
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2013 

1-1-2013 

Mobile games with intelligence: a killer application? Mobile games with intelligence: a killer application? 

Philip Hingston 
Edith Cowan University 

Clare Bates Congdon 

Graham Kendall 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2013 

 Part of the Computer Sciences Commons, and the Game Design Commons 

10.1109/CIG.2013.6633660 
Hingston, P., Congdon, C.B., & Kendall, G. (2013). Mobile games with intelligence: a killer application?. Proceedings 
of the 2013 IEEE Conference on Computational Intelligence and Games. (pp. 1-7). Niagara Falls, Canada. IEEE. © 
2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works. Available here 
This Conference Proceeding is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2013/316 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2013
https://ro.ecu.edu.au/ecuworks2013?utm_source=ro.ecu.edu.au%2Fecuworks2013%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks2013%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=ro.ecu.edu.au%2Fecuworks2013%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CIG.2013.6633660
http://dx.doi.org/10.1109/CIG.2013.6633660


Mobile Games with Intelligence: a Killer
Application?

Philip Hingston
School of Computer and

Security Science
Edith Cowan University

Australia
p.hingston@ecu.edu.au

Clare Bates Congdon
The Department of Computer Science

University of Southern Maine
Portland, ME, USA

congdon@usm.maine.edu

Graham Kendall
School of Computer Science

University of Nottingham, UK and
University of Nottingham,

Malaysia Campus
graham.kendall@nottingham.ac.uk

Abstract—Mobile gaming is an arena full of innovation, with
developers exploring new kinds of games, with new kinds of
interaction between the mobile device, players, and the connected
world that they live in and move through. The mobile gaming
world is a perfect playground for AI and CI, generating a
maelstrom of data for games that use adaptation, learning and
smart content creation. In this paper, we explore this potential
killer application for mobile intelligence. We propose combining
small, light-weight AI/CI libraries with AI/CI services in the
cloud for the heavy lifting. To make our ideas more concrete,
we describe a new mobile game that we built that shows how
this can work.

I. INTRODUCTION

Games are an appealing application to showcase AI (Ar-
tificial Intelligence) and CI (Computational Intelligence) ap-
proaches because they are popular and ubiquitous, attracting a
diverse range of users.

Mobile games are easier to bring to market than commer-
cial (large scale) video games. This makes them a practical
choice for development and study in an academic environment,
using relatively small teams of academics and students, who
are able to work on relatively low budgets. For example, the
small screen size and lack of powerful graphics hardware
typical of mobile devices means that simple graphics, often
only 3 or 4 inches in size, are expected, so that large teams of
highly skilled artists and 3D modellers are not required.

Mobile devices usually provide a wider variety of input
data (touch, location, images, video, sound, acceleration, ori-
entation, personal data, data from/about other users etc.) than is
normally available on a desktop or laptop computer and offer a
full range of output options (images, video, animation, sound,
vibration, wireless, bluetooth, infrared) as well. In addition,
the popularity of mobile devices allows developers to recruit
large numbers of casual users, whose interactions provide
another potentially large data source for game data mining,
using techniques such as those described in [1]. Novel game
mechanics and interaction methods might be made possible by
processing these input data using AI and CI methodologies.

Computational power, memory and battery life present
potential obstacles to intensive AI/CI-based games, and some
potential designs will require offloading some of the com-
putation to servers. It might also be difficult to implement
large-scale, complex game worlds due to the limited resources

that are available. There are also significant challenges in
developing AI/CI libraries that can work with low memory,
limited battery power etc., adapting or developing AI/CI meth-
ods to work effectively in games that are played in short
bursts, using unreliable communications, and providing real-
time responses. However, these constraints provide significant
research opportunities.

Mobile devices are still “young” enough to provide op-
portunities for developers to implement innovative products
without having to employ large specialist teams (e.g. graphic
designers, musicians etc.), although some specialists are still
required of course. However, devices are becoming more capa-
ble – for example, the original iPhone had a screen resolution
of 480x320 pixels, a single 2 Megapixel still camera, and a
storage capacity of 4-8 GB, while the iPhone 5 is 1136x640
pixels, has two 8 Megapixel cameras and can record 1080p
HD video at 30 fps, has a storage capacity of 16-64 GB, and
has in-built voice recognition. Applications are also becoming
more sophisticated — for example, technologies like Web3D
and game engines like Unity3D are bringing 3D graphics to
mobile platforms [2]. Inevitably, game players will come to
expect more and more from mobile games, so the opportunity
for small players and enthusiasts will not last long (perhaps
several years, in our estimation). Those who are interested
in this area might want to explore, and capitalize, on those
opportunities now. Moreover, AI/CI both provide significant
opportunities both in terms of research challenges and also
to make the games more interesting and more fun to play.
We would like to see the research community take up the
challenge to showcase what can be done with the limited
resources available on mobile devices, but also utilizing the
larger number of sensors (e.g. movement detection) and other
options (e.g. location awareness) which are not available on
traditional “living room” game consoles.

The aim of this short paper is to outline the limitations of
mobile computing, with respect to utilizing AI/CI, but also to
draw out some of the potential advantages that can be exploited
now (or certainly in the years to come) as the convergence of
technology continues and offers greater opportunities than are
available at present.

The rest of the paper is presented as follows. In the next
section, we present the (limited) work that has been carried out
on AI/CI for mobile devices. In Section III we lay out what we



believe are the defining characteristics of mobile environments.
In Section IV we outline the challenges faced when using
mobile devices. Section V presents the opportunities that arise
when using a mobile device, rather than a desktop, console,
or other stationary computer. In Section VI we provide some
insight as to what AI/CI can offer mobile computation. We also
outline some possible projects that would be feasible at this
time, as well as some thoughts as to what might be possible in
the next 5-10 years. In Section VII, we describe a new mobile
puzzle game that we built to illustrate some of these ideas (and
also for the fun of doing it!) Section VIII concludes the paper.

II. PRIOR WORK

We were able to find only a limited amount of work that
considers AI/CI in mobile games and there seems to be limited
scientific literature about using AI/CI on mobile devices at all.
In this section, we summarize the few papers we did find, on
AI/CI for games as well as for non-games on mobile devices.

In one gaming example, Aiolli and Palazi [3] adapted an
existing machine learning algorithm to enable it to work within
the reduced computational resources of a mobile phone. Their
target was the game “Die guten und die bösen Geister”, which
is a board game requiring the player to identify which game
pieces (Ghosts) are “good” and which are “bad”. Therefore, an
AI opponent for the game would need to be able to perform
a simple classification task. The more usual classification
algorithms were rejected on the basis of requiring too much
memory or too much computation. Instead the authors opted
for a very simple system based on two prototype feature
vectors, one for good and one for bad ghosts. Unfortunately,
they did not report any comparison of performance of this
simple scheme over more complex classifiers, but the point to
note is that for such applications, there is a trade-off to evaluate
between accuracy and computational resource requirements.
There was also no evaluation of the different schemes in terms
of player satisfaction.

In a more recent example by Jordan et al. [4], the authors
report on a research prototytpe BeatTheBeat, in which game
levels are matched to background music tracks based on
features extracted from the audio signal, and these are allocated
to cells on a game board using a self-organising map.

In a paper discussing the potential uses of AI methods in
serious mobile games, Xin [5] suggests that, while AI methods
could add value to such games, computational requirements
might require a client-server solution, offloading the AI to a
server.

Although not focusing on games, Kruger and Malaka [6]
argue that AI has a role in solving many of the challenges of
mobile applications, including:

• Location awareness;

• Context awareness;

• Interaction metaphors and interaction devices for mo-
bile systems;

• Smart user interfaces for mobile systems;

• Situation-adapted user interfaces.

Their paper introduces a special issue of the journal Applied
Artificial Intelligence containing articles describing the state of
the art as it was in 2004. Many of these same challenges may
provide opportunities for novel mobile game concepts based
on AI/CI.

In [7], Baltes et al. describe their experience with imple-
menting high-level real-time AI tasks such as vision, planning
and learning for small robots, using smart phones to provide
sensing, communication and computation. Although the ap-
plication is not to games, and their aims are different from
ours, many of the research challenges in terms of implementing
AI solutions with limited computational resources are similar.
Their robots’ agent architectures are based on behaviour trees
described using a XML schema, and translated off-line into
efficient C code. Behaviour trees are also an increasingly
popular approach to agent design for games, in both academic
research (see, for example [8]), and in commercial games
such as the first-person shooter Halo2 [9]. Vision is based
on fast approximate region detection. A standard algorithm
was found to be too slow and was modified to take advantage
of specific domain knowledge (e.g. expected object colors).
Another high-level task that they tackled was multi-agent
simultaneous location and mapping (SLAM). Once again, the
task was simplified by taking advantage of the structured
environment (robot soccer). BlueTooth was used to share
information between agents. A particle filter method was used
to maintain estimates of the robots’ poses, with a limited
particle population size dictated by the available memory. We
see that the researchers used a variety of strategies to cope
with the limitations of the computing platform: offline pre-
processing, modification and simplification of algorithms for
specific tasks and environments, and sharing of information
between mobile devices. We expect that some of the same
strategies and even some of the same algorithms will be
applicable in both the robotics and games domains.

III. CHARACTERISTICS OF A MOBILE ENVIRONMENT

Our working definition of a mobile device for game playing
is a device that is networked, and is small enough to be mobile,
yet still provides a platform for general computation. In the
future, one might imagine that many kinds of mobile devices
might be used in games. For example, a car’s GPS system
might be used in a futuristic version of a scavenger hunt car
rally (scavenger hunt games for mobile phones already exist
- e.g. SCVNGR, textClues). However, at the present time, we
are chiefly thinking of smart phones and tablets.

While computational resources (CPU, memory, persistent
storage) are available on these devices, they are all limited in
comparison to standard platforms, and limited battery power
is an additional consideration.

On the plus side, these devices usually have a number of
other features that are often not available, and especially not
all together, on “standard” gaming platforms:

• location services - whether by GPS, WiFi or cell
tower triangulation;

• personal ownership - generally one person is more
or less the sole user of a particular device;

• Internet access - to data, services and other users;



• multiple modes of connectivity - WiFi, Bluetooth,
3G/4G may be provided, and it is expected that
connectivity will not be continuously available;

• a range of non-standard sensors - touch screen,
camera (for image capture and subsequent processing),
microphone will probably be provided, and others
may be, such as a gyroscope, accelerometer and video
camera;

• non-standard outputs - a small screen, some sound,
possibly vibration;

• other app data - apps may be able to share data,
especially with social media platforms.

Also, usage patterns for these devices are often different
from those on standard game platforms such as PCs - games
are often played in short bursts (waiting for a meeting, on a
bus/train etc.), and gameplay may be interruptible.

In designing and implementing games for mobile devices,
these differences combine both to provide challenges, which
AI and CI have the potential to solve, and to provide oppor-
tunities for novel game concepts based on or supported by AI
and CI methods.

IV. CHALLENGES WHEN USING AI/CI ON MOBILE
DEVICES

Mobile devices introduce a number of constraints to game
design:

• Limited CPU and memory (although this is always
improving);

• Small screen size limits graphical complexity (al-
though the number of pixels is increasing, the physical
size remains a limitation);

• The reality that these devices are typically used when
running on a battery further encourages limiting CPU
and memory usage beyond what is physically available
on these devices;

• However, real-time responses are often called for with
mobile devices;

• Connectivity issues must be kept in mind, as devices
may lose signal either while out of range of a cell
tower or due to a user opting not to pay for wi-fi
access at a given location.

It is our thinking that these challenges provide interesting
constraints when designing AI/CI-based games, as will be
discussed in the next section.

V. OPPORTUNITIES WHEN USING AI/CI ON MOBILE
DEVICES

There are some limitations to using mobile devices for
gaming (such as small screen size, limited battery life, less
powerful processors etc.) but there are also many opportunities
for utilizing mobile devices, which are not present on other
platforms. We briefly mentioned some of these in the intro-
duction, but in this section we discuss these opportunities in a
little more detail.

A. Small screen

Having a smaller screen could be seen as a limitation but
it could also be viewed as an opportunity. Having limited
graphic capabilities means that the programmers may not have
to focus as much on this aspect of the system as would be the
case if you were designing a system that had a large screen,
high resolution and a powerful graphics processor to assist
with the processing required in rendering the screen (although
screen resolutions are improving and mobile phone GPUs are
becoming more powerful). If a programmer’s (or researcher’s)
skills are in AI/CI, then having a platform which is relatively
easy to program could be an advantage as you are able to
focus on the AI/CI, without having to be so concerned about
the graphics. This may also reduce the need for artists on the
project team. Of course, as technology continues to develop,
the advantages that we outline here will gradually diminish,
and the quality of graphics and art will become a higher
priority.

B. Location awareness

A static computer, by its nature, is stationary, and this could
be seen as one of its major limitations. A gaming device that
is able to be in different geographical locations at different
times, opens up a range of possibilities that were not available
even a few years ago. It is obvious that having devices that
can be moved around offers many opportunities but the focus
of this paper is to look at those opportunities from an AI/CI
point of view. AI/CI could be utilized in a variety of ways. As
the player roams around the game (both physically and within
the game world) the AI/CI agent could tailor the game playing
experience to meet the expectations of the players.

C. Interaction with other players

Having a capability such as Bluetooth provides opportuni-
ties to meet with other players that are in a similar location, but
you were not aware that they were there. This would be useful
in locations such as a city center but imagine how many people
are potentially with a few feet of you at a sporting event or
a concert. Once the application had identified potential game
‘buddies’ the AI/CI could be used to validate the other person’s
skill level, whether they are actually a match for you to play
with etc. A lot of innovation in gameplay is taking place in the
mobile market. A couple of examples are Fingle (a bit like the
classic ice-breaking game, Twister, but for hands on a tablet
- http://fingleforipad.com/) and Swordfight (an example of a
Phone-to-Phone Mobile Motion Game [10]).

D. Social media

Mobile platforms already take advantage of the many social
platforms that are available. Facebook and Twitter are probably
the most well known but there are hundreds, if not thousands,
of other platforms that offer users the ability to communicate
with one another. Indeed many people, we suspect, use their
phone more for texting and updating their status rather than for
making phone calls. If a networked, mobile platform is used
for game playing, users might want to update their various
social networking sites with the games they are playing, their
progress, their high scores, who they are playing with etc.
This could place a burden on the user who does not have



the time to disseminate all this information, but still wishes
it to be known. AI/CI could be used to learn when/what the
user wishes to update to social networking sites. For example,
a user might always tweet a new high score, but not update
their facebook page. Another user might keep a certain person
regularly updated about their progress through a game via
social media messages aimed at just that user. The challenge
is to learn what to update and when, and provide the API
(Applications Programming Interface) to the various social
media feeds, many of which already exist.

E. AI/CI libraries for use in mobile games

The limited CPU and memory resources typically avail-
able on mobile devices suggest the need for AI and CI
libraries specifically designed for mobile applications. Two
approaches come to mind. Firstly, for applications that require
execution on the device itself, stripped down and simplified
implementations of common algorithms would be useful. On
the other hand, for applications where a client-server model
is appropriate, cloud or web service based implementations
would be a good solution.

In the academic literature, we could not find any ex-
amples of the first kind of any substance. However, there
are many examples of small libraries from the open-source
community that could provide a good starting point. Many
of these examples are implemented in Lua, a scripting-like
language with object-oriented capabilities that is commonly
used for games. Some examples are Abalhas, which is a PSO
implementation in Lua (by Alexandre Erwin Ittner, available
at http://ittner.github.com/abelhas/), LuaFuzzy, a fuzzy logic
library written in Lua (http://luaforge.net/projects/luafuzzy/)
and LuaFann, a fast artificial neural net implementation
(http://luaforge.net/projects/luafann). One could perhaps envis-
age a collection of small, modular library components, written
in Lua, and covering these AI and CI technologies, along
with others such as evolutionary algorithms, a Lua version
of OpenSteer, an A∗ implementation, a lightweight rule-based
system library perhaps based on CLIPS, and so on.

Of course, this is only one possible development path.
For example, web-based development using JavaScript in
conjunction with native code, as discussed by Charland
et al. [11] is another possibility. There are also existing
open-source AI and CI codes, such as JMLR MLOSS
(http://jmlr.csail.mit.edu/mloss/), implemented in various lan-
guages such as C++, Java or Python. While there may be
issues such as size and portability to overcome, much of this
could also be utilised : we point out the Lua pathway as one
that might work particularly well for mobile games. In the
commercial arena, Unity3d provides some AI capabilities, such
as path-finding, and AI plug-ins are becoming available.

There are also examples of cloud-based implementations
of AI and CI technologies that might be utilised in a client-
server approach for mobile games. For example, there is
Merelo et al.’s cloud-based evolutionary algorithm [12], Li’s
cloud-based fuzzy system [13] and Haqquni et al.’s cloud-
based neural network system [14]. The Apache Mahout
project aims to provide scalable, distributed machine learn-
ing (http://mahout.apache.org/), including clustering, classifi-
cation, collaborative filtering and pattern mining.

VI. WHAT CAN AI/CI OFFER FOR GAMES ON MOBILE
DEVICES

A. Procedural Content Generation

Using AI/CI methods for Procedural Content Generation
(PCG) in games is an active research area with some notable
successes in recent years. Spore is one high-profile exam-
ple in the commercial arena. We argue that several factors
make mobile games well suited for PCG. Firstly, in terms
of typical length of play sessions and complexity of typical
game environments, mobile games are smaller in scale than
many standard video games. This should mean that PCG is
achievable with limited computational resources, and could be
done locally on the device, without having to offload the task to
a server. Second, some of the more interesting AI/CI methods
for PCG make use of player preferences, either in real-time or
offline. Mobile games with many players would have a ready
source for the training data needed to drive these systems.

For example, Interactive Evolutionary Computation
(IEC) [15] is a CI technique that could be very well suited
for mobile games. Hastings et al. have applied this technique
successfully in Galactic Arms Race [16]. This game features
weapons defined by particle systems controlled by a kind
of neural network called a Compositional Pattern Producing
Network, and these are evolved using cgNEAT, a version
of Neuro-Evolution by Augmenting Topologies [17], where
fitness is determined by popularity of player choices in the
game. The authors coined the term collaborative content
evolution to describe this approach.

The mobile game-playing population could provide an
ideal environment for collaborative content evolution, with a
large pool of players, playing many short game sessions, pro-
viding a very large number of judgements to feed into fitness
calculations. Crowd-sourcing used in this way should enable
content to evolve rapidly, giving game players a constantly
novel, changing game experience, guided by the preferences
of the players themselves.

B. Personalisation and customisation

Recently, CI techniques are being used to adapt gameplay
to optimise player satisfaction in real time. For example,
Yannakakis and Hallam reported success with using neural
network based user models adjusted in real time to improve
player satisfaction in “playware” games [18]. Using the kind
of lightweight libraries proposed in Section V-E, this kind of
gameplay adaptation and other customisation could be added
to mobile games, and neural networks and other machine
learning methods have already been proven to be effective for
adaptation in other, non-mobile games.

C. Ubiquitous games etc.

The terms ubiquitous or pervasive computing have been
in use for some time now. As far back as 2002, these
terms were also applied to games (see e.g. [19]). There’s
obviously a considerable overlap between these kinds of games
and mobile games — mobile devices provide the means of
achieving ubiquity/pervasiveness. A related concept is that of
the augmented reality game. Here too, modern mobile devices
have the camera, audio, and display capabilities to support



augmented reality applications. For ubiquitous games, real-
time adaptation with CI algorithms running on the device,
could be combined with periodic sychronisation with a cloud-
based repository, so that the learned personal profile can be
shared across locations and devices. For augmented reality
games, either a generic light-weight augmented reality library
or perhaps some application specific implementation in the
style of Baltes et al. [7], could be used.

VII. AN EXAMPLE GAME: INFINITEWORDS

InfiniteWords is an example game created to illustrate a
design pattern for one kind of ”smart mobile game”. The idea
of the pattern is to combine Procedural Content Generation
to create game content, with smart filtering (for example,
Collaborative Filtering – see [20] for a recent survey), to
produce an infinite supply of high quality content. This idea
is similar to collaborative content evolution, except that there
is no evolution as such (new puzzles are randomly generated
without any direction), and that the filtering can take account
of individual player preferences rather than simply overall
popularity. The game is similar to a number of commercial
mobile word games that are popular at the moment – word-
guessing games with images as clues, except that in those
games, the puzzles have to be created by hand and provided
by the game company.

The components of InfiniteWords are shown in Fig. 1. The
game logic resides on a mobile device, along with a puzzle
generator (the PCG) and two queues - one for puzzles that
the player is yet to play, and one for player ratings for puzzles
that the player has played. These queues reduce player waiting
time by allowing network tasks to take place during thinking
time, and also allow the game to function for a time without
network access (until the puzzle queue is exhausted). Two
web services are used to enable the game. An image server
provides tagged images (the tags are assigned manually), and
a “recommendation server” collates player rating information
from all players and carries out the smart filtering.

Here is a walk-through of InfiniteWords from a player
viewpoint:

1) A puzzle is taken from the “puzzle queue” and pre-
sented to the player (see Fig. 2). The puzzle consists
of four images that relate to a ”target word” that the
player tries to guess. Random letters are added to the
letters that make up the word, giving a total of eight
letters, which are then jumbled up and presented on
the orange “clue” tiles.

2) The player selects the tiles in the right sequence
to spell out what they think is the target word.
As tiles are selected, the letters are moved to the
blue “solution” tiles, filling from left to right. The
player can delete letters using the “X” button, which
removes letters from right to left, returning them to
the clue tiles.

3) The player can get “hints” by selecting the “?” button.
Each time this is selected, another correct letter is
added to the solution tiles, filling from left to right.
The final letter of the word is not available via hints.

4) When the correct word is spelled, the puzzle is
solved, and a “rating” screen appears. The player

has to select a rating between one and five stars to
continue. At this point, the rating information, along
with data on how long the puzzle took to solve, and
how many hints were used, is added to the “rating
queue”.

5) The next puzzle is presented.
6) The player can choose to skip a puzzle, or return to a

starting menu (not shown) at any time (except during
rating). In this case, the current puzzle is simply
discarded.

The puzzle queue holds a fixed number of puzzles that have
either been created by the puzzle generator, or recommended
by the recommender. Getting a puzzle requires network access
for downloading images and communicating with the image
server and/or the recommender. A background task keeps this
queue full whenever a network is available. If the queue
is empty when the player needs a puzzle, then either the
recommender is asked for a puzzle, or a new one is constructed
by the puzzle generator on the fly. The choice of which method
to use is determined randomly. With a large population of
players, the system will ony require each player to rate a
newly-generated puzzle very occassionally, to keep up a supply
of new puzzles. Players will be playing highly-rated puzzles
that match their own preferences for the great majority of the
time.

The puzzle generator works as follows:

1) A word is selected randomly from a word list (around
10,000 words).

2) The image server is queried for a list of image IDs
of images that relate to the target word.

3) If there are less than four images, the generator fails.
4) Otherwise, four images are selected at random, and

the image server is asked to send them.

Note that this is simply a random process : player ratings
do not influence the generation of new puzzles. Collaborative
filtering takes care of the quality issue.

The rating queue temporarily holds the player’s rating
information for completed puzzles. A background task sends
these ratings to the recommendation server when the network
is available, before removing them from the queue. These can
be ratings for puzzles retrieved earlier from the recommenda-
tion server, or for novel puzzles created by the puzzle generator
on the player’s mobile device. When a rating for a novel
puzzle is sent to the recommendation server, that new puzzle is
added to the central database, and becomes available to other
players. The effect is that the community of players themselves
ensure a consistent supply of novel puzzles is maintained, and
player ratings are used to “curate” the puzzle collection. Poor
puzzles will get low ratings and will eventually cease being
recommended (and can then be removed from the database.)

Note that in this example game, puzzles are simply un-
structured “items”, and the collaborative filtering algorithm is
a memory-based one, exploiting similarities between players.
For other kinds of procedurally generated content, a model-
based collaborative filtering system could be used, which could
enable preferences to be used as part of the generation process.



Fig. 1. Architectural diagram of InfiniteWords. The app uses two web services. An image server is used to provide images that relate to some seed word. The
app’s puzzle generator uses these to construct puzzles. A “recommendation server” is used to provide pre-rated puzzles that suit the player’s taste, based on
player ratings of puzzles, using collaborative filtering. The app maintains two queues, one for puzzles and one for ratings, so that it can continue to function for
a time in the absence of network connectivity.

(a) Puzzle (b) Rating

Fig. 2. InfiniteWords on an iPhone. (a) Shows a puzzle as first presented. The four images relate to a common word, in this case “tribal”. The player selects
letters from the orange “clue” tiles to move them to the blue “solution” tiles, spelling out what they think is the target word. Hints are available (using the “?”
button) - each hint reveals one correct letter. When the player completes the target word, a rating screen becomes available. (b) Shows the rating screen. The
player selects a rating between one and five stars. These ratings are used as input to a collaborative filtering algorithm, so that future puzzles are chosen to suit
the player’s taste.

VIII. CONCLUSIONS

Mobile platforms are already widespread and their use
is largely for interacting with social media sites and for

tweeting. Some people also use them for what they were
originally designed for, making phone calls. Game playing
is becoming more widespread on these devices, more so on



phones than tablets, with around a third of mobile phone
owners reportedly playing mobile games (see, for example
http://www.infosolutionsgroup.com/popcapmobile2012.pdf).
Computational Intelligence and Artificial Intelligence are not
often present in these games, or if present, are unsophisticated.
However, there is a window of opportunity where we are
able to integrate these technologies into these games, with
less of the now usual overhead of having to work with
graphic designers, musicians, plot design etc. As mobile
platforms develop, the complex, large teams associated with
console-based game design are likely to emerge such that
it may be more difficult to enter this market. But for the
moment there is a great opportunity!

In this short article, we have outlined some of the op-
portunities and challenges in introducing AI/CI onto mobile
platforms. We hope that the research community will take up
the many research challenges that exist in this exciting, fast
moving area.

ACKNOWLEDGEMENT

Many of the ideas in his paper were first put together
by the authors at the Dagstuhl Seminar on Artificial and
Computational Intelligence in Games, in May 2012. This paper
enhances and builds upon those ideas, which were presented
in [21]. We would like to thank the Seminar organisers: Simon
Lucas, Michale Mateas, Mike Preuss, Pieter Spronck and
Julian Togelius; as well as all the other participants at the
seminar for an inspirational experience.

REFERENCES

[1] A. Drachen, C. Thurau, J. Togelius, G. N. Yannakakis, and C. Bauck-
hage, “Game Data Mining,” in Game Analytics. Springer London,
2013, pp. 205–253.

[2] K. Curran and C. George, “The Future of Web and Mobile
Game Development,” International Journal of Cloud Computing
and Services Science (IJ-CLOSER), vol. 1, no. 1, pp. 25–34,
2012. [Online]. Available: http://iaesjournal.com/online/index.php/IJ-
CLOSER/article/view/233

[3] F. Aiolli and C. E. Palazzi, “Enhancing Artificial Intelligence on a Real
Mobile Game,” International Journal of Computer Games Technology,
2009.

[4] A. Jordan, D. Scheftelowitsch, J. Lahni, J. Hartwecker, M. Kuchem,
M. Walter-Huber, N. Vortmeier, T. Delbrugger, U. Guler, I. Vatolkin,
and M. Preuss, “Beatthebeat music-based procedural content generation
in a mobile game,” in Computational Intelligence and Games (CIG),
2012 IEEE Conference on, 2012, pp. 320–327.

[5] C. Xin, “Artificial Intelligence Application in Mobile Phone Serious
Game,” in Education Technology and Computer Science, 2009. ETCS
’09. First International Workshop on, vol. 2, march 2009, pp. 1093
–1095.

[6] A. Kruger and R. Malaka, “Artificial Intelligence Goes Mobile,” Applied
Artificial Intelligence: An International Journal, vol. 18, no. 6, pp. 469–
476, 2004.

[7] J. Baltes and J. Anderson, “Complex AI on Small
Embedded Systems: Humanoid Robotics using Mobile Phones,”
in AAAI Spring Symposium Series, 2010. [Online]. Available:
https://www.aaai.org/ocs/index.php/SSS/SSS10/paper/view/1136/1403

[8] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game DEFCON,” in Applications of Evolutionary
Computation. Springer, 2010, pp. 100–110.

[9] D. Isla, “Managing Complexity in the Halo 2 AI System,” in Proceed-
ings of the Game Developers Conference, 2005.

[10] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda, “SwordFight: enabling
a new class of phone-to-phone action games on commodity phones,” in
MobiSys, 2012, pp. 1–14.

[11] A. Charland and B. Leroux, “Mobile application development: web
vs. native,” Commun. ACM, vol. 54, no. 5, pp. 49–53, May 2011.
[Online]. Available: http://doi.acm.org/10.1145/1941487.1941504

[12] J. J. M. Guervós, M. G. Arenas, A. M. Mora, P. A. Castillo, G. Romero,
and J. L. J. Laredo, “Cloud-based Evolutionary Algorithms: An algo-
rithmic study,” CoRR, vol. abs/1105.6205, 2011.

[13] Z. Li, Y. Wang, J. Yu, Y. Zhang, and X. Li, “A Novel Cloud-
Based Fuzzy Self-Adaptive Ant Colony System,” in Proceedings of
the 2008 Fourth International Conference on Natural Computation
- Volume 07, ser. ICNC ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 460–465. [Online]. Available:
http://dx.doi.org/10.1109/ICNC.2008.696

[14] A. Huqqani, X. Li, P. Beran, and E. Schikuta, “N2Cloud: Cloud based
neural network simulation application,” in Neural Networks (IJCNN),
The 2010 International Joint Conference on, july 2010, pp. 1 –5.

[15] H. Takagi, “Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation,” Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[16] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic Content
Generation in the Galactic Arms Race Video Game,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, no. 4, pp. 245–
263, 2009.

[17] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[18] G. Yannakakis and J. Hallam, “Real-Time Game Adaptation for Op-
timizing Player Satisfaction,” Computational Intelligence and AI in
Games, IEEE Transactions on, vol. 1, no. 2, pp. 121 –133, june 2009.

[19] S. Bjrk, J. Holopainen, P. Ljungstrand, and R. Mandryk,
“Special Issue on Ubiquitous Games,” Personal and Ubiquitous
Computing, vol. 6, pp. 358–361, 2002. [Online]. Available:
http://dx.doi.org/10.1007/s007790200040

[20] X. Su and T. M. Khoshgoftaar, “A Survey of Collaborative Filtering
Techniques,” Advances in Artificial Intelligence, vol. 2009, p. 19, 2009.

[21] C. Congdon, P. Hingston, and G. Kendall, “Artificial and Computational
Intelligence for Games on Mobile Platforms: A Position Paper,” in (To
appear) Artificial and Computational Intelligence in Games (Dagstuhl
Seminar 12191). Dagstuhl Follow-Ups, 2013.


	Mobile games with intelligence: a killer application?
	tmp.1413785885.pdf.1Zr78

