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A Multimodal Problem for Competitive
Coevolution

Philip Hingston, Tirtha Ranjeet, Chiou Peng Lam, and Martin Masek

Edith Cowan University, 2 Bradford St, Mt Lawley 6050 Western Australia
p.hingston@ecu.edu.au

Abstract. Coevolutionary algorithms are a special kind of evolutionary
algorithm with advantages in solving certain specific kinds of problems.
In particular, competitive coevolutionary algorithms can be used to study
problems in which two sides compete against each other and must choose
a suitable strategy. Often these problems are multimodal — there is more
than one strong strategy for each side. In this paper, we introduce a
scalable multimodal test problem for competitive coevolution, and use it
to investigate the effectiveness of some common coevolutionary algorithm
enhancement techniques.

Keywords: coevolution, multimodal, diversity

1 Introduction

Competitive coevolutionary algorithms are an important class of evolutionary
algorithm, in which there is no externally defined objective fitness function.
Instead, fitness is defined in a relative way, based on interactions between several
coevolving populations. For this reason, competitive coevolutionary algorithms
can suffer convergence “pathologies”, and techniques have been developed to
address these. In this paper, we focus on multimodality in coevolution, a problem
feature that is known to cause convergence problems in evolutionary algorithms.

Coevolutionary algorithms may be either cooperative, in which members of
each population combine to solve a problem, or competitive, in which members
of each population compete against each other. One class of problem for which
coevolutionary algorithms seem especially suited is the problem of determining
good strategies for the opposing parties in an adversarial situation. There is one
population for each party, in which each member of the population represents
a possible strategy for that party. The relative fitness of each strategy in the
population depends on the outcomes of conflicts with strategies from the other
population(s). Examples of problems that can be approached in this way are
games, negotiations and tactical planning. Often these problems appear to be
multimodal, i.e. there is more than one strong strategy for each side.

In order to study the effects of multimodality in coevolution, we introduce a
scalable multimodal test problem, and use it to investigate the effectiveness of
some common coevolutionary algorithm enhancement techniques in improving
an algorithm’s ability to solve multimodal problems.



In the next section, we briefly review related work, before introducing our
test problem. We then describe a simple coevolutionary algorithm and some
commonly used enhancement techniques. In the following section, we describe
our experiments, in which we test the simple version of the algorithm as well
as variations that use these enhancements. Finally, we present a series of plots
summarising the results of our experimentation and draw our conclusions.

2 Related Work

With regard to evolutionary algorithms, multimodality has long been recognised
as an important issue, and something that often occurs in real world problems.
Accordingly, there have been many studies testing various evolutionary algo-
rithms on a range of multimodal test problems (e.g. [9, 17, 13, 22, 18, 28, 29]).
Techniques have been developed to enhance evolutionary algorithms for mul-
timodal problems, such as crowding [25], fitness sharing [23], derating [2] and
speciation [15]. However, we have been unable to locate any similar work on mul-
timodal test problems for competitive coevolution, or on testing the effectiveness
of these special techniques in the context of competitive coevolution.

Coevolutionary algorithms have been used to solve multimodal function op-
timisation problems (e.g. [10, 16, 27]), generally by subdividing the problem, as-
signing subpopulations to different subproblems. Our interest here is different
– there is no external objective function to optimise, instead, the multimodal-
ity arises from the interaction between two competing, coevolving populations.
There are many examples of competitive coevolution being used to solve such
problems, for example in game playing (e.g. [20, 12, 5]) and red teaming (e.g. [24,
14]), but we have not located any work specifically addressing multimodality in
these applications.

3 A Multimodal Test Problem

In this section, we introduce a multimodal test problem for coevolutionary al-
gorithms with two competing sides. What does multimodality mean in an ad-
versarial problem? Intuitively, the idea is that a problem is multimodal if there
is more than one strong strategy for each side, but how can this idea be oper-
ationalised? For an evolutionary algorithm, multimodalty means that there is
more than one local optimum in the fitness landscape. But in a coevolutionary
algorithm, fitness landscapes are constantly changing as the compositions of the
populations change.

For the purposes of this study, we replace the usual fitness landscape with
what we will call a generalisation landscape. The generalisation performance of
a solution is based on its expected performance against a randomly selected
opponent. This notion has been formalised by Chong et al. [6, 7], who proposed
a suitable set of related measures for generalisation performance, and provided
methods to estimate the values of these measures. We discuss these measures
in more detail in Section 5. A generalisation landscape is then defined as the



surface generated by mapping generalisation performance over a search space.
We will consider a problem to be multimodal if its generalisation surface has
multiple local optima.

We will call our multimodal test problem an n-peaks problem, as there are
n equally good strategies (corresponding to n peaks in the generalisation land-
scape) for each side. The challenge for a coevolutionary algorithm is to locate as
many of these peaks as possible.
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Fig. 1. Mean payoffs against random opponents for solutions to the 5-peaks problem
with H= 1 and L = 1. An individual near 0, for example, will get a payoff of H (i.e. 1)
against most opponents in the first interval (0 to 0.2), the third interval (0.4 to 0.6),
and the fifth interval (0.8 to 1.0), and a payoff of L (i.e. also 1) against only a few
opponents, in the second and fourth intervals, giving a mean payoff of nearly 0.6.

The problem is symmetric (the domain and task are the same for both sides).
The domain for each side is the interval [0, 1]. The problem is parameterised by
n, and by two payoff values H > 0 and L > 0. When two individuals x and y
compete, the outcome is determined as in Equations (1)–(6).

ix = b(x× n)c (1)

iy = b(y × n)c (2)

vx = |0.5− (x× n) + ix| (3)

vy = |0.5− (y × n) + iy| (4)

gap = mod(ix − iy, n) (5)

score(x, y) =

H, if gap%2 = 0 and vx > vy
L, if gap%2 = 1 and vx < vy
0 otherwise

(6)

Intuitively, we picture the domain as divided into n equal intervals. Figure 1
illustrates the case n = 5, H = L = 1. When x and y compete, the outcome



depends on which intervals they belong to (Equations 1 and 2), and on the
distances from the centres of their intervals (Equations 3 and 4). If x and y are
in the same interval, then x gets a payoff of H if it is further from the centre of
the interval than y is (otherwise 0). If y is in the next interval to the right of
x, then x gets a payoff of L if it is closer to the centre of its interval than y is
to the centre of its interval. For this purpose, the “next interval to the right” of
the rightmost interval is considered to be the leftmost interval - i.e. the domain
wraps around. If y is two intervals to the right of x, then x gets a payoff if it is
furthest from the centre of its interval. This pattern continues, with wrapping
if necessary, so that the domain is actually circular, rather than linear. If y is
an even number of intervals to the right of x, then it is good for x to be nearer
its boundary (for a payoff of H), while if y is an odd number of intervals to the
right, then it is good for x to be nearer the centre of its interval (for a payoff of
L).

In the case of the problem in Figure 1, those individuals close to the interval
boundaries get a high payoff against about 60% of opponents randomly selected
from the domain (for an average payoff of 0.6), while those near the middle of
their interval only get a high payoff against about 40% of opponents (average
payoff 0.4). Thus, there are n local optima or peaks in the generalisation land-
scape (counting 0 and 1 as the same individual, so that there is half a peak near
0 and the other half of it is near 1).

Although, in this paper, we study only the 5-peaks problem in Figure 1, the
picture is similar for other values of n. By setting the values of H and L, the
difference between peak and trough values can be manipulated. By changing
the definition slghtly and using more than one H and/or L value, the heights
of individual peaks could also be controlled. It is also straightforward to extend
the idea to higher dimensions, by subdividing a hypercube into cells, and using
a kind of Manhatten distance between cells in place of the gap value.

4 Algorithm and Variations

In order to illustrate the difficulties posed by multimodality, we carried out
experiments to test the performance of a simple competitive coevolutionary al-
gorithm, along with some popular variations, on an n-peaks problem. In this
section we describe the algorithm and variations that we used.

4.1 CEAN - a näıve coevolutionary algorithm

As a base case, we use a simple, näıve, competitive coevolutionary algorithm
which we call CEAN. We then define variations on CEAN which include a fitness
sharing mechanism, or a Hall of Fame, or both, and we also vary the mutation
rate. Algorithm 1 describes the algorithm in pseudocode. Note that we have not
included crossover (but it could easily be added) – we don’t use crossover here
because the genome for our problem is a single real number. The parameter µ is
the mutation rate and the procedure Mutate mutates an individual population



member. The procedure Select selects one individual from a population, based
on the fitness values of the population members. Finally, the procedure Calcu-
lateFitness assigns fitness values to the members of both populations, based on
competition between members of the two populations.

Input: Two initial populations P 0
1 and P 0

2

Output: Two final populations P f
1 and P f

2

1 begin
2 t← 0;
3 while t < f do
4 CalculateFitness(P t

1 , P t
2);

5 for i ∈ 1..2 do
6 P t+1

i ← {};
7 while P t+1

i is not full do
8 s← Select(P t+1

i );
9 with probability µ, s←Mutate(s);

10 P t+1
i ← P t+1

i ∪ {s};
11 end

12 end
13 t← t+ 1;

14 end

15 end
Algorithm 1: CEAN

For the näıve algorithm, CalculateFitness assigns a fitness value for each pop-
ulation member as the mean payoff achieved in competition with the members
of the other population. This is presented in pseudocode in Algorithm 2.

4.2 Variants

Even when solving unimodal problems, we know that coevolutionary algorithms
often need special care to avoid coevolutionary pathologies such as cycling, loss
of gradient, and so on [1, 11, 23, 8, 3]. Two common remedies are the use of an
archive (to prevent evolutionary forgetting), and diversity maintenance tech-
niques (to prevent loss of diversity). We therefore created variations on CEAN
that include an archive and/or a diversity maintenance mechanism.

First let us consider diversity maintenance. A simple, explicit way to main-
tain diversity is to use a high mutation rate, but this also has the disadvantage
of disrupting evolutionary learning in a random, uncontrolled way. Among the
available implicit diversity maintenance techniques, we chose to use competitive
fitness sharing [23]. This works by penalising population members that are sim-
ilar to others in the population. The simple fitness of an individual is calculated
in the normal way, and is then divided by a quantity called the niche count
to determine its shared fitness. Selection is then carried out using shared fitness
rather than simple fitness. Modifying CEAN to use this selection procedure gives
an algorithm variant we call CEAFS.



Input: Two populations P1 and P2

1 begin
2 for x ∈ P1 do
3 f ← 0;
4 for y ∈ P2 do
5 f ← f + score(x, y);
6 end

7 fitness(x) = f
|P2|

;

8 end
9 for y ∈ P2 do

10 f ← 0;
11 for x ∈ P1 do
12 f ← f + score(y, x);
13 end

14 fitness(y) = f
|P1|

;

15 end

16 end
Algorithm 2: Calculating fitness for CEAN

Equations 7 and 8 are used to calculate the niche count, where xi is the ith

individual in the population, and u is the genome length (so di,j is the Euclidean
distance between xi and xj). ci is the niche count for xi, τ is a constant that
determines the shape of the sharing function, nr is a constant (niche radius) and
N is the population size.

ci =

N∑
j=1

{
1− (

di,j
nr

)τ if di,j ≤ nr
0 otherwise

(7)

di,j =

√√√√ u∑
m=1

(xi,m − xj,m)2 (8)

As an archive mechanism, we implemented a Hall of Fame (HOF) [23]. For
each population, we maintain an archive, known as a Hall of Fame, consisting
of fittest individuals from each earlier generation. In this CEAHOF variant of
CEAN, the fitness calculation given in Algorithm 2 is modified to calculate the
average payoff of the individual in question against members of the opposing
population as well as the members of the archive. After each generation, the
fittest individual from each population is added to the archive.

Thus we have three variants: the näıve algorithm, CEAN, a variant that
uses fitness sharing, CEAFS, and a variant that uses a Hall of Fame, CEAHOF.
Finally, we also created a fourth variant which uses both fitness sharing and a
Hall of Fame, CEACFH. In this variant, fitness values are calculated using the
Hall of Fame as for CEAHOF, and then these values are adjusted to obtain
shared fitness values as for CEAFS.



5 Performance Measures

One aspect of performance is generalisation performance - that is, how well do
solutions found for one side in a contest, learned via a coevolutionary algorithm,
generalise to compete well against arbitrary strategies for the other side?

We use Chong et al.’s notion of generalisation performance [6, 7]. They de-
scribe their methods in terms of a population attempting to learn general solu-
tions to perform well against a large space of test cases. They begin by defining
generalization performance as the mean score of a solution in all possible test
cases. This intuitively appealing definition poses several practical difficulties.
First, for many problems of interest, the space of possible test cases could be
very large, or even infinite, and there may be no way to compute a mean score
analytically. Therefore, they propose a statistical approximation approach, in
which a mean score is computed for a suitable sample of test cases. The second
difficulty is to decide what probability distribution should be used over the space
of test cases. In many cases, scores against “high quality” test cases might be
considered more important, as they would be more likely to be chosen by an
opponent, for example. Chong et al. therefore propose two different methods for
sampling the space of test cases: unbiased sampling (which is purely random)
and biased sampling (which favours higher quality test cases). In this paper, we
use biased sampling to measure algorithm performance. The procedure to obtain
a biased sample for testing is described in detail in [6, 7].

In addition, they consider several different summary values to describe the
overall generalisation performance of a population of solutions: average, best
and ensemble. We consider only the “best” figure. Equations 9 and 10 describe
how this is calculated. Here TestSet is a biased sample of test cases, P is a
population of solutions, and best(P, k) is the set consisting of the k members
of P with the highest simple fitness values. Intuitively, best(P, k) is what the
coevolutionary algorithm “thinks” is the best k solutions found, and BestGP (P )
is the generalisation performance of the best generaliser amongst them.

GP (x) =
1

|TestSet|
∑

y∈TestSet
score(x, y) (9)

BestGP (P ) = max
x∈best(P,k)

GP (x) (10)

In the case of a multimodal problem, another relevant aspect of performance
is how well an algorithm does at locating as many peaks as possible – that
is, can the algorithm locate many different representative solutions with high
generalisation performance, rather than simply any of them.

One way to quantify this aspect of performance is to calculate what propor-
tion of peaks the algorithm finds on average, and how often it succeeds in finding
all peaks. These are summarised by the two measures peak ratio (Equation 11)
and success ratio (Equation 12) [26].

peak ratio =
total peaks found

number of peaks× number of runs
(11)



success ratio =
number of times all peaks found

number of runs
(12)

In addition to these ratios, we also calculated the circular earth mover’s
distance (CEMD). CEMD was introduced by Rabin et al. [21] for comparing
two histograms, and has been widely used in image processing for comparing
images. Since we know the true location of the peaks in our test problem, we
can construct an “ideal” distribution for an evolved population, in the form of a
histogram in which all buckets not containing a peak are empty, and all buckets
containing a peak contain equal numbers of solutions. We can then compare
the actual histogram with this ideal histogram. Earth mover’s distance is the
minimum total amount of movement that would be required to make the two
histograms identical. For the case of a circular domain, there is a simple way to
calculate this, given in Equation 13.

Here the two histograms are F and G, and N is the number of buckets. Fk
is the cumulative histogram derived from F , starting at bucket k and wrapping
at the right hand edge of the domain (and likewise for Gk). In our experiments
we used 40 equally spaced buckets for this calculation.

CEMD = min
k∈{1,2,...,N}

{ 1

N

N∑
i=1

|Fk[i]−Gk[i]|} (13)

6 Experiments and Results

To investigate the effects of diversity maintenance via fitness sharing and/or
mutation, and of an archive in the form of a Hall of Fame, on the 5-peaks
problem, we executed each algorithm 60 times for each mutation rate from 2.5%
to 100% in steps of 2.5%. In each case we used the fixed parameter settings as
in Table 1. The values of niche radius and τ were set on the basis of preliminary
empirical tests. For each execution, in each generation, we recorded diversity
(genotypic diversity), generalisation performance (best GP), and peak finding
ability (CEMD, peak ratio and success ratio).

Table 1. Fixed Algorithm Parameters

Parameter Value

Mutation Gaussian, with wrapping, σ = 0.1

Selection Stochastic universal sampling

Population size 50 in each population

Generations 300

Niche radius 0.2

τ 1.0

HOF size 50



Figures 2 to 4 present the results in the form of a series of profile plots.
Each data point is an average over 60 executions of the mean value for the
figure in question over the final 60 generations. There is a data point for each
algorithm variant and mutation rate. (Here we report data for the first side, but
the problem is symmetric and the data for the other side is entirely similar, as
expected.)

For example, in terms of diversity, in Figure 2(a), we see that the variants
that use fitness sharing have the highest diversity, and that this diversity is not
sensitive to the mutation rate (with a slight peak at a mutation rate of about
12.5%). The two variants without fitness sharing have lower diversity, increasing
with mutation rate, with CEAHOF performing worst in terms of diversity.

Turning next to generalisation performance, Figure 2(b) shows the equiva-
lent plot for best generalisation performance. For reference, assuming that both
populations are reasonably diverse, generalisation performance should be in the
range 0.4 to 0.6. We can see from the figure that CEAN, the näıve algorithm,
is the worst performer, with a maximum of only about 0.56, for mutation rates
above 27.5%. Fitness sharing improves performance to about 0.58 for CEAFS
with mutation rates between about 7.5% and 12.5%, which is also the range that
gives slightly better diversity with this variation. CEAHOF achieves almost the
same level for mutation rates between about 17.5% and 57.5%. But the best per-
formance is for the combined variant CEACFH, with above 0.59 for mutation
rates between 5% and 12.5%.

(a) diversity (b) generalisation

Fig. 2. Profile plots of diversity and best generalisation performance (mean over the
final 60 generations) versus mutation rate for each of the 4 algorithm variants.

From this, we draw a tentative conclusion that Hall of Fame provides a benefit
to generalisation performance, but this may be limited by the drawback that it
reduces diversity. Combining a Hall of Fame with a diversity mechanism solves
the diversity loss problem, and fitness sharing is a more effective mechanism for
this than simply increasing the mutation rate.



The last three plots address the question of the ability of the algorithm
variants to find the multiple peaks of our multimodal problem. Figure 3 shows
this in terms of the circular earth mover’s distance. Recall that this measures
how similar the distribution of the population is to an ‘ideal’ distribution, so
smaller values are considered better. Clearly the minimum value is achieved
by the combined variant (closely followed by the fitness sharing one), with low
mutation rates of about 2.5% to 12.5%. This picture is confirmed by the results
for peak ratio (Figure 4(a)) and success ratio (Figure 4(b)). The two fitness
sharing variants with low mutation rates are clearly superior, with the combined
variant slightly shading the plain fitness sharing variant. For mutation rates
above about 35%, all the variants perform equally poorly.

Fig. 3. Profile plot of the circular earth mover’s distance (mean over the final 60
generations) versus mutation rate for each of the 4 algorithm variants.

(a) peak ratio (b) success ratio

Fig. 4. Profile plots for peak finding performance (mean over the final 60 generations)
versus mutation rate for each of the 4 algorithm variants.



7 Conclusion

In this paper, we have examined the performance of a competitive coevolutionary
algorithm on a multimodal problem. We created the n-peaks problem, a scalable
multimodal test problem in which the number and amplitude of the peaks in the
fitness landscape can be manipulated.

We then used an instance of the problem to test a näıve competitive coevo-
lutionary algorithm, as well as several variants incorporating an archive (Hall
of Fame) and a diversity maintenance mechanism (competitive fitness sharing),
in terms of their generalisation ability, and peak finding ability. We found that,
for this problem, best results in terms of both criteria were obtained with the
combination of an archive and diversity maintenance, with a moderately low
level of mutation.

In future work, it remains to investigate other instances of the problem with
different generalisation landscapes, and in higher dimensions. In addition, other
methods for handling multimodality can be tested.
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