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Abstract—When evolutionary algorithms are used to solve
constrained optimization problems, the question arises how best
to deal with infeasible solutions in the search space. A recent
theoretical analysis of two simple test problems argued that
allowing infeasible solutions to persist in the population can
either help or hinder the search process, depending on the
structure of the fitness landscape. We report new empirical and
mathematical analyses that provide a different interpretation of
the previous theoretical predictions: that the important effect is on
the probability of finding the global optimum, rather than on the
time complexity of the algorithm. We also test a multi-objective
approach to constraint-handling, and with an additional test
problem we demonstrate the superiority of this multi-objective
approach over the previous single-objective approaches.

Keywords: evolutionary algorithms, constraint-handling, multi-
objective optimization.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been very successful
at solving complex real-world optimization problems (see
for example [1], [2], [3]). One of the difficulties of these
problems is that the real world often imposes constraints on the
feasibility of potential solutions, so it is important to include
in an EA some means for dealing with these constraints.

A key decision in algorithm design is whether to allow
populations to include infeasible solutions during the search
process [4]. Whilst infeasible solutions are clearly of no
interest in the final population, their presence during the search
might enable the algorithm to move between disjoint feasible
regions of the search space, to more-easily explore solutions
at the edge of feasibility (as optimal solutions are often found
there), and/or to take a shorter path to the global optimum
by traversing the infeasible part of the search space. On the
other hand, allowing the search to include infeasible solutions
enlarges the search space and may cause the algorithm to waste
resources running up blind alleys, or even to become trapped
in infeasible local optima and be unable to return from there
to the feasible part of the search space.

A recent theoretical analysis of two subset sum prob-
lems [5] demonstrated this conundrum. The analysis defined
two single-objective algorithms, one that allows infeasible
solutions and one that does not, and made several theoretical
predictions of the time complexity of the two algorithms on
the two problems. Although the two problems are very similar
in nature, one of them could be solved in practical time only

by allowing infeasible solutions in the population, while the
other could be solved only by excluding infeasible solutions.

The principal contributions of this paper are threefold.

• We give new empirical and mathematical analyses
of [5]’s algorithms and test problems that provide a
different interpretation: that the differences can best
be expressed in terms of the probability of solving the
problem (i.e. avoiding getting trapped in local optima),
rather than the time complexity.

• We define a new subset sum problem, closely related
to the original two problems, which neither of the
algorithms is able to solve reliably.

• We define a multi-objective EA MORF that maintains
a measure of feasibility for each solution in the
population as a separate objective, and we show that
MORF is able to solve all three of the subset sum
problems quickly 100% of the time.

Adding a constraint objective is not in itself a new idea [6],
[7], [8], but we feel that the analysis reported here contributes
to the understanding of this important issue.

The rest of the paper is organised as follows. Section II
briefly reviews constraint-handling methods for EAs. Sec-
tion III describes the two constrained problems and the two
single-objective algorithms introduced in [5], and Section IV
presents our empirical and mathematical analyses of these
problems. Section V introduces our simple multi-objective al-
gorithm MORF and shows that it easily solves both problems.
Section VI introduces our third problem and shows that while it
cannot be solved reliably by either single-objective algorithm,
it is easily solved by MORF. Section VII concludes the paper
and suggests possible future lines of research.

II. RELATED WORK

The most generic statement of a constrained optimization
problem is

minimize fi(x), 1 ≤ i ≤ n,
subject to gi(x) = 0, 1 ≤ i ≤ k,
and hi(x) ≥ 0, 1 ≤ i ≤ m,
where each fi : S → R, gi : S → R+, hi : S → R

That is, from a search space S, find x that minimizes multiple
real-valued functions fi, subject to the requirement that each



non-negative real-valued function gi maps x to 0 and each
real-valued function hi maps x to a non-negative number.
The fi are known as objectives, the gi are known as equality
constraints, and the hi are known as inequality constraints.

Mezura-Montes and Coello [9] recently surveyed the state
of the art in constraint-handling in nature-inspired optimiza-
tion, including evolutionary algorithms and swarm intelligence
algorithms. Popular kinds of constraint-handling methods dis-
cussed include

1) feasibility rules,
2) stochastic ranking,
3) ε-constrained method,
4) novel penalty functions,
5) novel special operators,
6) multi-objective concepts, and
7) ensemble of constraint-handling techniques.

Category 5 includes repair methods designed to ensure that
all solutions are feasible. For example, Leguizamón and
Coello [10] proposed a boundary search method based on a
binary search between a feasible and an infeasible solution.

The other categories allow infeasible solutions. For ex-
ample, in Category 1, infeasible solutions are allowed but
are considered inferior. A popular example of this is Deb’s
constraint domination [7], [11], which uses the following rules
when comparing potential solutions:

• all feasible solutions are preferred to all infeasible
ones;

• more-feasible ones are preferred to less-feasible ones;
and

• among feasible solutions, Pareto dominance deter-
mines ranking (the underlying problem can be multi-
objective).

There are many other approaches and variations to constraint-
handling based on feasibility rules, but Mezura-Montes and
Coello [9] state that these kinds of approaches are prone to
premature convergence.

In Category 2, first introduced by Runarsson and Yao [12],
[13], randomness is added to the selection process to obtain a
balance between objective values and feasibility.

Category 3 includes methods based on Takahama, Sakai
and Iwane’s ε-constraint concept [14], in which equally infea-
sible, feasible and nearly feasible solutions are compared based
on their objective values, and all other cases are compared
based on their feasibility.

Category 4 consists of improvements on the naı̈ve penalty
function approach, in which constraint violations are repre-
sented by penalty functions, which are added to the original
objective function, creating a modified objective function.
Examples include adaptive penalty functions (for example [15],
[16]) and dynamic penalty functions (for example [17]).

Methods in Category 6 also allow infeasible solutions,
adding additional objectives that quantify the degree of infea-
sibility, and then solving the resulting multi-objective problem.
For example, in [18], an objective-first ranking rule was

introduced to solve an ore-processing circuit design problem.
This scheme was generalised and further studied in [8].

Many methods have been proposed and used on a wide
variety of constrained optimization problems, but to date,
theoretical results are sparse. Some recent work provides
results for Evolution Strategies on real-valued linear problems
with a single linear constraint [19], [20]. The second of these
compares the strategies of repairing infeasible solutions versus
resampling them.

In [21], Zhou and He obtained results concerning the effect
of the choice of penalty coefficients on different problems.
He and Zhou [22] presented results comparing penalising or
repairing infeasible solutions on certain knapsack problems.
In [5], Yu and Zhou build on theoretical results in [23]
concerning EFHTs (expected first hitting times — the number
of generations expected before the algorithm reaches the global
optimum), to obtain a sufficient condition and a necessary
condition concerning which of two simple single-objective
EAs, one which allows infeasible solutions and one which does
not, has the better EFHT.

III. TWO TEST PROBLEMS AND TWO SINGLE-OBJECTIVE
ALGORITHMS

In order to explore factors that affect the usefulness of
infeasible solutions during search, we use some configurable
test problems. All of the problems are based on the subset
sum problem. Problems 1 and 2 were introduced in [5]. In
Section VI we introduce a third problem, closely related to
the first two.

In this version of the subset sum problem, n integer weights
W = (w1, w2, . . . , wn) and a constant C are given. The
problem is to select a subset of the weights that maximizes
the total weight, while not exceeding C. More formally,

maximize
∑n

i=1 xi × wi

subject to
∑n

i=1 xi × wi ≤ C,
where each xi ∈ {0, 1}

The three problems differ with respect to the values of wn and
C. Different choices give rise to different fitness landscapes,
which we can visualise by partitioning {0, 1}n into equivalence
classes based on fitness values. To this end, we introduce some
notation. Assuming that the first n − 1 weights are all equal,
the fitness of a solution x depends on how many 1s occur in
x1, x2, . . . , xn−1, and on whether xn is 0 or 1. Therefore we
use

< m > k

to denote the set of solutions that have m 1s in their first n−1
bits, and whose last bit is k. Note that this equivalence class
contains

(
n−1
m

)
distinct solutions.

A. Single-objective algorithms

In [5], Yu and Zhao presented two simple single-objective
EAs, one which allows infeasible solutions and one which does
not, and made predictions concerning the EFHT of the two
algorithms based on a theoretical argument. In Section IV, we
report empirical testing of these predictions We also present
an alternative mathematical analysis.



Both algorithms from [5] can be described as single-
objective, (n+n)-EAs. Both algorithms begin with a randomly
generated population of n initial solutions. Reproduction is
by single-bit mutation: from each parent, exactly one child is
produced which differs from its parent in exactly one bit. In
each generation, the n best solutions are selected from the n
parents and their n children.

For both algorithms, the fitness of a solution is the dif-
ference between the solution’s total packed weight and the
capacity C, i.e.

F (x) = −|C −
∑n

i=1 xi × wi|

(Note that in [5], the fitness for one of the algorithms is
presented without the absolute value, but this formulation is
equivalent.)

In the first algorithm, EA-1, any infeasible solutions in
the initial population are rejected and regenerated, and all
infeasible offspring are rejected in subsequent generations. In
the second algorithm, EA-2, infeasible solutions are allowed.

We now describe each of the problems introduced by Yu
and Zhao [5].

B. Problem 1

For Problem 1, as introduced in [5],

w1, w2, . . . , wn−1 > 1,

wn ≥ 1 + 2
∑n−1

i=1 wi, and
C = wn

More specifically, in our experiments and diagrams to follow:

w1, w2, . . . , wn−1 = 2, and

C = wn = 1 + 2
∑n−1

i=1 wi = 4n− 3

The fitness landscape for Problem 1 is shown in Fig. 1. The
figure shows the case of an odd number of bits, rewriting n as
2m+1, for easier comparison with later figures (although the
reasoning is the same for even numbers of bits). The optimum
is at (0, 0, . . . , 0, 1), i.e. the sole member of the equivalence
class < 0 > 1. Feasible solutions are shown in a box. Arcs
show possible mutation transitions. From this it can be seen
that the only feasible paths to the optimum that respect fitness
either start at the optimum, or start with all 0s and mutate the
last bit. If the population at any point contains no solutions
from < 0 > 0 and < 0 > 1, then EA-1 must fail, as it cannot
produce a < 0 > 0 mutant (any such mutant would be less fit
than all members of the parent population), and so there is no
available route to the optimum.

Therefore, most feasible paths will eventually be trapped
at a local optimum in < 2m > 0, so that this problem is
very difficult for any algorithms that does not allow infeasible
solutions, such as EA-1. On the other hand, if infeasible
solutions are allowed, as for EA-2, then the fitness gradient
will reliably drive solutions toward the optimum.

This intuitive analysis is consistent with Proposition 1
of [5], which states that Problem 1 should be easier for
algorithms that allow infeasible solutions. It is also consistent
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Fig. 1. Problem 1 in n = 2m + 1 bits, with the first 2m weights all
equal. EA-1 recognises only < k > 0 and the optimum, < 0 > 1. Feasible
equivalence classes are highlighted. Fitnesses improve down the page.

with Proposition 3, which suggests that the EFHT for EA-2
should be at worst quadratic in n, while for EA-1 it should be
at best exponential in n.

C. Problem 2

For Problem 2, [5] specifies that

w1, w2, . . . , wn−1 > 1,

wn = 1 +
∑n−1

i=1 wi, and

C =
∑n−1

i=1 wi

More specifically, in our experiments:

w1, w2, . . . , wn−1 = 2,
wn = 2n− 1, and
C = 2n− 2

The fitness landscape for Problem 2 is shown in Fig. 2. The
optimum is at (1, 1, 1, . . . , 0), i.e. in this case < 2m > 0.
It is easy to see that the feasible paths that respect fitness
all lead directly to the optimum. Infeasible solutions are not



< 2m > 1

?





































�

< m > 1

?

������������9

< m− 1 > 1

?
< 0 > 1

< 0 > 0

?

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
Sw

< m− 1 > 0

?

HHH
HHH

HHH
HHHj< m > 0

?
< 2m > 0

Fig. 2. Problem 2 in n = 2m+ 1 bits, with the first 2m weights all equal.
EA-1 recognises only < k > 0. The optimum is < 2m > 0.

helpful, but many will mutate onto the feasible path eventually.
Others will become trapped in the basin of the local optimum at
< 0 > 1, due to the combination of small fixed mutation steps
(always exactly one bit), and a 100% elite selection scheme.
These factors make it impossible to climb out of the basin of
the attraction of the local optimum.

EA-2 can fail to solve this problem: if the population at any
point consists entirely of solutions in < k > 1, k < n/2, then
EA-2 cannot produce a feasible mutant, and will eventually
become trapped at the local optimum < 0 > 1.

Again, this is consistent with Proposition 2 of [5], which
states that an algorithm that does not allow infeasible solutions
should do better on Problem 2. Proposition 4 suggests that the
EFHT for an EA-2 should be at best exponential in n, while
for EA-1 it should be at worst quadratic in n.

IV. EXPERIMENTS AND RESULTS WITH PROBLEMS 1 & 2

In order to empirically test the performance of these
algorithms, we executed each one 100 times on each problem,
for n = 10, 20, 30, . . . , 300. In each case, the population size
was also n, as in [5]. Each run was continued until the first
hit, or, if the optimum was not reached, for 1,000 generations
(by which time the population has converged). We recorded,
for each run, the first hitting time.

A. Problem 1

The results for Problem 1 are summarized in Fig. 3. The
theoretical lower bound for EA-1 was exponential, and empir-
ically, we found that, in fact, EA-1 almost never solves the
problem (except for a small proportion of runs with n = 10).
EA-2 solves the problem 100% of the time, and the FHT
appears to be almost linear in problem size (the theoretical
upper bound for EA-2, given in [5], was quadratic).

B. Problem 2

The results for Problem 2 are summarized in Fig. 4. Recall
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Fig. 3. Performance of the single-objective EAs on Problem 1. The x-axis is
the problem size, i.e. n. The right axis is the percentage of runs on which the
algorithm reached the optimum (% success). The left axis is the mean first
hitting time for the algorithm, over the successful runs.
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Fig. 4. Performance of the single-objective EAs on Problem 2. The
performance lines for the two algorithms coincide.

that [5] predicts that EA-1 should beat EA-2 on this problem,
and further that EFHT should be at best exponential for EA-2.
Examination of our empirical results shows that, while the
theoretical results hold, a more refined description of the
behaviour of the algorithms is possible.

EA-1 does indeed do better than EA-2, but in an interesting
way. For those runs where EA-2 succeeds, the FHT appears to
be approximately linear (note: not quadratic) in problem size,
as it is for EA-1 (in fact the curves for the two algorithms are
indistinguishable in the figure). The real difference between
the two algorithms is their success rate. For smaller values of
n, say up to about 30, EA-2 succeeds more than 75% of the
time, a percentage that drops to around 50-60% for n > 100.
While the EFHT is indeed at least exponential, in practical
terms, it either succeeds quickly (about half the time), or fails
entirely.

C. Expected successful first hitting time for Problem 2

These empirical results suggest that rather than considering
only expected first hitting time over all runs of an algorithm,
a better understanding is obtained by factoring EFHT into



ESFHT (n) =

∑n−1
j=0

(
n−1
j

)
(E(n− 1− j, 0)S(n− 1− j, 0) + E(j, 1)S(j, 1))∑n−1
j=0

(
n−1
j

)
(S(n− 1− j, 0) + S(j, 1))

(1)

E(j, 0) = 0, if j = 0 (as this is already at the optimum) (2)

= 1 +
jE(j − 1, 0) + (n− j)E(j, 0)

n
, if 0 < j <

n

2
(3)

= 1 +
jE(j − 1, 0) + (n− 1− j)E(j, 0)

n− 1
, if j ≥ n

2
(4)

E(j, 1) = irrelevant, if j <
n

2
(because these cases all fail) (5)

= 1 +
E(n− 1− j, 0) + (n− j − 1)E(j, 1)

n− j
, if j =

n

2
(6)

= 1 +
E(n− 1− j, 0) + jE(j − 1, 1) + (n− j − 1)E(j, 1)

n
, if j >

n

2
(7)

S(j, x) = 1− x, if j <
n

2
(8)

=
jS(j − 1, x) + x

j + 1
, if j ≥ n

2
(9)

Fig. 5. Recurrence relations for the ESFHT of EA-2 on Problem 2 in n bits (n even), with a population of 1. E(j, x) defines the ESFHT from the given state,
and S(j, x) defines the probability of success from the given state.

success rate, and expected first hitting time over successful
runs. This is what we have plotted in Figs. 3 and 4.

In the remainder of the paper, we will refer to the latter
as ESFHT (expected successful first hitting time). We can
illustrate the utility of this idea by deriving some theoretical
performance calculations for EA-2 on Problem 2, for the case
of a population size of 1 - i.e. we consider the case of a (1+1)-
EA, a hill-climber.

We first introduce some notation. Let n be the total number
of bits. Assume that n is even: this means that

• the basin of attraction for the global optimum is
< k > 0, k ≥ n/2, and

• the basin of attraction for the local optimum is
< k > 1, k < n/2.

Allowing for odd n just complicates the second of these
slightly.

We define S(j, x) to be the probability that EA-2 succeeds,
starting from a solution that has x as its last bit, and has j
bits different from the corresponding local or global optimum.
Recall that the global optimum is at < n−1 > 0 and the local
is at < 0 > 1, so if x is 0, then j is the number of 0s in the
solution, and if x if 1, then j is the number of 1s. We define
E(j, x) to be the expected first hitting time for a population
that starts with such a solution, given that the run is successful.
There are six distinct cases to consider for E(j, x) and two for
S(j, x), all shown in Fig. 5.

Equation 1 calculates ESFHT as an average of the expected
first hitting times for successful runs from each possible start-

ing state, where the average is weighted by success probability,
and by the relative frequency of each starting state.

Equation 3 is obtained by considering the possible muta-
tions from < n − j − 1 > 0. j of these mutations flip one
of the initial 0s to a 1, producing a solution in < n− j > 0,
which then has an expected successful first hitting time of
E(j − 1, 0). All other possible mutations are rejected because
the resulting mutant would be less fit than its parent: there
are n − j of those. Equation 4 is slightly different because
one of the possible mutations leads to failure, and we consider
only successful runs in this calculation. Equations 6 and 7 are
obtained in the same way as Equations 3 and 4. In all of these
equations, the denominator is the number of mutations that do
not immediately lead to guaranteed failure.

Equation 8 reflects the fact that success is guaranteed when
x is 0 and the other bits are mostly 1s, while failure is
guaranteed if x is 1 and the other bits are mostly 0s. Equation 9
is then obtained in a similar way to the other equations.

These recurrence relations can be solved by straightforward
algebraic manipulation to obtain the solutions shown in Fig. 6.
From these it is trivial to calculate ESFHT programmatically.
The result is illustrated in Figs. 7 and 8. While we have not
been able to derive an exact closed-form solution for these
equations, some partial results follow. Hj is the jth harmonic
number.

E(j, 0) = nHj , for j < n/2

E(j, 0) = (n− 1)Hj +Hn/2−1, for j ≥ n/2
E(j, 1) < nHn/2−1 + n, for j ≥ n/2

(Recall that E(j, 1), j < n/2 is irrelevant: these are all



ESFHT (n) =

∑n−1
j=0

(
n−1
j

)
(E(n− 1− j, 0)S(n− 1− j, 0) + E(j, 1)S(j, 1))∑n−1
j=0

(
n−1
j

)
(S(n− 1− j, 0) + S(j, 1))

(10)

E(j, 0) = 0, if j = 0 (11)

= E(j − 1, 0) +
n

j
, if 0 < j <

n

2
(12)

= E(j − 1, 0) +
n− 1

j
, if j ≥ n

2
(13)

E(j, 1) = E(n− 1− j, 0) + n− j, if j =
n

2
(14)

=
n+ E(n− 1− j, 0) + jE(j − 1, 1)

j + 1
, if j >

n

2
(15)

S(j, x) = 1− x, if j <
n

2
(16)

S(j, 0) =
n

2(j + 1)
, if j ≥ n

2
(17)

S(j, 1) = 1− n

2(j + 1)
, if j ≥ n

2
(18)

Fig. 6. Solutions to the recurrence relations in Fig. 5.

j S(j, 0) E(j, 0) S(j, 1) E(j, 1)
9 0.500 27.544 0.500 23.833
8 0.556 26.544 0.444 25.370
7 0.625 25.419 0.375 26.042
6 0.714 24.133 0.286 26.190
5 0.833 22.633 0.167 25.833
4 1 20.833 0 -
3 1 18.333 0 -
2 1 15.000 0 -
1 1 10.000 0 -
0 1 0.000 0 -

Fig. 7. S(j, x) and E(j, x) for EA-2 on Problem 2, with n = 10.

guaranteed failures.) From these formulae, and recalling that
Hn ≈ log(n) + γ, where γ is the Euler-Mascheroni constant,
we can see that ESFHT is O(nlog(n)).

Also, the overall success rate can be derived from Equa-
tions 16–18. The exact formula is d

n
2 e
n . This formula tells us

that the success rate is proportional to the relative size of
the basin of attraction of the global optimum, which is an
intuitively satisfying result.

V. A MULTI-OBJECTIVE ALGORITHM

To compare with these single-objective algorithms, we
also test a simplified version of our algorithm from [8]. We
explicitly represent both the original weight objective and an
‘infeasibility’ or ‘error’ objective:

• original objective: minimize the unused capacity, i.e.
minimize max(0, C −

∑n
i=1 xi × wi), and
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Fig. 8. The ESFHT for EA-2 on Problem 2, with a population of 1.

• infeasibility objective: minimize the excess load, i.e.
minimize max(0,

∑n
i=1 xi × wi − C).

With these two objectives, the following ranking rule is used:

• solutions are first ranked using Fonseca and Fleming’s
Pareto ranking [24] (including the additional error
objective);

• for solutions with the same rank, the most feasible one
is preferred.

Note that in this ranking scheme:

• no infeasible solution can dominate a feasible one,
because a feasible solution always has an optimal
value in the infeasibility objective;



• the global optimum from the original problem (if there
is one) dominates every other solution, because it has
the best value in the original objective, and an optimal
value in the infeasibility objective.

The initial population is created randomly as for the single-
objective case. The ranking scheme above is then used to
select the best n solutions from amongst n parents and their
n children in each subsequent generation. We refer to this
algorithm as MORF (multi-objective - ranking first).

A. Performance of MORF on Problems 1 and 2

The performance of MORF on Problem 1 is almost identi-
cal to that of EA-2. On Problem 2, the performance of MORF
is almost identical to that of EA-1. In both cases, MORF
always succeeds, in time that appears to be almost linear with
problem size. Fig. 9 illustrates. Thus the multi-objective algo-
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Fig. 9. Performance of the multi-objective EA MORF on Problems 1 and 2.
The lines for the two problems coincide.

rithm performs as well as the best single-objective algorithm on
both problems, which suggests that the treatment of infeasible
solutions is not necessarily the key issue.

Fig. 10 shows the 2-D fitness landscape for Problem 2 using
MORF. Note that there are now no local optima: compare this
with Fig. 2.

VI. PROBLEM 3

We have seen that EA-1 can solve Problem 2 easily, but
cannot solve Problem 1, while EA-2 solves Problem 1 easily,
while solving Problem 2 only around 50% of the time. This
poses the question: are there problems like these that are
difficult for both EA-1 and EA-2?

The answer is yes. We introduce a new problem,
Problem 3, which is the same as Problem 1 except that the
constant factor 2 is missing, i.e.

w1, w2, . . . , wn−1 = 2, and

C = wn = 1 +
∑n−1

i=1 wi = 2n− 1

The fitness landscape for Problem 3 is shown in Fig. 11.
As for Problem 1, the optimum is at (0, 0, . . . , 0, 1), i.e. it
is in < 0 > 1. There is a large basin of attraction around
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Fig. 10. Objective space for Problem 2 as a multi-objective problem. All
feasible solutions are on the x-axis (i.e. the ‘error’ objective value is 0).
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circumstances.

a feasible local optimum in the bottom left corner of the
figure. There is also opportunity for infeasible solutions to
fall towards that local optimum. Therefore, a single objective
algorithm, whether it allows infeasible solutions or not, might
be expected to find this problem difficult. As we have proposed
this problem in the present paper, there is no analysis of it
in [5].
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Fig. 11. Problem 3 in n = 2m + 1 bits, with the first 2m bits all equal.
EA-1 recognises only < k > 0 and the optimum, < 0 > 1.

A. Performance Results for Problem 3

Our empirical results show that Problem 3 is virtually
unsolvable for EA-1, presents similar difficulties to those of
Problem 2 for EA-2, but is easily solved, in apparently almost
linear time, by MORF. Fig. 12 illustrates.
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Fig. 12. Performance of all three EAs on Problem 3. The performance lines
for EA-2 and MORF almost coincide. MORF has a 100% success rate.

These results reinforce the finding that whether or not
infeasible solutions are allowed to persist in the population
is not the key issue in determining the success of an EA on
these problems. Rather, it seems that the size and location of
local optima is the determining factor. EA-1 cannot handle
Problem 1 because of a large local optimum in feasible space;
EA-2 has trouble with Problem 2 because of the local optimum
in feasible+infeasible space; and neither does well on Problem
3, which has a local optimum that appears in the search space
as a whole as well as in feasible space. These local optima
disappear in the multi-objective landscape.

VII. CONCLUSIONS

We have given new empirical and mathematical analyses
of a recent study of the question of the usefulness of in-
feasible solutions in evolutionary search. Yu and Zhou [5]
presented two similar problems, one which can be solved
only by maintaining infeasible solutions in the population, and
another which can be solved only by excluding them. We have
given empirical and mathematical evidence to support a re-
interpretation of Yu and Zhou’s results, we have described a
third similar problem which cannot be solved reliably by either
single-objective approach, and we have defined a simple multi-
objective algorithm that solves all three problems 100% of
the time by maintaining “degree of infeasibility” as a separate
objective.

We plan to extend this work by generalising our analysis
into more-complex problem sets.
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