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ABSTRACT

Bottom-up visual saliency can be computed through infor-
mation theoretic models but existing methods face signifi-
cant computational challenges. Whilst nonparametric meth-
ods suffer from the curse of dimensionality problem and are
computationally expensive, parametric approaches have the
difficulty of determining the shape parameters of the distri-
bution models. This paper makes two contributions to infor-
mation theoretic based visual saliency models. First, we for-
mulate visual saliency as center surround conditional entropy
which gives a direct and intuitive interpretation of the center
surround mechanism under the information theoretic frame-
work. Second, and more importantly, we introduce a fast
nonparametric multidimensional entropy estimation solution
to make information theoretic-based saliency models compu-
tationally tractable and practicable in realtime applications.
We present experimental results on publicly available eye-
tracking image databases to demonstrate that the proposed
method is competitive to state of the art.

Index Terms— visual saliency, conditional entropy, k-
d tree, information theory, multidimensional entropy estima-
tion.

1. INTRODUCTION

In recent years, there has been increasing interest in the ap-
plication of the visual saliency mechanism to visual signal
processing problems. A predominant theory of computa-
tional visual saliency is the center-surround mechanism that
is ubiquitously found in the early stages of biological vision
[1]. Center-surround saliency models in the time domain [2],
frequency domain[3, 4], and information domain [5, 6, 7]
have been proposed. Radically, Judd et al.[8] proposed that
saliency maps can be learned directly from training samples
by machine learning methods instead of the center-surround
mechanism.

Center-surround methods in the information domain are
computationally most challenging because of the curse of di-
mensionality problem. For instance, both the self-information

[6] and the mutual information [7] approaches involve esti-
mating probability density functions in very high dimensional
spaces with limited samples. A few work-around solutions
have been proposed, by projecting the data onto lower di-
mensional spaces through independent component analysis
(ICA) [6], discrete cosine transform (DCT) [9], and Walsh-
Hadamard Transform (WHT) [10] or by modeling informa-
tion quantity as a parametric Generalized Gaussian Distribu-
tion (GGD) [7]. However, projection methods are compu-
tationally intensive and estimating the shape parameters of
GGD is hard as the authors of [7] have already pointed out.

In this paper, the center surround principle of visual
saliency is directly formulated as the conditional entropy of
the center given its surrounds. A major contribution of this
paper is a fast nonparametric multidimensional entropy esti-
mation solution that overcomes the curse of dimensionality
problem and computational complexity issue of information
domain visual saliency models thus making information-
based saliency models computationally tractable and prac-
ticable in real-time applications. We present experimental
results on two publicly available eye-tracking still image
databases [6, 8] to demonstrate the effectiveness of the pro-
posed method and compare it with existing techniques.

2. SALIENCY BASED ON CENTER SURROUND
CONDITIONAL ENTROPY

Let Ic(x, y) be an image patch at location (x, y) and Isr(x, y)
its surrounding regions. The conditional entropy of the center
given its surround can be defined as H(Ic(x, y)|Isr(x, y)) =
H(Ic(x, y), Isr(x, y)) − H(Isr(x, y)) or in terms of joint and
marginal probabilities

H =
∑

Ic(x,y)∈I
Isr(x,y)∈I

p(Ic(x, y), Isr(x, y))log
p(Isr(x, y))

p(Ic(x, y), Isr(x, y))

(1)
where H is short for H(Ic(x, y)|Isr(x, y)). The conditional
entropy H(Ic(x, y)|Isr(x, y)) can be understood in a number
of ways. From a coding or information theory’s perspective,
it will take H(Ic(x, y), Isr(x, y)) bits to code the center and
its surrounds together, but if we knew the surround Isr(x, y)



already, we will have gained H(Isr(x, y)) bits of information,
and the conditional entropy measures the remaining bits nec-
essary for coding the center. From an uncertainty or infor-
mativeness point of view, the conditional entropy measures
the remaining uncertainty of the center once its surrounds are
known, or the amount of information of the center given the
knowledge of its surrounds. We can use the conditional en-
tropy as a measure of saliency, i.e.

S(x, y) = H(Ic(x, y)|Isr(x, y)) (2)
The definition of saliency in equation (2) and (1) is consis-
tent with a number of definitions in the literature including
self-information [6], surprise [11] and decision theoretic
saliency [7]. The self-information saliency of [6] measures
the self-information of Ic(x, y) in the context of its surrounds,
−log{p(Ic(x, y))}. If Ic(x, y) is a common patch within the
image, then p(Ic(x, y)) is large, −log{p(Ic(x, y))} will be
small, hence the saliency will be small. S(x, y) in (2) has
the same property, that is, if the center and its surrounds are
very similar, then S(x, y) will be small and vice versa. The
surprise measure of [11] can be re-written as ( S is short for
S(Ic(x, y), Isr(x, y))

S =
∑

Ic(x,y)∈I
Isr(x,y)∈I

p(Isr(x, y))log
p(Isr(x, y))

p(Isr(x, y)|Ic(x, y))
(3)

Here, the surrounds Isr(x, y)) can be interpreted as the model
or background information and the center Ic(x, y) as the new
observation data. Again, the surprise measure will be small
when the center and surround are similar and large when they
are different. The decision theoretic discriminant saliency of
[7] boils down to the computation of mutual information be-
tween the center and its surround, while mutual information
and conditional entropy are related as follows.
MI(Ic(x, y), Isr(x, y)) = H(Ic(x, y))−H(Ic(x, y)|Isr(x, y))

(4)
MI(Ic(x, y), Isr(x, y)) is deduced amount of uncertainty for
the center Ic(x, y) if its surrounds Isr(x, y) are known. MI
can be interpreted as how much similarity surround and center
data has, therefore it is consistent with conditional entropy. A
large mutual information means significant overlap between
center and surround information hence the saliency is small,
so is the conditional entropy. All these information measure-
ments involve the estimation of probability density functions
in very high dimensional spaces with limited data samples,
a very challenging problem. In practice, various simplifica-
tion processes have to be used, e.g., [6] employed indepen-
dent component analysis (ICA) and [7] assumed a parametric
Generalized Gaussian Distribution (GGD) model. In the next
section, we introduce a fast non-parametric method.

3. FAST NONPARAMETRIC ESTIMATION OF
CENTER SURROUND CONDITIONAL ENTROPY

Visual data have excessive amount of information, but only
some attracts attention at early stage. Itti et al.[2] used low-

Fig. 1. Medium Band Filter Flow Chart

level features of intensity, colour and orientation at multi-
resolution to build several conspicuity maps and combine
them linearly to form a saliency map. In the discriminant
saliency map approach, Gao et al.[7] extracted and mod-
eled band-pass features by Wavelet/Gabor Filters and used
parametric GGD to estimate the mutual information between
the center and surround. In this paper, we use mid-band
frequency features which have been shown to allow the
best prediction of attention globally [12]. Figure 1 shows
a step-by-step illustration of mid-band filtering. Firstly, a
9/7 Cohen-Daubechies-Feauveau (CDF) wavelet[13] decom-
poses an image by three levels. Then, all level 1 components
and level 3 low-low frequency component are removed. Fi-
nally, the remaining components are converted back to time-
domain by the inverse of the 9/7 CDF wavelet to form the
mid-band image. The mid-band image is divided into NxN
patches (8x8 patches are utilized in this paper). The saliency
of each center patch C, is computed as the conditional en-
tropy of C given four of its surrounding patches (N, S, W,
and E) as

S(C) = H(C|(N,S,W,E))

= H(C,N,S,W,E)−H(N,S,W,E) (5)

Estimating the two joint entropies on the right-hand side of
(5) is challenging because of the high dimensionality of the
data. To get round the problem, we take a similar approach as
[14] and treat the coordinate locations of the pixels as random
variables and approximate (5) as

S(C) = H(c(x, y), n(x, y), s(x, y), w(x, y), e(x, y))

− H(n(x, y), s(x, y), w(x, y), e(x, y)) (6)

where c(x, y), n(x, y), s(x, y), w(x, y), e(x, y) are respectively
pixels from the C,N,S,W,E patches at the same reference
location (x,y). We treat the problem as drawing samples from
(x,y) in order to approximate the conditional entropy. With
the formulation of (6), we can now simplify the problem as
estimating the entropies in the 4-D and 5-D spaces with a total
of 8x8 = 64 samples. We use a technique similar to [15] to
achieve fast implementation of (6). The technique is based on
a k-d tree style approach to partitioning the input data space
Ω ∈ <D into A = {Aj |j = 1, 2, . . . ,m} with Ai

⋂
Aj = ∅

if i 6= j and
⋃

j Aj = Ω. Let nj be the number of samples
in the cell Aj , V(Aj) the volume of cell Aj , the total number
of samples N, then the multidimensional joint entropy can be
estimated as

Ĥ =

m∑
j=1

nj

N
log

(
N

nj
V (Aj)

)
(7)



Fig. 2. From left to right: Image Sample, ITT, AIM, ENT and
MIT saliency maps

The computational complexity of the algorithm is Θ (DNlogN)
and the space complexity is Θ(DN). For the algorithm to
work, the sample size has to satisfy N ≥ 2D. Our setting,
N = 64 and D = 5 or D = 4, 25 = 32 and 24 = 16, therefore
meets the samples size requirement of the algorithm.

4. EXPERIMENTAL RESULTS

We evaluate the new conditional entropy based saliency
method (from now on referred to as ENT) on publicly avail-
able eye tracking databases of Bruce and Tsotos [6] and Judd
et al.[8], and compare it with a number of saliency estima-
tion methods in the literature including, Itti and Koch (ITT)
[2], spectral residual saliency (SRS) [3], Information Maxi-
mization (AIM)[6], and discriminant saliency (DIS) [7]. Fig.
2 shows the saliency maps generated by different methods
of a sample image. It is seen that the visual appearance of
these saliency maps are quite similar. To compare the perfor-
mances of different methods quantitatively, we use Tatler’s
numeric measurement [16]. Saliency maps are treated as
binary classifiers to discriminate fixation points versus non-
fixation points. Threshold for classifying fixation points are
not fixed but systematically changed from minimum to maxi-
mum of saliency values to generate ROC curves. ROC curves
of various methods on Bruce’s database [17] are shown in
Fig. 3. Area under the ROC curves (AUC) have been used
by a number of authors to give quantitative comparison of
saliency computation methods and table 1 shows the AUC
values of five different methods.

Table 1. Area Under Curve (AUC) for different methods.
Methods ITT [2] AIM [6] New ENT DIS[7] SRS[3]
AUC 0.70947 0.73873 0.78167 0.76940 0.75434

The ROC curves show that the new ENT method gener-
ally performs better than AIM and ITT methods, and the per-
formances are reconfirmed by the area under curve (AUC)
results in table 1. In the table, the AUC result of DIS saliency
method was performed on the same database by the original
authors and taken directly from [7]. These AUC results show
that ENT methods also performs better or at least as well as
the DIS method.

Fig. 3. ROC of ITT, AIM, ENT and SRS methods

Fig. 4. Inter-subject ROC of ITT, AIM, ENT, and SRS

ROC curves and AUC values are useful for comparing
different computational saliency approaches, but they do not
show relationships between these methods and eye tracking
data. Inter-subject ROC curves proposed by Harel et al.[18]
help to show performances of human visual system versus
that of computational saliency methods. Fig. 4 shows the
Inter-subject ROC curves of ENT against a few other meth-
ods for the database of [6]. This plot clearly demonstrates that
our new ENT technique has outperformed current state-of-
art saliency methods and displayed good matching with eye-
tracking data.

Table 2. Time Consumption of Saliency Methods
Methods ITT AIM ENT SRS
Time (s) 1.2488 66.2673 0.93094 0.33654

Information-theoretic saliency methods such as AIM has
drawbacks due to their intensive computational requirements
and are unsuitable for real-time applications. The proposed
method can overcome this issue. Table 2 shows the compu-
tational speeds of several techniques. It is seen that ENT is



over 70 times faster than AIM and 1.3 times faster than ITT.
Though it is slower than SRS, ENT can better match eye-
fixation data than SRS. All experiments are done in MATLAB
on a 2.33 GHz Intel Core 2 Duo computer running Linux.

The ENT method was further tested on the database cre-
ated by Judd et al.[8]. Quantitative results in table 3 once
again show that our method compares very well against other
state of the art methods.

Table 3. Area Under Curve (AUC)
Methods ITT AIM ENT MIT[8]
AUC 0.74940 0.71165 0.78157 0.68845

5. CONCLUDING REMARKS

In this paper, we have formulated center-surround bottom-
up visual saliency as conditional entropy and presented a fast
nonparametric multidimensional entropy estimation solution
to overcome the inherent curse of dimensionality in conven-
tional nonparametric approaches and difficulty of determin-
ing shapes of distribution in parametric approaches of infor-
mation domain visual saliency models. We have shown that
the new method is not only computationally efficient but also
achieves state of the art performances on publicly available
eye tracking databases.
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