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Abstract

IN this dissertation we explore the basic principles of the magnetic micro-confinement of
the quantum degenerate gases where the approach of the so-called two-dimensional mag-

netic lattices has been theoretically and experimentally investigated. In this research a new
generation of two-dimensional magnetic lattice has been proposed and considered as a de-
veloping phase for the previous approaches. Its advantage relies on introducing a simplified
method to create single or multiple micro-traps of magnetic field local minima distributed,
at a certain working distance, above the surface of a thin film of permanent magnetic mate-
rial. The simplicity in creating the magnetic field local minima at the micro-scale manifests
itself as a result of imprinting specific patterns through the thin film using suitable and avail-
able micro-fabrication techniques. In this approach, to create multiple micro-traps, patterned
square holes of size αh × αh spaced by αs are periodically distributed across the x/y plane
taking a two-dimensional grid configuration. These magnetic field local minima are recog-
nized by their ability to trap and confine quantum single-particles and quantum degenerate
gases at various levels of distribution in their phase spaces, such as ultracold atoms and
virtual quantum particles1.

Based on the nature of the interaction between the external confining potential fields and
the different types of quantum particles, this research is conducted through two separate
but not different phases. We performed theoretical and/or experimental investigations, for
both phases, at the vicinity of the magnetic micro-confinement and its suitability for trap-
ping quantum particles. A special attention is paid to inspect the coherence in such systems
defined in terms of providing an accessible coupling to the internal quantum states of the
magnetically trapped particles. Such coherence is considered as one of the important ingre-
dients for simulating condensed matter systems and processing quantum information.

The two-dimensional magnetic lattice is developed, in the first phase of the investiga-
tions, to trap paramagnetic atoms and to prepare a suitable environment for achieving a
phase transition to the region of ultracold atomic (quantum) degenerate gases, well known
as the Bose-Einstein condensation. The trapping mechanism is based on attracting the atoms
(usually cold, due to the deceleration in their velocities) to fall in distributed magnetic field
local minima in which case the atoms are assumed to be prepared in the so-called magnetic
low field seeking states. To create the magnetic field local minima, we realized that by milling
a hole through a permanent magnetic thin film a disturbance in the uniformity of the mag-
netic field occurs and accompanied by two local field minima. These minimum values Bmin
of the magnetic field are found to appear at both ends of the hole and are located at a certain
working distance dmin that depends on the size of the hole αh and, in the case of more than
one hole, on the holes separating distance αs. It has also been found that, in the proposed

1 The virtuality behavior appears when the particle is itself a metastable composite of quantum particles and
lives for very short time, such as excitonic or polaritonic a electron-hole pair composite particle
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method, the Bmin values and the distance dmin can both be controlled via the application
of external magnetic bias fields as well as choosing suitable values of αs. It is important to
choose Bmin > 0 so as to keep the trapped quantum particles away from experiencing the
destructive Majorana spin-flip process. Also, by choosing suitable dmin values the Bmin can
be located away from the surface of the thin film, hence preventing the Casimir-Polder effect
from being developed.

The produced magnetic lattice consists of several magnetic field local minima distributed
across a two-dimensional plane and located at dmin above the surface of the thin film. These
magnetic traps are regarded as the sites for the magnetic lattice. Although the distribution
of the sites is symmetric across the x/y-planes, this method is also found to produce asym-
metrically distributed sites across the x/z and y/z planes. The measured magnetic field of
the lattice sites, using Magnetic Force Microscope (MFM), shows that the asymmetrical ef-
fect (namely a tilted potential) is always showing large values of Bmin (i.e. magnetic field
values measured at the bottom of the sites) at the center of the lattice when compared to the
field minimum values at the edges. The asymmetrical effect was considered, in the early
proposals, as a disadvantage for these type of magnetic lattices. However, the theoretical
calculations carried in this research have shown that the tilt effect is an essential feature for
assisting the tunneling of the trapped quantum particles.

The theoretical approach is based on converting the time-dependent Gross-Pitaevskii
equation (GPE), which is the nonlinear Schrödinger equation, to a set of equations denoted
by the Boson Josephson Junctions (BJJs) equations for n adjacent magnetic lattice sites in
which case the tunneling of the trapped ultracold atoms is assumed to be induced due to the
asymmetrical effect and the existence of external bias fields. In the calculations, the wave-
function ϕ(x, t) is used to roughly describe the macroscopic dynamical oscillations of weakly
interacting condensates, at the BEC low temperature, trapped in the magnetic lattice and to
obey the time-dependent GPE. The asymmetrical effect is approximated as tilted trapping
potentials in the Hamiltonian of the BJJs and the adiabatic tunneling process is controlled
via the application of external magnetic bias fields. To identify the dynamical Josephson os-
cillations of the condensates in the weakly coupled sites of the magnetic lattice, the attention
was limited to the localized time-dependent variational ansatz ϕ(x, t) =

∑n
j cj(t)χj(x) (i.e.

as superposition states) with cj(t) =
√
Nj(t)e

iθj(t) and considering the total number of atoms
between the adjacent sites to be constant, N =

∑n
j Nj =

∑n
j |cj |2. The coupling Josephson

energy ΩJ ' −
∫

[ ~2
2M (∇ϕj∇ϕj+1)+ϕjU(x)ϕj+1]dx is in analogous to the Josephson coupling

energy in a Superconducting Josephson Junction (ScJJ) where it has been shown that ΩJ can
be regarded as the two-photon Rabi-like frequency having a coherence that can be described
by Nj =

∫
dxϕ∗j (x)ϕj+1(x). The oscillating fractional occupations Ñj,j+1(t) and the phase

amplitudes θ̃j,j+1(t) are found to exhibit an adiabatic Josephson effect in this type of mag-
netic lattice arising from the superfluidity nature of the trapped condensates when tunneling
between the lattice sites.

In the second phase of this research, the magnetic micro-confinement is used to confine
metastable particles that formed in quantum heterostructure devices. The purpose of the
experimental investigations is to validate whether or not the magnetic micro-confinement
is also applicable for trapping virtual quantum particles, namely excitons, when projected
into a solid state quantum heterostructure. Excitons can be created in a single (multiple)
quantum well(s) of a semiconductor where they exhibit bosonic particles nature and hence
they can respond to external confining potential fields in the same way as cold atoms. Using
suitable fabrication techniques, the magnetic field local minima are projected into a system
of GaAs/AlGaAs multiple quantum wells to confine excitonic particles. In the first attempt
a magnetic field cover, of an inhomogeneous spatial distribution, has been projected into the
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well confining plane by depositing permanent magnetic material on the top of a GaAs/Al-
GaAs quantum wells heterostructure. The cover creates a weak magnetic field at the center
of the sample and, due to the edge effect, the strength of the magnetic field increases to-
wards the edges of the quantum well confining plane when compared to the center. The
dispersion surface (curve) of the excitonic particles Eext(P ) is found to shift in the k-space
(i.e. the momentum-space) with respect to the direction of the localized magnetic field. In
the perpendicular magnetic field B⊥ regions at the center of the x/y-plane (since the inho-
mogeneous field is spatially distributed) the dispersion curve Eext(P ) is shifting along the
energy direction by δE in the k-space with no change in the momentum while in the parallel
field B‖ regions at the edges of the x/y-plane the dispersion curve shifts along the momen-
tum direction by ∆P = −~k ∼ e

cB‖. By localizing the inhomogeneous magnetic filed in such
a way that it covers the entire x/y-planes of the quantum wells, the two formal phenomena,
i.e. the δE and ∆P shifts, are both found to simultaneously occur in a one phase distribution.
As a consequence, an inhomogeneous depression of the excitons Zeeman splitting has been
observed when spatially resolving their recombination rates.

Since the exciton’s Bohr radius is known to be comparable to the magnetic length lB =√
~c
eB⊥

, the lifetime of the excitonic particles is found to vary with respect to the magnitude
of the localized field in which case the dispersion surface and the binding energy are also
functions of the localized fields such that Eext(P ) = −EBe−αIo(−α) and EB =

√
π

2e2
1
lB

, re-
spectively, with α ∼ (δP lB)2 and Io(α) being the Bessel function. These behaviors combined
together are found to induce an inhomogeneous spatial distribution of the excitonic spin-
population, i.e. some regions are populated with spin-up | ↑〉 while remaining regions are
dominated with the state of spin-down | ↓〉. This phenomenon is thought to be of great
interest for the field of storing light pulses and processing quantum information.

As described above, by printing a micro-pattern through the magnetic thin film, magnetic
field local minima can be created with a sharp trapping field gradient. Through this investi-
gation a simplified method to create such magnetic field local minima, with an absolute con-
trol over the minima location within the multiple well confining planes, has been proposed
and tested for the first time. This method allows one to precisely locate the field minima at
a certain depth into the heterostructure device. As a result, there has been a robust response
detected in the excitonic magnetic dipole interaction with the confining low field which as-
sures that these particles are acting as paramagnetic bosons. The detection method is based
on measuring the photoluminescence from the recombination of the excitons which is found
to be localized at the magnetic trapping region; the high recombination rate indicates that
there is an actual accumulation of the excitonic particles due to the acting low magnetic field
trapping force. These observations have revealed the following important fact: the magnetic
traps can also be implemented into the quantum heterostructure and semiconductor devices
and used to confine the excitons or any similar quantum particle, such as micro-cavity po-
laritons. This type of implementation is expected to enhance the quantum coherence of the
interacting particles, whether charge carriers or metastable particles, and more specifically to
suppress the phonon interactions and to overcome the crystal fields delocalizations. More-
over, regardless of the simplicity of the method, it was not clear before how to introduce such
confining magnetic field local minima across the quantum well (confining) plane.

The magnetic micro-confinement of excitonic particles will open several new research
field directions, ranging from field-effect transistors, the coherence in quantum cascade lasers
to quantum sensing and beyond. Above all and more importantly, this method might be
considered as a possible approach for achieving Bose-Einstein condensation of excitonic par-
ticles which still in a long standing debate for the past thirty years. These facts will certainly
present this type of trapping mechanism as a promising candidate for the research fields of
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quantum computing devices and quantum information processing.
The above experimental investigations are being carried using a quantum heterostruc-

ture that produces heavy-hole direct-excitons, which are well known to be highly mobi-
lized (hot). Regardless of the fact that the magnetic confinement of the excitonic particles
has shown clear evidence of a trapping signature, it was not possible to produce ultracold
direct-excitons or at least to approach the phase transition limit. This fact has triggered a
very interesting question which certainly needs to have a particular answer in regards to the
magnetic micro-confinement of the indirect-excitons.
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values for the (i)-site fractional population Ñi(0) = 0.99 and for the (i + 1)-
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gab Eg which result in a conduction ∆Ec and valence ∆Ev energy gabs. (b) A
discrete energy band in energy-momentum space of a quantum well. . . . . . 89

6.3 (a) Schematic representation of the conduction and valence band states in 3D
II-IV bulk (left) and for 2D III-IV quantum well (right). The spin orbit coupling
contributes to the formation of the exciton ground state in and 2D structure.
(b) Schematic representation of the optical transitions between the electrons
energy states and the holes energy states which conserve the total angular
momentum. σ± and π denotes the polarization directions of the excitation
pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Comparison of the electron wavefunction fe(z) (solid curve) and the hole
wavefunction fh(z) (dashed curve) with respect to the energy gap Ēg in (a)
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The logarithmic series is given by

ψ̄o(z) =
∞∑
n=0

1

(n+ 1)

n∑
k=0

(−1)k
(
n

k

)
ln(z + k) (A.19)

(a) (b)

(c) (d)

Figure A.1: (a) The amplitude of the digamma function ψ̄o(z), (b-d) the amplitude of the absolute
value Abs[ψ̄o(z)] , the real part Re[ψ̄o(z)] and the imaginary part Im[ψ̄o(z)] across the x/y-plane,
respectively.

A.1.4 Riemann � -function

The Riemann ζ-function can be defined by the following integral for the real value of x, i.e.
x > 1

ζ(x) =
1

Γ(x)

∫ ∞
0

ux−1

eu−1
du (A.20)

For n integer values of x we can evaluate the following identity
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un−1

eu−1
=
e−uun−1

1− e−u

= e−uun−1
∞∑
k=0

e−ku

=
∞∑
k=1

e−kuun−1 (A.21)

such that ∫ ∞
0

un−1

eu−1
du =

∞∑
k=1

∫ ∞
0

e−kuun−1du (A.22)

By making use of the Γ(z) function, the integral in equation (A.20) can be evaluated to
give the most common form of the Riemann ζ(z) function

ζ(n) =

∞∑
k=1

1

kn
(A.23)
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(a) (b)

(c) (d)

Figure A.2: (a) The Riemann ζ(z) function, (b-d) the amplitude of the absolute value Abs[ζ(z + iy)]
, the real part Re[ζ(z + iy)] and the imaginary part Im[ζ(z + iy)] across the x/y-plane, respectively,
evaluated for −10 < z < 10 and −10 < y < 10.
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