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Abstract. We provide a physical insight into the interactions among free space

light, surface plasmon polaritons (SPPs), and quasi-cylindrical waves (CWs) in a

subwavelength metallic grating composed of surface defects. The scattering properties

of CWs are clarified, and the CW-related coefficients, which cannot be calculated by

classical scattering theory, are shown to be obtained by decomposition of the generated

fields when a surface defect is launched by the free-space light, a SPP or a CW. Results

show that the SPP- and the CW-generation coefficients under the SPP incidence

are approximate to their counterparts under the CW incidence for a single defect.

Based on the concept of field decomposition and the elementary scattering processes

of the free-space light, a SPP and a CW by a single defect, two SPP-CW models

are developed to provide an intuitive picture of the interactions in the excitation and

reflection of the SPP mode by N defects. The theoretical models are verified to be of

high accuracy using exhaustive computation with various geometrical parameters over

a broad spectral range from the visible to the thermal infrared regime.
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1. Introduction

Surface plasmon polaritons (SPPs) are electromagnetic surface modes confined to and

propagating along the interface between a metal and a dielectric. To couple or decouple

light to SPPs, an array of gratings on a metal film, known as the Kretschmann

configuration, has been widely used. Gratings of various geometries such as nanoholes

[1], air grooves [2], and metallic ridges [3] have been investigated theoretically or

experimentally. A subwavelength slit supplemented with a periodic array of grooves

(i.e., the slit-groove structure), or its three-dimensional equivalent, the so-called bull’s

eye structure has been attracting great attention in novel optical detectors [4, 5, 6].

Moreover, as metallic gratings are also capable to reflect SPPs, they have been used in

various plasmonic devices including the unidirectional [7, 8] or bidirectional [9] coupler,

and nano-cavities [10].

As the propagation length of the SPP mode along the air-metal (gold or silver)

interface is tens of micrometers at the visible and near infrared regimes, the metallic

gratings should be carefully designed to improve the efficiency of the specific usage. As a

result, a quantitative knowledge of the SPP excitation and reflection efficiencies, which

is a key issue in engineering related plasmonic devices, has aroused extensive concern.

Until now most work has been done using numerical simulation techniques such as the

finite element method [11], or theoretical methods such as the Green tensor approach

[12, 13, 14], the Rayleigh expansion [15], the modal expansion technique [16, 17, 18],

and the multiple-multipole method [19]. These methods, though accurate, suffer from

large numerical cost especially when the number of defects is very large. What is worse,

via these methods, the underlying physics is not clear enough.

To circumvent these problems, the involved interactions between the free-space light

and the subwavelength metallic gratings should be clarified first. Though there were

debates on the role of SPPs [20, 21, 22], it has been widely accepted that SPPs are the

primary vector of the interactions at visible frequencies [22]. Accordingly, a microscopic

theory has been proposed to provide physical insights into the extraordinary optical

transmission (EOT) through subwavelength hole arrays [23]. With this theory, some of

the authors have developed quantitative theoretical models for the EOT through a slit

surrounded with symmetric [24] or asymmetric [25] periodic grooves, and for the SPP-

Bragg reflectors composed of various defects [26]. These models provide clear pictures

of the underlying physics and greatly simplify the structure design. As all these models

incorporate only SPPs, they are referred to as pure SPP models. The residual field

referred to as the quasi-cylindrical wave (CW), which was proposed theoretically in

[22] and then demonstrated experimentally in [27], has not been considered, resulting

in pronounced deviations between model predictions and fully vectorial computational

data.

Recently, the cross conversion between SPPs and CWs, specifically the CW-to-

SPP conversion was proposed in [28]. With consideration of this conversion, the SPP

excitation efficiency by a metallic groove doublet under normal illumination of the free-
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space light was accurately predicted. This work was then theoretically reexamined by the

authors [29]. The SPP-to-CW conversion as well as the reflection and transmission of the

CW was further proposed. With these elementary scattering processes incorporated, a

SPP-CW model was proposed accordingly to predict the SPP excitation efficiency by N

periodic grooves with accuracy. Quite recently, a hybrid-wave model was also proposed

and shown to be accurate to predict the field at the air-metal interface [30] and the

EOT through the hole array [31]. However, the underlying cross conversion processes

between SPPs and CWs are not clear in the model. Moreover, as CWs are not normal

modes (they are a superposition of modes), there are no scattering matrices for them

according to the classical theories [32], and one may think that it is difficult (or even

impossible) to define scattering coefficients for those waves [30, 33]. As a result, it is

necessary to clarify the the scattering of CWs and especially the related coefficients used

in our previous work [29].

In this work, we will provide a physical insight into the interactions among the

free space light, SPPs and CWs in subwavelength metallic gratings. In Section 2, we

summarize the elementary scattering processes of the light, the SPP and the CW by

the simplest structure, i.e., a single surface defect. The scattering of CWs and the

method to calculate the CW-related coefficients by field decomposition are clarified.

The interactions in a metallic grating composed of finite number of defects, periodic or

aperiodic, are discussed in Section 3. Accordingly, two SPP-CW models for the SPP

excitation and reflection efficiencies will be developed to provide an intuitive picture.

The models’ validity will be quantitatively tested using exhaustive calculations with

various parameters. For the sake of readability, we only use the rectangle air groove as

the defect to illustrate our discussions. The models and conclusions are also applicable

to other types of defects such as the metallic or dielectric ridges, as the surface defect

is treated as a “black box”, just as done in our previous work [26]. Gold is used with

the frequency-dependent permittivities tabulated in [34]. Without special specification,

the analysis will be provided for λ = 800 nm.

2. A single subwavelength groove

We first focus on the simplest case, the scattering of the plane wave, the SPP mode

and the CW by a single groove, as shown in figure 1. As we restrict ourselves to the

magnetic field (i.e., Hy) at the dielectric-metal interface (z = 0), the out-going radiations

generated by the SPP incidence or the CW incidence, as shown in figures 1(b) and 1(c),

respectively, will not be considered in this paper.

To understand the scattering processes and the related coefficients, we first briefly

introduce the concepts of the zero field and the scattered field. In a scattering problem,

the zero field is the field when there are no scatters at all; the scattered field is calculated

by subtracting the zero field from the total field that with scatters. For example, when

a plane wave is incident on a single groove, as shown in figure 1(a), the zero field is the

field when there is no groove, i.e., the field in the multi-layer geometry only composed
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Figure 1. The decomposition of the magnetic fields at the surface into SPPs (green)

and CWs (red) is performed for the scattering of (a) a normally incident free-space

light polarized along the x axis (TM-polarized), (b) a SPP, and (c) a CW by a

single groove of width w, depth h, and center in the x-direction xj . The coefficients

βcw, βsp, rsp, tsp, r
sp
cw, t

sp
cw, r

cw
sp , t

cw
sp , rcw, tcw are all defined in the text.

of the dielectric layer and the metal layer. In this case, the zero field can be calculated

analytically.

2.1. The field decomposition into SPPs and CWs

As stated in [33], both SPPs and CWs are generated under the light illumination or a

slit mode incidence. When a single groove with the center in the x-direction being xj is

illuminated by a normally incident TM-polarized plane wave, as shown in figure 1(a),

the scattered magnetic field Hsc
y (x) launched at the interface on every side of the groove

can be accurately described as a combination of a SPP and a CW [28],

Hsc
y (|x− xj | > w/2) = βsp exp(ik0nsp|x− xj |) + βcwv(|x− xj |), (1)

where k0 = 2π/λ, nsp = ndnm/
√

n2
d + n2

m is the effective refractive index of the SPP

mode along the dielectric-metal interface with nd being the refractive index of the

dielectric and nm being that of the metal, βsp is the SPP excitation coefficient and βcw is

the CW excitation coefficient, v(x) ≈ W (2πγ|x|/λ)/W (2πγ)(λ/|x|)3/2 exp(ik0ndx) with

W (t) = −2
√

−it/π
∞
∫

−∞

z2 exp(−z2)/(z−
√
−it)dz and γ = nsp − nd [33]. Note that here

we use the scattered fields instead of the total fields since SPPs do not occur in the zero

fields, but show up in the scattered fields at the surface of the metal [35]. βsp can be

calculated analytically [36] or numerically by using the method incorporating the mode

orthogonality as mentioned in [33]. βcw is then obtained by setting |x − xj | = λ in (1)

as v(λ) = 1. Figure 2 shows that the excitation coefficients calculated through the field

decomposition in the form of (1) are very accurate. Note that the dielectric is assumed

to be air with nd = 1.0 throughout the paper.

We should emphasize that though the excitation coefficient of the CW cannot be

calculated in a similar way to that of the SPP by using the mode orthogonality as the

CW is not a normal mode, it can be obtained by the field decomposition. In other

words, because the CW is defined as the residual field extracted by subtracting the

SPP from the total scattered field, its excitation coefficient βcw is then defined as the

complex amplitude of the residual field whose propagation characteristics is in form of
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Figure 2. The total scattered magnetic fields at the interface (“Total field” in red-

solid lines) are decomposed into SPPs and CWs. SPPs (blue-dashed lines) are obtained

using (1) with βsp calculated numerically, CWs (black-solid lines) are then extracted

by subtracting SPPs from the total scattered fields. Green dots show the CWs fitted

using (1) with βcw obtained by setting |x − xj | = λ. In the figure, “Re” means the

real part, and “Im” means the imaginary part. The calculations are performed with

w = 0.2λ, h = 0.2λ, xj = 0.

v(x) and normalized as v(|x| = λ) = 1. This definition is quite different from βsp, which

is defined according to the scattering theory and reciprocity [32]. This difference is very

important to understand the scattering of SPPs and CWs that will be discussed later.

We should emphasize that both βsp and βcw in (1) are calculated under the condition

that the Poynting vector (or the power) of the incident plane wave is unity.

Now let us consider the scattering of a SPP mode by a single groove, as shown

in figure 1(b). In this case, the zero field is exactly the incident SPP mode along

the dielectric-metal interface. The generated forward-going and backward-going fields

(i.e., the scattered fields) can also be decomposed into SPPs and CWs, similar to the

scattering of the plane wave. If the incident SPP mode at the interface is expressed

as H in
y,SPPin = H0 exp[ik0nsp(x − xj)] with H0 being its complex amplitude at x = xj ,

the reflected field (i.e., the generated backward-going field) and the transmitted field

(i.e., the total forward-going field that is the sum of the zero field and the generated

forward-going field) at the interface on every side of the groove are expressed as

Href
y,SPPin(x < xj − w/2) = rspH0 exp[−ik0nsp(x− xj)] + rspcwH0v(xj − x), (2a)

Htrans
y,SPPin(x > xj + w/2) = tspH0 exp[ik0nsp(x− xj)] + tspcwH0v(x− xj), (2b)

respectively, where rsp and tsp are the SPP reflection and transmission coefficients, rspcw
and tspcw are defined as cross conversion coefficients associated to the scattering of the

incident SPP into the generated backward- and forward-going CWs. As the SPP is a

normal mode, its reflection and transmission coefficients are easy to calculate according
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to the mode orthogonality, similar to the corresponding process for calculating βsp. r
sp
cw

and tspcw are then calculated by setting |x− xj | = λ in (2). Note that as the transmitted

SPP is the total field, the generated forward-going SPP mode (i.e., the scattered field) is

expressed as (tsp − 1)H0 exp[ik0nsp(x−xj)]. In other words, the corresponding forward-

going SPP-generation coefficient is tsp − 1.

For the scattering of a CW by a single groove, as shown in figure 1(c), the zero field

is exactly the incident CW originated from xi and expressed as H in
y,CWin(x) = H1v(x−xi)

at the interface with xi < xj − w/2. The generated forward-going and backward-going

fields (i.e., the scattered fields) at the interface on every side of the groove can also be

decomposed into SPPs and CWs,

Href
y,CWin(x < xj − w/2) = rcwsp H2 exp[−ik0nsp(x− xj)] + rcwH2v(xj − x), (3a)

Hsc,trans
y,CWin(x > xj + w/2) = tcwspH2 exp[ik0nsp(x− xj)] + tcwH2v(x− xj), (3b)

where H2 = H in
y,CWin(x = xj), r

cw
sp and tcwsp are cross conversion coefficients associated

to the scattering of the incident CW into the backward- and forward-going SPPs, rcw
and tcw are the backward- and forward-going CW-generation coefficients, respectively.

Note that the definitions of rcwsp and tcwsp are exactly the same as those of rc and tc in

[28]. The calculation of the involved coefficients is the same as that of the scattering

coefficients for the SPP incidence. We should emphasize that rcwsp , tcwsp , rcw and tcw
are independent from xi. Note that tcw is quite different from the SPP transmission

coefficient tsp. This difference is due to the fact that the transmitted SPP can be easily

expressed in one term which includes the contributions from both the incident and the

generated forward-going SPPs, whereas the transmitted CW should be expressed as the

sum of the incident and the generated forward-going CWs,

Htrans
y,CWin(x > xj + w/2) = H in

y,CWin(x) +Hsc,trans
y,CWin(x)

= H1v(x− xi) + tcwH2v(x− xj).
(4)

Equation (4) cannot be incorporated in one term because of the complex propagation

property of the CW.

The calculation of rsp, tsp, r
cw
sp and tcwsp is very convenient using the fully vectorial

aperiodic Fourier modal method (a-FMM) [37], as the Fourier space-harmonic order

of the SPP mode is easy to determine. rspcw, tspcw, rcw and tcw are then obtained by

setting |x − xj | = λ in (2) and (3). Figure ?? shows the field decomposition and

fitting. In the figure, the lines are the field components extracted directly from the

a-FMM computational data, and the symbols are those fitted using (2) and (3) with

the obtained coefficients. It is clear that the decomposition of the generated fields into

SPPs and CWs for both the SPP incidence and the CW incidence are correct and all

the related coefficients calculated by field decomposition are very accurate.
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Figure 3. The behaviors of the four coefficient pairs (rsp, r
cw
sp ), (tsp − 1, tcwsp ), (r

sp
cw,

rcw), and (tspcw, tcw) as functions of the operating wavelength with w = 0.2λ, h = 0.2λ,

and of the groove width with h = 0.4λ, λ = 0.8µm. Blue lines and symbols are for the

real parts, and red ones for the imaginary parts.

2.2. Relationship among the scattering coefficients

We notice that there is a remarkable relationship for the scattering coefficients of SPPs

and CWs,

rcwsp ≈ rsp, tcwsp ≈ tsp − 1, (5a)

rcw ≈ rspcw, tcw ≈ tspcw, (5b)

where (5a) is exactly the same as (5) in [28]. Equation (5) has been thoroughly validated

for various geometries over a broad spectral range from the visible to the thermal infrared

regime, as illustrated in figures 3. We have also performed exhaustive validations for

various groove depths ranging from 0.02λ to 0.85λ, and also for the metallic or dielectric

ridge of various widths and heights (not shown here due to the space limitations).

This approximation can be explained by the causality principle, just as done in

[28]. The forward- and backward-going SPP-generation (or CW-generation) coefficients

for the CW incidence should be the equal to their counterparts for the SPP incidence.

In other words, the generated SPPs and CWs (i.e., the scattered fields) are identical

for the incidence of a SPP and the incidence of a CW as the two incidences share

many properties [28]. Note that here we use the generation coefficients instead of the

transmission coefficients so that the zero fields are excluded for both the SPP incidence

and the CW incidence. With these in mind, it is natural to understand the term tsp− 1

instead of tsp in (5a). We should emphasize that rcwsp (or tcwsp ) may be not equal to rspcw
(or tspcw). This does not violate the reciprocity since CWs, which are not normal modes,

do not obey the reciprocity according to the classic scattering theory [32].
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This approximation is very useful since it considerably eases the calculation of the

scattering coefficients. We need to calculate four coefficients instead of eight ones for

the elementary scattering processes of the SPP and the CW by a single groove. As the

incidence of a CW is a bit more complex than that of a SPP in the a-FMM, we suggest

to calculate the four scattering coefficients of the SPP mode, i.e., rsp, tsp, r
sp
cw and tspcw.

3. N subwavelength grooves

In this section, we study the interactions in metallic gratings composed of N

subwavelength grooves, specially the physics underlying the excitation and the reflection

of the SPP mode, as shown in figure 4, which are important in plasmonic devices

especially the slit-groove structure studied in our previous work [24, 25]. We should

emphasize that the grooves may be periodic or aperiodic. Two intuitive SPP-CW

models incorporating the whole elementary scattering processes shown by figure 1 will

be developed, from which two pure SPP models are extracted by ignoring the existence

of CWs. Exhaustive comparisons among the SPP-CW model predictions, the pure SPP

model predictions, and the fully vectorial a-FMM computational data will be performed

to validate the quantitative accuracy of the SPP-CWmodels, emphasizing that the SPP-

CWmodels are reasonable and versatile to depict the interactions among the plane wave,

SPPs and CWs in metallic gratings.

x1

B1 A1 Bj-1 Aj-1

D1 C1 Dj-1 Cj-1

x
z

Bj Aj

Dj Cj

Bj+1 Aj+1
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DN CN

xj-1 xj xj+1 xN

x1
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x
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Bj Aj

Dj Cj

Bj+1 Aj+1

Dj+1 Cj+1

BN AN

DN CN

xj-1 xj xj+1 xN

A0

Figure 4. Schematics of the SPP-CW coupled-mode models for (a) the SPP excitation

under the normal illumination of a TM-polarized plane wave, and (b) the SPP reflection

by N grooves with width wj , depth hj , and their centers in the x axis being xj ,

j = 1, · · · , N . The electromagnetic quantities A0, · · · , AN , B1, · · · , BN , C1, · · · , CN ,

D1, · · · , DN are all defined in the text.

3.1. The SPP-CW models

Let us consider the excitation of SPPs by N grooves under the normal illumination

of a TM-polarized free-space light of unity Poynting vector, as shown in figure 4(a).

The free-space light will generate left- and right-going SPPs and CWs at every groove.
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The generated SPPs and CWs will then be further scattered by other grooves. Taking

into account of all the elementary scattering processes of the plane wave, the SPP and

the CW, as shown in figure 1, we develop a SPP-CW model for the SPP excitation

coefficient by N grooves. In the SPP-CW model, Aj and Bj are the respective complex

amplitudes of the right- and left-going SPPs propagating away from the groove “j”,

while Cj and Dj are those of CWs generated by the groove “j” (j = 1, 2, · · · , N). Note

that the definitions of Aj (or Bj) and Cj (or Dj) are quite different. This difference

is due to the fact that the transmitted SPP incorporates the incident one, while the

transmitted CW should be expressed by the sum of the incident CW and the generated

forward-going CW, as has been clarified in (4). Bear these in mind, all the elementary

scattering processes of the plane wave, SPPs and CWs are embodied in the following

coupled-mode equations,

Aj = βsp,j + tsp,juj−1Aj−1 + rsp,jujBj+1 + tcwsp,j

j−1
∑

m=1

CmVj,m + rcwsp,j

N
∑

m=j+1

DmVm,j, (6a)

Bj = βsp,j + rsp,juj−1Aj−1 + tsp,jujBj+1 + rcwsp,j

j−1
∑

m=1

CmVj,m + tcwsp,j

N
∑

m=j+1

DmVm,j, (6b)

Cj = βcw,j + tspcw,juj−1Aj−1 + rspcw,jujBj+1 + tcw,j

j−1
∑

m=1

CmVj,m + rcw,j

N
∑

m=j+1

DmVm,j , (6c)

Dj = βcw,j + rspcw,juj−1Aj−1 + tspcw,jujBj+1 + rcw,j

j−1
∑

m=1

CmVj,m + tcw,j

N
∑

m=j+1

DmVm,j ,(6d)

where j = 1, · · · , N , uj = exp[ik0nsp(xj+1 − xj)] with u0 = uN = 0, Vj,m = v(xj − xm),

Vm,j = v(xm − xj), A0 = C0 = BN+1 = DN+1 = 0.

The right side of (6a) is interpreted as follows. The first term is corresponding to the

SPP excitation coefficient of the groove “j” under the normal illumination of the plane

wave. The second and the third terms mean the transmission and the reflection of SPPs

propagating away from neighboring grooves on the left and right sides, respectively. The

forth (the fifth) term is associated to the CW-to-SPP conversion for all the forward-

going (backward-going) CWs generated by all the other grooves on the left (right) side.

Other equations can be understood similarly. Note that Aj, Bj and Cj , Dj in (6) are

treated differently because of their different definitions as have been emphasized.

The solving of the derived 4N linear equations is a routine and of negligible

numerical cost for a practical N (usually smaller than 30). Once Aj , Bj, Cj, Dj

(j = 1, · · · , N) are obtained, the SPP excitation coefficient is then expressed as βN = AN

(the SPP excitation efficiency is |βN |2). The scattered magnetic fields at the surface in

the region xj−1 + wj−1/2 < x < xj − wj/2 are then expressed as

Hsc
y (x, z = 0) = Aj−1 exp[iksp(x− xj−1)] +Bj exp[−iksp(x− xj)]

+
j−1
∑

m=1
Cmv(x− xm) +

N
∑

m=j
Dmv(xm − x)

(7)

where we further set x0 + w0/2 = −∞ and xN+1 + wN+1/2 = ∞, so that Eq. (7) is

always valid for 1 ≤ j ≤ N + 1.



Physical insight into the interactions in subwavelength metallic gratings 10

For the SPP reflection coefficient by N grooves, as shown in figure 4(b), the incident

SPP mode is assumed to be of unity amplitude at x = x1, i.e., A0 = 1. The SPP-CW

model for the SPP reflection and transmission coefficients are developed similarly to

the model for the SPP excitation coefficient, with Aj, Bj , Cj and Dj (j = 1, 2, · · · , N)

of the same meanings as their counterparts in figure 4(a). It is obtained by simply

deleting βsp,j, βcw,j and setting u0 = A0 = 1 in (6). The SPP reflection and transmission

coefficients are expressed as rN = B1, tN = AN for (7) (the reflectance and transmittance

are RN = |rN |2 and TN = |tN |2, respectively).
Note that in the SPP-CW models, the influences of the groove “j” are embodied

by a set of coefficients, i.e., βsp,j, βcw,j , rsp,j, tsp,j, r
sp
cw,j, t

sp
cw,j, r

cw
sp,j, t

cw
sp,j , and rcw,j, tcw,j. In

other words, each groove is treated as a “black box”. As a result, the two SPP-CW

models are also applicable for other types of surface defects such as the metallic or

dielectric ridges. The approximation for the eight scattering coefficients of SPPs and

CWs, i.e., (5) is used to reduce the complexity of the two models.

As a result, with the help of the SPP-CW models in forms of 4N linear equations,

the excitation, the reflection and the transmission of the SPP mode by N grooves are

described by the involved elementary scattering processes in a single groove. In such

a way, the computational cost of βN , rN and tN for N periodic defects is reduced into

that of β1, r1 and t1 for a single one.

3.2. The pure SPP models

When CWs are neglected, the SPP-CW models are reduced into the corresponding pure

SPP models in forms of 2N linear equations simply by setting Cj = Dj = 0. Specially,

if the N grooves are periodic with period p (p = xj+1 − xj and u = uj = exp(ik0nspp)

for j = 1, · · · , N −1), width w = wj and height h = hj (for j = 1, · · · , N), the pure SPP

models can also be expressed in recursive forms,

βN = βN−1 + τN−1u
β1 + βN−1ρ1u

1− ρN−1ρ1u2
,

ρN = ρ1 + ρN−1

τ 21u
2

1− ρN−1ρ1u2
,

τN =
τN−1τ1u

1− ρN−1ρ1u2
,

(8)

where β1 = βsp,1, ρ1 = rsp,1 and τ1 = tsp,1 are the SPP excitation, reflection and

transmission coefficients by a single groove, respectively, βN , ρN , τN are those by N

periodic grooves. For the deducing of (8), one can refer to our previous work on the

SPP-Bragg reflector [26], where the equivalence between the linear equation forms and

the recursive forms has also been demonstrated.

Note that we use u = exp(ik0nspp) here instead of exp[ik0nsp(p−w)] in [26]. This is

because the definitions of rsp and tsp used here are different from those used in [26]. In

other words, the factor exp(−ik0nspw) has been incorporated in rsp and tsp used here.
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3.3. Model validations

To validate the quantitative accuracy of the SPP-CW models and the pure SPP models,

exhaustive comparisons will be performed by varying the period, the groove width and

depth, the period number and the operating wavelength. For the sake of readability,

we use periodic grooves and randomly select some geometrical parameters to illustrate

our discussions. We should emphasize that this work is not intended to employ the

optimized geometrical parameters, but to quantitatively validate the theoretical models

incorporating the interactions in the metallic grating, which will pave the way for the

structure design and optimization with clear physical insight as well as a great reduce

of the computational cost.
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Figure 5. Comparisons among the a-FMM computational data (lines), the pure SPP

model predictions (circles), and the SPP-CW model predictions (dots) on (a) |β10|, (b)
arg(β10), (c) |r10|, and (d) arg(r10) as functions of the period p. The calculations are

performed with w = 0.4λ, h = 0.3λ, N = 10.

Figure 5 compares the performances of the SPP-CW models and the pure SPP

models. As clearly shown in the figure, the SPP-CW models predict the SPP excitation

and reflection coefficients with high accuracy, in both amplitudes and phases, even when

the periods are very small; whereas the accuracy of the pure SPP model predictions is

improved as the periods increase. This is because for small periods, the generated

CW field that is equal to (for the visible regime) or much larger than (for the infrared

regime) the generated SPP field [22, 33] cannot be neglected; while for large periods,

the generated SPP largely dominates because the generated CW has little influence

on other grooves due to its fast damping characteristics. Furthermore, the optimized

periods for the peak SPP excitation and reflection coefficients are well predicted by the

pure SPP models and the SPP-CW models, indicating that the pure SPP models are

accurate enough to predict the optimal periods, though there are some deviations in the

peak values.
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Figure 6. Comparisons among (a)(d)(g) the pure SPP model predictions, (b)(e)(h)

the SPP-CW model predictions, and (c)(f)(i) the a-FMM computational data on

(a)(b)(c) |β10|, (d)(e)(f) |r10| and (g)(h)(i) |t10| as functions of the groove width w

and height h. The calculations are performed with p = λ, N = 10.
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Figure 7. Comparisons among the a-FMM computational data (lines), the pure SPP

model predictions (circles), and the SPP-CW model predictions (dots) on (a) |βN |
and (b) |rN | with λ = 800nm as functions of N ; (c) |β10| and (d) |r10| with N = 10

as functions of the wavelength from the visible (λ = 0.5µm) to the thermal infrared

regime (λ = 10µm). The calculations are performed with w = 0.7λ, h = 0.3λ, p = λ.

When the groove width and height are varying, the SPP-CW models and the pure

SPP models are capable to capture all the salient features of the fully vectorial a-FMM

computational data, as illustrated in figure 6. There are some deviations mainly in

values for the pure SPP models, while the SPP-CW models predict with quantitative
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accuracy on βN , rN and tN , even when N is very large, as will be further discussed later.

We should emphasize that their corresponding phase distributions are also accurately

predicted by the SPP-CW models, which are not shown due to the space limitations.

It is clear that the SPP-CW models are accurate even when the groove is very wide

and very deep (w is up to 0.8λ and h is up to 0.85λ in figure 6). In other words, the

SPP-CW models are applicable for the metallic grating composed of very wide and very

deep subwavelength grooves.

There are pronounced deviations between the pure SPP model predictions and the

a-FMM computational data for large period number N ; whereas the SPP-CW models

hold the accuracy for various N , as illustrated by figure 8(a)(b). As a result, with

the SPP-CW models in forms of 4N linear equations, the SPP excitation and reflection

coefficients by various N periodic grooves will be easily and accurately predicted starting

from the information (i.e., the involved elementary coefficients) of a single groove.

The performance difference between the pure SPP models and the SPP-CW models

is enlarged as the operating wavelength increases. The former is only accurate at

visible and near-infrared frequencies, while the latter are accurate from the visible to

the thermal infrared, as clearly illustrated in figure 8(c)(d). This is because at visible

frequencies, the SPP contribution dominates, whereas the CW is preponderant in the

long wavelength regime [22]. As a result, only the SPP-CW models are applicable over

a broad spectral range.

−8 −6 −4 −2 0 2 4 6 8
−1

0

1

R
e(

 H
ysc

)

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

R
e(

 H
ysc

)

−8 −6 −4 −2 0 2 4 6 8
−1

0

1

 x / λ

R
e(

 H
ysc

)

(a)

(b)

(c)

 d

 w
R

 h
R

z

x
a−FMM data

°  °  ° SPP−CW model

 w
G

 h
G

Figure 8. Comparisons among the a-FMM computational data (lines), and the

SPP-CW model predictions (circles) on the scattered magnetic field at the surface

for the structure composed of a metallic ridge (of width wR and height hR) and

an air groove (of width wG and height hG). The calculations are performed with

wR = hR = wG = wG, = 0.1λ (a), = 0.2λ (b), = 0.6λ (c), d = 2λ.
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4. Summary

We have theoretically investigated the interactions among the free-space light, the SPP

mode and the CW in a subwavelength metallic grating composed of periodic or aperiodic

surface defects. By adopting the concept of field decomposition, the scattering of CW

was clarified and the CW-related coefficients were shown to be obtained though they

were believed to be difficult or even impossible to define and calculate according to the

classical scattering theory. We noticed that there is a remarkable relationship between

the scattering coefficients of the SPP and those of the CW, which can be used to

simplify the calculation. Based on the field decomposition and the elementary scattering

processes of the light, the SPP and the CW by a single defect, the interactions in the

excitation and the reflection of the SPP by N surface defects are embodied in two

intuitive SPP-CW models. By comparing with the corresponding pure SPP models, the

fully vectorial a-FMM computational data using exhaustive calculations with various

parameters, including the periods, the groove widths and heights, the period numbers,

and the operating wavelengths, the quantitative SPP-CW models were verified to be

very accurate. We believe that the SPP-CW models are useful as they pave the way

for the structure design and optimization with clear physical insight as well as a great

reduce of the computational cost.
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[7] López-Tejeira F et al 2007 Nat. Phys. 3 324–8
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