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ABSTRACT   

High-speed card-to-card optical interconnects are highly demanded in high-performance computing and data centers. 

Compared with other solutions, free-space optical interconnects have the capability of providing both reconfigurability 

and flexibility. In this paper we propose and experimentally demonstrate a free-space based reconfigurable optical 

interconnect architecture and it is capable of connecting cards located both inside the same rack as well as in different 

racks. Results show that 3×10 Gb/s data transmission is achieved with a worst-case receiver sensitivity better than -9.38 

dBm.   

Keywords: Optical interconnects, free-space optical communication, reconfigurable optical interconnects. 

 

1. INTRODUCTION  

High-speed interconnects are highly demanded in data centers and high-performance computing and optical technologies 

have been proposed and widely studied to overcome the low-speed and high electro-magnetic interference bottlenecks of 

electrical interconnects [1]. For card-to-card optical interconnects, both multi-mode fiber (MMF) ribbons and polymer 

waveguides based architectures have been investigated [2, 3]. However, as the interconnect schemes used in the latter 

architectures are inherently point-to-point, free-space optics has been proposed for dynamically interconnecting cards, 

thus offering better flexibility for efficient operation [4]. 

In previous studies, we have experimentally demonstrated a reconfigurable card-to-card optical interconnect architecture 

using MEMS-based steering mirrors for efficient link reconfiguration [5]. However, the achievable interconnection range 

was highly limited due to the Gaussian beam divergence while propagating in the free-space and only cards located 

inside the same rack can be connected. In this paper, we show that by using hybrid free-space and MMF signal 

propagation, cards both inside the same rack and in different racks can be connected. Experimental results show that 

3×10 Gb/s data transmission is achieved with a receiver sensitivity (at the bit-error-rate (BER) of 10
-9

) better than -9.38 

dBm. 

 

2. PROPOSED SYSTEM ARCHITECTURE 

The architecture of proposed reconfigurable optical interconnect is shown in Fig. 1 [5]. A dedicated optical interconnect 

module is integrated onto each electronic card (typically a PCB) and inside the module a VCSEL array is used in 

conjunction with a collimating lens array to generate digitally-modulated collimated Gaussian optical beams. A MEMS-

based transmitter mirror array is employed to adaptively steer the optical beams to various destinations, thus providing 

interconnect reconfigurablity and operation flexibility. After propagating in free-space, at the receiver side the modulated 

optical signals are appropriately steered with another receiver MEMS mirror array and focused onto the corresponding 

photodiodes (PD) elements. 

To connect cards located in different racks, a rack gateway is proposed to be integrated onto each rack, which consists of 

MEMS steering mirrors and MMF collimators. Through appropriate beam steering, the optical signal is coupled to a 

MMF collimator and transmitted to the destination rack. At the receiver side, the modulated optical signal exiting the 



 

 
 

 

MMF collimator is appropriately steered by another MEMS mirror element and focused onto the corresponding PD 

element. 

 

 

Figure 1. Proposed reconfigurable card-to-card optical interconnect architecture capable of connecting cards located both 

inside the same rack and in different racks. 

 

 

3. EXPERIMENTS AND DISCUSSIONS 

Experiments were carried out to demonstrate the proposed reconfigurable optical interconnect architecture for 

connecting cards located both inside the same rack and in different racks using the setup shown in Fig. 2. PCB based 

integrated optical interconnect modules were designed and fabricated. Specifically, a 1×4 VCSEL array (850 nm, ~17
o
 

divergence angle and 250 μm pitch), the corresponding VCSEL driver circuits (4 QFN packaged drivers), a 1×4 PD 

array (60 μm active diameter, 250 μm pitch and ~0.6 A/W responsivity at 850 nm) and 4 trans-impedance amplifier 

(TIA) chips were integrated onto a single small-size PCB. A micro-lens array (250 μm pitch with ~236 μm clear 

aperture) was then aligned and mounted on top of the VCSEL array and the PD array to collimate the VCSEL beams and 

focus received optical beams onto the active windows of the PD elements. Each of the micro-lens arrays was attached to 



 

 
 

 

an XYZ translational stage, and the distance between the VCSEL/PD plane and the lens was changed manually (equal to 

the focal length). Separate MEMS steering mirror chips (<5 ms point-to-point switching time) were used to switch the 

optical beams to the various receiving cards. The MEMS mirror chips were attached to XYZ translational stages and 

dynamically steered by changing the voltage applied to their activators. In addition, the size of the MEMS mirror was 

larger than the pitch of the VCSEL and PD arrays, so only three out of the four available channels were used (the third 

VCSEL and PD elements were not used). 

 

 

Figure 2. Experimental setup to demonstrate the proposed free-space based reconfigurable card-to-card optical interconnect 

architecture. 

 

To connect cards located in different racks, the signals were appropriately steered to the rack gateway, which consisted 

of fiber collimators (3 used in the experiment). After propagating in the MMFs, the exiting signals were then guided to 

the final destination card. In front of the MMF collimators, MEMS steering mirrors were also employed to minimize the 

incident angles for maximum coupling efficiency or to guide the signals for detection. 

Four integrated optical interconnect modules and two rack gateways were used in the proof-of-concept experiment and 

the distances between modules located inside the same rack were shown in Fig. 2. The rack gateways were connected 

with 10 m MMFs (62.5 µm). The MMF collimators had a return loss of >18 dB and a total diameter of 5 mm, and the 

distance between adjacent collimators was chosen to be 10 mm. In addition, during the measurements, the bit rate for 

each channel was set to 10 Gbps and on-off-keying (OOK) modulation was used (2
31

-1 PRBS data). 

To demonstrate the concept of the proposed optical interconnect architecture, module 1 was first connected to module 2 

and inside the modules, VCSEL element n (n=1, 2, and 4) sent data to PD element n. The measured bit-error-rate (BER) 

versus the VCSEL power is shown in Fig. 3 (a). It is clear that with the same optical power, the BER performance for 

channel 2 is worse than the performances of the other channels. This is mainly due to larger inter- channel crosstalk since 

PD element 2 is in the center of the array. Fig. 3 (b) shows the measured BER versus the received optical power 

(obtained by changing the output powers of the VCSEL elements) for the three working channels. It can be seen that 

channel 4 has the best receiver sensitivity while the sensitivity for channels 2 is the worst. These results are consistent 

with the results shown in Fig. 3(a). 



 

 
 

 

   

                                            (a)                                                                                           (b) 

Figure 3. Measured BER versus (a) VCSEL power and (b) received power. Optical interconnect module 1 connected to 

module 2. 

 

To demonstrate the reconfigurability and flexibility of proposed interconnect scheme, a second scenario was considered 

where module 1 was interconnected with module 3. The measured BER versus transmitted optical power and the 

receiver sensitivity are shown in Fig. 4(a) and Fig. 4 (b), respectively. It can be seen that a BER much better than 10
-9

 is 

achieved. Furthermore, it is clear that with the same transmission power, the BER performances for all three channels 

shown in Fig. 4 (a) are worse than those shown in Fig. 3(a). This can be attributed to the longer free-space propagation 

distance and the Gaussian beam divergence, which result in smaller received signal power and larger crosstalk. This 

observation can be further confirmed by comparing the results shown in Fig. 4(b) and Fig. 3(b), where the receiver 

sensitivity is slightly degraded. 

 

   

                                            (a)                                                                                           (b) 

Figure 4. Measured BER versus (a) VCSEL power and (b) received power. Optical interconnect module 1 connected to 

module 3. 

 

Experiments were also carried out to demonstrate the feasibility of proposed system architecture to connect cards in 

different racks. Here the signals were steered to the rack gateway and after being coupled into and propagating inside 

MMFs, they were detected with optical interconnect module 4. The free-space transmission distance between rack 



 

 
 

 

gateway 2 and module 4 was 4 cm. The BER performance versus VCSEL power and the receiver sensitivity are shown 

in Fig. 5 (a) and Fig. 5(b), respectively. Comparing with previous results, channel 2 in this scenario has much worse 

performance than the performances of the other channels. This is mainly due to the fact that inter-channel crosstalk 

signals are also coupled into the channel 2 MMF, and that the MEMS mirror at the receiver side cannot steer them out of 

the active window of corresponding PD element. Figs 3-5 demonstrate the capability of the proposed reconfigurable 

optical interconnect architecture to achieve 3×10 Gb/s data transmission with a worst-case receiver sensitivity better than 

-9.38 dBm. 

 

      

                                            (a)                                                                                           (b) 

Figure 5. Measured BER versus (a) VCSEL power and (b) received power. Optical interconnect module 1 connected to 

module 4. 

 

4. CONCLUSIONS 

In this paper, we have proposed and experimentally demonstrated a reconfigurable optical interconnect architecture 

capable of connecting cards located both inside the same rack and in different racks. 3×10 Gb/s data transmission has 

been experimentally achieved and the worst-case receiver sensitivity has been shown to be better than -9.38 dBm. 
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