will be able to handle them all equally well.

Scripted bots and their predetermined behaviour are sus-
ceptible to being overly repetitive or unrealistic, especially if
the bots find themselves in a situation that the developers did
not foresee. Stochastic systems can be used to introduce some

variety into the behaviour of artificial players, but they may
offer only slight variation to some predetermined strategy.
Too much variation has the potential for creating seemingly
random or irrational behaviour which adversely affects a
human player’s sense of immersion in the game environment.

Another common limitation of current game AI is that
teams of agents tend to be overly self-interested. While
many good agents may be useful for a team, this is very
different from team-interested agents who can understand
and prioritise the good of the team over individual gain.
Without team based learning, artificial players run the risk
of being overly “greedy” to the detriment of the team. No
matter how well the individual parts may be tuned, certain
team strategies may never arise — a self-interested individual
would not sacrifice itself to draw fire away from team-mates
or to lead opponents into an ambush, for example. Team
based learning is useful where the goal to be accomplished
is too complex to be achieved by individuals lacking team
coordination, RoboCup soccer [7] is a good example.

The real-time learning and continuous adaptation of a team
of artificial agents is desirable for a number of reasons. An
agent capable of real-time learning would be inherently ro-
bust just as strategies learnt offline are inherently exploitable.
Ideally, an adapting agent could be expected to perform in
situations never considered by the game developers. Our
previous work in a prey and predators domain [3] learned
cooperative predator strategies in real-time using a perfect
opponent model of the prey for simulations. This paper
takes the next step and investigates to what extent team
learning is possible in real-time when faced with the more
realistic scenario where only an imperfect opponent model
is available.

II. THE ITERATIVE REAL-TIME TEAM LEARNING
FRAMEWORK

Our real-time learning framework is a novel implementa-
tion of an Evolutionary Algorithm, designed to run in parallel
with the game environment and to iteratively evolve a team of
agents via an analogy of Darwinian selection. Learning takes
place continuously within discretised time slices; during each
time slice, a role is selected for training.

The system first looks ahead to the predicted state at the
start of the next time-slice (ESt+1). This state is used to
determine which role to train and from which population
(each role maintains its own population). Each time-slice, a
single role is trained in a round-robin fashion. How these
roles map to the agents is up to the implementation, but
for this study we use a direct one-to-one mapping of each
role to a unique predator so the terms “role” and “predator”
strategy may be used interchangeably. It may be advanta-
geous to organise the mapping of roles to predators in a more
meaningful way (such as by distance to the prey) and then
automatically switch the strategies used by predators as their
circumstances change, but we ignore these considerations in
this work.

The look-ahead state (ESt+1) contains the expected state
of the environment and all agents one time-slice into the

future. The learning framework has access to the behaviour
of the other predators in the teams but not the prey strategy —
only to a noisy approximation of the prey is available. When
training a particular role, the role is replaced in the look-
ahead state and then a simulation one time-slice length in the
future from the look-ahead state (until ESt+2) is completed.
Even though only a single predator is training during any
given time slice, the fitness measure used evaluates the team
as a whole rather than sanctioning the individual directly.
The individuals in the population are each evaluated by their
contribution to the predator team’s predicted performance at
the end of the next time slice.

The evolutionary process takes place in real-time, in par-
allel with actual events in the game environment. The fittest
individual is used to replace the role currently undergoing
training in the next time slice. The evolutionary algorithm
uses this performance data to create successive generations of
strategies for that predator as long as time permits — that is,
until the game reaches St+1. We use the same fitness function
as that of [8] as described below where d0 is the sum of all
predator’s starting distances to the prey, and de is the sum of
the ending distances. The framework is depicted visually in
Figure 1 and written up as pseudo-code in Algorithm II.1.

f =
{

d0 − de/10 if prey not caught
200− de/10 if prey caught

In this paper, we compare a number of modifications to
the baseline approach presented in [3]. The baseline system
uses an elitist selection scheme where the top half of the
population reproduces by one-point cross-over and mutation
to replace the bottom half of the population. Mutation is
applied randomly to a single weight of the individual, with
0.1 strength. We cap our simulation time at 2000 game ticks
(roughly 40 seconds). Though we hope to complete a capture
far sooner, we allow the simulations to run up to this length
for data collection purposes and to give our predators an
opportunity to learn in the presence of high levels of noise
in the opponent model.

While playing, the predators do not explicitly commu-
nicate. They learn to cooperate implicitly via the fitness
function which rewards an individual strategy based on
the performance of the team rather than some measure
of individual contribution. For the look-ahead and training
simulations the predator currently undergoing a learning
cycle has implicit access to each other predator’s model. It
also has access to a “noisy” opponent model representing
the strategy of the prey — this is described in detail in
Section III-B.

In our previous work, we experimented with various time-
slice lengths. We found that with longer time-slice lengths
(with a perfect opponent model) the system was able to
produce more effective capture strategies — often learning
to capture with only 2 trained predator strategies cooperating
with a 3rd, randomly initialised, predator strategy. The trade-
off is that it takes longer for each predator to be given an
opportunity to learn and a longer wait between strategies

Fig. 1. Pictorial representation of the real-time learning framework

being updated.
At each game-tick, the opponent model gives an approxi-

mation of the prey’s position which may be out by some de-
gree. Both the look-ahead and simulation phases are affected
by noise in the opponent model — the longer the runs, the
more potential there is for the predicted behaviour of the prey
to vary from its true behaviour. Using an imperfect opponent
model would introduce a further disadvantage to having a
long time-slice length and would make comparisons more
difficult. We experimented with the idea of having a variable
time-slice length to deal with varying levels of noise, but
the optimal time-slice was highly variable upon other factors
such as the strength of the prey opponent. The experiments in
this paper all use a fixed time-slice length of 60 game-ticks.

III. EXPERIMENTAL DOMAIN

We have developed a system for learning effective team
strategies in real-time as a game is being played. We allow
for no prior offline learning; all learning takes place while
the game is being played. To test our system, we use the prey
and predators domain studied in [9], [8]. We are evolving a
team of predator strategies to coordinate their movements to
trap and capture the prey in real-time. In this paper we extend
the problem by no longer allowing a perfect opponent model.
We experiment with only providing the learning system with
an imperfect model of the prey, building upon our previous
work in [3]. The aim is to broaden the effectiveness and
generality of our learning framework into situations where
it may be difficult or infeasible to construct an accurate
opponent model.

Fig. 2. The prey and predators environment

A. Prey and Predators Environment

The game environment we use is closely modelled from
that of [8]. In this predators-prey environment, we have a
single prey and a team of 3 predators. The goal of the
predators is to catch (making contact with) the prey. The
prey’s aim is simple; avoid being caught by the predators.

We are interested in training the team of predators in

Algorithm II.1: REAL-TIME EVOLUTIONARY TEAM LEARNING SYSTEM()

comment: Initialise a population (Pr) of individuals for each identified role (r)

for each r ∈ Environment.Roles
do

{
Pr ← CREATEPOPULATIONOFINDIVIDUALS()

for each t ∈ Time− slices

do





comment: Capture the current state of Environment to St

St ← Environment.GETSTATE()

comment: Look ahead from the captured state to the next expected state ESt+1

ESt+1 ← LOOKAHEAD(St, OpponentModel)

MarkedRole ← CHOOSEROLE(ESt+1)

for g ← 1 to NumGenerations

do





in parallel for each individual i ∈ PMarkedRole

do





StartStates[i] ← ESt+1

StartStates[i].REPLACEROLE(Environment.Roles[MarkedRole],
PMarkedRole[i])

ESt+2[i] ← RUNSIMULATION(StartStates[i])

comment: Evaluate PMarkedRole by inspecting expected end states (ESt+2)

Fittest ← EVALUATE(PMarkedRole, ESt+2)

comment: Evolve the next generation of individuals for Pr

EPOCH(Pr)

Environment.REPLACEROLE(Environment.Roles[MarkedRole], F ittest)

real-time to cooperate with each other towards the goal of
catching the prey. The prey and predators move at the same
speed, thus making the task of capturing any competent prey
impossible without some degree of cooperation. We use the
hand-coded Repelled prey described in Section III-B as a
training partner for our team of predators in all experiments.

The environment for all experiments is a 100× 100
toroidal grid without obstacles; agents (prey and predators)
are represented by circles of radius 6. In this environment a
simple hand-coded prey could quite easily evade 2 predators
indefinitely, thus the task of capturing the prey will need the
cooperative actions of all 3 predators working together. The
initial setup places the 3 predators in a corner of the toroid
grid (being a toroid, they are all one and the same) and
the prey is randomly positioned such that it is not initially
in contact with any predator. The speed of each agent in the
game is fixed — the prey and all predators are either moving
at this speed or stationary; there is nothing in between.

B. Hand-coded Prey Controllers

In our previous work, we created hand-coded opponents
capable of evading the predators to varying ability. The
simplest prey was based on the description provided in [8]
– it was able to move at the same speed as the predators
and its strategy was always to head in the direction opposite
to the nearest predator. We found that when using this prey
as a training partner, the predators easily captured the prey
very quickly and our learning system was not sufficiently
challenged. We created a more complex player which we
named the Repelled prey — a vector based approach that
avoids all predators proportionate to their proximity which
we confirmed provided a more difficult capture task.

In this work, we use the Repelled prey as a training partner
for all experiments. The algorithm used by the Repelled prey
is as follows. For each of the 3 predators, the Repelled prey
applies a force of repulsion equal to 1/d2 in the direction of
the predator, where d is the minimum toroidal distance from
the prey to that predator. This prey moves at the same speed
as the predators, heading in a direction determined by the

sum of the repulsive forces (but always moving at maximum
speed).

To simulate noise, we have a “noisy” version of the
Repelled prey with an adjustable level of adherence to the
prescribed behaviour of the original. The noise is in the form
of a Gaussian random variable of zero mean and a standard
deviation as a proportion of π applied to the direction in
which the prey is headed (measured in radians) — we call
this proportion the noise amplitude of the opponent model.
This is how we simulate opponent model noise in our game
— the game in progress is one against the Repelled prey, but
our learning algorithm only has access to our prey opponent
model. For example, when we describe an opponent model
having a noise amplitude of 0.2π, this means that a Gaussian
random variable of 0.2π (or 36degrees) is added to the
model’s direction at each and every decision point (game
tick).

Our system’s knowledge of the starting position of the
opponent is never guaranteed to be completely accurate. At
the beginning of each time-slice, the system knows the exact
state of the game. However, since our system is training
for play beginning in the next time-slice, the starting point
involves one time-slice of potential error during the look-
ahead phase. Due to noise in the opponent model, the
perceived and true states deviate further still as the training
simulations progress.

C. Predator Controller

A predator takes the form of a randomly initialised feed-
forward neural network with 2 inputs, 5 outputs, and a hidden
layer of size 10. The only inputs to the predator’s network are
its x and y displacement relative to the prey. The predator’s
actual x and y coordinates on the toroidal grid do not factor
into its decision making process, nor need it be given the
homogenous nature of the environment. The outputs of the
network are North, South, East, West and Stationary.

Predators do not have any explicit communication or
knowledge of where their team mates are. This allows the
representation of an individual to be very simple and allows
a smaller search-space to cover, which is particularly useful
given that our system learns in real time. Information regard-
ing the location of the predator’s team mates is implicitly
provided by means of the fitness function. Recall from
Section II that an individual’s fitness is based on how well
the whole team performs and cooperates together with this
new individual.

A predator will remain still if the Stationary output ex-
ceeds that of all other outputs. Otherwise, the difference
between the East and West outputs determines the x com-
ponent of the predator’s direction vector and the difference
between North and South determines y. While this network
representation could be used to define an agent that is capable
of varying its speed, here we are only using it to describe the
predator’s direction, not magnitude. The predators all travel
at a fixed speed, equal to that of the prey. Like the prey,
predators are either completely motionless or travelling at
their fixed speed.

IV. THE BASELINE LEARNING FRAMEWORK

Our previous work [3] tested the performance of a learning
framework for the real-time learning of strategies in the prey
and predators domain against a hand-coded prey opponent.
We showed that the resulting real-time team strategies are
able to capture hand-coded prey of varying degrees of
difficulty without any prior learning. The system is highly
adaptive to change, capable of handling many different
situations, and quickly learning to function in situations that
it has never seen before.

In developing our system we first developed a version
that ran in “simulated real time”, where the game would
pause and allow the evolution of a strategy to complete
to a predetermined number of generations. When extending
our system into real-time (where the number of generations
is severely limited), we observed no statistically significant
drop in performance for any but one experiment. Since our
learning framework is able to learn and replace the predator
strategies continuously, each individual strategy need not be
overly complex — this reduces the total search-space and
is what helps make learning in such a short space of time
possible.

In [3] we compared our framework with that of an offline
approach described in [8], in the prey and predators domain.
It soon became apparent that the prey previously discussed
was too simple a task for our system — a 100% capture
rate was routinely observed in most experiment scenarios.
We then went on to real-time the framework’s effectiveness
against 2 more types of prey, one of which being able to
travel at triple the speed of the predators. These successes
gave us confidence in our framework but the assumption of a
perfect opponent model is one that needed to be addressed.
A learning framework that only works upon first ensuring
a perfect opponent model is not particularly useful in many
real-world scenarios. While it is common to strive towards
having accurate opponent models to train against, attaining
one that is absolutely perfect is often infeasible or even
impossible.

V. LEARNING IN THE PRESENCE OF OPPONENT MODEL
NOISE

The problem of noise makes learning difficult. There
are many forms of noise — for example, noise in the
environment model, noise in the opponent model, and noise
in the fitness function. In this paper we experiment with noise
in the opponent model. Obviously it is desirable to have
as accurate an opponent model as possible, but opponent
modeling to a high degree of accuracy may often be difficult
or even impossible. Additionally, results gained from such
an exercise have a risk of being overly domain specific and
difficult to generalise. Rather than focusing on improving the
opponent model of our prey, this paper will focus on building
up tolerance to noise in the opponent model of our real-time
learning system.

Compensating for noise is a difficult problem [10], [11].
Some general approaches to learning in the presence of

noise involve resampling, avoiding convergence by reducing
elitism and to encourage diversity by widening the search
space. We have tried a number of different “off-the-shelf”
approaches to modifying our system in an attempt to make
it more tolerant to noise in the opponent model as well as
more specialised variations or combinations of approaches.
In this paper we report on two of our approaches as well
as their combined effect in improving our learning system’s
tolerance to opponent model noise.

Fig. 3. The effect of opponent model noise for the baseline system

Figure 3 real-times the deterioration of performance of
the baseline system in the presence of increasing amounts
of opponent model noise. The plot for 100% accuracy real-
times results similar to those reported in [3], with the other
plots demonstrating that level of performance is no longer
achievable in the presence of opponent model noise. The
baseline learning system seems to be at least somewhat
tolerant to noise in the opponent model — that is, the system
doesn’t completely fall apart in the presence of noise. At
a noise amplitude of 0.2π opponent model accuracy, the
capture rate falls from 100% to a little over 90%. We repeated
the experiment with even smaller amounts of noise and found
that even a very small amount of opponent model noise such
as 0.04π results in an observable decrease in performance
(albeit a small one). Performance suffers a rapid degradation
when the noise amplitude is raised to 0.3π with a resulting
capture rate of only 66%.

For the baseline system, the variance in performance
increases with the amount of noise in the opponent model.
Our plots only show up to a noise amplitude of 0.6π because
any more noise than this drives the variance up so high as
to make meaningful comparisons difficult. The next section
reports on our attempts to mitigate the effects of opponent
model noise. Our aim is to modify our existing framework
such that it will be more tolerant to noise in the opponent
model.

VI. COMPENSATING FOR THE EFFECTS OF NOISE

In this section, we report on modifications to our baseline
system designed to improve our Iterative Real-time Team
Team Learning System in the presence of opponent model
noise. We report on our implementations of Rescaled Muta-
tion [], Conservative Replacement [], and a combination of
the two techniques.

A. Rescaled Mutation
Rescaled Mutation [12] is based on the principle of “mu-

tate large, inherit small”. Individuals are mutated by a large
amount so that we may sample more distant strategies in an
attempt to avoid converging towards local optima when the
opponent model noise is high. When these distant strategies
are found to be successful they do not, however, become part
of the population. Rather, they act as a way of potentially
driving the evolution towards these strategies. If we consider
a successful distant mutation to be a vector deviating from
the original, then the same vector of lesser magnitude (a
“lesser mutant”) would join the population on its behalf. Our
implementation of this approach applies a Gaussian mutation
of standard deviation 0.4 to a randomly selected weight —
four times as large as the amount of mutation used in the
baseline approach and for the “lesser mutant” that ultimately
may join the population.

Fig. 4. The effect of opponent model noise using Rescaled Mutation

Somewhat surprisingly, the Rescaled Mutation system
performs as well as the baseline approach when a perfect
opponent model is available. This suggests that our learning
system using Rescaled Mutation is an absolute improvement
to the baseline rather than some special feature that needs to
be carefully toggled on or off at varying degrees of perceived
opponent model noise. This is a fortunate result because the
need to detect and automate a switch according to the level
of noise would introduce its own share of problems.

Rescaled Mutation has made our real time team learning
system far more tolerant to opponent model noise. Figure 4
real-times a significant improvement over the baseline sys-
tem. At a noise amplitude of 0.2π, we observe a slight

improvement when using Rescaled Mutation compared to
the baseline system. The largest improvement, however, is
real-timed in our experiment where the noise amplitude is
raised to 0.3π. Here the Rescaled Mutation system achieves
an improved prey capture rate; 24% higher than the baseline
approach.

B. Conservative Replacement

In the Conservative Replacement approach we begin with
the idea that the longer an individual has survived in the
population, the more robust it is likely to be to the presence
of opponent model noise. In order to replace a more mature
individual a new individual must not only be better than
an existing individual, but be better by at least predefined
threshold. This is to prevent “lucky” individuals from re-
placing good strategies. If a new individual performs well
in a particular run, it may not necessarily imply that it is a
better individual — the individual may have be reporting a
misleadingly high performance result due to noise.

This approach [] where new individuals do not compete
on a level playing field with the rest of the population is
often applied in the opposite direction [13], [14] — to pro-
tect newly created and potentially innovative but immature
strategies from having to compete with the more developed
strategies. However, in the presence of high levels of noise,
it makes sense not to “trust” new individuals based on a
single run. One would expect that after multiple performance
evaluations, the system could be more confident in trusting
that an individual’s fitness is a more accurate reflection of
its true ability.

In our implementation of Conservative Replacement, we
provide a fitness reward to existing individuals relative to
their age by the formula: reward = |fitness × log(age +
1)2)/200| A logarithmic reward function is chosen so that a
large reward is given to an individual that has survived one
generation as opposed to a new individual, with a slightly
lesser additional reward for having survived two generations
and so on.

Fig. 5. The effect of opponent model noise using Conservative Replacement

Figure 5 shows the average performance of our system
when implemented using Conservative Replacement per-
forms as well as the baseline approach when a perfect op-
ponent model is available. These results suggest that there is
never a good reason not to use Conservative Replacement for
our system. This is consistent with our result in Section VI-A
and those yet to be discussed in Section VI-C. At a noise
level of 0.2π this system performs roughly 5% better than
the baseline approach.

Our system using Conservative Replacement performs
equal or better than the baseline system. At a noise amplitude
of 0.3π, the Conservative Replacement system performs
about 7% better than the baseline but far short of the
impressive result that Rescaled Mutation was able to boast
at this level. For the experiments with opponent models
of accuracy below 0.4π the results are not statistically any
better or worse than that of the baseline system though the
performance variance has decreased.

C. Conservative Replacement with Rescaled Mutation

For this experiment we combine both approaches from
Sections VI-A and VI-B to dealing with opponent model
noise. In this system, we perform Rescaled Mutation as in
Section 4, but then only replace an individual if the “lesser
mutant” outperforms it by at least some threshold depending
on the age of the existing individual and as described in
Section VI-B.

Fig. 6. The effect of opponent model noise using Conservative Replacement
with Rescaled Mutation

Figure 6 real-times the performance of our system using
the combined Conservative Replacement with Rescaled Mu-
tation approach. This system is a great improvement over our
other methods in several areas. Firstly, this combined Conser-
vative Replacement with Rescaled Mutation does not affect
performance when there is no opponent model noise. The
combined approach allows our system to achieve a perfect
capture rate when using an opponent model with a noise
amplitude of 0.2π accuracy. This is a huge improvement,
indicating that the two approaches are complementary.

For low levels of noise, this combined system performs
like a “best case” scenario of our other approaches, managing
to achieve the high performance of the Rescaled Mutation
approach. At 0.3π noise amplitude the system achieves a
capture rate of over 90% which is about the same as what
was achieved with Rescaled Mutation but and roughly 25%
and 20% higher more than the baseline and Conservative
Replacement approaches respectively.

The achievement that stands out the most of this system
is the huge gain in performance that it achieves when the
noise level is high. In the experiments of the combined
Conservative Replacement with Rescaled Mutation approach
we real-time a gain in performance to over 80% capture for
noise amplitudes of 0.4π and 0.6π. At these high levels of
noise, the baseline approach manages captures of around 50
to 60%. The combined approach greatly outperforms both the
individual Rescaled Mutation and Conservative Replacement
approaches on their own — a little over 50% capture rate and
60% respectively. For the combined approach, the variance
of performance is also far lower.

VII. CONCLUSIONS

In our previous work, we presented a system for the real-
time evolution of team predator strategies in the Prey and
Predators domain assuming the use of a perfect opponent
model. This paper extends upon this by relaxing this unreal-
istic assumption and implanting noise of varying degrees into
the opponent model of the prey. Our learning system trains
using an approximated model of the prey that the team of
predators is aiming to capture.

We real-time the deterioration in performance of our base-
line system in the presence of noise and compare this with a
number of proposed improvements. Even small amounts of
noise are reflected in a decrease in performance with larger
aount of noise seeing a drop in performance from 100% down
to roughly 60%. The increased level of opponent model noise
negatively impacts the reliability of the baselines system,
with an increased performance variance.

Our attempts at creating a more noise-tolerant system
have yielded some great success. When using Conservative
Replacement, we witnessed a performance increase in low
levels of noise. Some improvement in the higher levels of
noise is seen, but the variance at these levels of noise is too
high to make meaningful comparisons. The improvements
witnessed under the Rescaled Mutation approach were more
impressive than the Conservative Replacement approach. An
interesting point to note is that at no levels of opponent model
noise did either of these proposed ideas negatively impact our
learning system.

A combined approach, with Conservative Replacement
used in conjunction with Rescaled Mutation was also trialled.
This approach yielded extremely positive results. At a noise
level of 2π, the combined approach was able to attain a
capture rate of 100% compared to 92%, 97% and 96%
of the baseline, Conservative Replacement, and Rescaled
Mutation approaches respectively. A far greater improvement
was achieved for greater levels of noise in the opponent

model. At 0.6π (the highest amount of noise in our trial),
the system under combined approach was able to achieve
a capture rat of over 80% where the other methods only
managed around 60%.

Our attempt at achieving a level of noise tolerance for our
real-time team learning system has been met with consider-
able success. This success greatly expands the potential ap-
plications for our learning system. The somewhat unrealistic
assumption of a perfect opponent model has been removed
from our system, leaving in its place a more robust and
reliable system in the face of opponent model noise. Future
work may involve experimenting with other forms of noise
or testing our system in a more difficult problem domain.

REFERENCES

[1] M. Wittkamp and L. Barone, “Evolving adaptive play for the game
of spoof using genetic programming,” in In Proceedings of the 2006
IEEE Symposium on Computational Intelligence and Games, 2006.

[2] M. Wittkamp, L. Barone, and L. While, “A comparison of genetic
programming and look-up table learning for the game of spoof,”
in In Proceedings of the 2007 IEEE Symposium on Computational
Intelligence and Games, 2007.

[3] M. Wittkamp, L. Barone, P. Hingston, and L. While, “Real-time
evolutionary learning of cooperative predator-prey strategies,” in In
Proceedings of the 2012 Australian Computer Science Week (ACSW),
2012.

[4] M. L. Berger, Scripting: overview and code generation, in AI Game
Programming Wisdom. MIT Press, 2002.

[5] P. Tozour, The Perils of AI Scripting. Charles River Media, Inc.,
1995.

[6] D. Charles, C. Fyfe, D. Livingstone, and S. McGlinchey, “Biologi-
cally inspired artificial intelligence for computer games,” in Medical
Information Science Reference, 2007.

[7] H. Kitano, A. Minoru, Y. Kuniyoshi, I. Noda, and E. Osawa,
“Robocup: The robot world cup initiative,” In Proceedings Workshop
on Entertaintment Life, 1995.

[8] C. Yong and R. Miikkulainen, “Cooperative coevolution
of multi-agent systems,” 2001. [Online]. Available: cite-
seer.ist.psu.edu/yong01cooperative.html

[9] R. A., R. P., and M. R., “Constructing competitive and cooperative
agent behavior using coevolution,” in In Proceedings of the 2010 IEEE
Symposium on Computational Intelligence and Games, 2010.

[10] A. D. Pietro, L. Barone, and L. While, “A comparison of different
adaptive learning techniques for opponent modelling in the game
of guess-it,” in In Proceedings of the 2006 IEEE Symposium on
Computational Intelligence and Games, 2006.

[11] P. Mertikopoulos and A. L. Moustakas, “Learning in the presence
of noise,” in Proceedings of the First ICST international conference
on Game Theory for Networks, ser. GameNets’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 308–313. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1689499.1689539

[12] H. georg Beyer, “Mutate large, but inherit small! on the analysis
of rescaled mutations in (1,λ)-es with noisy fitness data,” in In
Proceedings of the 5th International Conference on Parallel Problem
Solving from Nature, 1998.

[13] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9,
no. 2, pp. 159–195, Jun. 2001. [Online]. Available:
http://dx.doi.org/10.1162/106365601750190398

[14] K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evol. Comput.,
vol. 10, no. 2, pp. 99–127, Jun. 2002. [Online]. Available:
http://dx.doi.org/10.1162/106365602320169811

	Noise Tolerance for Real-time Evolutionary Learning of Cooperative Predator-Prey Strategies
	tmp.1383533644.pdf.we1xl

