
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

2011 

Shall we play a game? Shall we play a game? 

Craig Caulfield 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Higher Education and Teaching Commons 

Recommended Citation Recommended Citation 
Caulfield, C. (2011). Shall we play a game?. Edith Cowan University. Retrieved from https://ro.ecu.edu.au/
theses/447 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/447 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/806?utm_source=ro.ecu.edu.au%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



Shall We Play a Game? 
 

A thesis submitted to Edith Cowan University 

in fulfilment of the requirements for the degree 

of Doctor of Philosophy  (Computer Science)

By

Craig Caulfield

Student Number: 0985379

Supervisors: Dr S Paul Maj and Dr David Veal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Edith Cowan University

Faculty of Computing, Health and Science 

School of Computer and Security Science

Date Submitted: 23 December 2011

 



USE OF THESIS 
 

 

The Use of Thesis statement is not included in this version of the thesis. 



 
 

 Page ii 

 

Abstract 

 

In response to real and perceived short-comings in the quality and productivity of 

software engineering practices and projects, professionally-endorsed graduate and 

post-graduate curriculum guides have been developed to meet evolving technical 

developments and industry demands. Each of these curriculum guidelines identifies 

better software engineering management skills and soft, peopleware skills as 

critical for all graduating students, but they provide little guidance on how to 

achieve this. One possible way is to use a serious game — a game designed to 

educate players about some of the dynamic complexities of the field in a safe and 

inexpensive environment. This thesis presents the results of a qualitative research 

project that used a simple game of a software project to see if and how games could 

contribute to better software project management education; and if they could, then 

what features and attributes made them most efficacious. That is, shall we—  

should we—  play games in software engineering management? 

 

The primary research tool for this project was a game called Simsoft. Physically, 

Simsoft comes in two pieces. There is an A0-sized printed game board around 

which the players gather to discuss the current state of their project and to consider 

their next move. The board shows the flow of the game while plastic counters are 

used to represent the staff of the project. Poker chips represent the team’s budget, 

with which they can purchase more staff, and from which certain game events may 

draw or reimburse amounts depending on decisions made during the course of the 

game. There is also a simple Java-based dashboard, through which the players can 

see the current and historical state of the project in a series of reports and 

messages; and they can adjust the project’s settings. The engine behind Simsoft is a 

system dynamics model which embodies the fundamental causal relationships of 

simple software development projects. 

 

In Simsoft game sessions, teams of students, and practicing project managers and 

software engineers managed a hypothetical software development project with the 

aim of completing the project on time and within budget (with poker chips left 

over). Based on the starting scenario of the game, information provided during the 

game, and their own real-world experience, the players made decisions about how 

to proceed— whether to hire more staff or reduce the number, what hours should 

be worked, and so on. After each decision set had been entered, the game was run 

for another next time period, (a week, a month, or a quarter). The game was now in 



 
 

 Page iii 

 

a new state which the players had to interpret from the game board and decide how 

to proceed. 

 

The findings showed that games can contribute to better software engineering 

management education and help bridge the pedagogical gaps in current curriculum 

guidelines. However, they can’t do this by themselves and for best effect they 

should be used in conjunction with other pedagogical tools. The findings also 

showed that simple games and games in which the players are able to relate the 

game world to an external context are the most efficacious. 

  



 
 

 Page iv 

 

Declaration 

 

I certify that this thesis does not, to the best of my knowledge and belief: 

 Incorporate without acknowledgement any material previously submitted for a 

degree or diploma in any institution of higher education; 

 Contain any material previously published or written by another person except 

where due reference is made in the text; 

 Contain any defamatory material. 

I also grant permission for the Library at Edith Cowan University to make 

duplicate copies of my thesis as required. 

 

 

Craig Caulfield 

  



 
 

 Page v 

 

Acknowledgements 

 

Special thanks are due to my supervisors Dr Paul Maj and Dr David Veal. 

 

Paul was always generous with his time and knowledge, and was a source of wise 

counsel and encouragement over the long course of this project. His frank and 

reasoned criticism was sometimes like swallowing a bone; but it was also 

invariably right. 

 

David could be relied upon to apply a meticulous eye to all aspects of this 

project— from making sure all university and ethical procedures were followed, to 

the experimental design, and to the papers that resulted. He was also instrumental 

in marshalling this thesis through is final, critical stages. All this was delivered 

with an unfailing sense of good humour  

 

Without their guidance, this project would not have been completed. 

  



 
 

 Page vi 

 

Table of Contents 

 

Use of Thesis ............................................................................................................. i 

Abstract..................................................................................................................... ii 

Declaration .............................................................................................................. iv 

Acknowledgements .................................................................................................. v 

Table of Contents .................................................................................................... vi 

List of Figures .......................................................................................................... xi 

List of Tables .......................................................................................................... xii 

Chapter 1— Introduction .......................................................................................... 1 

Background and Significance ............................................................................... 1 

The Software Crisis ........................................................................................... 1 

The Complexity of Software Development ....................................................... 2 

Addressing the Issues ........................................................................................ 3 

One Possibility— Games .................................................................................. 5 

Defining Games .................................................................................................... 6 

Problem Statement .............................................................................................. 10 

Purpose Statement ............................................................................................... 11 

Research Questions ............................................................................................. 12 

Research Design Overview ................................................................................. 15 

Chapter 2— Literature Review ............................................................................... 19 

Introduction ......................................................................................................... 19 

The Nature of Software ....................................................................................... 20 

The Essences of Software ............................................................................... 20 

The Accidents of Software .............................................................................. 21 

Preparing Software Engineers for a Complex Environment ............................... 25 

The Profession of Software Engineering ......................................................... 25 

The Education of Software Engineers ............................................................. 30 

Software Engineering in a Social Environment .............................................. 34 



 
 

 Page vii 

 

Dealing With Complexity and Change ........................................................... 36 

Problem-Based Learning .................................................................................... 39 

Introducing Problem-Based Learning ............................................................. 39 

Philosophical Under-Pinnings ......................................................................... 40 

Background and History .................................................................................. 42 

Criticisms of Problem-Based Learning ........................................................... 43 

Is Problem-Based Learning Worth the Effort? ................................................ 44 

Games as an Implementation of Problem-Based Learning ................................. 45 

History and Origins ......................................................................................... 45 

How Games Are Used ..................................................................................... 50 

The Rationale for Games ................................................................................. 51 

The Instructional Value of Games ................................................................... 53 

A Systematic Survey of the Field of Games in Software Engineering 

Education ......................................................................................................... 55 

Summary ............................................................................................................. 59 

Chapter 3— Research Methodology ...................................................................... 61 

Introduction ......................................................................................................... 61 

Rationale for a Qualitative Research Design ...................................................... 61 

The Researcher ................................................................................................... 62 

The Research Sample .......................................................................................... 64 

Ethical Considerations ........................................................................................ 65 

Data Collection Methods .................................................................................... 66 

Simsoft Overview ............................................................................................ 68 

Game Sessions ................................................................................................. 69 

Game Administration ...................................................................................... 73 

Pre- and Post-Game Surveys ........................................................................... 74 

Data Analysis and Interpretation ........................................................................ 75 

Reliability, Validity, and Applicability of the Findings ...................................... 76 

Reliability ........................................................................................................ 77 



 
 

 Page viii 

 

Validity ............................................................................................................ 77 

Applicability .................................................................................................... 77 

Limitations of the Study...................................................................................... 78 

Summary ............................................................................................................. 79 

Chapter 4— Findings ............................................................................................. 80 

Introduction ......................................................................................................... 80 

Finding 1— There was evidence the participants were learning by doing. ........ 81 

Finding 2— Games such as Simsoft are not sufficient learning vehicles by 

themselves and need to be supplemented by other methods. .............................. 83 

Finding 3— Simsoft is a suitable pedagogical device for participants of different 

skills and backgrounds. ....................................................................................... 84 

Finding 4— The majority (49 out of 59) of participants said they would be 

prepared to invest greater time and effort in games such as Simsoft if the reward 

was deeper understanding of a problem domain. ................................................ 86 

Finding 5— The majority (44 out of 59) of the participants found that working in 

groups was a positive experience ........................................................................ 87 

Finding 6— The majority (44 out of 59) of participants preferred playing a board 

game rather than a fully computerised game ...................................................... 88 

Summary ............................................................................................................. 89 

Chapter 5– Analysis and Interpretation .................................................................. 92 

Introduction ......................................................................................................... 92 

Analytic Category 1– Games and Learning ........................................................ 93 

Learning in Simsoft ......................................................................................... 93 

Learning Through Simsoft Compared to Others ............................................. 94 

Are Games More Effective Than Other Pedagogical Means? ........................ 95 

Learning-Design Principles in Simsoft ........................................................... 97 

Analytic Category 2– Games in Context .......................................................... 101 

Context in Design .......................................................................................... 102 

Context in Practice ........................................................................................ 105 

No Game is an Island .................................................................................... 106 



 
 

 Page ix 

 

Analytic Category 3– The Relative Complexity of Games .............................. 107 

Related Work .................................................................................................... 109 

Summary ........................................................................................................... 113 

Chapter 6– Conclusions and Recommendations .................................................. 115 

Introduction ....................................................................................................... 115 

Shall We Play a Game? ..................................................................................... 115 

Long-Form Games as a Way of Creating Context ............................................ 116 

Games as Group Activities ............................................................................... 117 

Simple Games Can Be Effective ....................................................................... 117 

Recommendations ............................................................................................. 118 

Recommendations for Educators and Trainers.............................................. 118 

Recommendations for Game Developers ...................................................... 118 

Recommendations for Future Research ........................................................ 119 

Final Reflections ............................................................................................... 120 

References ............................................................................................................ 122 

Appendices ........................................................................................................... 147 

Appendix A: Causal Loop Diagrams ................................................................ 147 

Appendix B: Stock and Flow Diagrams ........................................................... 150 

Appendix C: Simsoft Game Board ................................................................... 153 

Appendix D: Simsoft Instructions to Players .................................................... 154 

About Simsoft ............................................................................................... 154 

Playing Simsoft ............................................................................................. 154 

Statement of Work ........................................................................................ 155 

Appendix E: Simsoft Instructions to Game Administrators ............................. 157 

Appendix F: Information Letter to Participants ................................................ 159 

Appendix G: Informed Consent Document ...................................................... 161 

Appendix H: Simsoft Database Design ............................................................ 163 

Appendix I: Pre-Game Survey .......................................................................... 164 

Page 1. Introduction ...................................................................................... 164 



 
 

 Page x 

 

Page 2. About You and Your Team .............................................................. 164 

Page 3. About Project Management and Software Engineering ................... 164 

Page 4. Thank you ......................................................................................... 167 

Appendix J: Post-Game Survey ........................................................................ 168 

Page 1. Simsoft and Problem-Based Learning Evaluation ............................ 168 

Page 2. About You and Your Team .............................................................. 168 

Page 3. About Games in General .................................................................. 169 

Page 4. About Simsoft in Particular .............................................................. 170 

Page 5. Test Your Knowledge ....................................................................... 173 

Page 6. Anything Else? ................................................................................. 176 

Page 7. Thank you ......................................................................................... 176 

Appendix K: Simsoft Finding Review .............................................................. 177 

Page 1. Simsoft Findings Review .................................................................. 177 

Appendix L: Full Data Extract of Games Used in Software Engineering 

Education .......................................................................................................... 180 

Appendix M: Spatial Distribution of Games Used in Software Engineering 

Education .......................................................................................................... 191 

Appendix N: Review Studies of the Instructional Effectiveness of Games ...... 192 

Appendix O: Peer-Reviewed Conference and Journal Articles Stemming From 

This Research Project ....................................................................................... 195 

 

  



 
 

 Page xi 

 

List of Figures 

 

Figure 1: Causal loop model of a typical project management development cycle. 

(The causal loop diagramming used in the model is explained in greater detail in 

Appendix A). ............................................................................................................ 7 

Figure 2: A system dynamics simulation of worker burnout. (The stock-and-flow 

diagramming used here is explained in more detail in Appendix B). ....................... 8 

Figure 3: The results of running the burnout simulation. ......................................... 9 

Figure 4:An idealised learning process incorporating games. ................................ 12 

Figure 5: Causal relationships amongst the components of recognised professions

 ................................................................................................................................ 27 

Figure 6: Idealised learning process ....................................................................... 39 

Figure 7: Game surveys classified by game type, experiment type, and Bloom 

taxonomy ................................................................................................................ 58 

Figure 8: Units of work boxes on the left-hand side of the Simsoft game board. .. 70 

Figure 9: Resource boxes on the right-hand side of the Simsoft game board ........ 71 

Figure 10: Simsoft dashboard. ................................................................................ 72 

Figure 11: The process of analysing and interpreting the data. .............................. 75 

Figure 12: Simsoft game board marked-up during a game session with an agile 

development term. ................................................................................................ 104 

Figure 13: A section of one the game boards marked-up with players' notes and 

reminders. ............................................................................................................. 108 

Figure 14: A simple causal loop diagram ............................................................. 147 

Figure 15: A stock and flow diagram of the classic predator-prey relationship ... 150 

Figure 16: Predator and prey oscillations. ............................................................ 151 

Figure 17: Simsoft data model .............................................................................. 163 

 

  



 
 

 Page xii 

 

List of Tables 

 

Table 1: Standish Group CHAOS report benchmarks .............................................. 2 

Table 2: The principles of complex adaptive systems mapped against agile 

development practices (Meso & Jain, 2006, p. 23). ............................................... 24 

Table 3: Software engineering mapped against Ford & Gibbs (1996) components 

of professional practice ........................................................................................... 28 

Table 4: SE2004 Project Planning and Project Personnel and Organization topics 

along with their Bloom (1956) classifications ........................................................ 32 

Table 5: Problem-based learning compared to other active learning methods. ...... 40 

Table 6: A comparison of quantitative and qualitative research designs. .............. 63 

Table 7: Comparison of players pre- and post-game test scores ............................ 82 

Table 8: Participants responses when asked whether they thought Simsoft was easy 

or difficult to play ................................................................................................... 85 

Table 9: Players' evaluation of game features ........................................................ 88 

Table 10: Simsoft Compared with Gee's (2007a) Principles of Good Game Design

 ................................................................................................................................ 97 

 

 



 
 

 Page 1 

 

Chapter 1— Introduction 

Background	and	Significance	

The	Software	Crisis	

In 1968 and 1969 NATO convened conferences of computer industry 

representatives and academics to help address what was seen as a growing gap 

between what was generally hoped for in complex software systems and what was 

actually achieved (Naur & Randell, 1969; Buxton & Randell, 1970). At the time it 

was recognised that the demands on software practitioners from industry, defence, 

and consumers would likely grow at an exponential rate. Yet, software engineering 

was then more of a craft than a profession (the term software engineering in the 

conference titles was considered deliberately provocative) and was already 

struggling to meet quality and performance measures; a software crisis in fact. 

 

By 1982, it was estimated that 15% of all software projects failed to deliver 

anything, and cost over-runs of 100% to 200% were not uncommon (DeMarco, 

1982, p. 3). In more recent times, the situation is still common: 

 

For every six new large-scale software systems that are put into operation, 
two others are canceled. The average software development project 
overshoots its schedule by half; larger projects generally do worse. And 
some three quarters of all large systems are “operating failures” that either 
do not function as intended or are not used at all. (Gibbs, 1994, p. 86) 

 

In the 1990s, despite some admirable successes such as the Sabre airline 

reservation system (Copeland et al., 1995) and the relatively uneventful passing of 

Y2K (Glass, 2000; Tipton, 2000; Yourdon, 2000; Crawford, 2001), software 

engineering quality and performance standards were still suspect (for example 

Baber, 1982, pp. 26 - 59; Sauer, 1993; Myers, 1994; Stix, 1994; Neumann, 1995; 

Applegate et al., 1996a; Applegate et al., 1996b; Barlas, 1996b, 1996a; Glass, 

1998, 1999).  

 

In more recent times, getting an accurate picture of the current state of the software 

crisis is difficult because companies are naturally reluctant to publicise failures and 

they may also oversell their successes. Recent Standish Group CHAOS reports into 

software project successes and failures (cited in Eveleens & Verhoef, 2010, p. 31) 

shows an improving trend over the last decade (Table 1), but these reports have 



 
 

 Page 2 

 

been criticised because the research methods and population they are based on are 

obscure (Glass, 2006; Emam & Koru, 2008; Eveleens & Verhoef, 2010).  

 

Table 1: Standish Group CHAOS report benchmarks 

Year Successful (%) Challenged (%) Failed (%) 

1994 16 53 31 

1996 27 33 40 

1998 26 46 28 

2000 28 49 23 

2004 29 53 18 

2006 35 46 19 

2009 32 44 24 

 

In the absence of reliable data, it may be conceded that the net societal benefit of 

software has been positive, but the long and expensive history of software project 

and product failures continues to accrue new examples and influences how the 

profession of software engineering is perceived. 

 

The	Complexity	of	Software	Development	

If a software crisis really does exist, then it may be no surprise. From the early days 

of the industry, it was known that software is inherently complex, and this 

complexity is an essential rather than an accidental characteristic: 

 

 Software needs to conform as best as possible to the arbitrary complexity 

imposed upon it by human institutions and systems (Brooks, 1995, p. 184). It is 

the usual case that these institutions and systems have been designed by 

different people with no underlying theme; still, software must be made to tie 

them together. 

 Software “is pure thought-stuff, infinitely malleable” (Brooks, 1995, p. 185). 

This property is both seductive and dangerous: when change is needed it is 

likely that it will be easiest to change the software, but constant change, if not 

managed, can erode the integrity of the original design. 

 Software is invisible and difficult to visualise: “we are hindered in our work by 

the fact that we cannot see our product and by the fact that we are neither 

guided nor constrained by the laws of physics, biology or chemistry in creating 

it and reasoning about it. Our product is a pure information product, being a 



 
 

 Page 3 

 

structure of information and relations upon that information” (Osterweil, 1987, 

p. 3). 

 

Then, how we come together to build this complex object adds yet another layer of 

complexity. It has been shown that: 

 

… the decisions that people make in organizations and the actions they 
choose to take are significantly influenced by the pressures, perceptions, 
and incentives produced by the organization’s planning and control 
system(s)... In particular, knowledge of project schedules was found to 
affect the real progress rate that is achieved, as well as the progress and 
problems that are reported upward in the organization. (Abdel-Hamid & 
Madnick, 1983, p. 341) 

 

So, in a complex societal system, such as a software development project, building 

a complex product, unappreciated causal relationships, dynamic complexity, and 

structural delays may lead to counter-intuitive outcomes of seemingly sensible 

decisions (Forrester, 1975; Abdel-Hamid & Madnick, 1983, p. 341). Without 

thoughtful planning and execution, poor quality software may be the result.  

 

Addressing	the	Issues	

There are some key indicators that the field of software engineering is trying to 

address these issues. A software engineering body of knowledge (SWEBOK) has 

been defined to characterise the contents of software engineering and to provide a 

foundation for curriculum development (Bourque et al., 1999); there are now 

professional accreditation and certification programs by which members of the 

field can be assessed (Naveda & Seidman, 2005); and professionally-endorsed 

curriculum recommendations have been developed to meet technical developments 

and evolving industry demands. Of these latter, the following are representative:  

 

 Curriculum Guidelines for Undergraduate Degree Programs in Software 

Engineering (SE2004) (Joint Task Force on Computing Curriculum, 2004). 

 Curriculum Guidelines for Graduate Degree Programs in Software Engineering 

(GSwE2009) (iSSEc Project, 2009). 

 Curriculum Guidelines for Undergraduate Degree Programs in Information 

Systems (IS2010) (Joint IS2010 Curriculum  Task Force, 2010). 

Each of these curriculum guidelines mentioned above identifies better software 

project management skills as critical for all graduating students, but they provide 



 
 

 Page 4 

 

little guidance on how to achieve this. Recognising that competent software 

engineering students need to supplement the abstract, theoretical side of their 

studies with some form of practical experience, educational institutions have 

typically used practicums where the students work in small groups to take a 

product idea from conception, through design, building and testing, to final 

delivery. These practicums can be delivered in a number of ways: 

 

 Capstone projects: these are projects designed to synthesise what the students 

have learned so far and give them a practical way to exercise their skills. The 

projects themselves may be instructor-designed or proposed by industry and 

usually cover the final semester of the course (Brereton et al., 2000; Cheng & 

Lin, 2010).  

 Work placements and sandwich courses: students are placed with software 

companies where they participate in real projects as paid employees. These 

placements may happen in the later parts of the student’s course and may be 

single opportunities, or intertwined— sandwiched— over a longer period (Lay 

et al., 2008; Ribaud & Saliou, 2008). 

 Laboratories: student teams work for extended periods on large-scale, ongoing 

projects within a standardized and evolving development process, which can 

accommodate team members leaving and joining (Sebern, 2002). 

 

Often, these practicums come near the end of the students’ studies, where they can 

tie together any loose threads by allowing the students to practice what they have 

learned. “However, this appears to be too little, too late. Projects are often only a 

single semester in length, students do not benefit from the integration of ideas and 

practice until the end of their studies, and team orientation is often undermined by 

scholastic competition for grades” (Schlimmer et al., 1994, p. 213). 

 

While the practicums are designed to give students an opportunity to apply their 

knowledge in a practical way, they often fail because the students are overloaded 

with many conflicting concerns and often “aren’t mature enough to appreciate the 

importance of many SE topics. On one hand… pay attention to documentation, 

apply configuration control, test thoroughly… On the other hand, our students have 

difficulty appreciating issues— such as team organization and cost estimation— 

that software professionals know from the trenches” (van Vliet, 2006, p. 56). 

 



 
 

 Page 5 

 

One	Possibility—	Games	

In the previous section it was shown that the various software engineering and 

information systems curriculums place great emphasis on making sure graduates 

are cognisant of the value of sound software project management, but they provide 

little guidance on how to practically achieve this. Given that software development 

projects are complex socio-technical systems then arguably what is needed is an 

instructional method that provides students with an opportunity to experience the 

dynamics of a software project in something akin to a real-world environment— as 

Confucius said, “I hear and I forget, I see and I remember, I do and I understand”. 

 

But, experience— Confucius’ doing— can be expensive. There is a story of a 

young IBM executive whose innocent mistake caused a $10 million loss for the 

company. Coming before Thomas J Watson, the formidable IBM boss, the contrite 

executive said, “I’m here to tender my resignation”.  Watson replied, “You must be 

kidding! We’ve just spent ten million dollars training you” (Awad & Ghaziri, 2008, 

p. 281). 

 

The young IBM executive was lucky to have an enlightened boss, but must things 

always happen this way? Must mistakes be made in the real before we can learn 

from them? Perhaps not: games are a way of ‘doing’ in a controlled and 

inexpensive way so that software engineers and software project managers don’t 

repeat the same expensive mistakes (cost and time over-runs, dissatisfied end-

users, burnt out staff, unstable or unreliable software) that bedevil modern software 

projects. 

 

 Of course, games aren’t the only way of achieving this, but: 

 

 Games have been used as learning tools in many different business, military, 

and social environments, and have proven to be efficacious (Perla, 1990; 

Schrage & Peters, 1999; Michael & Chen, 2005; Gee, 2007a; Prensky, 2007). 

 Games draw their intellectual integrity from a number of sources including 

educational theory (Dewey, 1938/1963; Lewin, 1952; Papert, 1980; Kolb, 

1984), operations research (Thomas & Deemer, 1957; Wilson, 1968, pp. 36 - 

50), small-group behaviour research (Kennedy, 1971b, 1971a), war-gaming, 

decision sciences (Mayer, 2009, p. 827), and systems engineering (Raser, 

1969, pp. 46 - 55), and problem-based learning (Savin-Baden & Major, 2004). 

 



 
 

 Page 6 

 

So, games have a pedigree to be taken seriously as research and pedagogical tools. 

First, games need to be more formally defined. 

 

Defining	Games	

To play a game, “is to engage in activity directed towards bringing about a specific 

state of affairs, using only means permitted by specific rules, where the means 

permitted by the rules are more limited in scope than they would be in the absence 

of the rules and where the sole reason for accepting such limitation is to make 

possible such activity” (Suits, 1967, p. 156).  This classic definition contains the 

key elements common to all games: 

 

 A goal or objective: a “specific achievable state of affairs” (Suits, 2005, p. 

186), such as crossing the line first, scoring the most points, or having the best 

hand. Goals or objectives differentiate games from other types of play. For 

example, if a game doesn’t have a goal “but is something that can be just 

played with in many ways depending on your whim, you have what they refer 

to as a toy” (Prensky, 2007, p. 120). 

 Means: the legal or legitimate ways of trying to achieve the goal or objective of 

a game. Using a weapon in a boxing match is one way of achieving the goal of 

downing an opponent, but it is, of course, illegal (Suits, 2005, p. 187). 

 Rules: the legitimate means of achieving the goal of a game. Often, rules 

gratuitously prohibit the most efficient means of reaching a goal in order to 

make a game challenging and engaging (Suits, 2005, p. 187): a golf ball could 

simply be placed in a cup; instead, it must be hit from a distance and played 

from where it lies along the way. 

 Lusory attitude: a free-willed acceptance by players of the conceit created by 

seemingly arbitrary rules simply in order to participate in the game (Costikyan, 

2005, p. 195; Suits, 2005, pp. 188–189; Prensky, 2007, pp. 123 – 124). 

 

In summary, Suits offers a portable version of a game: “the voluntary attempt to 

overcome unnecessary obstacles” (2005, p. 190). 

 

With this definition in mind, a game can be said to be different from a model or 

simulation. To start, a model is: 

 



 
 

 Page 7 

 

A miniature representation of a complex reality. A model reflects certain 
selected characteristics of the system it stands for. A model is useful to the 
extent that it portrays accurately those characteristics that happen to be of 
interest at the moment” (DeMarco, 1982, p. 41). 

 

 

For example, the model in Error! Reference source not found. represents the 

behaviour of a group of engineers trying to complete a project against a deadline 

(Sterman, 2000, pp. 148 - 149). The engineers compare the work remaining to be 

done against the time remaining before the deadline. The larger the gap, the more 

Schedule Pressure they feel. When Schedule Pressure builds up, they have several 

choices. First, they can work overtime: instead of the normal 50 hours per week, 

they can come in early, stay late, skip lunch, and work on weekends. By Burning 

the Midnight Oil, they increase the rate at which they complete their tasks and 

relieve the Schedule Pressure. However, if the workweek stays too high for too 

long, fatigue sets in and Productivity suffers. As Productivity falls, the task 

Completion Rate drops, which increases Schedule Pressure and leads to still longer 

hours. 

 
Figure 1: Causal loop model of a typical project management development cycle. (The causal 
loop diagramming used in the model is explained in greater detail in Appendix A). 

Another way to complete the work faster is to reduce the time spent on each task. 

Spending less Time per Task increases the number of tasks completed per hour 

(Productivity) and relieves Schedule Pressure. However, this can mean skipping 

tasks such as documentation and quality assurance which can be self-defeating 

because it increases the Error Rate, which leads to rework and lower Productivity  

Schedule Pressure

Time Remaining

Work Remaining

Overtime

Productivity

Fatigue

Time per Task

Error Rate

O

O

S

S

Completion Rate

S

O

S

O

S

O

O

O

Midnight Oil

Corner Cutting

Burnout

Haste Makes Waste



 
 

 Page 8 

 

in the long run. 

 

A model is almost guaranteed to be incomplete because it is an abstraction of 

reality; the exact components of reality included in the model will depend on what 

the user is trying to explore. Even so, a model “saves us from a certain self-

deception. Forced into the open, our ideas may flutter helplessly; but at least we 

can see what bloodless creatures they are. As inquiry proceeds, theories must be 

brought out into the open sooner or later; the model simply makes it sooner” 

(Kaplan, 1973, pp. 268 - 269). 

 

Meanwhile, a simulation is a special kind of model that exhibits processes in some 

way like the system is represents, and that shows how these processes change from 

state A to state B, between two points in time (Miller, 1978, p. 83). Consider, for 

example, the simulation in Figure 2 which represents worker burnout as described 

by Homer (1985).  

 

Burnout begins when a person working on a project tries to meet unmet 

expectations by working longer hours. By working longer hours they are exposed 

to more of the normal stress of work and consequently their finite store of 

“adaptive energy” (Selye, 1974, 1978) is depleted more quickly and they also have 

less time to recover. This depleted energy level may leave the person even less 

capable of meeting their expectations, or may cause them to make mistakes that 

have to be fixed at the expense of real progress. In response, they may try to work 

harder, which will deplete their energy levels still more. Unless the person is 

granted some respite, this vicious cycle may continue until they leave in frustration 

or they are burned out and no longer able to contribute to the project. 

 
Figure 2: A system dynamics simulation of worker burnout. (The stock-and-flow diagramming 
used here is explained in more detail in Appendix B). 



 
 

 Page 9 

 

 

When this burnout simulation is run, a multi-scale graph is produced (Figure 

3Error! Reference source not found.).  

Viewed over a 13-month period, the person starts out by working a 40-hour week. 

Every couple of weeks there is a spike and they have to work 50-hour weeks for a 

short time (this pattern can, of course, be changed to model any real-world 

circumstance). The graph shows that the person’s energy levels rise and fall in line 

with oscillations in the work week, but the overall trend is downwards because the 

constant spikes in work never allow enough time for proper recovery. 

 

Building a simulation such as this continues the explication begun when a theory is 

turned into a model: 

 

Turning a model into a simulation, of course, brings this process one step 
further, for functional relations must additionally be specified and defined. 
Simulation-construction thus functions, as does any theory-construction, to 
systematize and order empirical findings, but in addition it disciplines 
theory, since concepts must be explicitly defined, and more importantly, 
relations among the elements must be completely specified if the 
simulation is to “run” or cycle. (Crow cited in Raser, 1969, pp. 73 - 74) 

 

Simulations are different from games, but the distinction is subtle: 

 

Both are mathematical models, but they differ in purpose and mode of use. 
Simulation models are designed to simulate a system and to generate a 
series of statistical results regarding system operations. Games are also a 

 
Figure 3: The results of running the burnout simulation. 



 
 

 Page 10 

 

form of simulation, except that in games human beings play a significant 
part. In games, human beings make decisions at various stages and games 
are distinguished by a sense of play. Major goals of game play are to 
improve decision-making skills and to facilitate an understanding of the 
game environment simulated by participation of the players (Shim, 1978, 
p. 26).  

 

Therefore, as used here, a model is a convenient representation (in words, numbers, 

or other symbols) of some real-world, socio-economic or socio-technical system; a 

simulation is a dynamic, operational model through which changes over time are 

revealed; and a game is a simulation that is purposefully run, wholly or partly 

determined by players’ decisions, within some predetermined context. In a game, 

there is something at stake (Huizinga, 1971, p. 49). 

 

Games naturally come in many forms. In a seminal work in the field, Man, Play 

and Games, Caillois (1961) proposed a classification that depends on whether the 

role of competition (agôn), chance (alea), simulation (mimicry), or vertigo (ilinx) is 

dominant.  Agôn are those games “that would seem to be competitive… like a 

combat in which equality of chances is artificially created in order that the 

adversaries should confront each other under ideal conditions” (Caillois, 1961, p. 

14).  Football, billiards, or chess fall into this category. Alea are games of chance 

such as roulette or a lottery; games of mimicry involve the players becoming other 

characters, such as cowboys and Indians; while ilinx are “those which are based in 

the pursuit of vertigo and which consists of an attempt to momentarily destroy the 

stability of perception and inflict a kind of voluptuous panic upon an otherwise 

lucid mind” (Caillois, 1961, p. 23). 

 

The games that this research project deals with are a subset of Caillois’s agôn 

classification and they use an adjective— serious— to show they want for more 

than simple amusement and that they are designed to educate, train, or inform their 

players (Abt, 1970; Schrage & Peters, 1999; Michael & Chen, 2005). 

 

Problem	Statement	

Not all is well in software engineering.  

 

Despite many admirable successes, some of the brightest minds, and many decades 

of experience, many software products are buggy, more expensive than they need 

to be, fragile, and sometimes life-threatening. Hard evidence to call this a software 



 
 

 Page 11 

 

crisis is difficult to gather, but it may be conceded that the demands placed on 

software engineers will continue to grow and that room exists to improve both the 

quality of software and other key project management processes.  

 

Nevertheless, the profession is maturing and trying to do things better by: 

 

 Defining a body of knowledge, the SWEBOK, to characterise the field and 

form the basis of curriculum development and accreditation, licensing and 

certification programs. 

 Creating standards of ethics and conduct to guide software engineers in 

responsible behaviour. 

 Developing professionally endorsed curriculum guidelines for initial and 

ongoing education to make sure that software engineers have the right skills 

and knowledge to deal with a complex and dynamic domain. 

 

The focus of this research project is on this last item because it influences so many 

other areas of software engineering. Curriculum guidelines say time and effort have 

to be devoted to software engineering management, but, apart from traditional 

lectures, workshops, projects, and capstone projects, they don’t say how this should 

be taught. Perhaps it is because in software engineering management we see the 

full face of a complex, dynamic, and human-centred socio-technical system. 

 

The solution posited here is that serious games can help. For this research project, a 

game called Simsoft  was developed (Caulfield et al., 2011a; Caulfield et al., 

2011c; Caulfield et al., 2011d) to see what contribution its design features could 

make to the education of software engineers and software project managers and 

thereby fill some of the pedagogical gaps in the SE2004, IS2010, MSIS2006, and 

GSwE2009 curriculum guidelines. 

 

Purpose	Statement	

The purpose of this research project is to see if and how games can contribute to 

better software engineering management education by helping software engineers 

and project managers explore some of the dynamic complexities of the field in a 

safe and inexpensive environment. If games can contribute, then what features 

make them most efficacious? 

 



 
 

 Page 12 

 

Research	Questions 

 

Here is Edward Bear, coming downstairs now, bump, bump, bump, on the 
back of his head, behind Christopher Robin. It is, as far as he knows, the 
only way of coming downstairs, but sometimes he feels that there really is 
another way, if only he could stop bumping for a moment and think of it. 
And then he feels that perhaps there isn’t. (Milne, 1998, p. 1)  

 

So it must also be for many software project managers dealing with tight deadlines, 

budget concerns, quality issues, production crises, and unexplored possibilities: so 

many things to consider but little pause to do so very meaningfully.  

 

Managers in such situations often resort to silver bullets, those tools that promise 

an order-of-magnitude improvement in programmer productivity. The list of such 

tools is long and over the years has included different development methodologies, 

object-oriented techniques, CASE tools, prototyping, software reuse, process 

improvement, and specific languages (Cox, 1990; Davis, 1993). Since none of 

these tools has delivered on the promise of vastly improved productivity, Brooks 

(1995, p. 219) would call each just a brass bullet. 

 

Neither silver nor brass, there may be another way to address such issues. In many 

different fields, games have developed into a mature instructional technique based 

on the idealised learning process shown in Figure 4 (Sterman, 2000, p. 34). 

 

Within this feedback structure, we receive information in its many forms from the 

Figure 4:An idealised learning process incorporating games. 

Real World

Virtual World

Information
Feedback

Mental Models
Strategy,

Structure,
Decision Rules

Decisions

Unknown structure, dynamics
complexity, time delays, inability

to conduct controlled
experiments

Known structure, variable
level of complexity,

controlled experiments

Simulations used to infer
the dynamics of mental

models correctly

Mapping of feedback structure,
disciplined application of scientific
reasoning, discussability of group
processes, defensive behaviour

Virtual world: complete,
accurate, immediate

feedback

Real world: selective
perception, missing feedback,
delays, bias distortion, error,

and ambiguity

Real world: implementation
failure, politics, inconsistency,

performance is a goal

Virtual world: perfect
implementation, consistent

incentives, consistent application of
decision rules, learning can be a

goal



 
 

 Page 13 

 

real world in which we live, yet this information can be incomplete, biased, 

delayed, or in other ways distorted. Still, based on this information, we make 

decisions that are in turn filtered through our existing mental models, in the process 

changing or confirming the structure of our real-world systems and creating new 

decision rules and new strategies or reinforcing the existing. The process then 

repeats against this new baseline. Virtual worlds, or games, act as an alternative to 

applying our decisions to the real-world, a way of quickly, inexpensively, and 

consistently experimenting with different ideas and thereby increasing our store of 

contexts.  

 

Whether games can indeed do this in software engineering management gives rise 

to the first research question: 

 

Can games contribute to better software engineering management 

education? 

(Q1)

 

Naturally, games are not the only way in which a contribution could be made to 

better software engineering education. Besides traditional lectures, laboratories, 

case studies, a number of organisations and academic institutions in recent years 

have initiated training programs that aim to more fully round the theoretical 

background of software engineers, often mixing this with real-world projects 

(Dawson et al., 1992; Mathiassen et al., 1999). Yet, for the most part “students are 

learning their real world awareness in industry, working on real projects where 

their mistakes affect all around them” (Dawson et al., 1997, p. 287). How games 

relate to more traditional pedagogical tools gives rise to the hypothesis associated 

with research question Q1: 

 

Games built on sound software project management principles are a 
more effective means of improving software project management 
education than more traditional pedagogical means. 

(H1)

 

In general, games are more administratively time-consuming and complex to use in 

education. So, if they can contribute to better software engineering management, 

then we need to determine what features and attributes make them most efficacious 

in order to get the most from them. This gives rise to the second research question: 

 



 
 

 Page 14 

 

If games are to contribute to better software project management 
education, what features make them most efficacious? 

(Q2)

 

Software is often developed within an ill-structured environmental context 

(Bostrom & Heinen, 1977a, 1977b; Keen, 1981; Kling & Iacono, 1984; 

Hirschheim & Klein, 1989; Bennetts et al., 1998; Day, 2000) that includes 

sometimes contradictory human and business priorities, meaning that a purely 

technical or logical solution is not always the best guarantee for success. A 

necessary step is therefore to determine what factors help or hinder in this regard, 

giving rise to the first hypothesis in support of research question Q2: 

 

For best effect, players should be able to easily relate the context of 
a game to their real-world experience. 

(H2.1)

 

From the literature of the field it can be said that the software development process 

has been modelled (Belady & Lehman, 1976; McCabe, 1976; Remus & Zilles, 

1979; Boehm, 1981) and simulated (Abdel-Hamid & Madnick, 1991; Variale et al., 

1994; Hansen, 1996; Madachy, 1996; Tvedt, 1996; Collofello, 2000; Martin & 

Raffo, 2001) many times. These existing models and simulations have captured 

many of the essences of software engineering practice and would naturally serve as 

a starting point for game development, yet many have not presented the field’s 

body of knowledge in an intuitive way that encourages learning. For example, 

perhaps the most well-known simulation (Abdel-Hamid & Madnick, 1991) 

contains over 300 underlying variables, doesn’t have a way to interact with the 

model except through direct manipulation of these variables, and yet does not 

describe the development process in detail (Martin, 2002b, pp. 32 - 37).  

 

Set against these models is research that has compared the learning outcomes 

between a range of simple and more complex games. While the most complex 

game offered “the richest learning experience available, the game’s very 

formidable appearance probably intimidated a number of players or forced them 

into a learning situation they were unprepared or unwilling to negotiate” (Wolfe, 

1978, p. 152). The next most effective game in Wolfe’s study was found to be the 

least complex, supporting similar research that showed relatively simple games can 

provide essentially the same benefits as the more complex (Raia, 1966, p. 351; 

Watt, 1977, p. 2; Butler et al., 1979). Therefore, making games only as complex as 

absolutely necessary, or hiding unnecessary detail, could be a way of achieving the 



 
 

 Page 15 

 

best learning outcomes while avoiding the player mortality (boredom and dropout) 

noted by Wolfe. This gives rise to the second hypothesis in support of research 

question Q2: 

 

For best effect, games should be simple to play and understand and 
only as theoretically complex as needed to explore the concepts at 
hand. 

(H2.2)

* * * 

 

[Christopher Robin] picked his bear up by the leg and walked off to the 
door, trailing Winnie-the-Pooh behind him… and in a moment I heard 
Winnie-the-Pooh— bump, bump, bump— going up the stairs behind him 
(Milne, 1998, p. 145). 

 

It seems that Pooh Bear never did get pause to consider a better way of tackling 

those stairs. Perhaps the same metaphorical stairs won’t prove to be so painful and 

inscrutable for software engineers. 

 

Research	Design	Overview	

The primary research tool for this project is a simple game called Simsoft. Teams 

of players are given a simulated project to operate from start-up to the delivery of 

its objectives. Based on the starting scenario of the game, information provided 

during the game, and their own real-world experience, the players make decisions 

about how to proceed— whether to hire more staff or reduce the number, what 

hours should be worked, and so on. After each decision set has been entered by the 

players, project time is advanced by a week. The game is now in a new state, which 

the players must interpret from the state of the board and decide what to do next. 

 

Physically, Simsoft comes in two pieces: 

 

 An A0-sized printed game board (see Appendix C: Simsoft Game Board) 

around which the players gather to discuss the current state of the project and 

to consider their next move. The board shows the flow of the game while 

plastic counters are used to represent the staff of the simulated project. Poker 

chips represent the budget the team, with which they can purchase more staff, 

and from which certain game events may draw or reimburse amounts 

depending on decisions made during the course of the game. 



 
 

 Page 16 

 

 

 A simple Java-based dashboard (see for example, Sterman, 1988; Langley et 

al., 1999; Caulfield et al., 2011b), through which the players can: 

 

o See the current and historical state of the project through a series of simple 

reports, messages, and other information. 

o View the underlying system dynamics model so they can be fully informed 

about the relationships behind particular game variables (Machuca, 2000). 

o Can adjust the project’s settings, for example to recruit new staff, before 

advancing the game’s time to create the state of the project. 

 

The aim of the game is to complete the project on time and with funds (poker 

chips) left over. 

 

The engine behind Simsoft is a system dynamics model which embodies the 

fundamental causal relationships in software development projects. System 

dynamics has been used for this task before and a case has been presented in other 

work (Caulfield, 2001; Caulfield & Maj, 2001, 2002, 2007). In line with similar 

efforts (Abdel-Hamid & Madnick, 1991), this engine will draw its rules from the 

software engineering body of knowledge (Bourque et al., 1999). 

 

System dynamics is a modelling approach to dynamic socio-technical problems, 

stemming from the work of Forrester (1961, 1969, 1971) at MIT and since 

developed (Wolstenholme, 1990; Sterman, 2000; Senge, 2006), that allows a 

modeller to mix soft variables (morale, perceptions, motivations) with familiar hard 

variables (time, cost, resources). A system dynamics model is not so much a tool 

for time-point prediction, but more of an experimental device to see how certain 

variables might change over time under the influence of unappreciated causal 

relationships, dynamic complexity, and structural delays. The end result is 

hopefully a more informed mind set with which to manage the situation at hand 

(Caulfield & Maj, 2002). 

 

Behind the system dynamics model will be a relational database (see Appendix H: 

Simsoft Database Design) to store the decisions entered by the players, the 

parameters which define the particular project (for example, budget and time), and 

which will capture the state of the model at each time slice. This will allow the 

game to be rolled backward or forwards, replayed, and studied. 



 
 

 Page 17 

 

 

Games such as Simsoft have typically been deployed in university courses in one 

of three ways: 

 

 Teach sections of the same course using different methods, and then compare 

the results of students on a common test. For example, all students in a course 

might attend a common lecture, and then attend either a traditional tutorial 

session or a tutorial that uses a game (see, for example McKenney, 1962; Raia, 

1966). Besides the difficulty of obtaining adequate control of factors such as 

student composition, instructor characteristics, and grader evaluations, 

previous studies in this vein have shown that students participating in games 

are obviously learning ‘something’ other than what the traditional method 

might teach them, but that ‘something’ cannot be measured by a common test 

(Parasuraman, 1981, p. 192). 

 Evaluate the student’s grades or scores in the simulation part of the course with 

their grades in other more traditional assignments and examinations in the 

course (see, for example Remus, 1977; Remus & Jenner, 1981). There are 

some conceptual and methodological problems with this approach. For 

example, a student’s game score might reflect their ability to play or beat the 

game rather than their decision-making ability (Parasuraman, 1981, p. 194). 

 Sample players subjective attitudes regarding the usefulness of the games 

before, during, or after play, or a combination thereof, by obtaining written 

feedback (see, for example Jackson, 1959; Dill & Doppelt, 1963; McKenney & 

Dill, 1966; McKenna, 1991; Herz & Merz, 1998). This technique can be 

criticised on the basis of  “how qualified are college students, with little or no 

practical business experience, to make any meaningful evaluation of business 

simulation games?” (Parasuraman, 1981, p. 194). Other studies have shown 

that student performance in games, when compared to that of experienced 

managers, raises serious questions about how much can be generalised to 

behaviour patterns in the business world (Babb et al., 1966, p. 471). 

  

Each approach therefore has its strengths and weaknesses and is part of a broader 

debate concerning the value of games as pedagogical devices in themselves and 

when compared to other methods of instruction (Amstutz, 1963; Moore, 1967; 

Boocock, 1970; Moskowitz, 1973; Hand & Sims, 1975; Wolfe & Guth, 1975; 

Parasuraman, 1981; Remus & Jenner, 1981; Prohaska & Frank, 1990).  

 



 
 

 Page 18 

 

To address some of these issues, an approach similar to the third option above will 

be followed. Simsoft game sessions will be conducted for teams of post-graduate 

project management students (for software and general projects), and practising 

software project managers and developers. Overall game evaluation will be made 

on the basis of pre- and post-games surveys, performance in Simsoft, and a 

qualitative rich analysis of the interactions that were observed during the game 

sessions (Drappa & Ludewig, 2000). 

 

  



 
 

 Page 19 

 

Chapter 2— Literature Review 

Introduction	

The purpose of this research project is to see if and how games can contribute to 

better software engineering management education by helping software engineers 

and project managers explore some of the dynamic complexities of the field in a 

safe and inexpensive environment. If games can contribute, then what features 

make them most efficacious? To do this, a critical review of the current literature 

was necessary and this continued throughout the data collection, analysis, and 

synthesis stages of this project.  

 

During the course of this review, three main topic areas became apparent: 

 

 The inherently complex nature of both software and the way it is developed. 

 The way software engineers are educated to work in this type of environment 

and what lessons we might be able to learn from the way others have sought to 

handle similar situations. 

 Problem-based learning, in general, and games, in particular, as an alternative 

way of making software development more tractable. 

 

Looking at the inherent complexity of software and the development process used 

to produce it sets the context for how well (or not) we now educate software 

engineers. The literature of problem-based learning is reviewed for the insights it 

provides into how we might teach those who will be working in complex, dynamic, 

and ill-defined environments such as software development. Within this, the 

literature of games is reviewed to see how this practical implementation of 

problem-based learning theory is relevant to improving software engineering 

education. 

 

To conduct this literature review, many different sources were used, including 

books, professional journals, periodicals, dissertations, and Internet sources, plus 

many extant games. Throughout the review, important gaps and omissions in the 

relevant sections of the literature are suggested, and any contested areas and issues 

are explored. The summary at the end of this chapter shows how the review of the 

literature has contributed to the design and conduct of the research. 

 



 
 

 Page 20 

 

The	Nature	of	Software		

In “No Silver Bullet” Brooks (1987) discusses the Aristotelian essences and 

accidents of software engineering while looking for the same order-of-magnitude 

improvement in productivity seen in hardware development— a failed search, 

ultimately. The former are the inherent complexities of software (the abstract data 

types, relationships among data items, algorithms and invocation of functions), 

while the latter are the difficulties that attend its production (representing abstract 

entities in programming languages, or building the software in a team 

environment). To date, most of the significant gains in software productivity have 

come by making accidental tasks less burdensome and error-prone,  for example 

through high-level languages and sophisticated development environments. Brooks 

believed that more research into the essences of software had the potential to yield 

steady and modest productivity improvements— the best that could be hoped for 

since there was no realistic silver bullet. 

 

Apart from pointing to areas of fruitful productivity research, the essences and 

accidents dichotomy also provides a useful means with which to look at the nature 

of software. 

The	Essences	of	Software	

Some of the essences of software have already been mentioned in the Introduction. 

For example, software artefacts are naturally complex because they are intangible 

and difficult to visualise, and this complexity is the root cause of many other 

problems:  

 

From the complexity comes the difficulty of communication among team 
members, which leads to product flaws, cost overruns, schedule delays. 
From the complexity comes the difficulty of enumerating, much less 
understanding, all the possible states of the program, and from that comes 
the unreliability. From the complexity of the functions comes the difficulty 
of invoking those functions, which makes programs hard to use. From 
complexity of structure comes the difficulty of extending programs to new 
functions without creating side effects. From complexity of structure 
comes the unvisualized states that constitute security trapdoors. (Brooks, 
1987, p. 11). 

 

Adding to the complexity, software has no fundamental theory (Osterweil, 1987, p. 

3), like the law of physics, with which we can reason about its behaviour: 

 

Because computer programs are in essence mathematical objects whose 
values are constructed from bits, software programs are discrete 



 
 

 Page 21 

 

(particlelike) rather than continuous. A mechanical engineer can stress a 
component with a large force and assume that if it survives it will not fail 
when subjected to a slightly smaller force. When an object is subject to the 
(mostly continuous) principles of the physical world, a small change in one 
quantity generally produces a small change in another. Unfortunately, no 
such generalities apply to software: one cannot extrapolate between test 
cases. If one chunk of software works, that fact says nothing about the 
operations of a similar chunk of code; they are discrete and separate. 
(Jackson, 2006, p. 62) 

 

This makes it difficult to thoroughly test software without actually building it and 

running it in a live environment (Kruchten, 2005) with all the attendant  risks this 

involves.  

 

Software must also conform to the arbitrary design of the human institutions and 

processes in which it is deployed and accept change because in a system of 

software, hardware, and humans, it is the most malleable (Brooks, 1987, p. 12). 

These are naturally properties that organisations want to take advantage of, but 

constant change, if not managed, can erode the integrity of the original design, and 

when combined with relatively low manufacturing costs, can lead to shortcuts: 

 

Program implementation is more like preparing a cast in mechanical 
engineering… The real “manufacturing” of software entails almost no cost; 
a CD-ROM, for example, costs less than a dollar, and delivery over the 
Internet only a few cents. Often it doesn’t matter if the design… is a bit 
wrong; we can just fix it and manufacture it again… You can’t do that with 
a bridge or a car engine because the cost would be huge, and that forces 
engineers involved in building these things to get them right the first time. 
(Kruchten, 2004) 

 

Because software is complex, difficult to reason about and test, and yet cheap and 

easy to change, it is perhaps understandable that many implementations are not 

right the first time, if at all. 

 

The	Accidents	of	Software	

To recap, an accidental feature of software is something that attends its production 

such as the programming language it is written in or the development process by 

which it is created.  

 

Taking the latter as an example, the type of development process by which 

software is created or maintained typically falls somewhere on a continuum 



 
 

 Page 22 

 

between heavyweight and lightweight. Heavyweight processes emphasise detailed 

upfront planning, well-defined roles for each team member, and specific linear 

development phases— all of which is carefully documented and reviewed. For 

example, the waterfall process consists of two basic phases— analysis and 

coding— surrounded several overhead phases— system and software requirements 

definition, program design, and testing— which are designed to bring discipline to 

an otherwise complex undertaking. Iteration is possible, but usually only between 

the immediately preceding and succeeding phases. In this waterfall, program 

design is critical and it must be documented in detail so it can be shared by the 

whole team (Royce, 1970; McConnell, 1996, pp. 136 – 139; Royce, 1998, pp. 6 – 

11). 

 

Meanwhile, lightweight, or agile, development processes emphasise iterative and 

incremental development cycles and the delivery of working software over strict 

adherence to processes, plans, and documentation (Larman & Basili, 2003; 

Cockburn, 2006; Larman, 2006). Under Scrum (Schwaber, 2004), for example, 

there are also specific project roles, but these are less prescriptive than under the 

waterfall process. There must be a client representative co-located with the 

development team and this person must have the knowledge and authority to 

resolve most issues quickly when they arise. Managing the process is a Scrum 

Master, whose job is to remove any impediments and to buffer the team against 

any distractions. Then, from a product backlog, or list of work items, the team 

(which includes the customer representative) decide what can be achieved in the 

next sprint— a time-boxed development cycle of between 2 and 6 weeks. At a 

short daily stand-up meeting, the team members tell each other what they achieved 

yesterday, what they plan to do today, and report any road blocks they may have 

encountered. Because progress is measured by working software rather than by 

comparison to a project plan, the team need to demonstrate what they have 

achieved at the end of each sprint. 

 

Naturally, heavyweight and lightweight processes have advantages and 

disadvantages and some are better suited to particular situations that others. 

 

For example, the traditional waterfall development cycle of requirements 

definition, analysis, design, code, and testing needs the requirements to be fully 

specified at the start of the project— something that is not always possible. Plus, 

projects do not always proceed in a linear fashion: requirements change, staff come 



 
 

 Page 23 

 

and go, outside events may cause delays. All these call for some form of iteration 

in the lifecycle, which the waterfall process model caters for only nominally. 

However, this process works well if the product requirements are well understood, 

where quality requirements dominate cost and schedule requirements, and where 

the team is inexperienced or technically weak as the structure helps to minimise 

wasted effort (McConnell, 1996, p. 137). 

 

Other process models, such as Scrum, deliver software in small, working 

increments. Users have a chance to see and use the software early in the project, 

which helps them refine their requirements and it also highlights any business or 

technical risks while there is still time and budget to take corrective action. 

However, agile development processes do not yet scale well, being more suited to 

projects lasting up to 12 months and teams of perhaps to 10 or so members 

(Ambler, 2006, p. 46). Also, it may be difficult to convince project sponsors that 

the process can be controlled effectively and therefore agile projects demand 

greater risk management and control skills (Boehm & Turner, 2003). 

 

So, the development process chosen for a particular project needs to take into 

account the development maturity of the team, the nature and scale of the project 

being undertaken, and constraints such as time and budget. 

 

Some argue that the heavyweight/lightweight continuum is not enough (Highsmith, 

2000, pp. 4 – 8; Meso & Jain, 2006, p. 20), and to accurately describe the way 

software is developed we need to borrow a concept that is usually applied to 

biological and sociological models: complex adaptive systems. A complex adaptive 

system is one containing a group of self-similar agents who participate in a rich 

exchange of information or materials with each other according to some simple 

rules, and thereby learn and adapt to conditions around them  (Buckley, 1968; 

Dooley, 1996; Anderson, 1999). When the principles of complex adaptive systems 

are mapped against agile development practices (Table 2), we can see that there is 

a tolerable correspondence. 

 

Taking a complex adaptive systems viewpoint is not just an interesting thought 

experiment— it has been used to design and develop enterprise application 

integration projects in health care (Tan et al., 2005) and the insurance industry 

(Sutherland & van den Heuvel, 2002). Complex adaptive systems also have 



 
 

 Page 24 

 

implications for the way software is developed because we may have been on the 

wrong track: 

 

Blame for the systems development crisis has been laid at the feet of the 

Table 2: The principles of complex adaptive systems mapped against agile development 
practices (Meso & Jain, 2006, p. 23). 

Agile Practice Complex Adaptive System 

Principle 

Example 

Frequent releases and 

continuous integration 

Principle of growth and 

evolution 

Software is developed iterative 

and incrementally, gradually 

adding more and more features 

onto a working base product. 

Obtain frequent feedback from 

the end users 

Principle of transformative 

feedback loops 

Development cycles are time-

boxed, after which the software 

is demonstrated and feedback is 

gathered from the end users. 

Accommodate changes in the 

requirements 

Principle of emergent order Working software is 

demonstrated regularly so that 

requirements can be gathered 

and refined. Work items in the 

product backlog are reworked 

and re-prioritised as needed. 

Loosely coupled development 

environment 

Principle of distributed control Software is developed as 

loosely coupled components 

which communicate through 

defined interfaces. Decision-

making authority is pushed 

down the management 

hierarchy closer to those 

performing the actions. 

Planning is kept to a minimum Principle of growth and 

evolution 

Principle of emergent order 

Enough architectural and project 

planning is done to satisfy 

immediately foreseeable needs, 

which is based on the 

understanding that detailed 

long-term planning is wasted 

effort when change is 

continuous. 

Promote continuous learning 

and improvement 

Principle of growth and 

evolution 

Principle of interaction and 

relationships 

Allow for manageable 

experimentation in product 

design and implementation so 

that lessons can be learned. 

Emphasis on working software Principle of path of least effort At the daily standup meetings 

developers can raise issues that 

are blocking their progress. 

These should be dealt with as 

soon as possible. 



 
 

 Page 25 

 

creators of development methods, tool builders, analysts, designers and 
implementers. But we suggest that the problem may, instead, lie in an 
incorrect goal set that we all have accepted from the outset [and] that is the 
idea that systems should support organizational stability and structure, 
should be low maintenance, and should strive for high degrees of user 
acceptance. (Truex et al., 1999, pp. 122 – 123) 

 

Truex and colleagues believe that the accepted goals don’t match the way 

organisations really operate: stable and low maintenance systems discourage even 

positive strategic change because of the presumed cost and for fear of disrupting 

something now working well; and user acceptance is improbable because they may 

not fully understand what they need. Instead, the authors say software development 

needs to accommodate continuous analysis (because change in the surrounding 

business and technical environment is constant); continuous requirements 

negotiations (because there will always be a conflict between what the users have 

and what they need); and a portfolio of ongoing maintenance activities (because 

systems should never be allowed to become totally outdated or irreparable). 

 

So, in just one of the accidental attributes of software— the process by which it is 

created and maintained— software engineers have plenty of choices; not so 

plentiful are the means by which to make a wise discrimination. 

 

Preparing	Software	Engineers	for	a	Complex	Environment	

How then do we prepare software engineers to work in an environment that is 

complex in and of itself, and which is, in turn, used to create a complex product? 

To answer this we need to look at the state of current professional practice and the 

educational programs that produce new software engineers. 

 

The	Profession	of	Software	Engineering	

In response to the natural characteristics of software and the way it is developed, 

practitioners have sought ways of making software development more reliable, 

more predictable— more like its engineering namesake. Among the most common 

definitions of software engineering are: 

 

 “... the need for software manufacture to be based on the types of theoretical 

foundations and practical disciplines, that are traditional in the established 

branches of engineering.” (Naur & Randell, 1969, p. 13) 



 
 

 Page 26 

 

 “1. The systematic application of scientific and technological knowledge, 

methods, and experience to the design, implementation, testing, and 

documentation of software... 2. The application of a systematic, disciplined, 

quantifiable approach to the development, operation, and maintenance of 

software; that is, the application of engineering to software” (ISO/IEC/IEEE, 

2010, p. 331) 

 “Software engineering is an engineering discipline that is concerned with all 

aspects of software production from the early stages of system specification to 

maintaining the system after it has gone into use... In general software 

engineers adopt a systematic and organised approach to their work, as this is 

often the most effective way to produce high-quality software” (Sommerville, 

2007, p. 7)  

 

These definitions stress that software development needs the rigorous foundation 

that an engineering process can provide, underpinned by mathematics and science 

(Bryant, 2000, p. 78). As used here, an engineering process is considered to be a 

“repeated cycle through requirements, specifications, prototypes, and testing” 

(Denning & Riehle, 2009, pp. 24 - 25), meaning it covers a broad spectrum of 

technical and project management activities and not just the design and coding of 

software. But, studies have found that software engineers do not consistently 

practice sound engineering principles such as separating design from 

implementation, collecting and analysing metrics, and striving for predictable 

outcomes (the principle of least surprise) (Humphrey, 1998; Riehle, 2008; Denning 

& Riehle, 2009). 

 

Even though the engineering metaphor tends to breaks down on close examination, 

and others have proposed craftsmanship (McBreen, 2001; Martin, 2009)  and even 

gardening (Hunt & Thomas, 1999; Buschmann, 2011a, 2011b), the title first used 

at those NATO conferences in 1968 and 1969 has stuck fast. It may be more 

helpful to view software engineering as a profession, for which there are concrete 

definitions and parameters. For example: 

 

The legitimization of professional authority involves three distinctive 
claims: first, that the knowledge and competence of the professional have 
been validated by a community of his or her peers; second, that this 
consensually validated knowledge rests on rational, scientific grounds; and 
third, that the professional’s judgment and advice are oriented toward a set 
of substantive values, such as health. These aspects of legitimacy 



 
 

 Page 27 

 

correspond to the kinds of attributes—collegial, cognitive, and moral—
usually embodied in the term “profession.” (Starr, 1984, p. 15) 

 

By analysing a range of recognised professions in light of this definition, Ford and 

Gibbs (1996) were able to say what characterises a profession and how these 

components are related to each other (Figure 5).  

 

 
Figure 5: Causal relationships amongst the components of recognised professions 

 

What is evident from Figure 5 is the central role of professional initial and ongoing 

education: it underpins many of the other components and so is crucial to the 

development of competent and proficient software engineers and crucial in 

addressing the quality and productivity issues of the field. 

 

Table 3 shows that when we map software engineering against Ford and Gibbs’ 

professional components, the field is still relatively immature, but there has been a 

significant improvement from 1996 when the first assessment was done. 

 

Ford and Gibbs (1996, p. 8) note that only a handful of professions, such as 

medicine and law, are truly mature in all components and it may take many, many 

years to reach this stage. The immature, but improving, state of the software 

engineering professional is therefore a long-term project. 



 
 

 Page 28 

 

 

Table 3: Software engineering mapped against Ford & Gibbs (1996) components of professional 
practice 

Component 19961,2 20032,3 2011 

Initial professional practice: 

this means knowledge of an 

advanced type usually 

acquired over a prolonged 

course of specialised 

intellectual instruction and 

study (Ford & Gibbs, 1996, p. 

10), such as an undergraduate 

or post-graduate university 

degree. 

Ad-hoc Between ad-

hoc and 

specific 

Maturing. In Australia, for 

example, there are 14 

institutions offering 18 

specialised undergraduate and 

post-graduate degrees in 

software engineering. 

(Hobsons, 2011) 

Accreditation: a way of 

assuring the quality of 

education programs. 

Recognised and independent 

bodies accredit courses to say 

they meet the standards of the 

profession (Ford & Gibbs, 

1996, p. 11). 

Ad-hoc Specific Specific. Software engineering 

accrediting bodies exist in 

Australia, Canada, Japan, the 

United Kingdom and the 

United States (Frezza et al., 

2006). 

Skills development: 

professionals are expected to 

learn their field’s body of 

knowledge and also develop 

their skills in the application of 

that knowledge. In the past, 

practical skills were developed 

through apprenticeships; now, 

they are more likely to be 

developed through laboratory 

exercises, student projects, or 

internships (Ford & Gibbs, 

1996, pp. 12-13). 

Ad-hoc Specific Specific. The SE2004 

curriculum guidelines define 

the knowledge a software 

engineer must know upon 

graduation, and the Software 

Engineering Body of 

Knowledge (SWEBOK) 

(Bourque et al., 1999) defines 

the body of knowledge a 

software engineer should have 

after four years of practice. 

However, but there is no 

accepted path between the 

two. 

Certification: members of a 

profession can voluntarily 

apply to be certified by a 

professional society to say that 

they have achieved a certain 

competency (Ford & Gibbs, 

1996, pp. 13-14) 

Ad-hoc Specific Specific. The IEEE's Certified 

Software Development 

Professional program is based 

on the SWEBOK and is an 

independent measure by which 

members of the field can be 

assessed (Naveda & Seidman, 

2005). Commercial vendors 

such as Microsoft, Cisco, and 

Oracle also provide 

technology-specific certification 

programs. 

Licensing: a mandatory Ad-hoc Ad-hoc Specific. While some states in 



 
 

 Page 29 

 

process, usually administered 

by a government agency, 

which confirms a person is 

knowledgeable and competent 

in their field. 

the US and provinces in 

Canada started licensing 

software engineers in 1998 

and 1999 respectively, the 

practice has not been wildly 

adopted because the onerous 

conditions mean only a tiny 

fraction would qualify or even 

bother (Melody, 2003; 

McConnell, 2004, p. 56) 

Professional development: 

covers those things a person 

does to maintain their skills 

and knowledge after they start 

practice. “It includes everything 

from the occasional reading of 

an article in a professional 

magazine to lengthy continuing 

education or training required 

for relicensing or 

recertification” (Ford & Gibbs, 

1996, p. 15). 

Specific Ad-hoc moving 

towards 

Specific 

Specific. “Professional 

development is perhaps the 

most nebulous of the eight 

infrastructure components, in 

that it includes many kinds of 

activities, each of which can 

take many forms" (Ford & 

Gibbs, 1996, p. 33). While 

there are many training and 

further education options for 

software engineers, the path 

they take is less planned and 

more dictated by their current 

work assignment and their 

available resources. 

Code of ethics: a code of 

conduct or practice that 

ensures practitioners behave 

in an ethical and responsible 

way. Committing to a code of 

ethics make practitioners feel 

part of a community and, if 

sanctions are given for 

violations, people dealing with 

practitioners know they have 

recourse if something goes 

wrong. (Ford & Gibbs, 1996, 

pp. 16-17) 

Ad-hoc Specific Specific. The IEEE and ACM 

have created a code of ethics 

for software engineers, but this 

hasn't been widely adopted by 

industry or academia and isn't 

enforceable (McConnell, 2004, 

p. 57). 

Professional society: a body 

that promotes the exchange of 

professional knowledge by, 

say, publishing journals and 

magazines, organising 

conferences and symposia, 

and publishing text or 

reference books. Professional 

societies will also typically be 

involved in defining certification 

standards, managing 

accreditation programs, and 

Specific Specific Maturing. Two main 

professional societies, the 

IEEE and the ACM, each have 

specialised software 

engineering divisions, 

publications, and conferences 

and they also cooperate on 

curriculum, accreditation, and 

certification development. 



 
 

 Page 30 

 

creating academic curriculum 

guidelines. 

1. (Ford & Gibbs, 1996) 

2. Ad-hoc: some related form of the component exists, but it is not specifically related to the given 

profession. Specific: the component exists and is clearly identified with the given profession. 

Maturing: the component has existed for many years, during which time it has come under active 

stewardship of an appropriate body with the profession and is being continually improved. 

3. (McConnell, 2004) 

 

The	Education	of	Software	Engineers	

As mentioned in the previous section, the initial and ongoing professional 

education of software engineers plays a critical role in the field’s ability to tackle 

the natural complexity of software and how it is developed. In recognition of this, 

the two main professional bodies, the IEEE and ACM, have for some time jointly 

developed a range of curriculum guidelines to help educators create comprehensive 

and relevant courses, and to form the basis of certification and accreditation 

programs. Reflecting the breadth and depth of computer science as it now stands, 

these curriculum guidelines span a number of volumes: 

 

 Curriculum Guidelines for Undergraduate Degree Programs in Software 

Engineering (SE2004) 

 Curriculum Guidelines for Graduate Degree Programs in Software Engineering 

(GSwE2009)  

 Curriculum Guidelines for Undergraduate Degree Programs in Information 

Systems (IS2010) 

 Model Curriculum and Guidelines for Graduate Degree Programs in 

Information Systems (MSIS2006) 

 Curriculum Guidelines for Undergraduate Degree Programs in Computer 

Engineering (CE 2004) 

 The Computing Curricula Information Technology Volume (IT2008) 

 

Of interest here are SE2004, GSwE2009, IS2010, and MSIS2006 because they 

directly address aspects of software engineering management. 

 

For example, IS2010 places great emphasis on leadership, collaboration, 

negotiation, and ethical behaviour because, “it is impossible for IS graduates to 

exhibit the required high-level IS capabilities without these foundation knowledge 

and skills” (Joint IS2010 Curriculum  Task Force, 2010, p. 21). The recommended 



 
 

 Page 31 

 

course, IS2010.5 IS Project Management, is designed to teach students the 

methods, techniques, and tools that organisations use to manage their information 

systems projects. However, “the course specification intentionally leaves 

discussion regarding specific methods and approaches unanswered” (Joint IS2010 

Curriculum  Task Force, 2010, p. 50), which means institutions need to figure out 

for themselves how best to teach these aspects. 

 

Similarly, SE2004, which is explicitly based on the SWEBOK, says students must 

be exposed to:  

 

... aspects of professional practice as an integral component of the 
undergraduate curriculum. The professional practice of software 
engineering encompasses a wide range of issues and activities, including 
problem solving, management, ethical and legal concerns, written and oral 
communication, working as part of a team, and remaining current in a 
rapidly changing discipline. (Joint Task Force on Computing Curriculum, 
2004, p. 15; see also Lethbridge et al., 2006; Hazzan, 2010) 

 

To achieve these outcomes, SE2004 defines nine Software Engineering Education 

Knowledge (SEEK) areas, each of which has a series of associated knowledge 

units. For all knowledge areas and units, Bloom (1956) attributes are specified as 

either: knowledge, comprehension or application. To briefly recap, the Bloom 

taxonomy is a classification of learning objectives consisting of three domains: 

cognitive, affective and psychomotor. The cognitive domain, which is most 

applicable to traditional teaching, defines six levels of taxonomy from the lowest to 

the highest: 

 

 Knowledge: remember previously-learned materials by recalling specific facts, 

terminology, theories and answers. 

 Comprehension: demonstrate an understanding of information by being able to 

compare, contrast, organize, interpret, describe, and extrapolate. 

 Application: use previously-learned material in new situations. 

 Analysis: decompose previously-learned material into parts in order find 

patterns and to make inferences and generalisations. 

 Synthesis: use existing ideas in different ways to create new ideas or to propose 

alternative solutions. 

 Evaluation: judge the validity of ideas or information within a certain context. 

 



 
 

 Page 32 

 

(There is some debate in education circles about whether synthesis or evaluation is 

the higher Bloom level. Here, the most commonly published order has been used. ) 

 

Key amongst the SE2004 knowledge areas is Software Management (MGT), which 

represents approximately 4 per cent of the taught-load component, and is made up 

of five knowledge units:  

 

 Management concepts 

 Project planning 

 Project personnel and organisation 

 Project control 

 Software configuration and management 

 

The knowledge units Project Planning and Project Personnel and Organization are 

each given the Bloom classification level of Application (Table 4).  

 

Table 4: SE2004 Project Planning and Project Personnel and Organization topics along with 
their Bloom (1956) classifications 

SE2004 Project Planning topics

KA/KU Topic Bloom’s taxonomy 

MGT.pp Project planning  

MGT.pp.1 Evaluation and planning Comprehension 

MGT.pp.2 Work breakdown structure Application 

MGT.pp.3 Task scheduling Application 

MGT.pp.4 Effort estimation Application 

MGT.pp.5 Resource allocation Comprehension 

MGT.pp.6 Risk management Application 

SE2004 Project Personnel and Organization topics 

KA/KU Topic Bloom’s taxonomy 

MGT.per Project personnel and organization  

MGT.per.1 
Organizational structures, positions, 

responsibilities and authority 
Knowledge 

MGT.per.2 Formal/informal communication Knowledge 

MGT.per.3 Project staffing Knowledge 

MGT.per.4 
Personnel training, career development, 

and evaluation 
Knowledge 

MGT.per.5 Meeting management Application 

MGT.per.6 Building and motivating teams Application 

MGT.per.7 Conflict resolution Application 

 



 
 

 Page 33 

 

To teach these, SE2004’s curriculum guideline 17 (Joint Task Force on Computing 

Curriculum, 2004, p. 45) encourages a variety of teaching and learning methods 

that include problem-based learning, just-in-time learning, learning by failure and 

self-study. 

 

In a similar way to IS2010 and SE2004, the GSwE2009 defines a Core Body of 

Knowledge (CBOK) along with associated Bloom classifications. GSwE2009 

recommends the 7 to 9 percent of the curriculum be devoted to software 

engineering management (iSSEc Project, 2009, p. 46). The distinction between 

GSwE2009 and SE2004 is that the former takes more units to a higher Bloom 

taxonomy level: 

 

SE2004 recommends mastery of many topics at level 1. Every topic in 
GSwE2009 must be mastered at level 2 or higher. Moreover, many more 
topics in GSwE2009 require mastery at level 3 than does SE2004; e.g., in 
SE2004, the topic of software process is addressed only at levels 1 and 2. 
In GSwE2009, the same topic is covered at levels 2 and 3. (iSSEc Project, 
2009, p. 15) 

 

Software engineering management is also a key part of MSIS2006, where it is 

demonstrated most clearly in the practicum, which is: 

 

... a term-long project solving a real problem for a real client against a time 
deadline. For full-time students, it is recommended that they work in teams 
and that industry supports the project by providing stipends to the students 
for their work because the financial incentive has been shown to improve 
the relevance of the project topic and the quality of the student output. For 
parttime, working students, a project for their employer is usually 
appropriate as a practicum. (MSIS2006) 

 

MSIS2006 recognises it may not be possible to provide a practicum for all students 

because of cost and simple logistics and a normal capstone project is the default.  

 

Although detailed and comprehensive, SE2004, IS2010, MSIS2006, and 

GSwE2009 leave some gaps. While they encourage implementers to use a variety 

of teaching methods, the course specifications are often intentionally vague, 

particularly around some social, non-technical skills, which means institutions need 

to figure out for themselves how best to teach these aspects.  

 



 
 

 Page 34 

 

Software	Engineering	in	a	Social	Environment	

It is surprising that the curriculum guidelines provide little guidance in how to 

teach some of the social aspects of software engineering since these have been 

identified many times as at least equally important to the success of software 

projects as the technical (DeMarco, 1991; Yourdon, 1992; Constantine, 1995; 

Weinberg, 1998; Yourdon, 1998; DeMarco & Lister, 1999; Yourdon, 2004). Social 

aspects of software engineering include topics such as (Ardis et al., 2008, pp. F3H-

1):  

 

 Observing: listening, watching, and recording the behaviour of peers or clients. 

 Reviewing: reading and providing feedback on documents or source code. 

 Presenting: preparing and presenting information to audiences of peers and 

non-technical people. 

 Writing: preparing written documents and other artefacts such as source code 

documentation. 

 Planning: organising, estimating, and synthesising process activities. 

 Cooperating: working together with others to complete a task. 

 Reflecting: recording and learning from past events, updating plans, looking 

for opportunities to reuse designs or other artefacts. 

 Judging: making ethical judgments, dealing with conflict, and making 

performance appraisals of peers. 

 

The reasons why these topics are not addressed more fully in software engineering 

programs may be two-fold: the seeming arbitrariness of the sociological factors in 

software development is at odds with the formal and familiar technical aspects; and 

the lack of suitable tools with which to model and understand human dynamics. 

 

Successful software engineering management also depends on accepting that in any 

social environment, such as a software development team, sensible decisions can 

result in counter-intuitive, and possibly counter-productive, outcomes. Consider, 

for example, Brooks’ Law from  The Mythical Man Month (Brooks, 1995). The 

title refers to that fundamental unit of measurement and scheduling, the man-

month; a unit that Brooks believes is often misunderstood: 

 

Cost does indeed vary as the product of the number of men and the number 
of months. Progress does not. Hence the man-month as a unit for 



 
 

 Page 35 

 

measuring the size of a job is a dangerous and deceptive myth. It implies 
that men and months are interchangeable. (Brooks, 1995, p. 16) 

 

Because of this lack of interchangeability, Brooks’ informal law states that adding 

more developers to a late software project in the hope of meeting a looming 

deadline will only make matters worse. The reason lies in the fact that software 

projects often cannot be broken into isolated, independent units of work, meaning 

that the developers need to coordinate their activities at a detailed level. Therein 

lies an unappreciated communications overhead. For example, if a group of n 

developers need to coordinate their efforts with each other then the number of 

communication paths can be represented by n (n – 1)/2. Time spent navigating 

these paths is time not spent being directly productive. 

 

When new developers are added to the equation, the communications overhead is 

amplified. The new developers are usually not immediately productive because 

they need to become acquainted with the overall aims of the project, its strategy 

and the general plan of work (Sengupta et al., 1999; Bradley & McGrath, 2000), 

and they possibly need to undergo some form of organisational socialisation 

(Schein, 1980). The best, and often only, people able to provide this training and 

socialisation are the existing developers, who are in the process diverted from their 

primary tasks. 

 

The net result is that more time is lost in bringing the new developers up to speed 

and in additional coordination efforts than is gained in productive time (see 

Caulfield et al., 2004 for a worked example). 

 

What are educators to make of all this? Software engineering management is a 

dynamic and sometimes counter-intuitive socio-technical activity which produces a 

complex artefact that is often difficult to reason about and test. In some critical 

areas, current curriculum guidelines leave it to educators to bridge the pedagogical 

gap between the qualities and skills a well-rounded software engineer should 

possess and how these should be taught.  

 

This gap is exposed most often when students finish their requisite courses and 

attempt their final, important, and synthesising capstone project. While there are 

many cases of capstone projects bringing great benefits for the students and their 

clients (Boehm et al., 1998; Johns-Boast & Patch, 2010), these are balanced by 



 
 

 Page 36 

 

stories of significant failures in which student/client relationships broke down, 

there was severe internal team dissension, or the final software was unusable 

(Brereton et al., 2000; Polack-Wahl, 2006; Cheng & Lin, 2010). For those capstone 

projects that failed, there was little opportunity for reflection or remedial action 

because the project was the final unit of study for the course. Some research has 

been conducted that recommends guidelines for successful capstone projects 

(Robillard & Robillard, 1998), such as providing students with basic training in 

project control, reviewing the design documents, and  having an experienced 

software engineer mentor certain stages, but these are relatively costly or time-

consuming course attributes and there is little evidence they have been widely 

adopted. 

 

One possible solution to the problems presented in this section is to look at how we 

might deal with complexity and change more generally and see if there are lessons 

that can be applied for software engineering management. 

 

Dealing	With	Complexity	and	Change	

In 1979, The Learning Report (Botkin et al.) was presented at a Club of Rome 

conference— a conference of leading business, scientific, social, and political 

thinkers meeting with a view of finding holistic and interdisciplinary solutions to 

intractable problems. The report was the culmination of two years of meetings, 

seminars, and discussions concerning the world problematique: a snarl of problems 

in areas such as energy, population, and food, often with political, social, and 

psychological aspects, the outcome of which was a degree of unparalleled world 

complexity. The report saw a growing gap between a complexity of human making 

and a lagging development of our own capacities to deal with it, and proposed a 

means of bridging this gap— anticipatory learning. Anticipatory learning offers a 

possible solution by being: 

 

 Future-oriented. It assumes an orientation that is not solely reactive and 

prepares for possible contingencies and considers long-range future 

alternatives. “Through anticipatory learning, the future may enter our lives as a 

friend, not as a burglar” (Botkin et al., 1979, p. 13). 

 Participative. Anticipatory learning is not possible while there is a paternalistic 

assumption that one group has all the answers, and will deliver these to a less-

informed constituency. When issues are explored as a joint venture then 



 
 

 Page 37 

 

solutions become “almost self-evident, are better supported, can be more 

readily implemented, and are less likely to generate unwanted repercussions” 

(Botkin et al., 1979, p. 30). 

 

The world problematique that lies behind anticipatory learning reveals itself in 

many ways. For example: 

 

Perhaps for the first time in history, humankind has the capacity to create 
far more information than anyone can absorb, to foster far greater 
interdependency than anyone can manage, and to accelerate change far 
faster than anyone’s ability to keep pace. (Senge, 1990, p. 69) 

 

Along the same lines, Boulding has said: 

 

As far as many statistical series related to activities of mankind are 
concerned, the date that divides human history into two equal parts is well 
within living memory… In a very real sense the changes in the state of 
mankind since the date of my birth [1910] have been greater than the 
changes that took place in many thousands of years before this date. 
(Boulding, 1964, pp. 7, 8) 

 

Meanwhile, Toffler (1970, p. 16) has noted that it is still within living memory that 

agriculture, the original basis of civilisation, has lost its dominance as the primary 

employer of  the economically active population. 

 

The same is true in software engineering management: 

 

[The] velocity, or the rate at which business processes occur, becomes a 
crucial measure for enterprises competing in the fast-changing and 
unpredictable markets. To increase the velocity of an enterprise, its 
supporting information systems must be capable of rapid-changes in lock-
step with business changes. Unfortunately, this rapid change is rarely 
possible today. (Yeh, 2002, p. 2)  

 

If we accept that change-induced, cascading complexity is happening, then we 

should also accept that we need to deal with its consequences in some manner. 

Typically, this can be done in two ways: 

 

 Simplify reality. Look for the primitives and hierarchy of the problem domain. 

Seeing abstractions or commonalities and understanding how they relate to 



 
 

 Page 38 

 

each other can help orient our thinking when confronted with something 

unfamiliar (von Bertalanffy, 1968; Courtois, 1985). 

 Absorb the complexity or achieve a level of requisite variety (Ashby, 1956). 

When we are confronted with some new situation, piece of information, it is 

usually compared to an array of previous knowledge, our mental models. An 

inference process then tries to makes sense of the new information by relating 

it to what is already known.  

 

Taking these steps are the initial actions in analysing something new; we then need 

to decide what to do based on what we understand. Yet, in order for the later 

inference process to have any substance with which to work, our store of mental 

models, or contexts, must be sufficient: 

 

In order to enhance the human capacity to act in new situations and to deal 
with unfamiliar events, innovative [anticipatory] learning requires the 
absorption of vast collections of contexts. When contexts are restricted, the 
probability of shock learning increases, for shock may be conceived as a 
sudden event that occurs outside the known contexts. Hence one task of 
innovative learning is to enhance the individual’s ability to find, absorb, 
and create new contexts— in short, to enrich the supply of contexts. 
(Botkin et al., 1979, p. 24)  

 

One way to enrich the supply of contexts is to use a tool of anticipatory learning— 

games (Fulmer, 1993; Senge & Fulmer, 1993). The argument is illustrated by the 

feedback diagram in the Figure 6 (Sterman, 2000, p. 34).  

 

We receive information in its many forms from the real world in which we live. 

Based on this feedback, we make decisions that are filtered through our existing 

mental models, in the process changing or confirming the structure of our real-

world systems and creating new decision rules and new strategies or reinforcing the 

existing. Games act as an alternative to applying our decisions to the real-world, a 

way of quickly and inexpensively experimenting with different policies and 

thereby increasing our supply of contexts. Without the tool of simulation, we must 

directly respond to real-world feedback that is “very slow and often rendered 

ineffective by dynamic complexity, time delays, inadequate and ambiguous 

feedback, poor reasoning skills, defensive reactions, and the costs of 

experimentation” (Sterman, 2000, p. 37). 

 



 
 

 Page 39 

 

Games could therefore be one way of preparing students for a complex and 

dynamic working environment such as software engineering management. Before 

seeing how this might be so, we must look at problem-based learning— the 

broader educational theory of which anticipatory learning is a subset— because it 

provides a sound intellectual framework upon which to build practical 

implementations such as games. 

 

Problem‐Based	Learning	

Introducing	Problem‐Based	Learning	

Problem-based learning is a pedagogic method that uses problem scenarios to 

encourage students to work out solutions for themselves. Usually working in small 

teams, students explore the problem, bring their personal experience to bear, 

identify any gaps in their knowledge, and eventually come up with viable solutions. 

The problems themselves are usually complex, ill-defined, real-world situations for 

which there may not necessarily be a single right or wrong solution (Maxwell et al., 

2004, p. 2). The students build new knowledge through self-directed learning while 

their tutors act as facilitators or consultants rather than more traditional instructors 

(Dempsey et al., 2002, p. 5; Woolfolk, 2009, p. 347; McCall, 2011). 

 

At first glance, problem-based learning may look like other forms of active 

learning, however Table 5 shows there are some unique characteristics (Levin et 

al., 2001, p. 123; Savin-Baden & Major, 2004, p. 7; Woolfolk, 2009, pp. 348 – 

Figure 6: Idealised learning process 

Real World

Virtual World

Information
Feedback

Mental Models
Strategy,

Structure,
Decision Rules

Decisions

Unknown structure, dynamics
complexity, time delays, inability

to conduct controlled
experiments

Known structure, variable
level of complexity,

controlled experiments

Simulations used to infer
the dynamics of mental

models correctly

Mapping of feedback structure,
disciplined application of scientific
reasoning, discussability of group
processes, defensive behaviour

Virtual world: complete,
accurate, immediate

feedback

Real world: selective
perception, missing feedback,
delays, bias distortion, error,

and ambiguity

Real world: implementation
failure, politics, inconsistency,

performance is a goal

Virtual world: perfect
implementation, consistent

incentives, consistent application of
decision rules, learning can be a

goal



 
 

 Page 40 

 

349). Most noticeably, students are presented with the problems before they 

receive more traditional instruction such as lectures, tutorials, readings and 

assignments. This forces them to name what they need to learn to solve the 

problem (Wenzler, 2009, p. 59) and to explore the body of knowledge of their field 

with a practical goal in mind. 

Philosophical	Under‐Pinnings	

Problem-based learning has its origins in a number of schools of philosophical and 

Table 5: Problem-based learning compared to other active learning methods. 

Method Organisation 

of knowledge 

Forms of 

knowledge 

Role of 

student 

Role of tutor Type of 

activity 

Problem-

based 

learning 

Open-ended 

situations and 

problems. 

These are 

presented 

before formal 

instruction. 

Contingent 

and 

constructed 

Active 

participants 

and 

independent 

critical 

inquirers 

A facilitator or 

consultant 

Development 

of strategies 

to help team 

and individual 

learning 

Project-

based 

learning 

Tutor-set, 

structured 

tasks 

Performative 

and practical 

Completer of 

project or 

member of a 

project team 

that 

developers a 

solution or 

strategy 

Task setter 

and project 

supervisor 

Problem 

solving and 

problem 

management 

Problem-

solving 

learning 

Step-by-step 

logical 

problem 

solving 

through 

knowledge 

supplied by 

the tutor 

Largely 

propositional 

but may also 

be practical 

Problem 

solver who 

acquires 

knowledge 

through 

bounded 

problem 

solving 

A guide to the 

right 

knowledge 

and solution 

Finding 

solutions to 

given 

problems 

Action 

learning 

Group-led 

discussion 

and reflection 

on actions 

Personal and 

performative 

Self-advisor 

who seeks to 

achieve their 

goals and help 

others achieve 

theirs through 

reflection and 

action 

A facilitator of 

reflection and 

action 

Achievement 

of individual 

goals 



 
 

 Page 41 

 

educational thought that have meditated on the way we acquire or develop 

knowledge: 

 

 Metaphysical critiquing of knowledge through reason: problem-based learning 

assumes learners will develop meta-cognitive skills and therefore will use 

reasoning abilities to solve complex problems (Hacker & Dunlosky, 2003; 

Savin-Baden & Major, 2004, p. 11).  These ideas date back to the fifth- and 

fourth-century BC Greek philosophers, such as Socrates, Plato, and Aristotle.  

Aristotle, for example, believed that knowledge could be gained through 

perception as well as through abstraction and logical reasoning. To this end, he 

trained his students to use Socratic dialectic to reconcile the contradictions 

presented in a thesis or problem. He saw a liberal and technical education on 

many subjects and theories as a way for students to make rational judgments on 

almost any subject. In the same way, problem-based learning encourages 

students towards sustained enquiry leading to practical skills. 

 Deductive and inductive reasoning: in problem-based learning, students 

assume no givens and must use deductive and inductive reasoning and 

experimentation to test the validity of a particular course of action. 

 Positivism and social justice: problem-based learning presents an opportunity 

to address many issues of social justice as it provides an opportunity for 

students who might otherwise be marginalised in traditional classes to 

participate. The small-team structure of a problem-based learning class means 

there is less chance that students who are traditionally marginalised (the poor, 

the socially inept, students whose first language is not English, for example) 

will be excluded. 

 Existentialism and independent thinking: one of the primary goals of problem-

based learning is to help students develop independent learning skills. 

Existentialist philosophers such as Søren Kierkegard (1813 – 1855) and 

Friedrich Nietzsche (1844 – 1900) saw this. Kierkegard believed that 

individuals learn by observing others and experimenting rather than  being told 

information (Kriz, 2009, p. 28). Meanwhile, Nietzsche believed in learning to 

think and criticised schools and universities for no longer understanding this. 

He questioned the value of educators as he believed that one could not educate 

another and that education must necessarily be self-education otherwise it 

becomes a form of control and levelling. While not going to a Nietzschian 

extreme, problem-based learning encourages students to think critically, and to 

take responsibility for their own learning and for that of others in their team. 



 
 

 Page 42 

 

 

Background	and	History	

From these philosophical foundations, problem-based learning developed a 

practical realisation, first in medical schools in North American before spreading to 

other places and disciplines. 

 

Medical	Schools	

By the late 19th century, North American medical schools were mostly privately-

funded, poorly-run institutions that produced an over-abundance of physicians of 

greatly-varying skills (Flexner, 1910). Flexner’s report saw that medical training 

had to be held to higher standards and called for university-based academic and 

clinical training closely tied with mainstream science. Most of Flexner’s 

recommendations were adopted and within 25 years more than half the medical 

schools in America had closed or merged and most of those that remained were 

affiliated with a university (Savin-Baden & Major, 2004, p. 16). 

 

By the 1960s, the Flexner model of medical education had developed problems of 

its own: it was found that students lacked critical-thinking and problem-solving 

skills because the structure of the curriculum and examinations rewarded rote 

learning. Students were memorising propositional knowledge without 

understanding how to apply it (Levin & Forman, 1973, p. 867; Savin-Baden & 

Major, 2004, p. 17). 

 

In 1966, an opportunity arose to address these latest problems. A new hospital and 

medical school were being planned in Ontario, Canada, affiliated with McMaster 

University. As a green-field development, the school had no pre-existing 

curriculum so the academic staff envisaged a different way of doing things, a way 

that presented students with patient problems similar to the way practising 

physicians might have encountered them. Without formal lectures, students, 

working in small teams, were given a ‘problem pack’— a deck of structured cards 

that described a patient’s problem— that they had to research and then come up 

with a viable solution (Barrows & Tamblyn, 1977). Compared with students in a 

control group taking a more traditional learning path, those using the problem-

based learning format (as it became known) were found to be more motivated, had 

better problem-solving skills, and were better able to search for the solution to their 

problem (Barrows & Tamblyn, 1976). 



 
 

 Page 43 

 

 

Based on the initial success of the McMaster model, medical schools at the 

University of Limburg at Maastricht in the Netherlands and the University of 

Newcastle in Australia implemented their own problem-based learning curriculums 

during the 1970s. At other medical schools, with significant cultural and 

administrative investments in traditional learning models, change was slower. 

However, by 1985 even heavy-weight institutions such as Harvard Medical School 

were using problem-based learning, albeit interspersed with formal lectures. The 

technique has enjoyed a steady adoption and is now widely used in medical schools 

throughout Europe, South America, Africa, and Asia (Savery & Duffy, 1994). 

 

Problem	Based	Learning	in	Other	Fields	

Problem-based learning began a seemingly natural progression to other health-

related fields during the 1980s, such as pharmacy at Stanford University, nursing at 

the universities of North Carolina and Newcastle, and veterinary science at 

Mississippi State University. 

 

With a foothold in these areas of the curriculum, problem-based learning gradually 

became known and adopted in areas outside of health such as business education 

(Garris et al., 2002), teaching science and maths (Craik & Craik, 1986; Duch et al., 

2001; Ronis, 2008), teacher education (Levin, 2001), chemical engineering 

(Woods, 1996), as well as in the arts and humanities (Amador et al., 2007). 

Problem-based learning is also being used in software engineering education but 

usually in one-off units or in capstone projects and not as a fully-integrated part of 

a multi-year degree (Armarego, 2002; Levy et al., 2008; Qiu & Chen, 2010).   

 

Criticisms	of	Problem‐Based	Learning	

In general, problem-based learning takes more time and effort on the part of all 

participants (Levin et al., 2001, p. 129). Teachers need to prepare detailed lesson 

plans (Barell, 2006, pp. 52 – 54) and use a range of formative and summative 

assessment techniques (Anderson & Puckett, 2003; Savin-Baden & Major, 2004, 

pp. 118 – 119); while students need to become familiar with new demands such as 

coordinating their activities with a team (Amador et al., 2007, pp. 37 – 41). 

Efficiency practices are a mitigation, but many problem-based learning 

implementers find they are dealing with inherent rather than accidental qualities of 

the technique (Schwartz et al., 2001). 



 
 

 Page 44 

 

 

It has been said that problem-based learning is more concerned with long-term 

learning rather than immediate learning outcomes. Becoming a life-long learner 

and a critical problem-solver are noble goals, but will the student know enough to 

pass the end-of-semester examination? Research in the area returns a qualified, yes 

(Hung et al., 2003, pp. 15 – 17). If carefully designed, a problem-based learning 

course can simultaneously meet long- and short-term learning goals. But, if 

sufficient time and effort cannot be devoted to this design or the learning objectives 

are simply factual, then a more traditional method is more appropriate. 

 

Compared to traditional instructional courses, students may find the active 

participation demanded by problem-based learning unfamiliar and they may 

flounder, thereby putting at risk the investment in their education and perhaps their 

long-term career prospects. To overcome this, students need to understand and 

accept their role as a self-directed learner along with the advantages this brings. 

While giving due care to any apprehensions they might have, subtlety is wasteful: 

the nature of the student’s role must be made explicit on the first day of the course 

(Bereiter & Scardamalia, 1993, p. 59; Schwartz et al., 2001; Savin-Baden & Major, 

2004, chapter 8). 

 

Problem-based learning means teachers have to take on a slightly different role too: 

instead of transmitting knowledge and information they have to become facilitators 

of thinking and learning (Bridges, 1992, pp. 58 – 64; Hung et al., 2003, p. 19; 

Savin-Baden, 2003, pp. 35 – 47); something they might not be experienced with or 

comfortable doing. For example, a good facilitator needs a range of skills including 

reflection, dispute resolution, quickly dealing with inactive or domineering team 

members, and even reading body language and other non-verbal cues (Savin-Baden 

& Major, 2004, pp. 96 - 99). Some argue that these are skills teachers already have 

and they just have to be resurfaced (Savin-Baden, 2003, pp. 77 – 89), but for best 

effect facilitators need at least some basic training in order the make each learning 

session as valuable as possible (Savin-Baden, 2003, p. 24). 

 

Is	Problem‐Based	Learning	Worth	the	Effort?	

So, it seems that implementing problem-based learning means extra work for 

teachers and students, and it must compete against the inertia of an established, 



 
 

 Page 45 

 

proven instructional model that is already familiar to educators and students. 

Nonetheless, problem-based learning has some worthy advantages: 

  

 It has a sound philosophical grounding. 

 A body of literature has grown which supports its prime assumption that 

students are able to transfer knowledge and skills from one context (academia) 

to another (the real world) (Savin-Baden & Wilkie, 1996; Duch et al., 2001; 

Schwartz et al., 2001; Savin-Baden & Major, 2004, p. 60; Barell, 2006). 

 If students fully embrace the technique they have the chance to take more 

control over the direction of their education rather than being passive sponges. 

 

Accepting these advantages, problem-based learning can be implemented in many 

ways— from the original problem pack deck of cards used by McMaster 

University medical students to moot courts. Considered next is one way to 

implement problem-based learning: games. 

 

Games	as	an	Implementation	of	Problem‐Based	Learning	

History	and	Origins	

In addition to problem-based learning, games draw their intellectual integrity from 

a number of sources including educational theory (Dewey, 1938/1963; Lewin, 

1952; Papert, 1980; Kolb, 1984), operations research (Thomas & Deemer, 1957; 

Wilson, 1968, pp. 36 - 50), small-group behaviour research (Kennedy, 1971b, 

1971a), war-gaming, decision sciences (Mayer, 2009, p. 827), and systems 

engineering (Raser, 1969, pp. 46 - 55).  

 

By way of illustration, the most dominant antecedent, war gaming, will be 

followed here with a view of showing that games have a maturity, breadth, and 

substance beyond the unprepossessing name. 

 

An	Origin	in	War	Games	

In the science fiction novel Ender’s Game (Card, 1985), alien attacks on the Earth 

prompt the world government to begin training children as future military 

commanders (a multi-generation war is anticipated) by setting them to play 

continuous tactical and strategic computer war games. Amongst the current crop, 

one player stands out, Ender Wiggin— he wins every time. Ender is selected to 



 
 

 Page 46 

 

lead a group of team-mates in a complex computer battle simulation of a final 

confrontation with the aliens; a confrontation that ends when the aliens’ home 

planet is destroyed. Only later is it revealed that Ender and his fellow players have 

been commanding real weapons and that the end of the game also means the end of 

the alien threat. 

 

Perhaps this futuristic scenario represents the end-game of war games, where game 

and reality are inseparable. Yet, fundamentally, the antecedents of modern war 

games were indeed, just games. 

 

To start, a war game can be thought of as a re-creation of the activity of war that 

uses war’s vocabulary and which has as its ultimate goal the preparation and 

education of players for the realities of war before the event. “There will not be 

time enough after the outbreak of war for [an officer] to learn his duties before 

military operations begin; and the cost of permitting him to learn by experience 

derived from his own blunders is too great to be considered” (Sayre, 1911, p. ix). 

 

While the exact origins of war games are somewhat unclear, students of the history 

of chess, and similar board games played for pleasure, have noted that at an early 

stage such games were used as symbolic equivalents of warfare (Murray, 1913, pp. 

42 - 50). For example, in the ancient Chinese game of Wei-Hai, dating from around 

3000 BC, players moved coloured stones on a grid with the goal of controlling as 

much space as possible (Wilson, 1968, p. 1; Smith, 2010, p. 7). While no diagrams 

or game pieces for Wei-Hai have survived, descriptions suggest it resembled the 

modern Japanese game of Go (Smith, 1998, p. 805). In the Indian game of 

Chaturanga (1000 BC), generally assumed to be the oldest form of chess (Murray, 

1913, p. 42), a group of up to four players used a board divided into squares, and 

pieces in the shapes of elephants, soldiers, cavalry, and nobles. In contrast to Wei-

Hai, the object was to capture the opponents’ pieces rather than to control territory 

and chance elements are introduced by a dice. 

 

Little evidence exists that the link between games for pleasure and the study of war 

persisted beyond these early examples. However, it was with the coming of the 

“Age of Reason, when men decided that the conduct of war, like other human 

pursuits, was subject to scientific laws, that games reappeared which consciously 

reproduced the elements of war for play” (Wilson, 1968, p. 2). These new war 

games drew on chess-like variants, adding verisimilitude by using pieces shaped as 



 
 

 Page 47 

 

soldiers, weapons of war, and royalty. Koenigspiel, or Kings Game, developed by 

Christopher Weikhmann at Ulm, Germany in 1664 consisted of thirty pieces and a 

large board (Sayre, 1911, p. 5), but remained essentially chess.  

 

Following the Franco-Prussian War of 1870 – 1871, the war games concept spread 

to other countries. In 1872, war games were introduced into the British Army 

(Wilson, 1968, pp. 7 - 11; Lane, 1995, p. 608). Meanwhile, the American McCarty 

Little devised a war game in 1887 that used miniature battleships on maps (Wilson, 

1968, p. 14; Perla, 1990, pp. 63 - 70; Macedonia, 2002, p. 36), and other war 

games were used extensively at West Point at the same time (Sayre, 1911, pp. 17 - 

18, 22).  

 

As well as being vehicles for training and education, war games were used to 

exercise operational plans. For example, Germany’s Schlieffen Plan for the 

invasion of France in 1914 was informed by war game findings (Ritter, 1958, pp. 

39 - 48), and as early as 1929 Germany was gaming various conflicts with Poland 

and studying the possible international reactions (Wilson, 1968, pp. 27 - 29; Raser, 

1969, pp. 47 - 48; Perla, 1990, pp. 41 - 42). Meanwhile, in Japan, war games 

conducted at the Total War Research Institute and the Tokyo Naval War College, 

both before and during World War II, allowed participants from both government 

and the military to experience the domestic and international factors of war 

(Wilson, 1968, pp. 32 - 35). 

 

Until the 1970s, the practice of war games has largely been physical: pieces had 

been moved around boards, map-based manoeuvres had added a degree of realism, 

and different scenarios had been played out. While computers had been used for 

some of the behind-the-scenes processing, they hadn’t become an integral part of 

the war games themselves. 

 

In 1976, then-Captain Jack Thorpe was working as a research scientist in flight 

training at the Williams Air Force base near Phoenix, Arizona. His research was 

centred around improving the flight simulators used by the Air Force to initially 

train pilots (Sterling, 1993; Riddell, 1997). Essentially, these machines were stand-

alone devices not far removed from Edwin Link’s original, pre-World War II flight 

simulator which had itself been an amusement park ride before being adopted by 

the military (Macedonia, 2002, pp. 36 - 37). The simulators were also sometimes 

more expensive than the vehicle they emulated and ongoing running costs were 



 
 

 Page 48 

 

exorbitant (Fullford, 1996, p. 179). Instead, Thorpe imagined a network of cheap 

simulators, for aircraft and other vehicles, through which military personnel could 

learn group skills as well as the traditional sole-operator skills (Alluisi, 1991). 

 

At the time the technology did not exist to implement Thorpe’s plan, but when he 

moved to the Defense Advanced Research Projects Agency (DARPA) in the early 

1980s he became aware of a continuing experiment in distributed networking 

known as the ARPANET, the forerunner of the Internet. The means were then at 

hand. The eventual outcome was SIMNET (for simulator network), an interactive 

network of real-time, person-in-the-loop battle engagement and war-gaming 

(Alluisi, 1991). SIMNET was designed from the outset to be cheap and 

uncomplicated— factors which meant it worked and which made it highly 

attractive to its sponsors.  

 

From this starting point, the US military now spends over US$4 billion each year 

on simulation training, game development, and equipment (Macedonia, 2002, p. 

33; Joyce, 2005, p. 16), while the global market is expected to be in excess of 

US$8.75 billion in 2011 (Visiongain, 2010). This proves to be a cost-effective 

spend when compared to equivalent live training (Defense Science Board, 2002; 

Singer, 2010, p. 95) and which has been directly attributed to reduced battlefield 

casualties (Kraemer & Bessemer, 1987; Hart & Sulzen, 1988; Zorpette, 1991; 

Sterling, 1993; Macedonia, 2005). 

 

The	Arrival	of	the	Modern	Business	Game	

In 1956, the American Management Association developed what is generally 

considered to be the first Western business game, Top Management Decision 

Simulation, explicitly acknowledging its direct relation to military war gaming: 

 

In the war games conducted by the Armed Forces, command officers of the 
Army, Navy, and Air Force have an opportunity to practice decision 
making creatively in a myriad of hypothetical yet true-to-life competitive 
situations. Moreover, they are forced to make decisions in areas outside 
their own specialty; a naval communications officer, for example may play 
the role of a task force commander. Why then, shouldn’t businessmen have 
the same opportunity? (Ricciardi et al. cited in Cohen & Rhenman, 1961, 
p. 135) 

 

In this game teams of players managed a company that produced a single product 

and competed with the products of other teams. Around the same time, the RAND 



 
 

 Page 49 

 

Corporation developed a game called Monopologs based on the supply logistics of 

the US Air Force (Jackson, 1959). Other similar games quickly followed. For 

example, Andlingers’s (1958a) Business Management Game set two or three teams 

of players in competition within a market in which each team had a single product. 

The teams had to make decisions relating to production, finance, research and 

development, and advertising as they managed their companies from quarter to 

quarter.  

 

Up until this time, business games were largely conducted by consulting firms for 

the benefit of corporate decision makers and executives. However, educators were 

also seeing the benefits of business games. The Top Management Decision Game 

developed by Schreiber, was the first business simulation game used in a university 

class, the business policy class at University of Washington in 1957 (Kibbee et al., 

1961, p. 166). From this point onwards, the use of business games in industry and 

academia grew rapidly. By 1961 it was estimated that about 100 business games 

had been developed and more than 30,000 executives had played at least one game 

(Kibbee et al., 1961, p. 165). Meanwhile, a survey of 90 American business 

schools found that only eight had not, and were not intending to, introduce business 

games into the curriculum in the near future (Dale & Klasson, 1962). 

 

While business games were being used innovatively (Naylor & Gattis, 1976; 

Williams, 1978) and across many different business types, such as collective labour 

negotiations (Veglahn et al., 1978), insurance and risk management training 

(Schott, 1976), and international relations (Guetzkow, 1959), by the late 1960s and 

early 1970s business game penetration in business and academia had peaked. 

While the tool had gained a certain degree of saturation, there were also some 

validity and reliability concerns (Neuhauser, 1976). For example, a 1970s study of 

game use in US colleges found only a small number of rigorous validation studies, 

and only one suggested that learning of any significance had taken place (Greenlaw 

& Wyman, 1973).  But, since the 1980s there has been a resurgence due in part to: 

 

 Improvements in the symbols and software used to map and model system 

structure (Gredler, 1996; Prakash et al., 2009). 

 New ideas have been adopted from behavioural decision theory which help to 

transfer policymakers’ knowledge into computer models. “Behavioural 

decision theory can help modelers to ask better questions of policymakers, to 



 
 

 Page 50 

 

specify decision processes more accurately, and to capture more or (sic) 

policymakers’ knowledge in maps and algebra” (Morecroft, 1988, p. 315). 

 

Currently the state of business simulation games is active and growing (Burgess, 

1991; McKenna, 1991; Ellington, 1995; Faria, 1998; Faria & Wellington, 2004; 

Aldrich, 2005, 2009). 

 

How	Games	Are	Used	

Contemporary games usually play one of three high-level roles: for teaching or 

training; to explore different policies; or as vehicles in some other form of research. 

The first of these is by far the most common, perhaps because it has offered the 

most potential: 

 

There are apparently certain aspects of games that especially facilitate 
learning, such as their ability to focus attention, their requirement for 
action rather than merely passive observation, their abstraction of simple 
elements from the complex confusion of reality, and the intrinsic rewards 
they hold for mastery. By the combination of these properties that games 
provide, they show remarkable consequences as devices for learning. 
(Coleman, 1975b, p. 130) 

 

These games, when used in schools, universities, executive development courses, 

or in-house training courses usually follow certain formats: 

 

 General, top management, or total enterprise games require the participants to 

make decisions at a fairly high level and which span many functional areas in 

industries usually not their own. “Perhaps the greatest value of general 

management games is that they require planners to view their company as a 

total system rather than as a set of separate functional areas. For this reason, 

universities frequently use general management games in the capstone business 

policy course” (Watson & Blackstone, 1989, p. 488). 

 In functional games the scope is fairly narrow and focuses on a single 

functional or middle management area. For example, in the Beer Distribution 

Game (Goodwin & Franklin, 1994; Caulfield & Maj, 2007), participants can 

take the role of either a small retailer, a wholesaler, or brewer and make 

independent decisions concerning their part of the total game. 

 



 
 

 Page 51 

 

Games can also be used operationally to explore or pre-test different policy options 

in, for instance, domestic or international politics (Guetzkow, 1959), ecological 

management (Klabbers et al., 1994; Ford, 1999, p. 164), war (Alluisi, 1991; 

Mastaglio & Callahan, 1995), and many social sciences (Toth, 1994; Bots & van 

Daalen, 2007; Mayer, 2009). “The objective is to arrive at an approximate answer 

through repeated trials— in essence, to arrive at a higher level of insight into a 

process than existed previously” (Andlinger, 1958b, p. 148) and before the actual 

solution is implemented (Thomas & Deemer, 1957; Kibbee et al., 1961, pp. 153 - 

154; Ryan, 2000). Even though operational gaming offers an opportunity to 

become more fully informed, there are no guarantees: 

 

Beyond [the] difficulty of knowing when one has solved the ‘right’ 
problem, there is the difficulty, particularly with gaming, of knowing when 
one has solved any problem… In gaming, generally, there is no way of 
knowing with certainty when a sample of plays is both strategically and 
statistically adequate for a required decision. (Thomas & Deemer, 1957, p. 
19). 

 

Finally, games can also be used as vehicles for research into human and group 

behaviour by placing people in teams with different organisational structures, 

communication channels, leadership styles, or objectives and seeing how these 

factors influence behavioural variables such as motivation, satisfaction and 

performance (Kibbee et al., 1961, pp. 151 - 153). For example Charness and 

colleagues (2007) used games to test the theory that people who are members of a 

group and identify with it will behave differently from people who perceive 

themselves to be isolated individuals. The grouping required by the games they 

used, The Battle of the Sexes and The Prisoner’s Dilemma, was incidental: the 

saliency of the group created in the minds of the participants was what the 

researchers were primarily interested in. 

 

The	Rationale	for	Games	

In many situations, a manager in charge of a team of people may need to weigh the 

decisions they make with the same gravity as an engineer building an aircraft or a 

bridge: 

 

The work of many managers has human consequences with potential for 
disaster equal to malfunctioning aeroplanes, chemical plants or dykes and 
dams. Nevertheless, we find it perfectly acceptable to send managers into 
positions of responsibility to learn by experience— by trial and error. We 



 
 

 Page 52 

 

ask them to learn ‘by experimenting with reality’. Being intelligent people, 
they will recognize and fear the consequences— and learn a lot less and 
slower than they would have done otherwise. (original emphasis, de Geus, 
1992, p. 4) 

 

So, for the manager there are no laws of physics as there are to help engineers, and 

fear of failure can actually constipate decisions and stifle the creativity of the 

resulting solutions. Alternatively:  

 

If only we managers could experiment in a laboratory before executing 
decisions affecting real people and real lives! Cutting up a frog seems so 
simple compared with cutting up and downsizing an organization. Building 
a clay model first and then smashing it seems far more humane than 
actually tearing apart an organization. (Sobkowiak & LeBleu, 1994, p. 41) 

 

A game might be said to be a physical representation of a problem space— a clay 

model. As such, they are places to try new ideas and to experiment with established 

theories (McKenney, 1962, p. 286; Feldman, 1995, p. 355); to replay these theories 

as many times as needed (Gee, 2007b, p. 216); places where time and space can be 

contracted or expanded (Raser, 1969, pp. 109 - 110); places where it is acceptable 

just to try different things and where more might be learned from failure than 

success (Booker, 1994, p. 76; Hung et al., 2009). 

 

It has been noted that the human capacity to understand the implications of our 

mental models and to accurately trace through even a small number of causal 

relationships is fairly limited (Miller, 1956, p. 457; Simon, 1957, p. 198; Sterman, 

1994; Dangerfield & Roberts, 1995). Normally, it is difficult to reason about and 

share a mental model because: 

 

One is usually only vaguely aware of one’s own intuitions and 
assumptions. Mental models shift from moment to moment. They do not fit 
the linear, sequential format required by language. And words are 
inherently ambiguous, as are the images, thoughts, and hunches the words 
describe. Because of all these difficulties, verbal expression more often 
takes the form of advocating what one thinks should be done than of 
detailing all the semi-conscious urges that determine why one thinks it 
should be done. (Meadows & Robinson, 1985, pp. 2 - 3) 

 

A game can make this why more concrete. It may be wrong, but at least it is now 

explicit and open to challenge and improvement. 

 



 
 

 Page 53 

 

Games may also serve a dual purpose of revealing to participants their own 

decision-making or leadership style (Feldman, 1995, p. 355) while also achieving 

overt training: 

 

Games used jointly for experimentation and training provide an effective 
laboratory for conducting research in organizations. Such games permit 
systematic investigation of behavioural phenomena under controlled 
conditions, thereby facilitating the drawing of general inferences, virtually 
impossible in “environment-rich” situations. From the organization’s 
viewpoint games are educationally appealing and provide strong 
justification for the release of scarce and costly management talent in such 
activities. (Moskowitz, 1973, p. 686) 

  

The training described here does not necessarily refer to specific skills and can 

instead be serendipitous and the benefits emergent:  

 

As people weave their patterns of relationality and interdependency, their 
simular and differing ways of perceiving and responding emerge. The 
collective possibilities for learning can expand far beyond what might have 
been learned by any one of the participants alone. (Baker et al., 1997, pp. 7 
- 8) 

 

Many studies have reported that participants often learned more from social 

interactions with other players than from the game itself (Cohen et al., 1960; Dill & 

Doppelt, 1963, pp. 36 - 38; Greenlaw & Wyman, 1973, p. 263; Lundy, 1991; van 

der Meij et al., 2011). Meanwhile, other researchers (Boocock, 1970; Petranek, 

1994; Prensky, 2006, pp. 106 – 108) have found that games tend to have an ice-

breaking capacity among participants and open up dynamic participation.  

 

Therefore, games have the potential to teach more than they mean. 

 

The	Instructional	Value	of	Games	

The previous section discussed the theoretical rationale for games, which was 

generally positive. It is naturally prudent to see what empirical evidence supports 

this view. Appendix N details review studies published between 1966 and the 

present that summarised the results of research projects into the instructional value 

of games. Many of the individual projects turned out to be non-experimental and 

descriptive, so more rigorous research is needed in the future. Nevertheless, two 

themes emerged. 

 



 
 

 Page 54 

 

First, learning objectives need to be clearly defined and built into the game 

(Hermann, 1967; Watson & Blackstone, 1989, p. 491; Becker, 2011), otherwise: 

 

A game without [learning objectives] is like a motor without a boat— it 
makes a great deal of noise but doesn’t get anywhere. Regardless of the 
size of the splash, nothing is left when the waves of excitement damp out. 
(Kibbee et al., 1961, p. 49) 

 

The second theme that emerged was that games were usually able to capture the 

attention of players and draw them into the learning environment. But, this is just 

the first step and the active participation of the instructor is vital:  

 

Early research in business gaming and experiential learning destroyed the 
notion that games are self teaching. Instructor guidance is critical and must 
be applied during crucial states in the game development to insure that 
learning closure takes place. Students must be guided, prompted, 
motivated, and sometimes forced to learn from experiences. (Knotts & 
Keys, 1997, p. 387) 

 

The above comment  points to a common dilemma: to a wide extent, games have 

been found to be more expensive and administratively demanding to develop and 

use than some other forms of instruction (Cohen & Rhenman, 1961, p. 151; Kibbee 

et al., 1961, p. 9; Babb et al., 1966, p. 471; Abt, 1970, pp. 110 - 111; Watson & 

Blackstone, 1989, p. 493; Petranek, 1994; Gredler, 2004). For example: 

 

More, not less, teaching skill and preparation is required to teach a 
strategic management course using games and other techniques, compared 
with cases and text alone. Often, when a game-based strategy course has 
failed, the game has not failed; rather the instructor has failed to master the 
course elements. (Knotts & Keys, 1997, p. 392)  

 

It must also be remembered that games are just… games, and as such are just one 

representation of how the world works. Therefore, “it is potentially dangerous to 

have players leave the gaming environment with the belief that the strategies that 

were effectively employed in playing the game are directly transferable to the real 

world” (Watson & Blackstone, 1989, p. 493). Participants should ideally be 

provided with more information than just the game to help them wisely 

discriminate between what may or may not work outside the game itself 

(Andlinger, 1958b, pp. 152 - 158). 

 



 
 

 Page 55 

 

Further, the favoured contemporary medium for games, computers, make it 

possible to implement games of incredible richness. Such games might be able to 

accommodate elements of time pressure, role-playing, feedback thought, decision-

making, computer skills, random events, analysis and negotiation skills— all 

presented through a multi-media interface. In this situation, participants might also 

tend to play the game to win, as they might an arcade game, rather than to learn 

(Kibbee et al., 1961, p. 89; Moore, 1967, p. 22; Parasuraman, 1981). Alternatively, 

the richness or over-design of the game may overwhelm or discourage other 

participants (Andlinger, 1958b, p. 158; Abt, 1970, p. 117; Hays, 1989, p. 51). 

Therefore, there needs to be an appropriate emphasis on technology and a balance 

of game elements at each stage (Meadows, 1989, p. 639).  

 

For best effect, games also need to be accompanied by an appropriate level of pre-

game briefing and post-game debriefing (Abt, 1970, p. 116; Petranek et al., 1992; 

Randel et al., 1992, p. 271; Baker et al., 1997; Ryan, 2000, pp. 362 - 363; Crookall, 

2010, p. 907). Some games are deliberately vague regarding the details they supply 

to participants, forcing the players to work out issues as part of the experience. The 

post-game debrief is perhaps the most critical learning component since it is here 

that participants can be helped to create a comparison between the game experience 

and their own mental models (Simons, 1993, p. 136). “The debrief can be very 

important in helping people to reflect on what they have experienced, in enabling 

them to share and debate experiences, feelings and views, and finally, in helping 

them to construct their experiences into understanding which can be re-applied” 

(Lane, 1995, p. 616).  

 

As might be expected, the review studies in the Appendix N show that games are 

not orders of magnitude better (nor worse) than other pedagogical methods. Also, 

games can sometimes demand great effort from instructors before, during, and after 

game sessions to make sure players get the most from the experience. But, for this 

effort there are compensations such as the satisfaction of self-discovered 

knowledge, a richer and more varied learning experience, and the ability to rewind 

the play and try again without hurt. 

 

A	Systematic	Survey	of	the	Field	of	Games	in	Software	Engineering	Education	

So far, games have been discussed in a rather generic fashion. A necessary 

precursor for this project was find out what games already existed in the field of 

software engineering education, how effective they had been, and how Simsoft 



 
 

 Page 56 

 

might be able to contribute new knowledge. To this end a systematic review of the 

literature was conducted using a collection of online science, engineering, 

education, and business databases looking for games or simulations used for 

educational or training purposes in software engineering or software project 

management across any of the Software Engineering Body of Knowledge 

(SWEBOK (Bourque et al., 1999) knowledge areas. 

 

For this survey, an established procedure for conducting systematic reviews in the 

field of software engineering was followed (Kitchenham, 2004), and which has 

been used to survey the game field before (Gresse von Wangenheim & Shull, 

2009). Given the upward trend in the use of games for software engineering 

education revealed in that previous survey, it was timely to update and expand the 

search. 

Data	Sources	and	Search	Strategy	

To perform this review the IEEE Xplore Digital Library, the ACM Digital Library, 

ScienceDirect, Sage Journals Online, ProQuest, the ISI Web of Knowledge, and 

the Wiley Online Library were used. The following pseudo-code search string was 

adapted for the specific query languages of each library: 

 

where abstract OR title OR keywords contain ( 

 ((game OR simulation) AND (learning OR teaching OR education OR training))  

 AND 

 (software engineering OR software project OR  

    software process OR software design OR 

    software testing OR software configuration management OR  

    software quality OR software management OR  

    software maintenance OR software construction OR 

    software requirements OR  

   software engineering tools and methods)) 

AND 

(date >= 1990) 

 

That is, we looked for games or simulations (computer and non-computer based) 

used for educational or training purposes in software engineering or software 

project management across any of the SWEBOK knowledge areas. (Despite the 

distinction made between game and simulation in the introduction, the terms are 

often used interchangeably in the literature (Maier & Grossler, 2000), therefore 

simulation was used as one of the search parameters). 



 
 

 Page 57 

 

Inclusion	and	Exclusion	Criteria	

The results were limited to English-language papers published from 1990 to the 

present in peer-reviewed journals and conference proceedings. (Only two 

significant studies pre-date 1990: (Boguslaw & Pelton, 1959; Horning & Wortman, 

1977); these were excluded because of their distance in time and to allow a more 

direct comparison with the (Gresse von Wangenheim & Shull, 2009) survey). 

Excluded were position papers, papers in which no data was reported (unless they 

were preliminary papers for completed studies), and those in which the game or 

simulation was not used to train or educate the players at a tertiary level. 

Study	Identification	and	Selection	

The initial database searches returned a total of 243 papers. The titles and abstracts 

were analysed according to the inclusion and exclusion criteria, and any off-topic 

papers were discarded. This left 36 papers, which were grouped according to the 

study they described. 

Data	Extraction	

Each paper passing the selection process was read in depth and the following data 

was extracted: 

 

 A brief description of the game and how it was played. 

 The experimental design used by the study, which could be either true 

experimental (random assignment and comparison with a control group), 

quasi-experimental (comparison with a control group only), or non-

experimental. 

 The number and type of the players. 

 The type of research tool used to collect the data, for example 

questionnaires, observation, pre- and post-test surveys. 

 The primary SWEBOK knowledge area on which the game is focussed. 

The SWEBOK attempts to characterise and bound the software 

engineering body of knowledge; the ten knowledge areas are the major 

topical divisions within the field. 

 The expected learning outcomes classified according to Bloom’s (1956) 

cognitive domain taxonomy. 

 The principal findings of the study. 

 The country in which the game sessions were conducted. 

 



 
 

 Page 58 

 

Appendix L: Full Data Extract of Games Used in Software Engineering Education  

shows the full data extract of 36 papers describing 26 studies. 

 

Survey	Results	

Appendix L shows that the preferred medium for games in the field is single-user 

computer-based (22 out of 26) rather than board and card games. Although 

computer games are easier to distribute and administer across a large number of 

players, some of whom may be in remote locations, the rich and sometimes 

complex user interfaces of these computer games often contributed little to the 

stated learning objectives. Figure 7 also shows that most of the studies were non-

experimental (16 out of 26) meaning they didn’t use control groups nor randomly 

assign participants to different groups.  

 

The survey results showed that games have been used in a variety of ways to teach 

different aspects of software engineering and software project management. 

Appendix M shows the distribution of games across the world based on the 

SWEBOK knowledge area they were designed to address. Most games (21 out of 

26) focused broadly on software engineering management or the development 

process and most activity (21 out of 26) occurred in Europe and the Americas. 

 

Overwhelmingly, the learning objectives of the games found by this survey were 

pitched at the first rung of Bloom’s taxonomy, knowledge. In general, those studies 

that assessed the degree of learning by the participants found that the participants 

 
Figure 7: Game surveys classified by game type, experiment type, and Bloom taxonomy 

0

5

10

15

20

25

30

C
o
m
p
u
te
r

B
o
ar
d

C
ar
d

Q
u
iz

Tr
u
e 
Ex
p
er
im

e
n
ta
l

Q
u
as
i E
xp
er
im

en
ta
l

N
o
n
 E
xp
er
im

en
ta
l

K
n
o
w
le
d
ge

C
o
m
p
re
h
en

si
o
n

A
p
p
lic
at
io
n

Game Type Experimental Type Bloom Taxonomy



 
 

 Page 59 

 

were sometimes learning new concepts, but they were mainly reinforcing known 

theories. Only Navarro (2009) and Hainey et. al. (2010) evaluated the effectiveness 

of games for players of different skills and backgrounds and each found that games 

were suitable for a wide variety of participants. 

 

It should be noted, however, that apart from Navarro’s and Drappa and Ludewig’s 

body of work, many of the research projects in Appendix L had very small sample 

sizes and few others were developed or repeated beyond that described in the initial 

papers. Both small and large research populations were made up exclusively of 

students. 

 

The studies in Appendix L will be revisited in the Discussions chapter where a 

detailed comparison is made with the game developed for this project. 

 

Summary	

Software development is an inherently complex endeavour because of both the 

ephemeral qualities of software itself and the dynamic socio-technical system in 

which it is developed. These essential and accidental qualities of software are often 

the root cause of many quality and productivity issues. But, steps are being taken to 

make software development more reliable, more predictable, and more like its 

engineering namesake: 

 

 A body of knowledge, the SWEBOK, has been defined which captures 

accepted practice in the field and which also forms the basis of curriculum 

development and accreditation, licensing and certification programs. 

 Standards of ethics and conduct have been developed to guide software 

engineers in responsible behaviour, although these are still optional and 

unenforceable. 

 Professionally-endorsed curriculum guidelines for graduate and post-graduate 

software engineering education have been developed to meet the latest 

technical developments and evolving industry demands. 

 

Of interest for this research project is the way software engineers are educated 

because this directly and significantly affects so many other areas of professional 

practice. In the curriculum guidelines considered here, each identifies better 

software project management skills and better soft, or peopleware, skills as critical 



 
 

 Page 60 

 

for all graduating students, but the guidelines are intentionally vague on how 

institutions should teach these. It is in the final, synthesising capstone project that 

such skills are most needed, yet these projects are usually the final unit of study for 

a degree which leaves little time for reflection or remedial action. 

 

One possible way to tackle these problems is to use a serious game— a game 

designed to teach and educate players about some of the dynamic complexities of 

the field in a safe and inexpensive environment. Importantly, games are not one-

shot opportunities in the way capstone projects are: a game can be played, studied, 

tweaked, and replayed as many times as needed. Games have been used this way in 

many different business, military, and social environments, and have proven to be 

efficacious. They also draw their intellectual integrity from sound education theory 

such as problem-based learning meaning they have an authority to be taken 

seriously as learning and research tools. 

 

This is not the first research project to look at games in software engineering 

education. A systematic survey of the field discovered over two dozen studies 

using mostly single-user computer games to teach various aspects of the software 

development lifecycle. However, few of these games were developed or repeated 

beyond their initial implementations, which suggests they weren’t sufficiently able 

to demonstrate their pedagogical value to warrant further effort. For example, the 

survey revealed some common themes: 

 

 Many of the games in the field were overly complex, with rich user interfaces 

that contributed little to the stated learning objectives. 

 Single-user games were being used to demonstrate team practices. 

 The research populations were made up exclusively of students, which made it 

difficult to extrapolate the use of games in other education and training 

situations. 

 

An opportunity therefore exists to explore more fully if and how games— and 

games that address the above design themes— can contribute to better software 

engineering management and help fill some of the pedagogical gaps in the current 

curriculum guidelines.  

  



 
 

 Page 61 

 

Chapter 3— Research Methodology 

Introduction	

The purpose of this research project is to see if and how games can contribute to 

better software engineering management education by helping software engineers 

and project managers explore some of the dynamic complexities of the field in a 

safe and inexpensive environment. If games can contribute, then what features 

make them most efficacious? To this end, this research project addressed the 

following research questions and related hypotheses: 

 

Can games contribute to better software engineering management 

education? 

(Q1)

 Games built on sound software project management principles are 

a more effective means of improving software project management 

education than more traditional pedagogical means. 

(H1)

 

If games are to contribute to better software engineering management 

education, what features make them most efficacious? 

(Q2)

 For best effect, players should be able to easily relate the context 

of a game to their real-world experience. 

(H2.1)

 For best effect, games should be simple to play and understand 

and only as theoretically complex as needed to explore the 

concepts at hand. 

(H2.2)

 

This chapter describes the research methodology used here by looking at these 

areas: the rationale for choosing the research approach; a description of the 

research sample; a description of the data collection methods; how the data was 

analysed and synthesised; the ethical considerations of the project; and the 

limitations of the research. The chapter then concludes with a brief summary. 

 

Rationale	for	a	Qualitative	Research	Design	

When making decisions about the design of a research project, a researcher 

generally makes a choice between quantitative and qualitative methods, or perhaps 

a mixture of the two. To first define the terms: 

 



 
 

 Page 62 

 

Quantitative research is a means for testing objective theories by 
examining the relationship among variables. These variables, in turn, can 
be measured, typically on instruments, so that numbered data can be 
analysed using statistical procedures. (Creswell, 2009, p. 4) 

 

Meanwhile, qualitative research does things differently: 

 

Qualitative research is a means for exploring and understanding the 
meaning individuals or groups ascribe to a social or human problem. The 
process of research involves emerging questions and procedures, data 
typically collected in the participant’s setting, data analysis inductively 
building from particulars to general themes, and the researcher making 
interpretations of the data. (Creswell, 2009, p. 4) 

 

The above quotes are heavy with meaning so it’s worth seeing the two methods 

side-by-side as in Table 6. From this comparison, it seems the former is best used 

when we need to understand the factors influencing an outcome and we can design 

an objective experiment to test known variables; while the latter is best used when 

we are less sure of the key variables and we have to do some exploration along the 

way.  

 

Because this research project is exploratory rather than deterministic and is seeking 

to understand a complex socio-technical system (software engineering 

management), a qualitative research approach was used. Within this qualitative 

paradigm, grounded theory was used because it is a means of inductively 

developing a theory from the collected data (Lincoln & Guba, 1984, pp. 204 – 208; 

Strauss, 1987; Maxwell, 2004, pp. 42 – 43). Sherlock Homes would have 

appreciated grounded theory: “It is a capital mistake to theorize before one has 

data. Insensibly one begins to twist facts to suit theories, instead of theories to suit 

facts” (Conan Doyle, 1974, p. 19). 

 

The	Researcher	

Because the researcher in qualitative projects is a key player in collecting the data 

on which the findings are based, it is reasonable that any biases, assumptions, and 

personal values are made clear from the start. To this end, the following is a brief 

résumé of my education and professional experience. 

 

In 1996 I completed a Bachelors degree in computer science and in 2002, a 

Masters degree in software engineering. My Masters research project (Caulfield, 



 
 

 Page 63 

 

2001) compared a range of system thinking methodologies before making a case 

that system dynamics was most suited to ill-defined problems that require some 

mixture of quantitative and qualitative analysis. 

 

I also hold a number of technical certifications in Java (web development, business 

component development, and web services); XML; object-oriented analysis and 

design; MySQL (database developer and administrator); DB2 (database developer 

and administrator); RPG programming; and WebSphere application server 

administration. 

Table 6: A comparison of quantitative and qualitative research designs. 

Quantitative Research

“There's no such thing as qualitative data. 
Everything is either 1 or 0” (F. Kerlinger in Miles & 
Huberman, 1994, p. 40) 

Qualitative Research 

“All research ultimately has a qualitative 
grounding” (D. T. Campbell in Miles & Huberman, 
1994, p. 40). 

Philosophical Worldview

Post-positivist, deterministic, reductionist, 
empirical observation and measurement of 
specific variables. 

Constructivist, social and historical construction, 
variables are seen as complex, interrelated and 
difficult to measure. 

Strategy of Inquiry

 Experimental designs. 
 Non-experimental designs such as surveys. 

 Narrative research 
 Phenomenology 
 Ethnographies 

 Ground theory studies 
 Case studies 

Approach 

Begins with theories and hypotheses and uses 
instruments, experimentation, and deductive logic. 

The results are written up in an abstract, formal 
manner. 

Theories and hypotheses emerge over time, uses 
inductive logic, and the search is for patterns.  

There are multiple sources of data such as 
observations, interviews, field notes, documents. 

The results are written up as rich descriptions. 

Research Methods

 Analysis of performance, attitude, census, or 
observational data. 

 Statistical analysis and interpretation. 
 Pre-determined approaches 

 Participant observation. 
 Text, document, and image analysis. 

 Interviews using open-ended questions. 
 Emergent approaches. 

Role of the Researcher

Detached and objective Personally involved and empathetic. 

 
Sources: (Lincoln & Guba, 1984; Miles & Huberman, 1994; Maxwell, 2004; Guba & Lincoln, 2005; 
Creswell, 2009) 



 
 

 Page 64 

 

 

Since 1996 I have worked for a number of large companies in areas such as 

banking, agribusiness, defence, and state government; first as a business analyst, 

then as an analyst/programmer and senior Java software engineer. I am currently 

working as a lead development analyst for a consulting software company 

contracted to a Western Australian health insurance company. The work here 

involves small teams (two to four people) developing Java enterprise applications. 

Largely based on my work in these places, I have published a range of articles in 

industry magazines and on technical websites (see for example Caulfield, 2005, 

2006a, 2006b, 2009b, 2009a). 

 

I am a member of the IEEE Computer Society, the Association for Computing 

Machinery, and the Australian Computer Society. 

 

My education and work experience have given me with a rich insight into software 

project management; naturally, they also mean I bring certain biases to the way this 

study has been designed and how I collected and interpreted the data. I commenced 

this study with a belief that software engineering management is generally poorly 

executed, with the root causes usually being managerial and political rather than 

technical. Even so, throughout the course of the study I have tried to engage in 

critical self-reflection by consciously evaluating opinions at dissonance with my 

own and by seeking the views of colleagues and advisors. Various procedural 

safeguards (discussed in the following section called Reliability, Validity, and 

Applicability of the Findings) have also been put in place to obviate my 

subjectivity. 

 

The	Research	Sample	

Purposive sampling (Lincoln & Guba, 1984, p. 40; Patton, 2002) was used to select 

the participants of the study from the following pools: 

 

 Post-graduate project management students from Edith Cowan and Curtin 

universities. 

 Software engineers, project managers, and account managers from a Perth-

based software consulting company. 

 



 
 

 Page 65 

 

A call for participation was distributed by email and the participants replied if they 

wished to take part. Snowball sampling (Marshall, 1996, p. 523) was allowed, 

whereby those reading the email were encouraged to refer others in the same field 

they thought would be interested in taking part. 

 

Although the participants each had an information technology or project 

management background, they exhibited notable variances in experience (from 

recent graduates to 25-year industry veterans); skills (from those still studying to 

highly-certified professionals); and cultural diversity (the participants came from 

Australia, Europe, the Middle East, Asia, and South Africa). 

 

The participants (59 in total) joined one of seven game sessions held between May 

and September 2010. 

 

Ethical	Considerations	

For any research project of this type, dealing with the participants in an ethical 

manner is a prime consideration (Oliver, 2003). The participants give freely of their 

time so that the body knowledge can hopefully be advanced, so it is incumbent on 

the researcher to tell them what the project is trying to achieve, and to respect any 

concerns they might have about how the resulting data will be used. 

 

Although the nature of this research was considered benign and wasn’t thought to 

pose any ethical threats to the participants, various strategies were used to inform 

the participants about the project, to protect their privacy and rights, and to address 

any concerns they might have: 

 

 Potential participants were given an information letter that explained the 

research project, what they would be asked to do, and how long it would 

take (see Appendix F: Information Letter to Participants). If they wished to 

proceed, which was entirely voluntary, each person completed and signed a 

consent form (see Appendix G: Informed Consent Document). Even after 

the consent form was returned, participants were free to withdraw at any 

time. 

 Individuals were not identified in any way in the research data. To help 

link specific game performance with the responses in the post-game 

questionnaires, Simsoft generated a random reference number when a 



 
 

 Page 66 

 

game session was started and the participants were asked to enter this when 

they completed the online survey. 

 Precautions were taken to secure the research documents and data, and 

these were only available to the researcher and the project supervisors. 

These records will be destroyed when the requirements of this project are 

completed. 

 

Participants were given the contact details of the researcher, the project 

supervisors, and the university’s ethics officer in case they needed further 

information. 

 

Data	Collection	Methods	

Controlled experiments in software project management are rare and only one is 

known to have been attempted: 

 

A controlled experiment… One project with lots of pressure and one with 
almost none, all three charged with doing the exact same task. We could 
watch them to see which one finished first… We could set up one group 
with a staff that was too big, another with a staff that was too small, and a 
third one that had just the right number… One staffed by people that have 
worked together before, pitted against another team staffed with strangers. 
(DeMarco, 1997, p. 25) 

 

Unfortunately, DeMarco’s controlled experiment is a work of fiction. A project 

manager, Webster Tompkins, is kidnapped by a benevolent dictator (a thinly-

disguised Bill Gates) and is given virtually unlimited resources to create re-branded 

and reverse-engineered versions of six well-known software products. Three teams, 

of different makeup, independently attempt each product, making eighteen teams in 

all. The teams are then tracked for performance and quality.  

 

While this conforms to the tenets of good experimental design, cost alone makes it 

unrealistic. Nevertheless, there is an alternative— use a game, where the 

consequences of failure are lower and where exploration and risk-taking are 

encouraged to see what benefits they might bring (Gee, 2007b, p. 216). 

 

In this spirit, a game called Simsoft was developed for this research project. Games 

such as Simsoft have typically been deployed in university courses in one of three 

ways: 



 
 

 Page 67 

 

 

 Teach sections of the same course using different methods, and then compare 

the results of students on a common test. For example, all students in a course 

might attend a common lecture, and then attend either a traditional tutorial 

session or a tutorial that uses a game (see, for example McKenney, 1962; Raia, 

1966). Besides the difficulty of obtaining adequate control of factors such as 

student composition, instructor characteristics, and grader evaluations, 

previous studies in this vein have shown that students participating in games 

are obviously learning ‘something’ other than what the traditional method 

might teach them, but that ‘something’ cannot be measured by a common test 

(Parasuraman, 1981, p. 192). 

 Evaluate the student’s grades or scores in the simulation part of the course with 

their grades in other more traditional assignments and examinations in the 

course (see, for example Remus, 1977; Remus & Jenner, 1981). There are 

some conceptual and methodological problems with this approach. For 

example, a student’s game score might reflect their ability to play or beat the 

game rather than their decision-making ability (Parasuraman, 1981, p. 194). 

 Sample players subjective attitudes regarding the usefulness of the games 

before, during, or after play, or a combination thereof, by obtaining written 

feedback (see, for example Jackson, 1959; Dill & Doppelt, 1963; McKenney & 

Dill, 1966; McKenna, 1991; Herz & Merz, 1998). This technique can be 

criticised on the basis of  “how qualified are college students, with little or no 

practical business experience, to make any meaningful evaluation of business 

simulation games?” (Parasuraman, 1981, p. 194). Other studies have shown 

that student performance in games, when compared to that of experienced 

managers, raises serious questions about how much can be generalised to 

behaviour patterns in the business world (Babb et al., 1966, p. 471). 

  

Each approach therefore has its strengths and weaknesses and is part of a broader 

debate concerning the value of games as pedagogical devices and when compared 

to other methods of instruction (Amstutz, 1963; Moore, 1967; Boocock, 1970; 

Moskowitz, 1973; Hand & Sims, 1975; Wolfe & Guth, 1975; Parasuraman, 1981; 

Remus & Jenner, 1981; Prohaska & Frank, 1990; Gredler, 1996, 2004).  

 

To address some of these issues, an approach similar to the third option above will 

be followed. Simsoft game sessions were conducted for teams of post-graduate 

project management students (for software and general projects), and practising 



 
 

 Page 68 

 

software project managers and developers. Overall game evaluation was made on 

the basis of performance in Simsoft, pre- and post-game surveys, and a qualitative 

rich analysis of the interactions that were observed during the game sessions. 

 

Simsoft	Overview	

Physically, Simsoft comes in two pieces: 

 

 An A0-sized printed game board (see Appendix C: Simsoft Game Board) 

around which the players gather to discuss the current state of the project and 

to consider their next move. The board shows the flow of the game while 

plastic counters are used to represent the staff of the simulated project. Poker 

chips represent the team’s budget, with which they can purchase more staff, 

and from which certain game events may draw or reimburse amounts 

depending on decisions made during the course of the game. 

 A simple Java-based dashboard (see for example, Sterman, 1988; Langley et 

al., 1999; Caulfield et al., 2011b), through which the players can: 

 

o See the current and historical state of the project through a series of simple 

reports, messages, and other information. 

o View the underlying system dynamics model so they can be fully informed 

about the relationships behind particular game variables (Machuca, 2000). 

o Can adjust the project’s settings, for example to recruit new staff, before 

advancing the game’s time to create the state of the project. 

 

The aim of the game is to complete the project on time and with funds (poker 

chips) left over. 

 

The engine behind Simsoft is a system dynamics model which captures a small set 

of fundamental causal relationships in software engineering projects. System 

dynamics has been used for this task before and a case has been presented in other 

work (Caulfield, 2001; Caulfield & Maj, 2001, 2002, 2007). 

 

Behind the system dynamics model will be a relational database (see Appendix H: 

Simsoft Database Design) to store the decisions entered by the players, and which 

will capture the state of the model at each time slice. This will allow the game to be 

rolled backward or forwards, replayed, and studied. 



 
 

 Page 69 

 

 

Simsoft was designed in this way primarily in response to some of the perceived 

shortcomings of extant games in the field. For example, most of the other games 

are overly complex, with rich user interfaces that contribute little to the stated 

learning objectives. Therefore, Simsoft uses a large game board and simple 

calculator. And, most others are single-user games trying to demonstrate team 

practices, whereas Simsoft is predicated on team play. 

 

Game	Sessions	

The players are formed into teams of two or three or more and they decide on a 

name for their team. Each team is given a scenario (see Appendix D: Simsoft 

Instructions to Players) that describes the requirements for a small software 

development project. Taking the role of project manager, the team must manage 

the project from start-up to final delivery.  

 

What the players must deliver is handled by boxes on the left side of the Simsoft 

game board (Figure 8).  

 

At the start of the game there is a pool of work to do. This pool is represented on 

the game board with small plastic counters in the Work To Do box. These counters 

can be thought of as Use Cases or items in a work breakdown structure; whatever 

is most familiar to the players. Depending on the resources available to do the 

work, the units of work (the counters) move from the Work To Do box to a For 

Review box, where the work is reviewed before passing to the Completed Work 

box. Not unexpectedly, some work will fail the review and go to the Rework box, 

before passing back to For Review and trying again to get to Completed Work. The 

team can reduce the amount of rework by ‘buying’ more quality assurance staff 

(staffing is considered shortly). 

 

The work-to-do, review, rework, work-completed cycle is a fundamental project 

work structure first discussed and modelled by Roberts (1964). Roberts’ initial 

work has been expanded greatly by subsequent researchers who have added rich 

details based on actual projects (see Lyneis & Ford, 2007 for a comprehensive 

survey of the field), but the underlying work structure remains unchanged. 

 



 
 

 Page 70 

 

Based on the starting scenario of the game, information provided during the game, 

and their own real-world experience, the players make decisions about how to 

proceed: whether to hire more staff, what hours should be worked and so on. The 

team is given a budget for the project (poker chips), with which they ‘buy’ more 

staff. But, there are trade-offs: more experienced (and therefore more productive) 

staff  are more expensive (New Hires are $500, Quality Assurance are $600, Mid-

Rangers are $700, and Old Hands are $1000), and the staff do not become available 

immediately— there are recruiting delays to be considered (Yourdon, 1998, p. 98). 

 
Figure 8: Units of work boxes on the left-hand side of the Simsoft game board. 



 
 

 Page 71 

 

The players can also see from the game board (Figure 9), that staff naturally gain 

experience (and therefore become more productive) as the project proceeds—  

 

 
Figure 9: Resource boxes on the right-hand side of the Simsoft game board 



 
 

 Page 72 

 

something further they need to consider before spending their precious budget 

chips. 

 

These decisions are entered through the software dashboard, project time is 

advanced by one week, and the dashboard tells the participants which pieces to 

move around the board (Figure 10). 

 

 
Figure 10: Simsoft dashboard. 



 
 

 Page 73 

 

The game is now in a new state, which the participants must interpret and then 

decide their next move.  

 

As in the real world, not everything runs smoothly in the Simsoft world and the 

players may need to rethink their plan. At random times, Simsoft will generate one 

of the following events: 

 

 A major design flaw has been discovered. Add 5 more units of work to the 

Rework box. 

 Your team wins lotto and three staff have resigned, effective immediately. 

Remove three staff from the game board. (In this case, the counters 

representing the staff are removed from the board and put back into the pool). 

 The Finance department have made a mistake. Collect $500 from the bank. 

 

Events like these are called games pulses: an event outside of normal play that the 

teams must take account of when formulating their next decision set (Duke, 1980, 

p. 368; Schumann et al., 1996; Wolfe & Fritzsche, 1998). How the players react to 

these pulses will be revealed in their subsequent decision sets. 

 

Play continues in this manner until there is no more work to do (all the unit-of-

work counters are in the Completed Work box of the game board), or until the 

project deadline passes, whichever comes first. The aim of the game is to deliver 

the software before the deadline and on budget (with poker chips left over). 

 

Each team will operate their project independently of other teams. There won’t be 

any competition between the teams, but they will be able to see overall 

performance of the other teams. While it will be possible to compare team 

performance in the game according to indicators such as budget and timeliness, any 

such ranking will be nominal since the degree to which the participant’s meet the 

game’s states learning objectives will be the key performance determinant 

(Greenlaw & Wyman, 1973). 

 

Game	Administration	

Simsoft game sessions will be overseen by an administrator whose role will be to: 

 



 
 

 Page 74 

 

 Explain the learning objectives to the participants. The players must be made 

familiar with the decision-making environment created by the game, the type 

of decisions that will be required, and the quantifiable indicators of effective 

decision making (Watson & Blackstone, 1989, pp. 494 - 496). 

 Ensure that team composition is fair and not left to self-formation. McKenney 

and Dill (1966) recommended that homogeneous teams be avoided and that 

high-ability players be distributed throughout the groups. The ideal team size is 

three since four-member teams experienced more interpersonal problems, 

while anything larger could actually jeopardise the completion of the game 

itself (Strother et al. cited in Greenlaw & Wyman, 1973, p. 274). 

 Provide the teams with feedback and technical assistance during the decision 

rounds. 

 Run the after-game debriefing session that helps relate elements of game play 

with the learning objectives. 

 

For each of the game sessions, the administrator was the primary researcher. 

 

Pre‐	and	Post‐Game	Surveys	

Before the game sessions, the players completed an online survey (see Appendix J: 

Post-Game Survey) designed to test their knowledge of general software 

engineering and project management principles. The survey questions were drawn 

from examination preparation guides for the IEEE’s Certified Software 

Development professional certification (Naveda & Seidman, 2006) and the Project 

Management Professional certification (Heldman, 2007). 

 

After the game sessions, the players were asked to complete another online survey. 

Post-game surveys are a common feature of game research (Faria, 1987; McKenna, 

1991; Eldredge & Watson, 1996; Faria, 1998; Faria & Wellington, 2004)  and in 

problem-based learning (Tang et al., 1997), the key foundation of Simsoft’s design. 

 

Based on these exemplars, a survey was designed (see Appendix J: Post-Game 

Survey) to gather basic profile data (industry experience, any previous experience 

playing serious games), the players’ perceptions of the value of the game helping to 

understand some of the dynamic complexities of software project management, and 

to assess what they might have learned during the game. 

 



 
 

 Page 75 

 

Data	Analysis	and	Interpretation	

The analysis and interpretation of the data for this project followed a path used 

many times before in qualitative research: collect the data, analyse it for themes or 

perspectives, and then report on four or five of those themes (Lincoln & Guba, 

1984, p. 339; Bloomberg & Volpe, 2008, p. 100; Creswell, 2009, p. 184). These 

steps are expanded in Figure 11 (Creswell, 2009, p. 185). 

 

In more detail, the following steps were taken: 

 

 Organised and prepared the data for analysis by transcribing the interviews, 

 
Figure 11: The process of analysing and interpreting the data. 



 
 

 Page 76 

 

and writing up the field notes and memos (Creswell, 2009, p. 185).  

 Re-read, examined, and explored the data to get a high-level sense of what had 

been collected. 

 Started to analyse the data by first coding it— breaking it into named chunks or 

categories that can then be used to make comparisons between things in the 

same category and to help develop theoretical concepts (Strauss, 1987, p. 29; 

Rossman & Rallis, 1998, p. 171). The software package NVivo (QSR 

International, 2010) , an industry-standard tool for collecting and analysing 

qualitative research materials, was used for this task (Richards, 2009, chapter 

5). 

 Used the coding to identify and describe themes and patterns in the data, which 

then became candidates for more detailed analysis and, potentially, major 

findings of the project (Maxwell, 2004, pp. 96 – 99). 

 Formulated the finding statements and supported these will specific data 

instances and then summarised the key findings. 

 Sought meaning in the findings by linking it to experience, insight, or the 

literature. The most commonly asked question was: “What were the lessons 

learned?” (Lincoln & Guba, 1984). 

 

The above step-by-step list and Figure 11 might give the impression that the 

analysis and interpretation of the data proceeded in a linear fashion once all the 

data had been collected. In reality, the process was highly iterative and started as 

soon as the first data was available— a feature common to this type of research 

(Lincoln & Guba, 1984, pp. 241 – 242). 

 

Reliability,	Validity,	and	Applicability	of	the	Findings	

Compared to objective, deductive quantitative research, qualitative research has 

often been called undisciplined, sloppy, merely subjective, and indiscriminately 

responsive to the loudest bangs and brightest lights (Lincoln & Guba, 1984, p. 

289). Add to this a researcher intimately involved in the data collection and 

carrying certain biases, and it is natural to question the trustworthiness of the 

results: 

 

The basic issue in relation to trustworthiness is simple: How can an 
inquirer persuade his or her audiences (including self) that the findings of 
an inquiry are worth paying attention to, worth taking account of? What 
arguments can be mounted, what criteria invoked, what questions asked, 
that would be persuasive on this issue? (Lincoln & Guba, 1984, p. 290) 



 
 

 Page 77 

 

 

That is, how can we demonstrate the findings are reliable, valid, and applicable? 

 

Reliability	

Reliability is “the extent to which a measurement procedure yields the same answer 

however and whenever it is carried out” (Kirk & Miller, 1986, p. 19), or if 

someone other than the current researcher carried the same process, would they 

come to the same conclusions? 

 

For this project, the coding scheme was peer reviewed by an independent party— a 

skilled qualitative researcher from a local government department who was also an 

accredited NVivo trainer. 

 

Validity	

Validity is the “degree to which the finding is interpreted in a correct way” (Kirk & 

Miller, 1986, p. 20), which is also known as internal validity or, in Lincoln and 

Guba’s (1984, p. 290) classic definition, “truth value”. 

 

Internal validity for this project was addressed in a number of ways: 

 

 More than one data source was used so that the results could be triangulated. 

 The researcher’s education, work experience, and biases have already been 

made known (see the previous section The Researcher). 

 Member checking: the findings were reviewed by a random sample of four 

players from the games sessions. 

 

Applicability	

Applicability— or transferability, generalisability, external validity— is “the extent 

to which the findings of a particular enquiry have applicability in other contexts or 

with other subjects” (Lincoln & Guba, 1984, p. 290)? Some make the argument 

that this is really a burden for subsequent researchers who try to apply the findings 

in a new context, something known as the second decision span: 

 

The first decision span allows the researcher to generalize the findings 
about a particular sample to the population from which that sample was 
drawn… The second decision span occurs when another researcher wants 



 
 

 Page 78 

 

to apply the findings about a population of interest to a second population 
believed or presumed to be similar enough to the first to warrant that 
application. (Marshall & Rossman, 2005, p. 202) 

 

In light of the opposing ideas in this area, the best way to address the applicability 

of the findings— and the one used here— is to provide rich, detailed descriptions 

that will allow subsequent researchers to determine if the findings are relevant to 

their particular setting (Merriam, 1998).  

 

Limitations	of	the	Study	

This research project has a number of limitations. Some of these are related to this 

project’s own design, while others are common to all types of qualitative research. 

For example, perhaps the foremost limitation of any qualitative research project is 

the intimate involvement of the researcher in collecting and analysing the data: bias 

and subjectivity are reasonable charges. Aspects of the qualitative method that may 

limit the research (and their mitigations) were covered in the previous section; for 

those related to the project design, care has been taken to ensure these limitations 

are justified. 

 

Simsoft is only focussed on human resource aspects of software engineering 

management, rather than, say, technical or methodological aspects. Apart from 

verisimilitude when compared to a real software project, this may not be a 

limitation because human resources— peopleware as DeMarco and Lister (1999) 

call it— is the one area that has most potential to offer an order of magnitude 

productivity improvement— a silver bullet. Consider the cover of Boehm’s often-

cited Software Engineering Economics (Boehm, 1981): it shows a bar graph of 

those factors that influence software project productivity such as programming 

practices, reliability requirements, and product complexity. By far the most 

influential factor is personnel/team capability. According to Boehm’s many 

studies, understanding and improving this aspect of software projects offers the 

richest productivity rewards. It makes sense, then, for Simsoft to concentrate on 

peopleware at least in this first iteration of what will be ongoing research. 

 

It can also be said that the Simsoft simulacrum is too simple because the players 

don’t have to do any requirements analysis, software design or estimation, or any 

of those other things that are part of a full-breadth development cycle. But, there 

are advantages in keeping things simple. While deep and complex games create a 



 
 

 Page 79 

 

rich learning environment, players can be intimidated by this complexity and may 

be unprepared or unwilling to devote the necessary effort (Wolfe, 1978, p. 152). 

Other researchers (Raia, 1966, p. 351; Watt, 1977, p. 2; Butler et al., 1979; 

Meadows, 1999; Dempsey et al., 2002) support Wolfe’s findings that simple games 

can provide essentially the same benefits as more complex games while avoiding 

player mortality (boredom and dropout). 

 

Summary	

This chapter has provided a detailed description of this project’s research 

methodology. A qualitative research approach based on grounded theory was 

chosen because it provided the best way to tackle a research area without clearly 

defined experimental variables. 

 

The research sample was made up of 59 purposively selected project management 

and software engineering practitioners and students— the players.  

 

A simple game of a software project, Simsoft, was used as the primary research 

tool. Simsoft’s design was based on perceived shortcomings in extant games in the 

field, such as their overly rich and complex user interface and their single-player 

nature. Before and after the game sessions, players completed surveys designed to 

see what they may have learned and how they experienced the game. Therefore, 

this research drew from multiple data sources: the Simsoft game database (see 

Appendix H: Simsoft Database Design for the data items captured), the pre- and 

post-game surveys (see Appendix I: Pre-Game Survey and Appendix J: Post-Game 

Survey), interviews with the players, researcher memos (Maxwell, 2004, p. 12), 

and field notes. 

 

The research data was analysed using conventional qualitative methods, comparing 

it against the literature of the field and searching for emergent themes. The 

reliability, validity, and applicability of the data were addressed by various 

methods such as peer review and rich descriptions of the context and proceedings 

of the study. 

 

 

  



 
 

 Page 80 

 

Chapter 4— Findings 

Introduction	

The purpose of this research project was to see if and how games can contribute to 

better software engineering management education by helping software engineers 

and project managers explore some of the dynamic complexities of the field in a 

safe and inexpensive environment. If games could contribute, then what features 

made them most efficacious? 

 

This chapter presents the findings from a series of  Simsoft game sessions 

conducted with teams of post-graduate project management students (for software 

and general projects), and practising software project managers and developers. 

The data sources for the findings were the participants’ performance in Simsoft, 

pre- and post-game surveys, interviews with the participants, and a qualitative rich 

analysis of the interactions that were observed during the game sessions. 

 

Six major findings emerged from the research: 

 

 There was evidence the participants were learning by doing. 

 Games such as Simsoft are not sufficient learning vehicles by themselves and 

need to be supplemented by other methods. 

 Simsoft is a suitable pedagogical device for participants of different skills and 

backgrounds. 

 The majority of participants said they would be prepared to invest greater time 

and effort in games such as Simsoft if the reward was deeper understanding of 

a problem domain. 

 The majority of the participants found that working in groups was a positive 

experience. 

 The majority of participants preferred playing a board game to a fully 

computerised game. 

 

The following is a thick description of these findings. Here, thick description is a 

loaded term and: 

 

… does more than record what a person is doing. It goes beyond mere fact 
and surface appearances. It presents detail, context, emotion, and the webs 
of social relationships that join persons to one another. Thick description 
evokes emotionality and self-feelings. It inserts history into experience. It 



 
 

 Page 81 

 

establishes the significance of an experience, or the sequence of events, for 
the person or persons in question. In thick description, the voices, feelings, 
actions, and meanings of interacting individuals are heard. (Denzin, 1989, 
p. 83) 

 

Verbatim quotations from the post-game survey and participant interviews are used 

to illustrate the findings where possible. 

 

Because the data for this project came from multiple sources and was largely 

unstructured, NVivo (QSR International, 2010) was used to store all research 

materials and to then apply codes that revealed themes and descriptions and 

eventually the findings. SPSS (IBM, 2011) was used to analyse the survey and 

game data using a series of non-parametric statistical tests.  

 

Descriptive statistics (for example, mean and standard deviation) were used to 

analyse the game features (for example, ease of navigation, help provided, and 

realism of the scenario) and raw game data (for example, games completed and 

abandoned, time taken). Mann-Whitney U tests compared knowledge levels in the 

pre- and post-game tests between the game teams and between player types 

(project managers, software developers, and students). Wilcoxon matched-pairs 

signed, ranks tests were used to compare the pre- and post game tests for each team 

and player type. 

 

Finding	1—	There	was	evidence	the	participants	were	learning	by	doing.	

A key tenet of problem-based based learning, one of the theoretical foundations of 

Simsoft, is that when people work through problems for themselves, the knowledge 

they build sticks and they are more able to apply what they have learned in new 

situations. The following comments indicate that playing the game indeed helped 

the participants figure things out for themselves: 

    

   “Aha!” 

    

“Our team figured out we could move more counters [work units] by 

investing in a couple of expensive, experienced developers, more middies, 

and some quality control people. Makes sense really” 

    



 
 

 Page 82 

 

“We spent our poker chips on lots of cheap newbies and before long had 

most of our counters [work units] in rework. We should have bought some 

old timers for guidance” 

    

“Now I see why” 

 

“I hadn't appreciated the level of productivity variability between developers 

before” 

    

 In addition to playing the game, all participants completed pre- and post-game 

surveys that included a number of questions designed to test their general level of 

knowledge about project management and software engineering concepts. Table 7 

shows the results of the tests broken by the participants’ role and years of 

experience. Each group performed better after playing the game. Two non-

parametric statistical tests were run over the pre- and post-game results to 

determine if this improved performance was significant. 

 

A Mann-Whitney U test (Z = -1.091, p = 0.275 > 0.05) indicated that there was no 

significant differences between the pre- and post-game results when considering 

Table 7: Comparison of players pre- and post-game test scores 

Role and Experience 

(in years) 

n Average Pre-Test 

Score (out of 8) 

Average Post-Test 

Score (out of 8) 

Difference 

Between Pre- and 

Post-Game Scores 

Students 17 4.64 (SD = 0.861) 5.41 (SD = 1.460) +0.77 

      0 to 1 years  17 4.64 (SD = 0.861) 5.41 (SD = 1.460) +0.77 

Software Developers 30 5.53 (SD = 0.995) 6.33 (SD = 1.107) +0.80 

      0 to 1 0    

      2 to 5 years 14 5.57 (SD = 1.089) 6.07 (SD = 1.268) +0.50 

      5 to 10 years 11 5.72 (SD = 1.009) 6.818 (SD = .0750) +1.098 

      10 to 15 years 5 5.00 (SD = 0.707) 6.00 (SD = 1.224) +1.00 

      More than 15 years 0    

Project Managers 12 4.66 (SD = 1.497) 5.42 (SD = 2.020) +0.76 

      0 to 1 0    

      2 to 5 years 6 4.5 (SD = 2.073) 5.00 (SD = 2.529) +0.50 

      5 to 10 years 1 5.00 (SD = NA) 6.00 (SD = NA) +1.00 

      10 to 15 years 4 4.75 (SD = 0.957) 5.75 (SD = 1.892) +1.00 

      More than 15 years 1 5.00 (SD = NA) 6.00(SD = NA) +1.00 

 59 5.10 (SD = 1.155) 5.88 (SD = 1.486) +0.78 



 
 

 Page 83 

 

the broad groups of project managers, software developers, and students. A 

Wilcoxon signed ranks test (Z = -1.604, p = 0.109 > 0.05) also showed there was 

no significant difference between the pre- and post-game results of the three 

groups.  

     

The same statistical tests were then run at a finer level of detail: against the years-

of-experience sub-groups within the three main groupings of project managers, 

software developers, and students. Both the Mann-Whitney U test (Z = -2.951, p = 

0.003 < 0.05) and the Wilcoxon signed ranks test (Z = -2.552, p = 0.011 < 0.05) 

showed there was a significant improvement between the pre- and post-game tests. 

    

Together, these results indicate that while playing the game helped, none of the 

three main groups performed significantly better than the others. However, the 

years of experience a person has may affect how much they take from the game.  

 

Finding	2—	Games	such	as	Simsoft	are	not	sufficient	learning	vehicles	by	

themselves	and	need	to	be	supplemented	by	other	methods.	

While most players (40 out of 59) said that Simsoft helped put project management 

and software engineering theories into a practical context, the mean score was 2.64 

out 5 (SD = 0.760) when they were asked if games were a better way of learning 

and understanding technical material than through more conventional methods 

such as books, lectures, and case studies. 

 

From an experienced software developer: 

 

“I saw in the game aspects of theory covered at uni, but without knowing the 

theory first I probably wouldn't have recognised the significance.” 

 

And these comments from two students:  

 

“I was out of my depth” 

 

“I could see the logic behind my team’s decision, but I wouldn’t have known 

enough to make the decision by myself.” 

 



 
 

 Page 84 

 

One project manager expressed an interest in using Simsoft as part of an under-

graduate computer science course he teaches part-time, but: 

 

“It would have to be used on the final weeks of the course when the students 

have some theory under their belt… Plus, there is little momentum behind 

problem-based learning at [my university] so the resources aren’t available 

to design a proper PBL based curriculum” 

 

Table 7 also shows that the greatest improvement between the pre- and post-game 

tests was in those groups with the greatest work experience, so that relatively 

inexperienced participants took less from the game. This suggests that some level 

of a priori knowledge is needed for games like Simsoft to be truly effective. 

 

However, when asked if games were a better way of more thoroughly learning a 

topic than through more conventional methods such as books, lectures, case 

studies, a significant minority (21 out of 59 participants) agreed or strongly agreed 

(mean = 3.00 out of 5, SD = 0.964). Self discovery seems to be the motive: 

 

“I like to figure things out for myself” 

 

On six occasions over the seven game sessions, the researcher overheard players 

saying they wished they could set Simsoft to match their work environment so they 

could game through some current issues. 

  

Finding	3—	Simsoft	is	a	suitable	pedagogical	device	for	participants	of	

different	skills	and	backgrounds.	

When asked if Simsoft was easy or hard to play (1 = too easy, 3 = about right, and 

5 too hard), the majority of the participants (47 out of 59) felt that the game was a 

pitched at about the right level of difficulty (see Table 8).  

 

This comment was from a student: 

 

“Even though I'm still studying and don’t  have much [practical work] 

experience, I was able to understand the game's project and contribute to the 

decisions” 

 



 
 

 Page 85 

 

And, from a project manager with 10 to 15 years experience:  

 

“[The] game was not too easy so that it was boring, but not too hard that 

newbies couldn't undetstad (sic) it.” 

 

Across the seven game sessions there were no teams composed entirely of one 

group only, so each had a mixture of skills and experience. This was viewed 

positively:  

  

“Our team had a mixture of abilities and life experience. I think this helped 

us make good choices” 

 

“[One of our team] had read about Brooks’ model and could let us know if 

we were on the right track” 

 

Table 8: Participants responses when asked whether they thought Simsoft was easy or difficult 
to play 

Role and Experience (in years) n Average Response 

Students 17 3.17 (0.528) 

      0 to 1 years  17 3.17 (0.528) 

Software Developers 30 2.93 (SD = 0.253) 

      0 to 1 0  

      2 to 5 years 14 2.92 (SD = 0.267) 

      5 to 10 years 11 3.00 (SD = 0.000) 

      10 to 15 years 5 2.80 (SD = 0.447) 

      More than 15 years 0  

Project Managers 12 2.58 (SD = 0.514) 

      0 to 1 0  

      2 to 5 years 6 2.83 (0.408) 

      5 to 10 years 1 3.00 (SD = NA) 

      10 to 15 years 4 2.25 (SD = 0.500) 

      More than 15 years 1 2.00 (SD = NA) 

 59 2.93 (SD = 0.449) 



 
 

 Page 86 

 

Finding	4—	The	majority	(49	out	of	59)	of	participants	said	they	would	

be	prepared	to	invest	greater	time	and	effort	in	games	such	as	Simsoft	if	

the	reward	was	deeper	understanding	of	a	problem	domain.	

Many players said they reached the end of the game before they had time to fully 

explore the dynamics of the scenario, or they wanted to take more time discussing 

their options before committing to a decision. For example: 

 

"The game was too short to discover what I wanted to know" 

"I wanted to know more" 

 

“We wanted more time to talk about our options” 

 

The database of Simsoft game transactions showed that games lasted an average of 

35 minutes (SD = 7.082) and that 80% of games finished within 40 minutes. The 

players were encouraged to stay behind after the game sessions to discuss and 

compare their results with other teams. Often, these after-game sessions lasted 

longer than the games themselves. 

 

Considering the amount of time they had spent playing Simsoft, a majority of the 

players (49 out of 59) said they would be prepared to invest greater time and effort 

in games like Simsoft if the reward was greater understanding of the problem 

domain: 

 

“What about running the game in real time, like the stock market game. 

That would give us time to make really considered judgements, people 

could be assigned research topics during the week” 

 

“I hope that future versions will let me set up specific scenario and play 

them out. That would really help me in my work” 

 

Outside of this research project, 10 players had previously participated in a long-

running online stock market game in which notional shares were bought and sold 

based on actual prices published in a daily newspaper. Buy and sell decisions were 

submitted weekly and the team with the largest portfolio after three months was 

declared the winner. 

 



 
 

 Page 87 

 

Finding	5—	The	majority	(44	out	of	59)	of	the	participants	found	that	

working	in	groups	was	a	positive	experience	

An important component of many of the pedagogical theories behind Simsoft is 

team work, so it was important to assess how this was viewed by the players. A 

majority of players (44 out of 59) said they found it useful or very useful to work 

as a team and that this reflected how things often happened in the workplace: 

 

“It was like [the agile] stand up meeting we have every morning” 

 

“We organised our selves into roles we felt comfortable with or that fitted 

our day-job: someone on the calculator, someone moving the developer 

pieces, someone moving the units of work” 

 

However, one student found something new in the practice: 

 

“I thought software development was a solitary experience but it’s not 

really” 

 

Others liked the opportunity to share opinions and learn from more experienced 

peers: 

 

“Everyone had a chance to offer an opinion” 

 

“I have little real-world project experience so it was good to get the advice 

of others and see how they approached problems” 

 

But, as in any group activity, the game facilitator needs to be aware of cultural 

differences that may make some less inclined to contribute and of players who are 

dominating their groups: 

  

“Generally, everyone had their say in final decision but a couple of times we 

were overridden” 

 



 
 

 Page 88 

 

Finding	6—	The	majority	(44	out	of	59)	of	participants	preferred	playing	

a	board	game	rather	than	a	fully	computerised	game	

The players’ responses to different features of the game were generally positive 

(Table 9). 

 

Table 9: Players' evaluation of game features 

Feature Average (1 = very bad, 5 = very good; or 1 = 

strongly disagree, 5 = strongly agree) 

Written instructions Average = 4.44, SD = 0.771 

The game was interesting Average = 4.37, SD = 0.963 

Realistic scenario Average = 4.37, SD = 0.692 

Navigation around the game Average = 4.22, SD = 0.744 

Game logic was apparent Average = 4.18, SD = 0.730 

Useful to work in teams Average = 4.15, SD = 0.714 

Prefer game-board version Average = 3.98, SD = 0.754 

 

Notable in Table 9 is that a majority of players (44 out of 59) preferred playing 

with a game board rather than a fully computerised version. Some typical 

comments were: 

 

“The board game [was] simple and I could easily see the state of the game” 

 

“When a group plays the game on a PC, someone controls the mouse and 

keyboard and they tend to dominate” 

 

“Compared to computer-based games, the design was simple and we 

started playing without too much wasted time” 

 

“Sometimes technology gets in the way” 

 

“Everyone plays board games so we all knew what to do” 

 

Outside of this research project, seven players had played The Beer Game, four-

point distribution chain, originally developed at MIT and now used widely as a 

management educational tool in a variety of academic and commercial settings 

(Sterman, 1989; Goodwin & Franklin, 1994; Senge et al., 1994; Lomi et al., 1997; 

Caulfield et al., 2004). In The Beer Game all calculations are performed by hand 

on simple worksheets. This found favour: 



 
 

 Page 89 

 

 

“Doing the calculations by hand means we have to understand” 

 

“The calculator half of the game hides details. Just give us a calculator and 

we can work it out” 

 

Although the players’ reception of the game was generally positive, clear written 

instructions were essential to make sure best use was made of the game session 

time. This comment was made by a player in the very first game session: 

  

“Wasn’t sure of what we were supposed to do” 

 

Initially, instructions for playing the game were handed out by the researcher after 

the players had completed the pre-game survey and just before they started the 

game. For the second game session onwards, a one-page instruction sheet was 

emailed to each player a couple of days beforehand so they could be prepared.  

 

The database of Simsoft game transactions showed that only three games had to be 

abandoned and restarted. It was observed that once teams had made the first couple 

of decisions, they were able to continue without too much trouble. 

 

Summary	

This chapter presented the six findings of this research project which were 

discovered through a series of Simsoft game sessions conducted with teams of 

post-graduate project management students, and practising software project 

managers and developers. Data from the participants’ performance in Simsoft, pre- 

and post-game surveys, interviews with the participants, and a qualitative rich 

analysis of the interactions that were observed during the game sessions served as 

the basis of the findings. Where possible, the findings have been illustrated by 

verbatim quotations of the participants. 

 

The main finding of the project was that there was evidence the participants were 

learning by doing and building their own mental models about what was 

happening. Also, all groups of participants (students, software developers, and 

project managers) improved their scores between the pre- and post-game surveys 

and this improvement was statistically significant. 



 
 

 Page 90 

 

 

The second finding was that games such as Simsoft are not sufficient learning 

vehicles by themselves and need to be supplemented by other methods. The 

software developers and project managers were able to make decisions based on 

experience or their university studies, but many students said they needed to know 

more than the game provided. 

 

The third finding was that Simsoft is a suitable pedagogical device for participants 

of different skills and backgrounds. The participants in this research project came 

from a variety of Western and Eastern cultures; there were differences in language 

abilities; and experience in their fields ranged from nothing to seasoned 

professionals with a wide breadth of work and life experience. Yet, a majority of 

participants said they found the game interesting, it was pitched at the right level, 

and was something they could easily play and understand.  

 

The fourth finding was that a majority of participants said they would be prepared 

to invest greater time and effort in games such as Simsoft if the reward was a 

deeper understanding of a problem domain. Many participants said the game ended 

too soon or that they would like to create a scenario similar to their own work place 

or that they wanted more time to discuss their decisions. A group of ten players had 

previously played a real-time stock market game and felt that games run in real 

time gave time for considered judgments and added verisimilitude. 

 

The fifth finding was that the majority of the participants found working in groups 

was a positive experience. It has already been mentioned that the participants were 

a diverse group of cultures, skills, and experience and many felt they were able to 

work out collaborative decisions in a constructive manner. However, as with any 

group activity, facilitators need to be cognisant of any individuals dominating a 

group or others who might need a gentle prompt to contribute more. 

 

The last finding was a majority of participants preferred to play around a game 

board rather than a fully computerised game because this was a familiar and simple 

activity and less time was lost to overcoming technological problems and to 

making simple ergonomic arrangements such as fitting all the team around a single 

computer. Even so, facilitators need to prepare the participants for the game 

sessions by giving clear instructions and sufficient lead time to absorb the 

information.  



 
 

 Page 91 

 

 

Once these findings had been derived, four participants (roughly 10% of the 

original research population as suggest by (Lincoln & Guba, 1984)) were chosen at 

random to check that the findings made overall sense in their experience of the 

game. Each of these participants was sent a URL to an online survey that presented 

the six findings above, and they were asked whether they agreed or disagreed. All 

concurred with the findings without comment. 

 

 

 

  



 
 

 Page 92 

 

Chapter 5– Analysis and Interpretation 

Introduction	

The purpose of this research project was to see if and how games could contribute 

to better software engineering management education by helping software 

engineers and project managers explore some of the dynamic complexities of the 

field in a safe and inexpensive environment. If games could contribute, then what 

features made them most efficacious?  

 

The research was exploratory rather than deterministic and sought to understand a 

complex socio-technical system (software engineering management), therefore a 

qualitative research approach was used. Within this qualitative paradigm, grounded 

theory was used because it is a means of inductively developing a theory from the 

collected data.  

 

To this end, a simple game, Simsoft, was developed and teams of post-graduate 

project management students (for software and general projects), and practising 

software project managers and developers played the game in teams in a series of 

game sessions. Overall game evaluation was made on the basis of pre- and post-

game surveys, performance in Simsoft, and a qualitative rich analysis of the 

interactions that were observed during the game sessions. 

 

The following research questions and associated hypotheses formed the basis of the 
project: 

 Can games contribute to better software engineering management 
education?  

Q1

  Games built on sound software engineering management 
principles are a more effective means of improving software 
project management education than more traditional 
pedagogical means. 

H1

  

 If games are to contribute to better software engineering 
management education, what features make them most efficacious? 

Q2

  For best effect, players should be able to easily relate the 
context of a game to their real-world experience. 

H2.1

  For best effect, games should be simple to play and understand 
and only as theoretically complex as needed to explore the 

H2.2



 
 

 Page 93 

 

concepts at hand. 

The findings in Chapter 4 largely support the research questions. The major finding 

of the research was that participants were learning as they played the game. So, 

games can contribute the better software project management education (research 

question Q1) by providing a safe and inexpensive environment in which to explore 

dynamic concepts. However, hypothesis H1 was disproved as the findings suggest 

that games alone are not more effective than more traditional pedagogical means 

such as lectures, case studies, and readings. 

 

The findings further suggested that simple games (hypothesis H2.2), and games in 

which the participants are able to relate game play to an external context 

(hypothesis H2.1), such as their real-world roles, are the most efficacious (research 

question Q2). 

 

This chapter analyses and discusses the findings in more detail according to the 

following broad analytic categories: 

 

 Games and learning (research question Q1). 

 Games in context (research question Q2). 

 The relative complexity of games (research question Q2).  

 

These analytic categories are aligned to the research questions and were used to 

code the data that ultimately revealed the findings presented in the previous 

chapter. Whereas the findings were bald statements of what was found when the 

data from multiple sources was amalgamated, this chapter tries to answer the 

question, “What does it all mean?”. 

 

This discussion takes into consideration related work in the field and how the 

results of this project support or deviate from these other efforts. 

 

Analytic	Category	1–	Games	and	Learning	

Learning	in	Simsoft	

The first research question (Q1) was designed to see if games could contribute to 

software engineering management education and whether they were better than 

more traditional means of instruction.  



 
 

 Page 94 

 

 

The results showed that each group of participants (students, project managers, and 

software developers) improved their performance between the pre- and post-game 

tests. This suggests that the participants were constructing knowledge for 

themselves based on what they had experienced in the game. Comments from the 

participants supported this: 

 

 “Aha!” 

 

“Now I see why” 

 

When each group was further classified by years of experience in the field, the 

same improvement between the pre- and post-game tests was seen, with the 

greatest improvement being in those with more experience. For example, students 

gained relatively less from the game than more experienced software developers 

and project managers.  

 

Together these results suggest that learning is happening, but for some participants 

at least some level of a priori knowledge is necessary to make more sense of what 

is happening in the game, which confirms that noticed by other researchers 

(Gredler, 1996, p. 36). (In an ideal problem-based learning environment, it is 

normal for participants to start an exercise with imperfect knowledge (Savin-Baden 

& Major, 2004, pp. 3 – 4), and then set about to resolve this dissonance. But, 

within the confines of a single-session game, this was not possible.) This, then, 

disproves hypothesis H1 that games are a more effective means of improving 

software engineering management than other traditional pedagogical means. 

Instead, participants can learn some, but not all, of what they need to know from a 

game. 

 

Learning	Through	Simsoft	Compared	to	Others	

The results that show learning is happening through Simsoft largely agree with 

those found by other researchers using games to teach aspects of the software 

development lifecycle (Caulfield et al., 2011e. See also Appendices L and M). 

 

Appendix L: Full Data Extract of Games Used in Software Engineering Education 

shows that games have been used in a variety of ways to teach different aspects of 



 
 

 Page 95 

 

software engineering and software project management. In general, all those that 

assessed the degree of learning by the participants found that the participants were 

learning some new concepts or were reinforcing known theories. All the research 

projects, whether explicitly or implicitly stated, found that games alone were not 

sufficient pedagogical devices to teach software engineering or project 

management concepts and would have to be supplemented by other means. Only 

Navarro (2009) and Hainey et. al. (2010) evaluated the effectiveness of games for 

players of different skills and backgrounds and each found that games were 

suitable for a wide variety of participants. All these findings agree with those of 

this research project. 

 

It should be noted, however, that apart from Navarro’s and Drappa and Ludewig’s 

body of work, many of the research projects in Appendix L had very small sample 

sizes and few were developed or repeated beyond that described in the initial 

papers. Also, the sample populations for all projects were under-graduate and post-

graduate university students, so extrapolating the results to other populations can 

be problematic (Remus, 1986; Garb, 1989; Camerer & Johnson, 1991). In contrast, 

those that played Simsoft were a combination of students and experienced project 

managers and software developers. This, and other differences between Simsoft 

and similar research, will be discussed later. 

 

Are	Games	More	Effective	Than	Other	Pedagogical	Means?	

Hypothesis H1— that games are a more effective means of improving software 

engineering management education than other means— turns out to be an artefact 

of a wider debate within education about the effectiveness of any one pedagogical 

device over any others. Some studies (Kulik et al., 1985; Kulik & Kulik, 1991) 

claim that computer-based instruction, for example, offers some advantage over 

other means, but the benefit is often so slight that ascribing it to anything in 

particular is risky (Clark, 1994). Others (Clark, 1994; Kozma, 1994; Tennyson, 

1994) argue that one method can never be better than another.  On reflection, this is 

not surprising: 

 
 
If we were to chart out all the instructional topics, the wide variety of 
learners, and the many instructional situations, we would sometimes find 
an advantage for books, sometime teachers, sometimes film or video, 
sometimes peer-tutoring, sometimes hands-on field experience, sometimes 
listening to an audio tape, and sometimes computers. Not surprisingly, 
across these many studies, which utilized a variety of topics, learners, and 



 
 

 Page 96 

 

situations, little or no overall effect was found in favour of a single 
medium.  (Alessi & Trollip, 2001, p. 6) 

 

So, it makes sense to choose a pedagogical device based on what we know about 

the material, the students who are to receive this material, and the environment in 

which they will be learning. For games, certain scenarios lend themselves most: 

 

 Where instruction by other means is prohibitively expensive, dangerous, or 

difficult. This includes, for example, military training (Perla, 1990; Riddell, 

1997) and historical recreations (McCall, 2011).  For the purposes of this 

research project, software engineering management education falls into this 

category: only in fiction (DeMarco, 1997) has a controlled experiment been 

conducted in which parallel development teams build the same product under 

different project conditions. 

 Where the students are already acculturated to games or have been brought 

around to Kolb’s (1984) experiential learning style by their teachers. Kolb 

imagined two dialectically opposed and intersecting dimensions: concrete 

experience/abstract conceptualisation and active experimentation/reflective 

observation. An effective learner must initially involve themself fully, openly, 

and without bias in new experiences (concrete experience). They must then be 

able to reflect on and observe their experiences from many perspectives 

(reflective observation). From this they must be able to create concepts that 

integrate what they see and experience into logically sound theories (abstract 

conceptualisation). With this grounding, they must be able to then use these 

theories to make decisions and solve problems (active experimentation) (Kolb, 

1984, p. 30).  

 Where there are logistical difficulties such as catering for remote or distributed 

players.  

 Where it is recognised that games can be more administratively demanding and 

resource intensive, particularly in the time required of teachers and facilitators 

than, say, traditional lectures (Watson & Blackstone, 1989, p. 493; Petranek, 

1994; Bates & Poole, 2003, pp. 129 – 152). 

 

A game may survive this assessment, be played, and yet still not deliver on its 

promise, which is ultimately transforming what has been learned in the game into 

reasoned action in the real world (Crookall & Thorngate, 2009; Kriz, 2009, p. 28). 

This may be because the game has been poorly designed or implemented; the latter 



 
 

 Page 97 

 

depends on the skill of the facilitator and the commitment of the players, but the 

former is of critical importance because everything derives from it and will be 

explored in more detail next.  

 

Learning‐Design	Principles	in	Simsoft	

In his seminal book on video games and education, What Video Games Have to 

Teach Us About Learning and Literacy, Gee (2007b) discusses 36 principles of 

learning he believes should be designed into every good game. Originally 

conceived for video games, and later condensed to 13 (Gee, 2007a), the principles 

parallel those found by other cognitive researchers (Bereiter & Scardamalia, 1993; 

diSessa, 2000; Gredler, 2004) and they have since been adopted for situations 

involving an active learner and any game. It is instructive to see how Simsoft 

addresses Gee’s principles (Table 10). 

 

Table 10: Simsoft Compared with Gee's (2007a) Principles of Good Game Design 

Learning Principle In Simsoft

I. Empowered Users 

1. Co-design: good learning means that 

players feel they are active agents 

(producers) not just passive recipients 

(consumers). 

 

In good games, players feel their actions 

and decisions– and not just those of the 

game designer– are co-designing the game 

world and the experiences they are having. 

It therefore matters what the player does 

because this determines a unique path 

through the game. 

The course of game play in Simsoft is 

completely determined by the decisions the 

players make. They have full control of their 

workforce planning (subject to budget and 

timing restraints) and can increase or reduce 

hours as required. 

2. Customise: different styles of learning 

work better for different people. People 

cannot be agents of their own learning if 

they cannot make decisions about how they 

learn best. At the same time, they should be 

able (and encouraged) to try new styles. 

 

Good games achieve this by naturally 

accommodating different styles of learning 

and playing or by allowing the players to 

customise the game play to fit their style. 

Teams can organise themselves any way 

they wish. Some nominated a lead decision 

maker or arbiter, usually based on 

experience, while others were more 

collaborative and democratic.  

 

The game sessions contained enough time 

for the players to debate their decisions. 



 
 

 Page 98 

 

3. Identity: deep learning requires an 

extended commitment and such a 

commitment is typically created when people 

take on a new identity they value and in 

which they become heavily invested. 

 

Good games offer players identities in which 

they can rewardingly invest time and effort. 

This can be done by offering a character so 

intriguing that players want to inhabit the 

avatar and project onto it their own 

fantasies, desires, and pleasures. 

Alternatively, games may offer a relatively 

empty character upon which players can 

build a deep and consequential life history. 

Players take on the role of a project 

manager– not something so exciting, 

particularly for experienced project 

managers. But a Simsoft project manager is 

unfettered by project politics and has 

complete control over the project's budget 

and workforce planning. This comment was 

from a project manager: 

 

“I wish I have [sic] this power at work” 

4. Manipulation and distributed knowledge: 

cognitive research suggests perception and 

action are deeply interconnected. "Thus, 

fine-grained action at a distance - for 

example, when a person is manipulating a 

robot or watering a garden via a web cam - 

cause humans to feel as if their bodies and 

minds have stretched into a new space. 

More generally, humans feel expanded and 

empowered when they can manipulate 

powerful tools in intricate ways that extend 

their area of expertise." 

 

Good games almost always involve action at 

a (virtual) distance. The more intricately a 

player can control a character and objects in 

the game world, the more the player is 

willing to invest time and effort in the game. 

The players had fine-grained control over 

their workforce, subject to budget constraints 

and hiring delays. 

II. Problem Solving 

5. Well-ordered problems: problems in good 

games are designed so that the early 

challenges a player faces allows them to 

form good hypotheses they can use now 

and later. 

Initially players made simple decisions about 

hiring more staff to ramp up the project. By 

the time they were confident with the 

mechanics of this process, the game state 

would have changed sufficiently so they 

would then have to make more complex 

decisions to balance work backlogs, the 

volume of rework, a looming deadline and 

reduced funds. 

6. Pleasantly frustrating: learning works best Simsoft demands more careful decisions as 



 
 

 Page 99 

 

when new challenges are pleasantly 

frustrating, that is at the outer edge of, but 

within, the player's regime of competence. 

These challenges feel hard, but doable. 

Players also need feedback so even if they 

fail, they have an idea of what must be done 

next time. 

the game progresses. For example, the 

usual response to a large back log of work is 

to hire more staff, but the hiring delay means 

there is no immediate effect. A number of 

teams noticed this during the game: 

 

"We have to be careful about bringing on too 

many new hires. It'll ultimately clog things 

up". 

 

For all teams, the causal loop diagram on 

the back of the project briefing document 

was used to point out the counterintuitive 

nature of many project cycles. 

7. Cycles of expertise: expertise in any field 

is created by repeated cycles of practice 

until the skills become nearly automatic. 

New skills are gradually added to the 

practice set and the cycle continues 

(Bereiter & Scardamalia, 1993). In games, 

we see this in the different levels a player 

must move through: there are cycles of 

extended practice, a test of mastery, then a 

new challenge which requires further 

extended practice. In this way the game 

moves forward at a predictable pace and the 

player senses achievement at each 

mastered skill. 

More complex decisions need to be made as 

the game proceeds, but by this time the 

players will have mastered the mechanics of 

the game and the delays and counter-

intuitive behaviour that are possible.   

 

Simsoft logs all game decisions so these 

can be studied or replayed. 

8. Information should be delivered on 

demand and just in time: humans are not 

good at using information when it has little 

context and before they can practically use 

it. Instead, information is best used when it 

is given just in time (when it can be used 

straight away) and on demand (when there 

is a need to use it). 

Each game session was preceded by a 

short briefing from the researcher about the 

mechanics of the game and then most 

sessions were under way within a couple of 

minutes. Each game schedule contained a 

causal loop diagram representing the 

underlying system dynamics model that 

players could refer to as needed in light the 

way pieces were moving on the board. The 

game board itself also shows the major work 

and personnel flows of the game. 

9. Fish tanks: a fish tank can be a simple 

eco-system containing just a few controlled 

variables (water, light, food, fish). As such, it 

can show interactions between the variables 

that might otherwise be obscured in the real 

Simsoft represents a simplified version of a 

software project: there are no requirements 

gathering, deployment, or maintenance 

phases. Instead, the game concentrates on 

a single, important factor– human 



 
 

 Page 100 

 

world. In a similar way, games are simplified 

systems that stress a few key variables and 

their interactions meaning players are not 

overwhelmed by the complexity of a whole 

system. 

resources– without the noise these other 

phases may have introduced 

10. Sandboxes: in games, as in the real 

world, sandboxes are safe, protected areas 

where things cannot go too wrong, too 

quickly and where any affects on the outside 

environment are minimised.  

 

In a good game, a sandbox may be a 

tutorial, or the first couple of levels may be 

sandboxed so that decisions made here do 

not completely spoil the player's chances 

later in the game. 

Each game session was preceded by a 

short briefing from the researcher about how 

to make and enter game decisions. The 

range of initial decisions available was small 

so the players were able to see the flow of 

work over a number of project weeks before 

making more influential decisions. 

11. Skills as strategies: there is a paradox in 

Principles 7 and 8: players need to practice 

certain skills in order to master them, but 

without a sufficient context, this practice may 

be seen as pointless.  

 

In good games, players learn and practice 

skills in order to accomplish specific things– 

they are a strategy for accomplishing 

something first, and of value as skills in 

themselves second. 

The objective of Simsoft is the completion of 

the project within budget and on time. The 

skills the players are developing in the game 

are directly employed to this end. 

III. Understanding 

12. Systems thinking: people learn new 

things (skills, strategies, and ideas) best 

when they see how these things fit into a 

larger system in which they have meaning.  

 

Good games help players understand how 

the simplified world of the game fits into a 

broader context, either of the game or of the 

real world. 

While Simsoft only represents a slice of a 

real software development project, that slice 

sends ripples through most other areas of a 

typical project. This comment was from a 

software developer with 2 to 5 years 

experience: 

 

“I see my part in the machinery now” 

13. Meaning as action image: humans do 

not usually think in abstract concepts and 

according to logical principles. Rather, we 

think through experiences we have had and 

then create imaginative reconstructions of 

that experience. To reason about, say, a 

football game we think about games we 

For experienced software developers and 

project managers, thinking about their work 

in concrete rather than abstract terms is 

easy and connections can be made: 

 

“Now I see why” 

 



 
 

 Page 101 

 

have seen and heard about rather than 

generalities. For humans, words and 

abstract concepts have their deepest 

meanings when they are clearly tied to 

perception and action in the world. 

“I hope that future versions will let me set up 

specific scenario and play them out. That 

would really help me in my work” 

 

For students, with less experience to draw 

on, meaning as action is harder to create. 

But, there are signs that experience in the 

game resonates: from a note scribbled on a 

game board beside the Rework box: 

 

“I must remember this” 

Sources: (Bereiter & Scardamalia, 1993; diSessa, 2000; Gee, 2004, 2007a, 2007b).  (See 

also Caulfield et al., 2011d for how these design principles apply to software engineering 

curriculum guidelines) 

 

A simple game like Simsoft cannot hope to fully address each of the above learning 

principles and call itself, in Gee’s loaded term, a good game, at least in its first 

iteration. Nevertheless, Simsoft comes close, if not for the tolerable parity 

demonstrated in Table 10, then only for the final comment against principle 13. A 

student was seen to scribble on a game board beside the Rework box, “I must 

remember this”. If Simsoft’s raison d'être is to allow software professionals to fail 

early and often in a place where failure is safe and can be learned from, then this 

comment shows that at least one person will be carrying a useful nugget of 

information into their next project. 

 

Analytic	Category	2–	Games	in	Context	

If games could be found to be useful in software engineering management 

education, then the second research question, Q2, sought to determine what 

features would made them most beneficial. Hypothesis H2.1 posits one such 

feature: the context of the game should be something the players can easily relate 

to their real-world experience. Yet, software is often developed within an ill-

structured environmental context (Bostrom & Heinen, 1977a, 1977b; Keen, 1981; 

Kling & Iacono, 1984; Hirschheim & Klein, 1989; Bennetts et al., 1998; Day, 

2000) that includes sometimes contradictory human and business priorities. In this 

sort of environment, the best technical or logical solution is not always what the 

end user really wants.  

 

Nevertheless, things can be done to impart game context. In the design of Simsoft, 

context refers to the objects of the game, the terminology used, and the basic work 



 
 

 Page 102 

 

flow— things that should be familiar to practising project managers and software 

engineers as well as students who have passed introductory courses. In practice, 

context came to mean the ways the participants wanted to play Simsoft and 

incorporate it into their work life, and which group gained more from the 

experience. 

Context	in	Design	

In Chapter 1 (see page 6), a game was defined as “a simulation that is purposefully 

run, wholly or partly determined by players’ decisions, within some predetermined 

circumstances”. While this definition is adequate for general purposes, it doesn’t 

describe the fundamental attributes of a game— the common language by which 

we can classify games. The most recent and accepted classification is that by Garris 

et al. (2002), who came up with six game dimensions by which any type of game 

could be classified: 

 

 Fantasy. Games involve imaginary worlds, scenarios, and characters. The 

player uses their imagination to participate in unusual social situations and 

analogies of real-world processes in possibly unfamiliar locations. “Fantasies 

allow users to interact in situations that are not part of normal experience, yet 

they are insulated from real consequences” (Garris et al., 2002, p. 448). 

 Rule/Goals. In a game, the confused and complex rules and constraints of 

normal life are put on hold and replaced by a precise and arbitrary set that are 

only operative within the fixed time and space of the game (Caillois, 1961, p. 

7). Rules establish the criteria by which we can determine a winner. 

 Sensory stimuli. Visual or auditory stimulations that help the player accept, for 

a time, they are participating in an alternate reality. 

 Challenge. A Challenge represents “the ideal amount of difficulty and 

improbability of obtaining goals. A challenging game possesses multiple 

clearly-specified goals, progressive difficulty, and informational ambiguity. 

Challenge also adds fun and competition by creating barriers between current 

state and goal state” (Wilson et al., 2009, p. 230). 

 Mystery. This represents a gap between what the player now knows and what 

they must know. This evokes the curiosity of the player because they want to 

resolve this dissonance. Mystery can be created by information incongruity, 

surprise and expectation violation, idea incompatibility, or incomplete or 

inconsistent information (Wilson et al., 2009, p. 231). 



 
 

 Page 103 

 

 Control. Control refers to the player’s ability to exercise control over elements 

of the game. “Games evoke a sense of personal control when users are allowed 

to select strategies, manage the direction of activity, and make decisions that 

directly affect outcomes” (Garris et al., 2002, p. 451). 

 

Of interest in assessing hypothesis H2.1 are the dimensions of fantasy and 

rules/goals, which together constitute the context of a game. 

 

The fantasy of Simsoft was established when players were given an instruction 

sheet that described the mechanics of game play and a simple statement of work 

about the project they were to manage (see Appendix D: Simsoft Instructions to 

Players). Most teams quickly entered into the spirit of the exercise by giving their 

team a name and deciding who would play which role. Some team names appeared 

to be carefully chosen to reflect the composition and camaraderie of the team: 

“United Nations” (each team members came from a different country); “NoBalls” 

(an all-female team); “The Convicts” (an all-Australian team); and “Sea Monkeys” 

(a team of weekend boat enthusiasts). When asked, most players said the project 

scenario was realistic and the accompanying instructions were easy to understand 

and follow. 

 

The rules/goals dimension is governed by the System Dynamics model behind 

Simsoft. This model is based on the project work structure first discussed and 

modelled by Roberts (1964). Roberts’ initial work has been expanded greatly by 

subsequent researchers who have added rich details based on actual projects (see 

Lyneis & Ford, 2007 for a comprehensive survey of the field), but the underlying 

work structure remains unchanged. The work-to-do, review, rework, work-

completed cycle on the left-hand side of the Simsoft game board follows this 

structure. These boxes mimic the product backlog or sprint backlog, rework, and 

burndown artefacts of an agile project (Martin, 2002a; Schwaber, 2004; Cockburn, 

2006). In fact, one team labelled their game board as such (Figure 12). 

 

The right-hand side of the Simsoft game board represents the human resources of 

the project Error! Reference source not found.and depicts how developers 

increase in experience, and hence productivity and value, over time (Brooks, 1995; 

DeMarco & Lister, 1999). Because this is well-known in the field, a number of 

teams recognised the pattern: 

 



 
 

 Page 104 

 

“[One of our team] had read about Brooks’ model and could let us know if 

we were on the right track” 

 

Together, these behaviours suggest that even though the participants were being 

asked to accept an alternate reality governed by simple but arbitrary rules, the 

context created by Simsoft was not so dissociated from reality that the participants 

weren’t able to draw parallels with familiar things. 

 

 
Figure 12: Simsoft game board marked-up during a game session with an agile development 
term. 



 
 

 Page 105 

 

Context	in	Practice	

The database of Simsoft game sessions showed that games lasted for an average of 

35 minutes and that 80% of games finished within 40 minutes. Afterwards, the 

participants were encouraged to stay and discuss their performance with other 

teams. Often, these after-game sessions lasted longer than the game sessions 

themselves as the participants talked about strategies and what had worked or 

failed for their project. 

 

A common comment during these after-game gatherings, and something that was 

reflected in the post-game survey, was that most participants were prepared to 

invest greater time and effort in games such as Simsoft if the reward was deeper 

understanding of the problem domain.  

 

With this in mind, one participant suggested running the game in real time, so that 

one week of real time equated to one week of project time. During the week, the 

team members could do research and discuss their options before coming to a 

carefully considered decision about their next step. This suggestion was influenced 

by a stock market game a number of participants had played the previous year, in 

which teams bought and sold shares on a fantasy stock exchange based on real 

prices published in the daily newspaper. The winner after three months was the 

team with the largest portfolio. In the week between submitting buy and sell orders, 

the players researched likely companies, scanned market reports, and took note of 

interest rate decisions, the price of oil and gold, and currency fluctuations to see 

how they might affect the market. 

 

This suggestion represents a desire to put Simsoft more in context, by allowing the 

participants to step out of the fantasy world of the game, do some research, and 

then step back into the game with better knowledge. However, Simsoft, and all 

other games discovered during a systematic survey of the literature (Appendix L), 

are played in one-off sessions. What players learned, had to be learned within the 

hour or so of the game session. Of course, games could be replayed, but they must 

have sufficient depth to present alternate, engaging paths through the game in 

repeat. For even the most sophisticated game in the field, SimSE, players became 

bored when playing second and subsequent times (Navarro & van der Hoek, 2007, 

p. 5). 

 



 
 

 Page 106 

 

For some participants, an extended game session with breaks is necessary. 

Evaluation of the pre- and post-game scores showed that students gained relatively 

less from the game than more experienced project managers and developers (see 

Finding 2 for more details). The following comment from a student is illustrative: 

 

“I saw in the game aspects of theory covered at uni, but without knowing the 

theory first I probably wouldn’t have recognised the significance.” 

 

That is, students in this research population didn’t have the a priori knowledge 

needed to make full sense of the game’s dynamics. 

 

Playing the game over multiple, rather than single, sessions would more closely 

conform to the tenets of Problem-Based Learning where participants begin their 

project with imperfect knowledge and then have to identify and learn what they 

needed in order to solve the issue at hand. 

 

No	Game	is	an	Island	

Hypothesis H2.1— that players should be able to easily relate the context of the 

game to their real-world experience— is analogous with the opening lines of John 

Donne’s (Craik & Craik, 1986) well-known poem: 

 

 No man is an island entire of itself; every man  

 is a piece of the continent, a part of the main;  

 

In a similar way, H2.1 says that games are part of a whole, or a context, for those 

who play them. This whole encompasses the working environment the players 

come from, the real-world experience the players bring to the game, and the game 

experience the players take back to their working environment. 

 

How a game is designed can help create this context by setting a conceit (the 

fantasy and rules of the game) that is familiar to the participants. They may be 

taking on new roles and performing unfamiliar tasks, but objects of the game, the 

terminology used, and the basic work flow must create a recognisable simulacrum. 

Simsoft participants demonstrated they were able to draw parallels between the 

game world and their real world. 

 



 
 

 Page 107 

 

Context can also be created in the way the game is played. The single-session 

format of Simsoft and other games means participants make decisions based on 

what they know now, rather than truly informed decisions. Playing games in more 

depth and across multiple sessions would give the participants the opportunity to 

actively relate the game world to their real world. 

 

Together, these features and behaviours support hypothesis H2.1. 

 

Analytic	Category	3–	The	Relative	Complexity	of	Games	

In contrast to most current software project games, Simsoft is relatively simple: it 

uses a large game board to show the flow and the current state of a project and it 

concentrates on the slim, but important, build phase of the development lifecycle. 

This design flows from hypothesis H2.2 which posits that games should only be as 

complex as absolutely necessary to explore the concepts at hand. 

 

When asked, most Simsoft players agreed with this hypothesis and said they 

preferred a board game to a fully computerised version because they could start 

playing more quickly without having to learn how to navigate a new user interface 

and without fear of making an unintended move. For example: 

 

“Sometimes technology gets in the way” 

 

“Everyone plays board games so we all know what to do” 

 

Apart from the mechanics of playing Simsoft, the simple design meant the state of 

the game and its underlying causal model were always visible: 

 

“The board game [was] simple and I could easily see the state of the game” 

 

The appeal of simplicity over complexity has been noted before. While complex 

games offer “the richest learning experience available, the game’s very formidable 

appearance probably intimidated a number of players or forced them into a learning 

situation they were unprepared or unwilling to negotiate” (Wolfe, 1978, p. 152). 

The next most effective game in Wolfe’s study was found to be the least complex, 

supporting similar research that showed relatively simple games can provide 

essentially the same, if not more, benefits as the more complex (Raia, 1966, p. 351; 



 
 

 Page 108 

 

Watt, 1977, p. 2; Butler et al., 1979; Meadows, 1999; Dempsey et al., 2002). 

Therefore, making games only as complex as absolutely necessary, or hiding 

unnecessary detail, could be a way of achieving the best learning outcomes while 

avoiding the player mortality (boredom and dropout) noted by Wolfe. 

 

Compared to a computer game, the simple Simsoft board game offered another 

advantage: they were the scratch pads where players could write notes and 

reminders and hints as they played the game (Figure 13). Four teams asked for 

copies of their graffitied game boards 

 

A board game also more easily fosters the collaboration needed in any team 

enterprise such as a software development project. When a computer or online 

game is played by multiple participants, likely at different physical locations, the 

basic cues of identity, personality, and body language are hidden. Without these 

cues, researchers have found that many computer games explicitly designed to be 

collaborative will degenerate into competitive games at worst or games in which 

“everyone just kind of does their own thing” (Zagal et al., 2006, p. 25) at best. 

 

In Simsoft, group play was viewed positively by most participants. It reflected real-

world experience and also meant ideas and opinions could be shared: 

 
Figure 13: A section of one the game boards marked-up with players' notes and reminders. 



 
 

 Page 109 

 

 

“It was like [the agile] stand up meeting we have every morning” 

 

“I thought software development was a solitary experience but it's not 

really” 

 

“Everyone had a chance to offer an opinion” 

 

Notwithstanding these positive aspects, any group activity may devolve into 

groupthink (Janis, 1971) in which the opinion of a dominant individual or clique 

prevails, possibly against reasonable evidence. In the Simsoft game sessions, no 

teams were larger than four participants and many participants were known to each 

other, either professionally or socially, so there was ample opportunity to 

contribute to the discussions or even dispute the idea of a colleague or friend. 

There were also no more than four game sessions running at once, which meant the 

researcher was able to notice any participants standing back and gently prompt 

them for a suggestion. 

 

Few other software development game researchers have looked closely at these 

same aspects of game design. Hainey et al. (2010) asked players to rate game 

features such as graphics, realism of the characters, realism of the environment, 

and sound, but these were evaluations of the verisimilitude of these features, not 

their appropriateness to the task at hand. On this same rating of game features, 

collaboration ranked last or second last across all players, but this is to be expected 

in a single-player game. Similarly, other researchers (Baker et al., 2005; Navarro & 

van der Hoek, 2009; Zapata, 2010) asked their participants if they enjoyed playing 

the game or whether they found it engaging, but these questions asked the 

participants to evaluate a particular game’s representation of its environment rather 

than its comparative complexity or its value as a collaborative tool. 

 

Related	Work	

Recalling the definitions of model, simulation, and game given in Chapter 1: 

 

A model is a convenient representation (in words, numbers, or other 
symbols) of some real-world socio-economic or socio-technical system; a 
simulation is a dynamic, operational model through which changes over 
time are revealed; and a game is a simulation that is purposefully run, 



 
 

 Page 110 

 

wholly or partly determined by players’ decisions, within some 
predetermined circumstances. 

 

It can be said that software development has been modelled (Belady & Lehman, 

1976; McCabe, 1976; Remus & Zilles, 1979; Boehm, 1981) and simulated (Abdel-

Hamid & Madnick, 1991; Variale et al., 1994; Hansen, 1996; Madachy, 1996; 

Tvedt, 1996; Collofello, 2000; Martin & Raffo, 2001) many times. But, these are 

not the software development perspectives of interest for this research project 

because: 

 

 They focus primarily on predicting rather than educating. For example, 

Boehm’s COCOMO model (2000) is designed to calculate the cost and effort 

of a software project based on historical data and what is currently known 

about the project at hand. COCOMO is used to validate an estimate, not 

necessarily find out why it is this number. 

 They are not interactive or designed for group participation. For example, 

perhaps the most well-known simulation (Abdel-Hamid & Madnick, 1991) 

contains over 300 underlying variables, but doesn’t have a way to interact with 

the model except through direct manipulation of these variables at a source 

code level (Martin, 2002b, pp. 32 - 37). 

 

Given their focus, it is not surprising that these models and simulations fail most, if 

not all, of Gee’s principles of interactive game design (see Table 10). In contrast, 

Appendix L details a number of other research projects that have used games — 

and more closely align with Gee’s principles— in some role in software project 

management or education. Still, there are differences between these games and 

Simsoft. 

 

SimSE, the game developed by Navarro (2009) and her colleagues at the 

University of California, Irvine over a number of years, is perhaps the most 

advanced game in the field and the only one in Appendix L that has been 

developed much beyond its initial implementation. SimSE supports a number of 

different development approaches (such as rapid prototyping, code inspection, and 

the Rational Unified Process), provides users with a performance report after they 

complete the game, and has also been tested and verified in a range of controlled 

classroom settings. Players manage their SimSE project through a rich graphical 

user interface that shows their team at work, along with various management 



 
 

 Page 111 

 

reports and dials. In contrast to Simsoft, SimSE is a single-user game so without 

players clustering around a single screen, there’s little opportunity to discuss and 

debate project decisions and come to a consensus. SimSE is also heavily focussed 

on the process of software development– the how of software development– 

whereas Simsoft is also concerned with the who. 

  

Like Simsoft, a number of the games in the field have eschewed computers, either 

completely or partly, in favour of playing cards, boards, and sometimes dice. For 

example, in Zapata’s (2010) game, teams throw a dice, that determines which of a 

collection of technical questions the team must answer. From here, the team gets a 

chance to estimate the size of a project component and score points. This slightly 

convoluted game show format relies more on chance than skill and means that 

most players are dormant and passive while other teams are having their turn. 

Chance also plays a role in games like Problems and Programmers (Baker et al., 

2005)– players draw cards from a shuffled deck– and PlayScrum (Fernandes & 

Sousa, 2010)– a roll of the dice determines what resources the player can 

accumulate and what problems may be encountered. Unlike Simsoft, these games 

are competitive rather than co-operative. 

 

Some of the games in Appendix L operate at a very high level with players 

performing broad project functions. As a result they see only general project 

dynamics. In SimVBSE (Jain & Boehm, 2006), SimjavaSP (Shaw & Dermoudy, 

2005), MO-SEProcess (Zhu et al., 2007), Hainey’s game (2010), and OSS (Sharp 

& Hall, 2000)  players make their avatar visit certain rooms or characters to ask 

questions or collect information. In Hainey’s game the result of this office tour is a 

requirements document that is then passed to the project manager avatar for 

assessment. The tour may have to be repeated if all the requirements haven’t been 

identified. A game interface makes this engaging for a while, but how it relates to 

real-world software engineering management is dubious. Providing the same 

information in a short project description, such as the one that comes with Simsoft, 

means the player can begin exploring the problem domain sooner. And, with less 

effort required to create the office environment, more could be devoted to the 

interesting detail of the project’s dynamics. 

 

SESAM (Drappa & Ludewig, 1999; Drappa & Ludewig, 2000) could almost be 

called a model or simulation rather than a game because a user runs it by typing 

commands in a complex modelling language and the system responds in kind. In 



 
 

 Page 112 

 

exchange for this complexity, SESAM allows its users to define a wide variety of 

development methodologies as well as hire and fire staff, assign tasks, and ask 

developers about their progress. But, without an effective visual interface, playing 

SESAM is like programming an old VCR: there isn’t enough feedback to know if 

the instructions have been entered correctly or what is happening as a result 

(Norman, 1988, pp. 51 – 53). It is perhaps not surprising that SESAM has not been 

developed far beyond that described in the original papers. In contrast, Simsoft’s 

state of play is always visible on the game board. 

 

One feature common to all the research projects in Appendix L is the population 

they use: the participants are either undergraduate or post-graduate university, and 

in one case high school, students. In broader research circles, there is some debate 

(Remus, 1986; Garb, 1989; Camerer & Johnson, 1991) about whether students 

make viable candidates for research involving management decisions because they 

may lack the experience and knowledge to make their responses transferable to the 

workplace. The research population of this project was a mixture of university 

students and project managers and software developers of varying lengths of 

experience, making this transfer easier. 

 

In summary, there are four main differences between the approach taken in this 

research project and others in the area: 

 

 Simsoft is equally, if not more, concerned with who does the work in a 

software development as it is with process of how the work is done. This 

echoes the cover of Boehm’s (Boehm, 1981) Software Engineering Economics 

which shows personnel is where the greatest productivity gains are possible. 

 Simsoft is a board game (with a small calculator component) in contrast to 

other games that use a graphical user interface of varying levels of richness. 

Often the user interface is simply a conceit of the game for performing 

housekeeping functions and lends little to the real purpose— a common 

mistake made by many game designers (Crawford, 2003, pp. 114 – 115). Other 

games that use playing cards or games boards contain an element of chance 

rather than skill. 

 Simsoft is cast at a level of detail at which the players can see the movement of 

individual pieces of work and individuals themselves. Games cast at higher 

levels, such as OSS, mask fundamental project dynamics. 



 
 

 Page 113 

 

 The research sample for this project is a mixture of students and experienced 

professionals rather than wholly students.  

 

Summary	

This chapter has analysed the findings from a series of game sessions to try to 

determine if and how games might contribute to better software engineering 

management education. The analysis has shown that games can contribute and has 

also pointed to features that can be built into games, and implementation 

techniques, that make games more efficacious. 

 

Reviewing the research questions and hypotheses that formed the basis of this 

research project, one hypothesis was disproved and two were proved: 

 

 Can games contribute to better software engineering 
management education?  

Q1  

  Games built on sound software project 
management principles are a more effective 
means of improving software project management 
education than more traditional pedagogical 
means. 

H1 Disproved 

    

 If games are to contribute to better software engineering 
management education, what features make them most 
efficacious? 

Q2  

  For best effect, players should be able to easily 
relate the context of a game to their real-world 
experience. 

H2.1 Proved 

  For best effect, games should be simple to play 
and understand and only as theoretically complex 
as needed to explore the concepts at hand. 

H2.2 Proved 

 

For the first research question, the analysis of the findings showed that participants 

were learning the things Simsoft was designed to teach, meaning games can play a 

role in software project management education. However, games alone are not 

sufficient to teach all that a well-rounded software professional needs to know, 

disproving hypothesis H1. Ideally, games like Simsoft should be used in 

conjunction with other teaching devices such as lectures, case studies, and 



 
 

 Page 114 

 

readings; and used once a foundation of software engineering and project 

management theory has been laid. Games could therefore be a way of bridging the 

gaps between a degree’s requisite courses and the final, important capstone project. 

 

The second research question considered the features of software engineering 

management games that might make them most useful as teaching tools. A review 

of the literature suggested that existing games in the field were unnecessarily 

complex and lacked a sufficient context to allow players to easily apply their real 

world knowledge in the game and, in turn, apply experience gained in the game in 

the real world. The analysis of the findings suggested that: 

 

 Games which established a context familiar to the participants helped them 

apply their experience to the game scenario and they were also able to relate 

experiences in the game to real-world activities, proving hypothesis H2.1. 

 Simple games could deliver effective learning outcomes, proving hypothesis 

H2.2. 

 

These analyses are largely consistent with those of others in the field. Games have 

shown themselves to be effective teaching tools in software engineering 

management, but as supplementary rather than primary devices. Most of the 

participants in this research project said they were keen to spend more time and 

effort on games, but only if games could reveal more of what they wanted to know.  

 

In addition, the particular design of this research project produced some findings 

that were new. Simsoft was designed to be played by groups of people around a 

large game board, whereas many existing games in the field are single-user 

computer games. This proved to be a positive experience for most participants 

because they were able to share their experiences and negotiate a group decision on 

how to proceed— keys skills in a modern collaborative workforce. 

 

The analysis of the findings presented here should be read mindful of the 

limitations described in Chapter 3 (see page 78). This analysis applies to a 

particular population of students, project managers, and software developers 

playing a particular type of game— a confluence of factors that may not recur 

often. In mitigation, the descriptions of Simsoft, the game sessions, and the 

participants’ responses have been made as rich and as detailed as possible so that 

readers can best gauge what might be relevant for their own circumstances. 



 
 

 Page 115 

 

Chapter 6– Conclusions and Recommendations 

Introduction	

The purpose of this research project was to see if and how games could contribute 

to better software engineering management education by helping software 

engineers and project managers explore some of the dynamic complexities of the 

field in a safe and inexpensive environment. If games could contribute, then what 

features made them most efficacious?  The conclusions from this study follow this 

theme and, drawing on the findings, address four main areas: 

 

 The value of games in software engineering management education— should 

we be playing games? 

 Long-form games as a way of creating context. 

 Games as group activities. 

 Simple games can be effective. 

 

The following is a discussion of the conclusions drawn from this research, 

followed by the researcher’s recommendations, and a final reflection on the study. 

 

Shall	We	Play	a	Game?	

In the 1983 movie, War Games, a young Matthew Broderick plays David 

Lightman, a hacker who has broken into WOPR– the War Operation Plan 

Response supercomputer which is programmed to play out different doomsday 

scenarios and learn from them so it can eventually take full, automated control of 

the United States’ nuclear arsenal. When David is presented with a screen prompt 

that asks, “Shall we play a game?”, he innocently selects “Global Thermonuclear 

War”. As quickly becomes apparent, WOPR is ready to do more than just play 

games and it starts executing commands in readiness for a real missile strike 

against the Soviet Union. 

 

The portentous question asked by WOPR– shall we play a game?– had meaning for 

this research project too, but without the same dire consequences. In effect: shall 

we– should we– play games in software project management education? The 

answer, we believe, is a qualified, yes. The answer is qualified because our findings 

show that while games are useful pedagogical tools and are well-received by 



 
 

 Page 116 

 

players, they are not sufficient in themselves and must be supplemented by other 

learning devices.  

 

Findings 1 (the participants are learning by doing), 2 (games are not sufficient 

learning vehicles by themselves), and 3 (games are suitable pedagogical devices for 

participants of different skills and backgrounds) show that games are useful for 

reinforcing known theories and for teaching new concepts, and can be used in 

mixed groups, but they need to be supplemented by other teaching means. If 

participants don’t have some foundation knowledge of software engineering and 

project management concepts, they may miss some of what the game is trying to 

teach. 

 

What a game is trying to teach must also be aforethought for game designers. A 

game that simply mimics, for example, a software engineering project will not 

necessarily teach its players much. When the learning objectives are clearly 

understood, they can be catered for in specific design attributes. 

 

Long‐Form	Games	as	a	Way	of	Creating	Context	

The fourth finding of this research project was that most participants were prepared 

to invest greater time and effort in games like Simsoft if the reward was a deeper 

understanding of the problem domain. The conclusion to be drawn from this is that 

when learning is engaging, immersive, relevant, and even fun, people are prepared 

to try it in long-form. 

 

Many of the existing games in the field are played in single sessions usually lasting 

about an hour. In these short-form games, what learning there is, must be imparted 

in this hour or so. A long-form game, by comparison, would be played over 

multiple sessions across a number of days or weeks or even in real time as 

suggested by some Simsoft participants. Between game sessions, the participants 

could meet to discuss their options, do research into relevant areas, and generally 

reflect on how the game context agrees or disagrees with what they know. How 

they interpret these similarities and resolve the differences is key to how much they 

will take away from games such as Simsoft. 

 



 
 

 Page 117 

 

Games	as	Group	Activities	

It is easy to appreciate why most of the current games in the field of software 

engineering management education have been implemented as single-user, 

computer games: 

 

 The computations of the game can be performed quickly and accurately.  

 The games offer a rich interface which likely appeals to game-literate players. 

 The games can be easily distributed to many participants. 

 

But, for all these advantages, some key benefits are forsaken. When games are 

played by single users sitting before a computer, the normal cues of personality, 

identity, and body language of people working in a group are missing. Of course, 

these cues could be represented through game avatars, but the psychology of 

character personality and its graphical implementation would require an effort that 

would dwarf the central purpose of games such as those considered here (Rousseau 

& Hayes-Roth, 1996; Baylor, 2011). This effort might still be a shadow of what 

one might encounter around a simple game board. 

 

The fifth finding of this project found that most participants saw working in groups 

as a positive experience because if reflected normal work place practice and they 

were able to share ideas and draw on a wide variety of experience. From this we 

can conclude that it is possible for games to teach beyond their original remit when 

they serve as a means of bringing people together to learn from each other 

(Prensky, 2006, pp. 96 – 100). 

 

Simple	Games	Can	Be	Effective	

The final finding of this research project was that the majority of participants 

preferred playing a board game to a fully computerised game because it was 

simple, easy to play, and clearly demonstrated the concepts at hand. The 

conclusion we can draw from this is that simple games can be as effective as more 

complex games. Because simple games are naturally pared down to basics, they 

can be developed and deployed more quickly than their richer, more complex 

counterparts and yet still deliver many of the same benefits. 

 



 
 

 Page 118 

 

Recommendations		

Based on the findings, analysis, and conclusions of this research project, some 

recommendations for educators and trainers, game designers, and further research 

can be offered. 

Recommendations	for	Educators	and	Trainers	

Educators and trainers should consider: 

 

 Implementing serious games such as Simsoft as a supplementary component of 

software engineering and software project management training. For best 

effect, the games should be run late in a semester when students have built up 

the necessary background knowledge, or run at any time if the players are 

known to be experienced. An ideal place within the curriculum to play games 

before the final, synthesising capstone project. 

 Playing the game sessions collaboratively, with the participants working in 

small groups. The participants should be encouraged to use the game boards as 

work spaces where they can write down thoughts and notes and other 

information to be shared with their team. Facilitators of these sessions need to 

be aware of groupthink and will need to quietly monitor the game play to make 

sure everyone has an opportunity to contribute. 

Recommendations	for	Game	Developers	

Those developing new games or reworking existing games should consider: 

 

 Articulating the learning objectives of the game and tracing these to specific 

design features of the finished product. Without this, learning will be 

haphazard at best, and won’t occur at worst. 

 Developing games in long-form, multi-session formats in which the game 

scenario is revealed or developed over time. In between, the players should be 

given an opportunity to research the domain problem and meet with their team 

members to discuss what they have discovered. 

 Developing games that promote collaboration and interaction over competition 

and single-player mode. Computer and on-line games don’t yet do this well, so 

board games are a practical alternative. 

 Balancing the time and effort required to create rich, highly-configurable 

games with that required to create simple, specific games. The shorter build-

play-rework life cycle of the latter means that games can be put to use quickly 

and reworked if necessary without great cost, and yet still be effective. 



 
 

 Page 119 

 

 

Recommendations	for	Future	Research	

This research project is the first implementation of Simsoft and naturally the 

sample size of those who have played it and offered their feedback and insights is 

still relatively small. A natural path for future research is to run more game 

sessions and see if the results obtained here and now hold true for a larger 

population and in other places. 

 

Beyond this, the results of this project suggest some interesting possibilities for 

future research: 

 

 A further similar study should be undertaken using a more complex game than 

Simsoft to fully test the worth of simple versus complex games. 

 A further study should be undertaken that runs Simsoft over multiple game 

sessions, rather than as a single session, as was recommended by a number of 

participants. Presently, the game state is saved after each move, which means 

the game board can be reconstructed at any point in time, however the scenario 

would need to be resigned to suit this new format. 

 On-line and computer games have some attractive advantages, but they give up 

the serendipity of people from different backgrounds and with different 

experiences coming together around a game board to solve a problem. 

However, social networking software and web sites offer an intriguing 

opportunity to create a distributed learning game that may be able to replicate 

the benefits of collaborative, personal interactions. 

 Simsoft looks specifically at human resources aspects of the build phase of a 

software engineering project, but much happens before (such as requirements 

gathering and design) and after (such as testing and maintenance) this phase. 

Expanding Simsoft into these areas will increase the fidelity of the game and 

will be an opportunity to see if, for example, Brooks’ Law (Brooks, 1995; 

Caulfield & Maj, 2002), holds for other phases of the development life cycle. 

 Is the management of a software project that much different from the 

management of, say, a hardware project or a construction project? To answer 

this, Simsoft should be played by participants from other disciplines to see if 

the results obtained here can be applied to other domains. 

 It was gratifying to note that other besides students seem to gain greater 

understanding from playing Simsoft. Exploring this further was outside the 



 
 

 Page 120 

 

problem statement of this project, but the use of games in post-tertiary and on-

the-job training deserves further consideration. 

 

Final	Reflections	

This research project is now coming to a close: long checked-out books are being 

returned to the library, papers are being filed, computer files organised and 

archived, desks are being cleared. This seems to be an appropriate place to reflect 

on what we know now that we didn’t know at the start. 

 

In many fields, games are mature tools for instruction and research. War games, for 

example, have a lineage stretching back many thousands of years, and business 

games have been informing, frustrating, and delighting managers, students, and 

researchers since the 1950s. Games in software engineering management are a 

relatively new addition to the field, but already there are some exemplars and some 

abandoned paths. Perhaps Simsoft will join the former in time. 

 

Underlying the two research questions on which Simsoft is based is a higher-order 

question, mentioned here for the first time and originally posed by Herbert Simon 

(Simon, 1996): can a simulacrum, such as a game, ever tell us anything that we do 

not already know? Taking for granted the plausible assertion that a simulacrum can 

be no better than the assumptions built into it, then the answer to Simon’s question 

might be, no.  

 

Yet, Simon argues otherwise. For example, even if we start with correct premises, 

it may be hard to infer meaning because humans generally have trouble mentally 

tracing through even a small set of causal relationships and then making sense of 

the result. A disinterested game is better able to do and show this because it makes 

our mental models visible so they can be critiqued by ourselves and others. It may 

also be the case that in some circumstances, for some players, games may only tell 

us what we do not already know: 

 

… games are more than a caricature of life; they are an introduction to 
life— an introduction to the idea of rules, which are imposed on all alike, 
an introduction to the idea of playing under different sets of rules— that is, 
the idea of different roles, an introduction to the idea of aiding another 
person and of knowing that one can expect aid from another, an 
introduction to the idea of working toward a collective goal and investing 
oneself in a collectivity larger than oneself (Coleman, 1975a). 



 
 

 Page 121 

 

 

We respectfully leave it to others to decide whether Simsoft and the research 

presented here is a similar introduction. 

  



 
 

 Page 122 

 

References 

 

Abdel-Hamid, T. K. and Madnick, S. E. (1983). ‘The Dynamics of Software Project 
Scheduling.’ Communications of the ACM, vol. 26, no. 5 (May), pp. 340 – 346. 

Abdel-Hamid, T. K. and Madnick, S. E. (1991). Software Project Dynamics: An Integrated 
Approach. Englewood Cliffs: Prentice-Hall 

Abt, C. C. (1970). Serious Games. New York: The Viking Press 

Aldrich, C. (2005). Learning by Doing: A Comprehensive Guide to Simulations, Computer 
Games, and Pedagogy in e-Learning and Other Educational Experiences San 
Francisco: Pfeiffer 

Aldrich, C. (2009). The Complete Guide to Simulations and Serious Games: How the Most 
Valuable Content Will be Created in the Age Beyond Gutenberg to Google. New 
York: Pfeiffer 

Alessi, S. M. and Trollip, S. R. (2001). Multimedia for Learning: Methods and 
Development, 3rd edition. Boston: Allyn and Bacon 

Alluisi, E. A. (1991). ‘The Development of Technology for Collective Training: SIMNET, 
A Case History.’ Human Factors, vol. 33, no. 3 (June), pp. 343 – 362. 

Amador, J. A., Miles, L. and Peters, C. B. (2007). The Practice of Problem-Based 
Learning: A Guide to Implementing PBL in the College Classroom. Boston: Anker 
Publishing Company 

Ambler, S. W. (2006). ‘Supersize Me.’ Software Development, vol. 14, no. 3 (March), pp. 
46 – 48. 

Amstutz, A. E. (1963). ‘Management Games— A Potential Perverted.’ Industrial 
Management Review, vol. 5, no. 1 (Fall), pp. 29 – 36. 

Anderson, P. (1999). ‘Complexity Theory and Organization Science.’ Organization 
Science, vol. 10, no. 3 (May - June), pp. 216 – 232. 

Anderson, R. S. and Puckett, J. B. (2003). ‘Assessing Students' Problem-Solving 
Assignments.’ In D. S. Knowlton and D. C. Sharp (eds.), Problem-Based Learning 
in the Information Age, pp. 81 – 87. San Francisco: Jossey-Bass. 

Andlinger, G. R. (1958a). ‘Business Games— Play One!’ Harvard Business Review, vol. 
36, no. 2 (March - April), pp. 115 – 125. 

Andlinger, G. R. (1958b). ‘Looking Around: What Can Business Games Do?’ Harvard 
Business Review, vol. 36, no. 4 (July - August), pp. 147 – 160. 

Applegate, L. M., Montealegre, R. and Knoop, C.-I. (1996a). BAE Automated Systems (B): 
Implementing the Denver International Airport Baggage-Handling System (Case 
study 9-396-312). Boston: Harvard Business School. 

Applegate, L. M., Montealegre, R., Nelson, H. J. and Knoop, C.-I. (1996b). BAE 
Automated Systems (A): Denver International Airport Baggage-Handling System 
(Case study 9-396-311). Boston: Harvard Business School. 

Ardis, M. A., Chenoweth, S. V. and Young, F. H. (2008). ‘The "Soft" Topics in Software 
Engineering Education.’ Proceddings of the 38th ASEE/IEEE Frontiers in 



 
 

 Page 123 

 

Education Conference, (Saratoga Springs, 22-25 October 2008), pp. F3H-1-F3H-
6. 

Armarego, J. (2002). ‘Advanced Software Design: A Case in Problem-Based Learning.’ 
Proceedings of the 15th Conference on Software Engineering Education and 
Training (CSEE&T 2002) (Covington, Kentucky, 25 - 27 February), pp. 44 - 54. 
Los Alamitos: IEEE Computer Society. 

Ashby, W. R. (1956). ‘Self-Regulation and Requisite Variety.’ In F. E. Emery (ed.) Systems 
Thinking, (1972), pp. 105 - 124. Ringwood: Penguin Books. 

Awad, E. M. and Ghaziri, H. M. (2008). Knowledge Management. Delhi: Dorling 
Kindersley 

Babb, E. M., Leslie, M. A. and Van Syke, M. D. (1966). ‘The Potential of Business 
Gaming Methods in Research.’ The Journal of Business, vol. 39, no. 4 (October), 
pp. 465 – 472. 

Baber, R. L. (1982). Software Reflected: The Socially Responsible Programming of Our 
Computers. Amsterdam: North-Holland Publishing Company 

Baker, A., Navarro, E. O. and van der, H., Andre (2003). ‘Problems and Programmers: An 
Educational Software Engineering Card Game.’ Proceedings of the 25th 
International Conference on Software Engineering, (Portland, Oregon, 3 - 10 
May, 2003), p. 614. Los Alamitos: IEEE Computer Society. 

Baker, A., Oh Navarro, E. and van der Hoek, A. (2005). ‘An Experimental Card Game for 
Teaching Software Engineering Processes.’ The Journal of Systems and Software, 
vol. 75, no. 1 – 2, pp. 3 – 16. 

Baker, A. C., Jensen, P. J. and Kolb, D. A. (1997). ‘In Conversation: Transforming 
Experience into Learning.’ Simulation & Gaming, vol. 28, no. 1 (March), pp. 6 – 
12. 

Barell, J. (2006). Problem-Based Learning: An Inquiry Approach, 2nd edition. Thousand 
Oaks: Corwin Press 

Barlas, S. (1996a). ‘Anatomy of a Runaway: What Grounded the AAS.’ IEEE Software, 
vol. 13, no. 1 (January), pp. 104 – 106. 

Barlas, S. (1996b). ‘FAA Shifts Focus to Scaled-Back DSR.’ IEEE Software, vol. 13, no. 2 
(March), pp. 110, 114. 

Barros, M. d. O., Dantas, A. R., Veronese, G. O. and Werner, C. M. L. (2006). ‘Model-
Driven Game Development: Experience and Model Enhancements in Software 
Project Management Education.’ Software Process: Improvement and Practice, 
vol. 11, no. 4, pp. 411 – 421. 

Barrows, H. S. and Tamblyn, R. (1976). ‘An Evaluation of Problem-Based Learning in 
Small Groups Utilizing a Simulated Patient.’ Journal of Medical Education, vol. 
51, no. 1, pp. 52 – 54. 

Barrows, H. S. and Tamblyn, R. (1977). ‘The Portable Patient Problem Pack: A Problem-
Based Learning Unit.’ Journal of Medical Education, vol. 52, no. 12, pp. 1002 –
1004. 

Bates, A. W. and Poole, G. (2003). Effective Teaching with Technology in Higher 
Education. San Francisco: Jossey-Bass 



 
 

 Page 124 

 

Baylor, A. (2011). ‘The Design of Motivational Agents and Avatars.’ Educational 
Technology Research and Development, vol. 59, no. 2, pp. 291 – 300. 

Becker, K. (2011). ‘The Magic Bullet: A Tool for Assessing the Evaluating Learning 
Potential in Games.’ International Journal of Game-Based Learning vol. 1, no. 1 
(January - March), pp. 19 - 31. 

Belady, L. A. and Lehman, M. M. (1976). ‘A Model of Large Program Development.’ IBM 
Systems Journal, vol. 15, no. 3, pp. 225 – 252. 

Bennetts, P. D. C., Wood-Harper, A. T. and Mills, S. (1998). ‘The Soft System 
Methodology as a Framework for Software Process Improvement.’ Journal of End 
User Computing, vol. 10, no. 1 (Winter), pp. 12 – 19. 

Bereiter, C. and Scardamalia, M. (1993). Surpassing Ourselves: An Inquiry into the Nature 
and Implications of Expertise. Chicago: Open Court 

Bloom, B. S., Masia, B. B. and Krathwohl, D. R. (1956). Taxonomy of Educational 
Objectives: The Classification of Educational Goals, Handbook I: Cognitive 
Domain. London: Longman 

Bloomberg, L., Dale and Volpe, M. (2008). Completing Your Qualitative Dissertation. 
Thousand Oaks: Sage Publications 

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J. and Madachy, R. (1998). ‘A 
Stakeholder Win–Win Approach to Software Engineering Education.’ Annals of 
Software Engineering, vol. 6, no. 1, pp. 295 - 321. 

Boehm, B. and Turner, R. (2003). Balancing Agility and Discipline. Boston: Addison-
Wesley 

Boehm, B. W. (1981). Software Engineering Economics. Sydney: Prentice-Hall 

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., Madachy, 
R. J., Reifer, D. J. and Steece, B. (2000). Software Cost Estimation with Cocomo 
II. Upper Saddle River: Prentice Hall 

Boguslaw, R. and Pelton, W. J. (1959). ‘STEPS, A Management Game for Programming 
Supervisors.’ Datamation, vol. 5, no. 6 (November – December), pp. 13 – 16. 

Boocock, S. S. (1970). ‘Using Simulation Games in College Courses.’ Simulation & 
Games, vol. 1, no. 1 (March), pp. 67 – 79. 

Booker, E. (1994). ‘Have You Driven a Simulated Ford Lately?’ Computerworld, vol. 28, 
no. 27 (4 July), p. 76. 

Bostrom, R. P. and Heinen, J. S. (1977a). ‘MIS Problems and Failures: A Socio-Technical 
Perspective. Part I: The Causes.’ MIS Quarterly, vol. 1, no. 3 (September), pp. 17 
– 32. 

Bostrom, R. P. and Heinen, J. S. (1977b). ‘MIS Problems and Failures: A Socio-Technical 
Perspective. Part II: The Application of Socio-Technical Theory.’ MIS Quarterly, 
vol. 1, no. 4 (December), pp. 11 – 28. 

Botkin, J. W., Elmandjra, M. and Malitza, M. (1979). No Limits to Learning: Bridging the 
Human Gap: A Report to the Club of Rome. Oxford: Pergamon Press 

Bots, P. and van Daalen, E. (2007). ‘Functional Design of Games to Support Natural 
Resource Management Policy Development.’ Simulation & Gaming, vol. 38, no. 4 
(December), pp. 512 – 532. 



 
 

 Page 125 

 

Boulding, K. E. (1964). The Meaning of the Twentieth Century: The Great Transition. New 
York: Harper & Row 

Bourque, P., Dupuis, R., Abran, A., Moore, J. W. and Tripp, L. (1999). ‘The Guide to the 
Software Engineering Body of Knowledge.’ IEEE Software, vol. 16, no. 6 
(November/December), pp. 35 - 44. 

Bradley, J. and McGrath, G. M. (2000). ‘Boot Camp or Bordello: Whipping Rookies into 
Shape.’ Proceedings of the Twenty First International Conference on Information 
Systems, (Brisbane), pp. 467 – 472. Atlanta: Association for Information Systems. 

Bredemeier, M. E. and Greenblat, C. S. (1981). ‘The Educational Effectiveness of 
Simulation Games.’ Simulation & Gaming, vol. 12, no. 3 (September 1, 1981), pp. 
307 – 332. 

Brereton, O. P., Lees, S., Bedson, R., Boldyreff, C., Drummond, S., Layzell, P. J., 
Macaulay, L. A. and Young, R. (2000). ‘Student Group Work Across Universities: 
A Case Study in Software Engineering.’ IEEE Transactions on Education, vol. 43, 
no. 4 (November), pp. 394 – 399. 

Bridges, E. M. (1992). Problem Based Learning for Administrators. Eugene: ERIC 

Brooks, F. P. (1987). ‘No Silver Bullet: Essence and Accidents of Software Engineering.’ 
IEEE Computer, vol. 20, no. 4 (April), pp. 10 – 19. 

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, 20th 
anniversary. Sydney: Addison-Wesley. (1975) 

Bryant, A. (2000). ‘'It's Engineering Jim... but not as we know it'.’ Proceedings of the 22nd 
International Conference on Software Engineering, (Limerick, Ireland), pp. 77 – 
86. Los Alamitos: IEEE Computer Society Press. 

Buckley, W. (1968). ‘Society as a Complex Adaptive System.’ In W. Buckley (ed.) Modern 
Systems Research for the Behavioral Scientist: A Sourcebook, pp. 490 – 513. 
Chicago: Aldine Publishing Co. 

Burgess, T. F. (1991). ‘The Use of Computerized Management and Business Simulation in 
the United Kingdom.’ Simulation & Gaming, vol. 22, no. 2 (June), pp. 174 – 195. 

Buschmann, F. (2011a). ‘Gardening Your Architecture, Part 1: Refactoring.’ IEEE 
Software, vol. 28, no. 4 (July/August), pp. 92 – 94. 

Buschmann, F. (2011b). ‘Gardening Your Architecture, Part 2: Reengineering and 
Rewriting.’ IEEE Software, vol. 28, no. 5 (September/October ), pp. 21 – 23. 

Butler, R. J., Pray, T. F. and Strang, D. R. (1979). ‘An Extension of Wolfe's Study of 
Simulation Game Complexity.’ Decision Sciences, vol. 10, (July), pp. 480 – 486. 

Buxton, J. N. and Randell, B., (eds.). (1970). Software Engineering Techniques: Report on 
a Conference Sponsored by the NATO Science Committee, Rome, Italy, 27th to 
31st October 1969. Brussels: Scientific Affairs Division, NATO. 

Caillois, R. (1961). Man, Play and Games. Translated by M. Barash. New York: Free Press 
of Glencoe. (Original publication 1958) 

Camerer, C. F. and Johnson, E. J. (1991). ‘The Process–Performance Paradox in Expert 
Judgment.’ In K. A. Ericsson and J. Smith (eds.), Toward a General Theory of 
Expertise: Prospects and Limits, pp. 195 – 217. Cambridge: Cambridge University 
Press. 



 
 

 Page 126 

 

Card, O. S. (1985). Ender's Game. New York: Tom Doherty Associates 

Caulfield, C. W. (2001). A Case for Systems Thinking and System Dynamics. Unpublished 
Masters thesis, Edith Cowan University, Perth, Western Australia. 

Caulfield, C. W. (2005). ‘Regular Expressions and RPG.’ iSeries NEWS, no. 309 (July), pp. 
PROVIP19 – 25. 

Caulfield, C. W. (2006a). ‘Open Source Build Management for Java Projects– Part 1.’ Sys 
Admin, vol. 15, no. 8 (August), pp. 37 – 45. 

Caulfield, C. W. (2006b). ‘Open Source Build Management for Java Projects– Part 2.’ Sys 
Admin, vol. 15, no. 9 (September), pp. 42 – 48. 

Caulfield, C. W. (2009a). ‘Use Code Inspection Tools to Improve Your Java Code.’ System 
i NEWS, no. 352 (February), pp. PROVIP17 – PROVIP21. 

Caulfield, C. W. (2009b). 'Use Sun SPOTs as Your Build Canary.' [on-line]. Available at 
http://www.ibm.com/developerworks/java/library/j-spots/index.html. Last 
accessed  

Caulfield, C. W., Kohli, G. and Maj, S. P. (2004). ‘Sociology in Software Engineering.’ 
Proceedings of the 2004 American Society for Engineering Education Annual 
Conference & Exposition (Salt Lake City). Washington: American Society for 
Engineering Education. 

Caulfield, C. W. and Maj, S. P. (2001). ‘A Case for Systems Thinking and System 
Dynamics.’ Proceedings of the 2001 IEEE International Conference on Systems, 
Man & Cybernetics, (Tucson, Arizona, 7 - 10 October), pp. 2793 - 2798. 
Pitscataway, New Jersey: IEEE Computer Society. 

Caulfield, C. W. and Maj, S. P. (2002). ‘A Case for System Dynamics.’ Global Journal of 
Engineering Education, vol. 6, no. 1, pp. 25 – 34. 

Caulfield, C. W. and Maj, S. P. (2007). ‘Come Play.’ In M. Iskander (ed.) Innovative 
Techniques in Instruction Technology, E-Learning, E-Assessment, and Education, 
pp. 86 – 91. New York: Springer. 

Caulfield, C. W., Maj, S. P., Xia, J. and Veal, D. (2011a). ‘Shall We Play a Game?’ 
Modern Applied Science, vol. in press. 

Caulfield, C. W., Veal, D. and Maj, S. P. (2011b). ‘Implementing System Dynamics 
Models in Java.’ International Journal of Computer Science and Network Security 
vol. 11, no. 7 (July), pp. 43 – 49. 

Caulfield, C. W., Veal, D. and Maj, S. P. (2011c). ‘Teaching Software Engineering 
Management – Issues and Perspectives.’ International Journal of Computer 
Science and Network Security vol. 11, no. 7 (July), pp. 50 – 54. 

Caulfield, C. W., Veal, D. and Maj, S. P. (2011d). ‘Teaching Software Engineering Project 
Management – A Novel Approach for Software Engineering Programs.’ Modern 
Applied Science, vol. 5, no. 5 (October), pp. 87 – 104. 

Caulfield, C. W., Xia, J., Veal, D. and Maj, S. P. (2011e). ‘A Systematic Survey of Games 
Used for Software Engineering Education.’ Modern Applied Science, vol. 5, no. 6, 
pp. 28 – 43. 

Charness, G., Rigotti, L. and Rustichini, A. (2007). ‘Individual Behavior and Group 
Membership.’ The American Economic Review, vol. 97, no. 4, pp. 1340 – 1352. 



 
 

 Page 127 

 

Cheng, Y.-P. and Lin, J. M.-C. (2010). ‘A Constrained and Guided Approach for Managing 
Software Engineering Course Projects.’ IEEE Transactions on Education, vol. 53, 
no. 3 (August), pp. 430 – 436. 

Cherryholmes, C. H. (1966). ‘Some Current Research on Effectiveness of Educational 
Simulations: Implications for Alternative Strategies.’ American Behavioral 
Scientist, vol. 10, no. 2 (October), pp. 4 – 7. 

Clark, R. R. (1994). ‘Media Will Never Influence Learning.’ Educational Technology 
Research and Development, vol. 42, no. 2, pp. 21 – 29. 

Cockburn, A. (2006). Agile Software Development: The Cooperative Game, 2nd edition. 
Boston: Addison-Wesley 

Cohen, K. J., Cyert, R. M., Dill, W. R., Kuehn, A. A., Miller, M. H., Van Wormer, T. A. 
and Winters, P. R. (1960). ‘The Carnegie Tech Management Game.’ The Journal 
of Business, vol. 33, no. 4 (October), pp. 303 – 321. 

Cohen, K. J. and Rhenman, E. (1961). ‘The Role of Management Games in Education and 
Research.’ Management Science, vol. 7, no. 2, pp. 131 – 166. 

Coleman, J. S. (1975a). ‘In Defense of Games.’ In C. S. Greenblat and R. D. Duke (eds.), 
Gaming-Simulation: Rationale, Design and Applications, pp. 72 – 74. New York: 
Sage Publications. 

Coleman, J. S. (1975b). ‘Social Processes and Social Simulation Games.’ In C. S. 
Greenblat and R. D. Duke (eds.), Gaming-Simulation: Rationale, Design and 
Applications, pp. 130 – 147. New York: Sage Publications. 

Collofello, J. (2000). ‘University/Industry Collaboration in Developing a Simulation Based 
Software Project Management Training Course.’ In S. A. Mengel and P. J. Knoke 
(eds.), Proceedings of the Thirteenth Conference on Software Engineering 
Education & Training, (Austin, Texas), pp. 161 – 168. Los Alamitos: IEEE 
Computer Society Press. 

Conan Doyle, A. (1974). ‘A Scandal in Bohemia.’ The Adventures of Sherlock Holmes, 
(Original publication 1892), pp. 15 – 40. London: Pan Books. 

Connolly, T. M., Stansfield, M. and Hainey, T. (2007). ‘An Application of Games-Based 
Learning within Software Engineering.’ British Journal of Educational 
Technology, vol. 38, no. 3, pp. 416 – 428. 

Constantine, L. L. (1995). Constantine on Peopleware. Englewood Cliffs: Yourdon Press 

Copeland, D. G., Mason, R. O. and McKenney, J. L. (1995). ‘Sabre: The Development of 
Information-Based Competence and Execution of Information-Based 
Competition.’ IEEE Annals of the History of Computing, vol. 17, no. 3, pp. 30 – 
56. 

Costikyan, G. (2005). ‘I Have No Words & I Must Design.’ In K. Salen and E. Zimmerman 
(eds.), The Game Design Reader, pp. 192 – 211. Cambrisge, Massachusetts: The 
MIT Press. 

Courtois, P. J. (1985). ‘On Time and Space Decomposition of Complex Structures.’ 
Communications of the ACM, vol. 28, no. 6 (June), pp. 590 – 603. 

Cox, B. J. (1990). ‘There Is a Silver Bullet.’ Byte, vol. 15, no. 10 (October), pp. 209 – 218. 

Craik, T. W. and Craik, R. J., (eds.). (1986). John Donne: Selected Poetry and Prose. 
London: Methuen. 



 
 

 Page 128 

 

Crawford, C. (2003). On Game Design. Indianapolis: New Riders Publishing 

Crawford, W. (2001). ‘Y2K: Lessons from a Non-Event.’ Online, vol. 25, no. 2 
(March/April), pp. 73 – 74. 

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods 
Approaches, 3rd edition. Thousand Oaks: Sage Publications 

Crookall, D. (2010). ‘Serious Games, Debriefing, and Simulation/Gaming as a Discipline.’ 
Simulation & Gaming, vol. 41, no. 6 (December), pp. 898 – 920. 

Crookall, D. and Thorngate, W. (2009). ‘Acting, Knowing, Learning, Simulating, Gaming.’ 
Simulation & Gaming, vol. 40, no. 1 (February), pp. 8 – 26. 

Dale, A. G. and Klasson, C. R. (1962). Business Gaming: A Survey of American Collegiate 
Schools of Business. Austin: Bureau of Business Research, University of Texas 

Dangerfield, B. and Roberts, C. (1995). ‘Projecting Dynamic Behavior in the Absence of a 
Model: An Experiment.’ System Dynamics Review, vol. 11, no. 2 (Summer), pp. 
157 – 172. 

Dantas, A. R., Barros, M. d. O. and Werner, C. M. L. (2004). ‘A Simulation-Based Game 
for Project Management Experiential Learning.’ In F. Maurer and G. Ruhe (eds.), 
Proceedings of the 16th International Conference on Software Engineering & 
Knowledge Engineering, (Banff, Alberta, Canada, 20 - 24 June), pp. 19 – 24. Los 
Alamitos: IEEE Computer Society. 

Davis, A. (1993). ‘Software Lemmingineering.’ IEEE Software, vol. 10, no. 5 (September), 
pp. 79 – 81, 84. 

Dawson, R. J., Newsham, R. W. and Fernley, B. W. (1997). ‘Bringing the 'Real World' of 
Software Engineering to University Undergraduate Courses.’ IEE Proceedings - 
Software Engineering, vol. 144, no. 5 – 6 (October – December), pp. 287 – 290. 

Dawson, R. J., Newsham, R. W. and Kerridge, R. S. (1992). ‘Introducing New Software 
Engineering Students to the 'Real World' at the GPT Company.’ Software 
Engineering Journal, vol. 7, no. 3 (May), pp. 171 – 176. 

Day, J. (2000). ‘Software Development as Organizational Conversation: Analogy as a 
Systems Intervention.’ Systems Research and Behavioral Science, vol. 17, no. 4 
(July - August), pp. 349 – 358. 

de Geus, A. P. (1992). ‘Modelling to Predict or to Learn?’ European Journal of 
Operational Research, vol. 59, no. 1, pp. 1 – 5. 

Defense Science Board (2002). Defense Science and Technology. Washington: Defense 
Science Board. 

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press 

DeMarco, T. (1991). ‘Non-Technological Issues in Software Engineering.’ Proceedings of 
the 13th International Conference on Software Engineering, (Austin, Texas), pp. 
149 – 150. Los Alamitos: IEEE Computer Society Press. 

DeMarco, T. (1997). The Deadline: A Novel About Project Management. New York: 
Dorset House Publishing 

DeMarco, T. and Lister, T. (1999). Peopleware: Productive Projects and Teams, 2nd 
edition. New York: Dorset House Publishing Co 



 
 

 Page 129 

 

Dempsey, J., Lucassen, B., Gilley, W. and Rasmussen, K. (1994). ‘Since Malone's Theory 
of Intrinsically Motivating Instruction: What's the Score in the Gaming Literature.’ 
Journal of Educational Technology Systems, vol. 22, no. 2, pp. 173 – 183. 

Dempsey, J. V., Haynes, L. L., Lucassen, B. A. and Casey, M. S. (2002). ‘Forty Simple 
Computer Games and What They Could Mean to Educators ’ Simulation & 
Gaming, vol. 33, no. 2, pp. 157 – 168. 

Denning, P. J. and Riehle, R. D. (2009). ‘The Profession of IT: Is Software Engineering 
Engineering?’ Communications of the ACM, vol. 52, no. 3 (March), pp. 24 – 26. 

Denzin, N. K. (1989). Interpretive Interactionism. Newbury Park: Sage Publications 

Dewey, J. (1938/1963). Experience and Education. Kappa Delta Pi Lecture Series. New 
York: Collier Books 

Dill, W. R. and Doppelt, N. (1963). ‘The Acquisition of Experience in a Complex 
Management Game.’ Management Science, vol. 10, no. 1 (October), pp. 30 – 46. 

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge, 
Massachusetts: The MIT Press 

Dooley, K. (1996). ‘A Nominal Definition of Complex Adaptive Systems.’ Chaos Network, 
vol. 8, no. 1, pp. 2 – 3. 

Dorn, D. S. (1989). ‘Simulation Games: One More Tool on the Pedagogical Shelf.’ 
Teaching Sociology, vol. 17, no. 1, pp. 1 – 18. 

Drappa, A. and Ludewig, J. (1999). ‘Quantitative Modeling for the Interactive Simulation 
of Software Project.’ The Journal of Systems and Software, vol. 46, no. 15 April, 
pp. 113 – 122. 

Drappa, A. and Ludewig, J. (2000). ‘Simulation in Software Engineering Training.’ 
Proceedings of the 22nd International Conference on Software Engineering, 
(Limerick, Ireland), pp. 199 – 208. New York: ACM Press. 

Duch, B. J., Groh, S. E. and Allen, D. E., (eds.). (2001). The Power of Problem-Based 
Learning. Sterling, Virginia: Stylus Publishing. 

Duke, R. D. (1980). ‘A Paradigm for Game Design.’ Simulation & Games, vol. 11, no. 3 
(September), pp. 364 – 377. 

Eldredge, D. L. and Watson, H. J. (1996). ‘An Ongoing Study of the Practice of Simulation 
in Industry.’ Simulation & Gaming, vol. 27, no. 3 (September), pp. 375 – 386. 

Ellington, H. I. (1995). ‘The Future of Simulation/Gaming in Britain.’ In D. Crookall and 
K. Arai (eds.), Simulation and Gaming Across Disciplines and Cultures: ISAGA at 
a Watershed, pp. 225 – 229. Thousand Oaks: Sage Publications. 

Emam, K. E. and Koru, A. G. (2008). ‘A Replicated Survey of IT Software Project 
Failures.’ IEEE Software, vol. 25, no. 5, pp. 84 – 90. 

Eveleens, J. L. and Verhoef, C. (2010). ‘The Rise and Fall of the Chaos Report Figures.’ 
IEEE Software, vol. 27, no. 1 (January/February), pp. 30 – 36. 

Faria, A. J. (1987). ‘A Survey of the Use of Business Games in Academia and Business.’ 
Simulation & Games, vol. 18, no. 2 (June), pp. 207 – 224. 

Faria, A. J. (1998). ‘Business Simulation Games: Current Usage Levels—An Update.’ 
Simulation & Gaming, vol. 29, no. 3 (September), pp. 295 – 308. 



 
 

 Page 130 

 

Faria, A. J. and Wellington, W. J. (2004). ‘A Survey of Simulation Game Users, Former-
Users, and Never-Users.’ Simulation & Gaming, vol. 35, no. 2 (June), pp. 178 – 
207. 

Feldman, H. D. (1995). ‘Computer-Based Simulation Games: A Viable Educational 
Technique for Entrepreneurship Classes?’ Simulation & Gaming, vol. 26, no. 3 
(September), pp. 346 – 360. 

Fernandes, J. M. and Sousa, S. M. (2010). ‘PlayScrum - A Card Game to Learn the Scrum 
Agile Method.’ Proceedings of the 2010 Second International Conference on 
Games and Virtual Worlds for Serious Applications. Washington: IEEE Computer 
Society. 

Flexner, A. (1910). Medical Education in the United States and Canada. New York: The 
Carnegie Foundation for the Advancement of Teaching 

Ford, A. (1999). Modeling the Environment: An Introduction to System Dynamics Modeling 
of Environmental Systems. Washington: Island Press 

Ford, G. and Gibbs, N. E. (1996). A Mature Profession of Software Engineering. 
Pittsburgh: Software Engineering Institute, Carnegie Mellon University. 

Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications 

Forrester, J. W. (1969). Urban Dynamics. Portland: Productivity Press 

Forrester, J. W. (1971). World Dynamics. Portland: Productivity Press 

Forrester, J. W. (1975). ‘Counterintuitive Behavior of Social Systems.’ Collected Papers of 
Jay W. Forrester, pp. 211 – 237. Cambridge, Massachusetts: MIT Press. 

Frezza, S. T., Tang, M.-H. and Brinkman, B. J. (2006). ‘Creating an Accreditable Software 
Engineering Bachelor's Program.’ IEEE Software, vol. 23, no. 6 
(November/December), pp. 27 – 35. 

Fullford, D. A. (1996). ‘Distributed Interactive Simulation: It's Past, Present, and Future.’ 
In J. M. Charnes, D. J. Morrice, D. T. Brunner and J. J. Swain (eds.), Proceedings 
of the 1996 Winter Simulation Conference, (Coronado, California, United States), 
pp. 179 – 185. New York: ACM Press. 

Fulmer, R. M. (1993). ‘The Tools of Anticipatory Learning.’ Journal of Management 
Development, vol. 12, no. 6, pp. 7 – 14. 

Garb, H. N. (1989). ‘Clinical Judgment, Clinical Training, and Professional Experience.’ 
Psychological Bulletin, vol. 105, no. 3, pp. 387 – 396. 

Garris, R., Ahlers, R. and Driskell, J. E. (2002). ‘Games, Motivation, and Learning: A 
Research and Practice Model.’ Simulation & Gaming, vol. 33, no. 4 (December), 
pp. 441 – 467. 

Gee, J. P. (2004). Situated Language and Learning: A Critique of Traditional Schooling. 
London: Routledge 

Gee, J. P. (2007a). Good Video Games and Good Learning: Collected Essays on Video 
Games, Learning and Literacy. New York: Peter Lang Publishing 

Gee, J. P. (2007b). What Video Games Have to Teach Us About Learning and Literacy. 
New York: Palgrave MacMillan 



 
 

 Page 131 

 

Gibbs, W. W. (1994). ‘Software's Chronic Crisis.’ Scientific American, vol. 271, no. 3 
(September), pp. 86 – 95. 

Glass, R. L. (1998). Software Runaways. Upper Saddle River: Prentice Hall 

Glass, R. L. (1999). Computing Calamities: Lessons Learned from Products, Projects, and 
Companies That Failed. Upper Saddle River: Prentice Hall 

Glass, R. L. (2000). ‘Y2K and Believing in Software Practice.’ Communications of the 
ACM, vol. 43, no. 3 (March), pp. 17 – 18. 

Glass, R. L. (2006). ‘The Standish Report: Does It Really Describe a Software Crisis?’ 
Communications of the ACM, vol. 49, no. 8 (August), pp. 15 – 16. 

Goodwin, J. S. and Franklin, S. G. (1994). ‘The Beer Distribution Game: Using Simulation 
to Teach Systems Thinking.’ Journal of Management Development, vol. 13, no. 8, 
pp. 7 – 15. 

Gosen, J. and Washbush, J. (2004). ‘A Review of Scholarship on Assessing Experiential 
Learning Effectiveness.’ Simulation & Gaming, vol. 35, no. 2, pp. 270 – 293. 

Gredler, M. E. (1996). ‘Educational Games and Simulations: A Technology in Search of a 
Research Paradigm.’ In D. H. Johassen (ed.) Handbook of Research on 
Educational Communications and Technology: A Project of the Association for 
Educational Communications and Technology, pp. 521 – 539. New York: 
MacMillan. 

Gredler, M. E. (2004). ‘Games and Simulations and Their Relationships to Learning.’ In D. 
H. Jonassen (ed.) Handbook of Research on Educational Communications and 
Technology, 2nd edition, pp. 571 – 581. Mahwah, New Jersey: Lawrence Erlbaum 
Associates Publishers. 

Greenblat, C. S. (1973). ‘Teaching with Simulation Games: A Review of Claims and 
Evidence.’ Teaching Sociology, vol. 1, no. 1, pp. 62 – 83. 

Greenlaw, P. S. and Wyman, F. P. (1973). ‘The Teaching Effectiveness of Games in 
Collegiate Business Courses.’ Simulation & Games, vol. 4, no. 3 (September), pp. 
259 – 294. 

Gresse von Wangenheim, C. and Shull, F. (2009). ‘To Game or Not to Game?’ IEEE 
Software, vol. 26, no. 2 (March/April), pp. 92 – 94. 

Gresse von Wangenheim, C., Thiry, M. and Kochanski, D. (2009). ‘Empirical Evaluation 
of an Educational Game on Software Measurement.’ Empirical Software 
Engineering, vol. 14, no. 4, pp. 418 – 452. 

Guba, E. G. and Lincoln, Y. S. (2005). ‘Paradigmatic Controversies, Contradictions, and 
Emerging Confluences.’ In N. K. Denzin and Y. S. Lincoln (eds.), The Sage 
Handbook of Qualitative Research, 3rd edition, pp. 191 – 215. Thousand Oaks: 
Sage Publications. 

Guetzkow, H. (1959). ‘A Use of Simulation in the Study of Inter-Nation Relations.’ 
Behavioral Science, vol. 4, pp. 183 – 191. 

Hacker, D. J. and Dunlosky, J. (2003). ‘Not All Matacognition is Created Equal.’ In D. S. 
Knowlton and D. C. Sharp (eds.), Problem-Based Learning in the Information 
Age, pp. 73 – 79. San Francisco: Jossey-Bass. 



 
 

 Page 132 

 

Hainey, T., Connelly, T. J., Stansfield, M. and Boyle, E. A. (2010). ‘Evaluation of a Game 
to Teach Requirements Collection and Analysis in Software Engineering at 
Tertiary Education Level.’ Computers & Education, vol. 56, no. 1, pp. 21 – 35. 

Hand, H. H. and Sims, H. P. (1975). ‘Statistical Evaluation of Complex Gaming 
Performance.’ Management Science, vol. 21, no. 6 (February), pp. 708 – 717. 

Hansen, G. A. (1996). ‘Simulating the Software Development Process.’ IEEE Computer, 
vol. 29, no. 1 (January), pp. 73 – 77. 

Hart, R. J. and Sulzen, R. H. (1988). ‘Comparing Success Rates in Simulated Combat: 
Intelligent Tactics vs. Force.’ Armed Forces and Society, vol. 14, no. 2 (Winter), 
pp. 273 – 286. 

Hays, R. T. (1989). Simulation Fidelity in Training System Design: Bridging the Gap 
Between Reality and Training. New York: Springer-Verlag 

Hazzan, O. (2010). ‘Putting Human Aspects of Software Engineering in University 
Curricula.’ IEEE Software, vol. 27, no. 4 (July/August ), pp. 90 – 91. 

Heldman, K. (2007). PMP: Project Management Professional Exam Study Guide, 4th 
edition. San Francisco: Sybex 

Hermann, C. F. (1967). ‘Validation Problems in Games and Simulations with Special 
Reference to Models of International Politics.’ Behavioral Science, vol. 12, pp. 
216 – 231. 

Herz, B. and Merz, W. (1998). ‘Experiential Learning and the Effectiveness of Economic 
Simulation Games.’ Simulation & Gaming, vol. 29, no. 2 (June), pp. 238 – 250. 

Highsmith, J. A. (2000). Adaptive Software Development: A Collaborative Approach to 
Managing Complex Systems. New York: Dorset House 

Hirschheim, R. and Klein, H. K. (1989). ‘Four Paradigms of Information Systems 
Development.’ Communications of the ACM, vol. 32, no. 10 (October), pp. 1199 – 
1216. 

Hobsons (2011). The Good Universities Guide to Universities & Private Higher Education 
Providers  

Homer, J. B. (1985). ‘Worker Burnout: A Dynamic Model with Implications for Prevention 
and Control.’ System Dynamics Review, vol. 1, no. 1, pp. 42 – 62. 

Horning, J. J. and Wortman, D. B. (1977). ‘Software Hut: A Computer Program 
Engineering Project in the Form of a Game.’ IEEE Transactions on Software 
Engineering, vol. 3, no. 4, pp. 325 – 330. 

Huizinga, J. (1971). Homo Ludens. Boston: Beacon Press. (Original publication 1950) 

Humphrey, W. S. (1998). ‘Why Don't They Practice What We Preach?’ Annals of Software 
Engineering, vol. 6, no. 1, pp. 201-222. 

Hung, D., Chen, V. and Lim, S. (2009). ‘Unpacking the Hidden Efficacies of Learning in 
Productive Failure.’ Learning Inquiry, vol. 3, no. 1, pp. 1 – 19. 

Hung, W., Bailey, J. H. and Jonassen, D. H. (2003). ‘Exploring the Tensions of Problem-
Based Learning: Insights from Research.’ In D. S. Knowlton and D. C. Sharp 
(eds.), Problem-Based Learning in the Information Age, pp. 13 – 23. San 
Francisco: Jossey-Bass. 



 
 

 Page 133 

 

Hunt, A. and Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to 
Master. Boston: Addison-Wesley 

IBM (2011). SPSS Statistics [computer software], version 19.0. Available from 
http://www.spss.com/au/software/statistics/. 

ISO/IEC/IEEE (2010). Systems and Software Engineering — Vocabulary. New York. 

iSSEc Project (2009). Graduate Software Engineering 2009 (GSwE2009): Curriculum 
Guideline for Graduate Degree Programs in Software Engineering: IEEE 
Computer Society/Association for Computing Machinery. 

Jackson, D. (2006). ‘Dependable Software by Design.’ Scientific American, vol. 294, no. 6 
(June), pp. 59 – 65. 

Jackson, J. R. (1959). ‘Learning From Experience in Business Decision Games.’ California 
Management Review, vol. 1, no. 1, pp. 23 – 29. 

Jain, A. and Boehm, B. (2006). ‘SimVBSE: Developing a Game for Value-Based Software 
Engineering.’ Proceedings of the 19th Conference on Software Engineering 
Education & Training, (Turtle Bay, Hawaii 19 - 21 April), pp. 103 – 114. Los 
Alamitos: IEEE Computer Society Press. 

Janis, I. L. (1971). ‘Groupthink.’ Psychology Today, vol. 5, no. 5 (November), pp. 43 – 46, 
74 – 76. 

Johns-Boast, L. and Patch, G. (2010). ‘A Win-Win Situation: Benefits of Industry-Based 
Group Projects.’ In A. Gardner and L. Jolly (eds.), Proceedings of the 
Australasian Association for Engineering Education Conference (AaeE 2010), 
(Sydney, 5 - 8 December), pp. 355 - 360. Sydney: University of Technology 
Sydney. 

Joint IS2010 Curriculum  Task Force (2010). Curriculum Guideline for Undergraduate 
Degree Programs in Information Systems: Association for Computing Machinery 
and Association for Information Systems. 

Joint Task Force on Computing Curriculum (2004). Software Engineering 2004: 
Curriculum Guidelines for Undergraduate Degree Programs in Software 
Engineering: IEEE Computer Society/Association for Computing Machinery. 

Joyce, L. (2005). ‘Military Apps Drive Simulation Tools.’ R & D, vol. 47, no. 6, p. 16. 

Kaplan, A. (1973). The Conduct of Inquiry: Methodology for Behavioral Science. 
Aylesbury: Intertext Books 

Keen, P., G. W. (1981). ‘Information Systems and Organizational Change.’ 
Communications of the ACM, vol. 24, no. 1 (January), pp. 24 – 33. 

Kennedy, J. L. (1971a). ‘Simulation Study of Competition in an "Open World".’ Journal of 
Applied Psychology, vol. 55, no. 1 (February), pp. 42 – 45. 

Kennedy, J. L. (1971b). ‘The System Approach: A Preliminary Exploratory Study of the 
Relation Between Team Composition and Financial Performance in Business 
Games.’ Journal of Applied Psychology, vol. 55, no. 1 (February), pp. 46 – 49. 

Kibbee, J. M., Craft, C. J. and Nanus, B. (1961). Management Games: A New Technique 
for Executive Development. New York: Reinhold Publishing Corporation 

Kirk, J. and Miller, M. L. (1986). Reliability and Validity in Qualitative Research. London: 
Sage Publications 



 
 

 Page 134 

 

Kitchenham, B. A. (2004). Procedures for Performing Systematic Reviews: Keele 
University, Staffordshire. 

Klabbers, J. H. G., Swart, R. J., van Ulden, A. P. and Vellinga, P. (1994). ‘Climate Policy: 
Management of Organized Complexity Through Gaming.’ In D. Crookall and K. 
Arai (eds.), Simulation and Gaming Across Disciplines and Cultures, pp. 122 – 
133. Thousand Oaks: Sage Publications. 

Kling, R. and Iacono, S. (1984). ‘The Control of Information Systems Developments After 
Implementation.’ Communications of the ACM, vol. 27, no. 12 (December), pp. 
1218 – 1226. 

Knauss, E., Schneider, K. and Stapel, K. (2008). ‘A Game for Taking Requirements 
Engineering More Seriously.’ Proceedings of the 3rd International Workshop on 
Multimedia and Enjoyable Requirements Engineering - Beyond Mere Descriptions 
and with More Fun and Games, (Barcelona, Spain, 9 September), pp. 22 – 26. Los 
Alamitos: IEEE Computer Society Press. 

Knotts, U. S. and Keys, J. B. (1997). ‘Teaching Strategic Management with a Business 
Game.’ Simulation & Gaming, vol. 28, no. 4 (December), pp. 377 – 394. 

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and 
Development. Englewood Cliffs: Prentice-Hall 

Kozma, R. B. (1994). ‘Will Media Influence Learning?’ Educational Technology Research 
and Development, vol. 42, no. 2, pp. 7 –  19. 

Kraemer, R. E. and Bessemer, D. W. (1987). U. S. Tank Platoon Training for the 1987 
Canadian Army Trophy (CAT) Competition Using a Simulation Networking 
(SIMNET) System (Research Report ARI-RR-1457). Alexandria, Virginia: Army 
Research Institution for the Behavioral and Social Sciences. 

Kriz, W. C. (2009). ‘Bridging the Gap: Transforming Knowledge into Action Through 
Gaming and Simulation.’ Simulation & Gaming, vol. 40, no. 1 (February), pp. 28 
– 29. 

Kruchten, P. (2005). ‘Editor's Introduction: Software Design in a Postmodern Era.’ IEEE 
Software, vol. 22, no. 2, pp. 16 – 18. 

Kruchten, P. B. (2004). 'The Nature of Software: What's So Special About Software 
Enginering?' [on-line]. Available at 
www.ibm.com/developerworks/rational/library/4700.html. Last accessed 2011-09-
30. 

Kulik, C. C. and Kulik, J. A. (1991). ‘Effectiveness of Computer-Based Instruction: An 
Updated Analysis.’ Computers in Human Behavior, vol. 7, no. 1 – 2, pp. 75 – 94. 

Kulik, J. A., Kulik, C. C. and Bangert-Drowns, R. L. (1985). ‘Effectiveness of Computer-
Based Education in Elementary Schools.’ Computers in Human Behavior, vol. 1, 
pp. 59 – 74. 

Lane, D. C. (1995). ‘On a Resurgence of Management Simulation Games.’ Journal of the 
Operational Research Society, vol. 46, no. 5 (May), pp. 604 – 625. 

Langley, P. A., Morecroft, J. D. W. and Morecroft, L. E. (1999). The Oil Producers' 
Microworld [computer software],  Princes Risborough, UK: Global Strategy 
Dynamics Ltd.  Available from http://www.strategydynamics.com/. 

Larman, C. (2006). Agile and Iterative Development: A Manager's Guide. Boston: 
Addison-Wesley 



 
 

 Page 135 

 

Larman, C. and Basili, V. R. (2003). ‘Iterative and Incremental Development: A Brief 
History.’ IEEE Computer, vol. 36, no. 6 (June), pp. 47 – 56. 

Lay, M. C., Paku, L. K. and Swan, J. E. (2008). ‘Work Placement Reports: Student 
Perceptions.’ In L. Mann, A. Thompson and P. Howard (eds.), Proceedings of the 
19th Annual Conference of the Australasian Association for Engineering 
Education: To Industry and Beyond. Barton, ACT: Institution of Engineers, 
Australia. 

Lee, J. (1999). ‘Effectiveness of Computer-Based Instructional Simulation: A Meta 
Analysis.’ International Journal of Instructional Media, vol. 26, no. 1, pp. 71– 85. 

Lethbridge, T. C., LeBlanc, R. J., Sobel, A. E. K., Hilburn, T. B. and Diaz-Herrera, J. L. 
(2006). ‘SE2004: Recommendations for Undergraduate Software Engineering 
Curriculum.’ IEEE Software, vol. 23, no. 6 (November/December), pp. 19 – 25. 

Levin, B. B., (ed.) (2001). Energizing Teacher Education and Professional Development 
with Problem-Based Learning. Alexandria: Association for Supervision and 
Curriculum Development. 

Levin, B. B., Dean, C. D. and Pierce, J. W. (2001). ‘Frequently Asked Questions About 
Problem-Based Learning.’ In B. B. Levin (ed.) Energizing Teacher Education and 
Professional Development with Problem-Based Learning, pp. 121 – 132. 
Alexandria: Association for Supervision and Curriculum Development. 

Levin, H. G. and Forman, P. B. (1973). ‘A Study of Retention of Knowledge of 
Neurosciences Information.’ Journal of Medical Education, vol. 48, no. 9, pp. 867 
– 869. 

Levy, D., Kummerfeld, R., Chawla, S., Calvo, R. A. and Fekete, A. (2008). ‘The New 
Software Engineering Program at the University of Sydney.’ Proceedings of the 
2008 AaeE Conference, (Yeppoon). Sydney: Australasian Association for 
Engineering Education. 

Lewin, K. (1952). Field Theory in Social Sciences. London: Tavistock Publications Ltd 

Lincoln, Y. S. and Guba, E. G. (1984). Naturalistic Inquiry. London: Sage Publications 

Lomi, A., Larsen, E. R. and Ginsberg, A. (1997). ‘Adaptive Learning in Organizations: A 
System Dynamics-Based Exploration.’ Journal of Management, vol. 23, no. 4 
(July – August), pp. 561 – 583. 

Lundy, J. (1991). ‘Cognitive Learning from Games: Student Approaches to Business 
Games.’ Studies in Higher Education, vol. 16, no. 2, pp. 179 – 188. 

Lyneis, J. M. and Ford, D. N. (2007). ‘System Dynamics Applied to Project Management: 
A Survey, Assessment, and Directions for Future Research.’ System Dynamics 
Review, vol. 23, no. 2 – 3, pp. 157 – 189. 

Macedonia, M. (2002). ‘Games Soldiers Play.’ IEEE Spectrum, vol. 39, no. 3 (March), pp. 
32 – 37. 

Macedonia, M. (2005). ‘Ender's Game Redux.’ IEEE Computer, vol. 38, no. 2 (February), 
pp. 95 – 97. 

Machuca, J. A. D. (2000). ‘Transparent-Box Business Simulators: An Aid to Manage the 
Complexity of Organizations.’ Simulation & Gaming, vol. 31, no. 2 (June), pp. 
230 – 239. 



 
 

 Page 136 

 

Madachy, R. J. (1996). ‘System Dynamics Modeling of an Inspection-Based Process.’ 
Proceedings of the 18th International Conference on Software Engineering, 
(Berlin, Germany), pp. 376 – 386. Los Alamitos: IEEE Computer Society Press. 

Maier, F. H. and Grossler, A. (2000). ‘What Are We Talking About? — A Taxonomy of 
Computer Simulations to Support Learning.’ System Dynamics Review, vol. 16, 
no. 2 (Summer), pp. 135 – 148. 

Mandl-Striegnitz, P. (2001). ‘How to Successfully Use Software Project Simulation for 
Educating Software Project Managers.’ Proceedings of the 31st Frontiers in 
Education Conference, (Reno, Nevada, 10 - 13 October), pp. T2D-19-24. Los 
Alimitos: IEEE Computer Society. 

Marshall, C. and Rossman, G. B. (2005). Designing Qualitative Research, 4th edition. 
Thousand Oaks: Sage Publications 

Marshall, M. N. (1996). ‘Sampling for Qualitative Research.’ Family Practice, vol. 13, no. 
6, pp. 522 – 525. 

Martin, R. and Raffo, D. M. (2001). ‘Application of a Hybrid Process Simulation Model to 
a Software Development Project.’ The Journal of Systems and Software, vol. 59, 
no. 3, pp. 237 – 246. 

Martin, R. C. (2002a). Agile Software Development: Principles, Patterns, and Practices. 
Upper Saddle River: Prentice-Hall 

Martin, R. C. (2009). Clean Code: A Handbook of Agile Software Craftsmanship. Upper 
Saddle River: Prentice Hall 

Martin, R. H. (2002b). A Hybrid Model of the Software Development Process. Unpublished 
PhD dissertation, Portland State University, Portland, Oregon. 

Maruyama, M. (1963). ‘The Second Cybernetics: Deviation-Amplifying Mutual Causal 
Processes.’ American Scientist, vol. 51, no. 2, pp. 164 – 179. 

Mastaglio, T. W. and Callahan, R. (1995). ‘A Large-Scale Complex Virtual Environment 
for Team Training.’ IEEE Computer, vol. 28, no. 7 (July), pp. 49 – 56. 

Mathiassen, L., Borum, F. and Pedersen, J. S. (1999). ‘Developing Managerial Skills in IT 
Organizations— A Case Study Based on Action Learning.’ The Journal of 
Strategic Information Systems, vol. 8, no. 2, pp. 209 – 225. 

Maxwell, J. A. (2004). Qualitative Research Design: An Interactive Approach, 2nd edition. 
Thousand Oaks: Sage Publications 

Maxwell, N. L., Mergendoller, J. R. and Bellisimo, Y. (2004). ‘Developing a Problem-
Based Learning Simulation.’ Simulation & Gaming, vol. 35, no. 4 (December), pp. 
488 – 498. 

Mayer, I. S. (2009). ‘The Gaming of Policy and the Politics of Gaming: A Review.’ 
Simulation & Gaming, vol. 40, no. 6 (December), pp. 825 – 862. 

McBreen, P. (2001). Software Craftsmanship: The New Imperative. Upper Saddle River: 
Addison-Wesley Professional 

McCabe, T. J. (1976). ‘A Software Complexity Measure.’ IEEE Transactions on Software 
Engineering, vol. 2, no. 4 (December), pp. 308 – 320. 

McCall, J. (2011). Gaming the Past: Using Video Games to Teach Secondary History 
London: Routledge 



 
 

 Page 137 

 

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Redmond: 
Microsoft Press 

McConnell, S. (2004). Professional Software Development. Boston: Addison-Wesley 

McKenna, R. J. (1991). ‘Business Computerized Simulation: The Australian Experience.’ 
Simulation & Gaming, vol. 22, no. 1 (March), pp. 36 – 62. 

McKenney, J. L. (1962). ‘An Evaluation of a Business Game in an MBA Curriculum.’ The 
Journal of Business, vol. 35, no. 3 (July), pp. 278 – 286. 

McKenney, J. L. and Dill, W. R. (1966). ‘Influences on Learning in Simulation Games.’ 
American Behavioral Scientist, vol. 10, no. 3 (October), pp. 28 – 32. 

Meadows, D. H. and Robinson, J. M. (1985). The Electronic Oracle: Computer Models and 
Social Decisions. New York: John Wiley & Sons 

Meadows, D. L. (1989). ‘Gaming to Implement System Dynamics Models.’ In P. M. 
Milling and E. O. K. Zahn (eds.), Computer-Based Management of Complex 
Systems, pp. 635 – 640. Berlin: Springer-Verlag. 

Meadows, D. L. (1999). ‘Learning to Be Simple: My Odyssey with Games ’ Simulation & 
Gaming, vol. 30, no. 3, pp. 342 – 351. 

Melody, M. M. (2003). ‘A License to Practice Software Engineering.’ IEEE Software, vol. 
20, no. 3 (May/June), pp. 112 – 113. 

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. 
San Francisco: Jossey-Bass 

Merton, R. K. (1948). ‘The Self-Fulfilling Prophecy.’ Antioch Review, vol. 8, pp. 193 - 210. 

Meso, P. and Jain, R. (2006). ‘Agile Software Development: Adaptive Systems Principles 
and Best Practices.’ Information Systems Management, vol. 23, no. 3 (June), pp. 
19 – 30. 

Michael, D. and Chen, S. (2005). Serious Games: Games That Educate, Train, and Inform. 
Boston: Thomson Course Technology PTR 

Miles, M. B. and Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded 
Sourcebook, 2nd ed. Thousand Oaks: Sage Publications 

Miller, G. A. (1956). ‘The Magical Number Seven, Plus or Minus Two: Some Limits on 
Our Capacity for Processing Information.’ Psychological Review, vol. 63, no. 2, 
pp. 81 – 97. 

Miller, J. G. (1978). Living Systems. New York: McGraw-Hill Book Company 

Milne, A. A. (1998). Winnie-the-Pooh. London: Methuen Children's Books 

Moore, L. F. (1967). ‘Business Games versus Cases as Tools of Learning.’ Training and 
Development Journal, vol. 21, no. 10 (October), pp. 13 – 23. 

Morecroft, J. D. W. (1988). ‘System Dynamics and Microworlds for Policymakers.’ 
European Journal of Operational Research, vol. 35, pp. 301 – 320. 

Moskowitz, H. (1973). ‘An Experimental Investigation of Decision-Making in a Simulated 
Research and Development Environment.’ Management Science, vol. 19, no. 2, 
pp. 676 – 687. 



 
 

 Page 138 

 

Murray, H. J. R. (1913). A History of Chess. Oxford: Clarendon Press 

Myers, M. D. (1994). ‘A Disaster for Everyone to See: An Interpretive Analysis of a Failed 
IS Project.’ Accounting, Management, and Information Technologies, vol. 4, no. 4, 
pp. 185 – 201. 

Naur, P. and Randell, B., (eds.). (1969). Software Engineering: Report on a Conference 
Sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th 
October 1968. Brussels: Scientific Affairs Division, NATO. 

Navarro, E. O. (2006). SimSE: A Software Engineering Simulation Environment for 
Software Process Education. Unpublished PhD thesis, University of California, 
Irvine,  

Navarro, E. O., Baker, A. and van der Hoek, A. (2004). ‘Teaching Software Engineering 
Using Simulation Games.’ Proceedings of the 2004 International Conference on 
Simulation in Education, (San Diego, California, 18 - 21 January). New York: 
ACM. 

Navarro, E. O. and van der Hoek, A. (2005). ‘Design and Evaluation of an Educational 
Software Process Simulation Environment and Associated Model.’ Proceedings of 
the 18th Conference on Software Engineering Education and Training, (Ottawa, 
Canada 18 - 20 April). Los Alimitos: IEEE Computer Society Press. 

Navarro, E. O. and van der Hoek, A. (2007). ‘Comprehensive Evaluation of an Educational 
Software Engineering Simulation Environment.’ Proceedings of the 20th 
Conference on Software Engineering Education and Training, (Dublin, Ireland, 3 
- 5 July), pp. 195 – 202. New York: ACM. 

Navarro, E. O. and van der Hoek, A. (2008). ‘On the Role of Learning Theories in 
Furthering Software Engineering Education.’ In H. J. C. Ellis, S. A. Demurjian 
and J. F. Naveda (eds.), Software Engineering: Effective Teaching and Learning 
Approaches and Practices, pp. 38 – 59. Hershey: IGI Global. 

Navarro, E. O. and van der Hoek, A. (2009). ‘Multi-Site Evaluation of SimSE.’ 
Proceedings of the 40th ACM Technical Symposium on Computer Science 
Education (Chattanooga, Tennessee, 3 - 7 March). New York: ACM. 

Naveda, J. F. and Seidman, S. B. (2005). ‘Professional Certification of Software Engineers: 
The CSDP Program.’ IEEE Software, vol. 22, no. 5, pp. 73 – 77. 

Naveda, J. F. and Seidman, S. B., (eds.). (2006). IEEE Computer Society Real-World 
Software Engineering Problems: A Self-Study Guide for Today's Software 
Professional. Hoboken: John Wiley & Sons. 

Naylor, T. H. and Gattis, D. R. (1976). ‘Corporate Planning Models.’ California 
Management Review, vol. 18, no. 4 (Summer), pp. 69 – 78. 

Neuhauser, J. J. (1976). ‘Business Games Have Failed.’ Academy of Management Review, 
vol. 1, no. 4 (October), pp. 124 – 129. 

Neumann, P. G. (1995). Computer-Related Risks. Reading, Massachusetts: Addison-
Wesley Publishing Company 

Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books 

Oh, E. and van der Hoek, A. (2002). ‘Towards Game-Based Simulation as a Method of 
Teaching Software Engineering.’ Proceedings of the 32nd Annual Frontiers in 
Education Conference, (6 - 9 November), pp. S2G-13. Los Alimitos: IEEE 
Computer Society Press. 



 
 

 Page 139 

 

Oliver, P. (2003). The Student's Guide to Research Ethics. Maidenhead: Open University 
Press 

Osterweil, L. (1987). ‘Software Processes are Software Too.’ Proceedings of the 9th 
International Conference on Software Engineering, (Monterey, California), pp. 2 – 
13. Los Alamitos: IEEE Computer Society Press. 

Papert, S. (1980). Mindstorms. Brighton, Sussex: The Harvester Press 

Parasuraman, A. (1981). ‘Assessing the Worth of Business Simulation Games: Problems 
and Prospects.’ Simulation & Games, vol. 12, no. 2 (June), pp. 189 – 200. 

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods, 3rd edition. Thousand 
Oaks: Sage Publications 

Perla, P. P. (1990). The Art of Wargaming: A Guide for Professionals and Hobbyists. 
Annapolis, Maryland: Naval Institute Press 

Petranek, C. F. (1994). ‘A Maturation in Experiential Learning: Principles of Simulation 
and Gaming.’ Simulation & Gaming, vol. 25, no. 4 (December), pp. 513 – 522. 

Petranek, C. F., Corey, S. and Black, R. (1992). ‘Three Levels of Learning in Simulations: 
Participating, Debriefing, and Journal Writing.’ Simulation & Gaming, vol. 23, no. 
2 (June), pp. 174 – 185. 

Pfahl, D., Koval, N. and Ruhe, G. (2001). ‘An Experiment for Evaluating the Effectiveness 
of Using a System Dynamics Simulation Model in Software Project Management 
Education.’ Proceedings of the 7th International Software Metrics Symposium, (6 
- 8 April), pp. 97-109. Los Alimitos: IEEE Computer Society Press. 

Pfahl, D., Laitenberger, O., Dorsch, J. and Ruhe, G. (2003). ‘An Externally Replicated 
Experiment for Evaluating the Learning Effectiveness of Using Simulations in 
Software Project Management Education.’ Empirical Software Engineering, vol. 
8, no. 4 (December), pp. 367 – 395. 

Pfahl, D., Laitenberger, O., Ruhe, G., Dorsch, J. and Krivobokova, T. (2004). ‘Evaluating 
the Learning Effectiveness of Using Simulations in Software Project Management 
Education: Results from a Twice Replicated Experiment.’ Information and 
Software Technology, vol. 46, no. 2, pp. 127 – 147. 

Pierfy, D. A. (1977). ‘Comparative Simulation Game Research: Stumbling Blocks and 
Steppingstones.’ Simulation & Games, vol. 8, no. 2 (June), pp. 255 – 268. 

Polack-Wahl, J. A. (2006). ‘Lessons Learned From Different Types of Projects in Software 
Engineering.’ Proceedings of the International Conference on Frontiers in 
Education: Computer Science & Computer Engineering, (Las Vegas, Nevada, 26 - 
29 June), pp. 258 – 263. New York: CSREA Press. 

Prakash, E., Brindle, G., Jones, K., Zhou, S., Chaudhari, N. S. and Wong, K.-W. (2009). 
‘Advances in Games Technology: Software, Models, and Intelligence.’ Simulation 
& Gaming, vol. 40, no. 6 (December 1, 2009), pp. 752-801. 

Prensky, M. (2006). Don't Bother Me Mom– I'm Learning! . St. Paul, Minnesota: Paragon 
House Publishers 

Prensky, M. (2007). Digital Game-Based Learning. St. Paul, Minnesota: Paragon House 
Publishers 

Prohaska, C. R. and Frank, E. J. (1990). ‘Using Simulations to Investigate Management 
Decision Making.’ Simulation & Gaming, vol. 21, no. 1 (March), pp. 48 – 58. 



 
 

 Page 140 

 

Qiu, M. and Chen, L. (2010). ‘A Problem-Based Learning Approach to Teaching an 
Advanced Software Engineering Course.’ Proceedings of the 2nd International 
Workshop on Education Technology and Computer Science, (Wuhan, China 6 - 7 
March), pp. 252 – 255. Los Alimitos: IEEE Computer Society Press. 

QSR International (2010). NVivo [computer software], version 8.0. Available from 
http://www.qsrinternational.com. 

Raia, A. P. (1966). ‘A Study of the Educational Value of Management Games.’ The 
Journal of Business, vol. 39, no. 3 (July), pp. 339 – 352. 

Randel, J. M., Morris, B. A., Wetzel, C. D. and Whitehill, B. V. (1992). ‘The Effectiveness 
of Games for Educational Purposes: A Review of Recent Research.’ Simulation & 
Gaming, vol. 23, no. 3 (September), pp. 261-276. 

Raser, J. R. (1969). Simulation and Society: An Exploration of Scientific Gaming. Boston: 
Allyn and Bacon Inc 

Remus, H. and Zilles, S. (1979). ‘Prediction and Management of Program Quality.’ 
Proceedings of the 4th International Conference on Software Engineering, 
(Munich, Germany), pp. 341 – 350. New York: ACM Press. 

Remus, W. (1977). ‘Who Likes Business Games?’ Simulation & Games, vol. 8, no. 4 
(December), pp. 469 – 480. 

Remus, W. (1986). ‘Graduate Students as Surrogates for Managers in Experiments on 
Business Decision Making.’ Journal of Business Research, vol. 14, no. 1 
(February), pp. 19 – 25. 

Remus, W. and Jenner, S. (1981). ‘Playing Business Games: Expectations and Realities.’ 
Simulation & Games, vol. 12, no. 4 (December), pp. 480 – 488. 

Ribaud, V. and Saliou, P. (2008). ‘Evolution of an Integrated Course Towards a Sandwich 
Course.’ In A. Cortesi and F. Luccio (eds.), Proceedings of the 2008 Informatics 
Education Europe III Conference, (Venice, Italy, 4 - 5 December), pp. 92 – 104. 
New York: ACM. 

Richards, L. (2009). Handling Qualitative Data, 2nd edition. Thousand Oaks: Sage 
Publications 

Richardson, G. P. (1986). ‘Problems with Causal-Loop Diagrams.’ System Dynamics 
Review, vol. 2, no. 2 (Summer), pp. 158 – 170. 

Richardson, G. P. (1991). Feedback Thought in Social Science and Systems Theory. 
Waltham: Pegasus Communications 

Richardson, G. P. (1997). ‘Problems With Causal-Loop Diagrams Revisited.’ System 
Dynamics Review, vol. 13, no. 3 (Fall), pp. 247 – 252. 

Riddell, R. (1997). ‘Doom Goes to War.’ Wired, vol. 5, no. 4 (April), pp. 113 – 118, 164 – 
166. 

Riehle, R. D. (2008). An Engineering Context for Software Engineering. Unpublished PhD 
thesis, Naval Postgraduate School, Monterey, California. 

Ritter, G. (1958). The Schlieffen Plan: Critique of a Myth. Translated by A. Wilson and E. 
Wilson. London: Oswald Wolff (Publishers) Ltd 

Roberts, E. B. (1964). The Dynamics of Research and Development. New York: Harper & 
Row 



 
 

 Page 141 

 

Roberts, N., Andersen, D. F., Deal, R. M., Garet, M. S. and Shaffer, W. A. (1983). 
Introduction to Computer Simulation: A System Dynamics Modeling Approach. 
Portland: Productivity Press 

Robillard, P. N. and Robillard, M. (1998). ‘Improving Academic Software Engineering 
Projects: A Comparative Study of Academic and Industry Projects.’ Annals of 
Software Engineering, vol. 6, no. 1, pp. 343 – 363. 

Rodriguez, D., Sicilia, M. A., Cuadrado-Gallego, J. J. and Pfahl, D. (2006). ‘e-Learning in 
Project Management Using Simulation Models: A Case Study Based on the 
Replication of an Experiment.’ IEEE Transactions on Education, vol. 49, no. 4, 
pp. 451– 463. 

Ronis, D. L. (2008). Problem-Based Learning for Math & Science : Integrating Inquiry 
and the Internet, 2nd edition. Thousand Oaks: Corwin Press 

Rossman, G. B. and Rallis, S. F. (1998). Learning in the Field: An Introduction to 
Qualitative Research. Thousand Oaks: Sage Publications 

Rousseau, D. and Hayes-Roth, B. (1996). Personality in Synthetic Agents (KSL 96-21). 
Stanford: Department of Computer Science, Stanford University. 

Royce, W. (1998). Software Project Management: A Unified Framework. Reading, 
Massachusetts: Addison-Wesley 

Royce, W. W. (1970). ‘Managing the Development of Large Software Systems.’ 
Proceedings of IEEE Wescon, pp. 1 – 9. Los Alamitos: IEEE Computer Society 
Press. 

Rusu, A., Russell, R., Robinson, J. and Rusu, A. (2010). ‘Learning Software Engineering 
Basic Concepts Using a Five-Phase Game.’ Proceedings of the 40th ASEE/IEEE 
Frontiers in Education Conference, (Washington, DC, 27 - 30 October), pp. 2SD-
1 – 2SD1-6. Washington: IEEE Computer Society. 

Ryan, T. (2000). ‘The Role of Simulation Gaming in Policy-Making.’ Systems Research 
and Behavioral Science, vol. 17, no. 4 (July – August), pp. 359 – 364. 

Sauer, C. (1993). Why Information Systems Fail: A Case Study Approach. Henley-on-
Thames: Alfred Waller Limited 

Savery, J. R. and Duffy, T. M. (1994). ‘Problem Based Learning: An Instructional Model 
and its Constructivist Framework.’ Educational Technology, vol. 35, no. 5, pp. 31 
– 38. 

Savin-Baden, M. (2003). Facilitating Problem-Based Learning. Maidenhead: The Society 
for Research into Higher Learning & Open University Press 

Savin-Baden, M. and Major, C. H. (2004). Foundations of Problem-Based Learning. 
Maidenhead: The Society for Research into Higher Learning & Open University 
Press 

Savin-Baden, M. and Wilkie, K. (1996). Problem-Based Learning Online. Maidenhead, 
Berkshire: Open University Press 

Sayre, F. (1911). Map Maneuvers and Tactical Rides, 4th edition. Springfield, 
Massachusetts: Springfield Printing & Binding Company 

Schaffer, W. M. (1984). ‘Stretching and Folding in Lynx Fur Returns: Evidence for a 
Strange Attractor in Nature?’ American Naturalist, vol. 124, no. 6, pp. 798 – 820. 



 
 

 Page 142 

 

Schein, E. H. (1980). Organizational Psychology, 3rd edition. Englewood Cliffs: Prentice-
Hall 

Schlimmer, J. C., Fletcher, J. B. and Hermens, L. A. (1994). ‘Team-Oriented Software 
Practicum.’ IEEE Transactions on Education, vol. 37, no. 2 (May), pp. 212 – 220. 

Schott, B. (1976). ‘Using a Business Game to Teach Risk Management.’ Journal of Risk 
and Insurance, vol. 43, no. 3 (September), pp. 526 – 532. 

Schrage, M. and Peters, T. (1999). Serious Play : How the World's Best Companies 
Simulate to Innovate. Boston: Harvard Business School Press 

Schumann, P. L., Anderson, P. H. and Scott, T. W. (1996). ‘Introducing Ethical Dilemmas 
into Computer-Based Simulation Exercises to Teach Business Ethics.’ 
Developments in Business Simulations and Experiential Exercises, vol. 23, pp. 74 
– 80. 

Schwaber, K. (2004). Agile Project Management with Scrum. Redmond: Microsoft Press 

Schwartz, P., Mennin, S. and Webb, G. (2001). Problem-Based Learning: Case Studies, 
Experience and Practice. New York: Routledge 

Sebern, M. J. (2002). ‘The Software Development Laboratory: Incorporating Industrial 
Practice in an Academic Environment.’ Proceedings of the 15th Conference on 
Software Engineering Education and Training, (Covington, Kentucky, 25 - 27 
February), pp. 118 – 123. Los Alamitos: IEEE Computer Society. 

Selye, H. (1974). Stress Without Distress. Philadelphia: Signet Books 

Selye, H. (1978). The Stress of Life, 2nd edition. New York: McGraw-Hill 

Senge, P. M. (1990). The Fifth Discipline: The Art & Practice of The Learning 
Organization. Milsons Point: Random House 

Senge, P. M. (2006). The Fifth Discipline: The Art & Practice of The Learning 
Organization, Revised edition. London: Random House Business Books 

Senge, P. M. and Fulmer, R. M. (1993). ‘Simulations, Systems Thinking and Anticipatory 
Learning.’ Journal of Management Development, vol. 12, no. 6, pp. 21 – 33. 

Senge, P. M., Kleiner, A., Roberts, C., Ross, R. B. and Smith, B. J. (1994). The Fifth 
Discipline Fieldbook. London: Nicholas Brealey Publishing 

Sengupta, K., Abdel-Hamid, T. K. and Bosley, M. (1999). ‘Coping with Staffing Delays in 
Software Project Management: An Experimental Investigation.’ IEEE 
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 
vol. 29, no. 1, pp. 77 – 91. 

Sharp, H. and Hall, P. (2000). ‘An Interactive Multimedia Software House Simulation for 
Postgraduate Software Engineers.’ Proceedings of the 22nd International 
Conference on Software Engineering, (Limerick, Ireland), pp. 688 – 691. New 
York: ACM. 

Shaw, K. and Dermoudy, J. (2005). ‘Engendering an Empathy for Software Engineering.’ 
Proceedings of the 7th Australasian Conference on Computing Education, 
(Newcastle, New South Wales), pp. 135 – 144. Sydney: Australian Computer 
Society. 

Shim, J. K. (1978). ‘Management Game Simulation: Survey and New Direction.’ 
University of Michigan Business Review, vol. 30, no. 3 (May), pp. 26 – 29. 



 
 

 Page 143 

 

Simon, H. A. (1957). Models of Man Social and Rational: Mathematical Essays on 
Rational Human Behavior in a Social Setting. New York: John Wiley & Sons 

Simon, H. A. (1996). The Sciences of the Artificial, 3rd edition. Cambridge, Massachusetts: 
The MIT Press 

Simons, K. L. (1993). ‘New Technologies in Simulation Games.’ System Dynamics Review, 
vol. 9, no. 2 (Summer), pp. 135 – 152. 

Singer, P. W. (2010). ‘Meet the Sims... and Shoot Them. The Rise of Militainment.’ 
Foreign Policy, no. 178 (March/April), pp. 91 – 95. 

Sitzmann, T. (2011). ‘A Meta-Analytic Examination of the Instructional Effectiveness of 
Computer-Based Simulation Games.’ Personnel Psychology, vol. 64, no. 2, pp. 
489 – 528. 

Smith, R. (2010). ‘The Long History of Gaming in Military Training.’ Simulation & 
Gaming, vol. 41, no. 1 (February), pp. 6-19. 

Smith, R. D. (1998). ‘Essential Techniques for Military Modeling & Simulation.’ In D. J. 
Medeiros, E. F. Watson, J. S. Carson and M. S. Manivannan (eds.), Proceedings of 
the 1998 Winter Simulation Conference, (Washington, D.C.), pp. 805 – 812. Los 
Alamitos: IEEE Computer Society Press. 

Sobkowiak, R. T. and LeBleu, R. E. (1994). ‘A Proving Ground for Organizational 
Change.’ Computerworld, vol. 28, no. 41 (10 October), p. 41. 

Sommerville, I. (2007). Software Engineering, 8th edition. Addison-Wesley 

Starr, P. (1984). The Social Transformation of American Medicine: The Rise of a Sovereign 
Profession and the Making of a Vast Industry. New York: Basic Books 

Sterling, B. (1993). ‘War is Virtual Hell.’ Wired, vol. 1, no. 1 (March/April), pp. 46 - 51, 94 
- 99. 

Sterman, J. D. (1988). People Express Management Flight Simulator [computer software],  
Banbury, UK: Phrontis Limited. 

Sterman, J. D. (1989). ‘Modeling Managerial Behavior: Misperceptions of Feedback in a 
Dynamic Decision Making Environment.’ Management Science, vol. 35, no. 3 
(March), pp. 321 – 339. 

Sterman, J. D. (1994). ‘Learning In And About Complex Systems.’ System Dynamics 
Review, vol. 10, no. 2 – 3 (Summer - Fall), pp. 291 – 330. 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modelling for a Complex 
World. New York: Irwin McGraw-Hill 

Stix, G. (1994). ‘Aging Airways.’ Scientific American, vol. 270, no. 5 (May), pp. 96 –104. 

Strauss, A. L. (1987). Qualitative Analysis for Social Scientists. Cambridge: Cambridge 
University Press 

Suits, B. (1967). ‘What is a Game?’ Philosophy of Science, vol. 34, no. 2 (June), pp. 148 – 
156. 

Suits, B. (2005). ‘Construction of a Definition.’ In K. Salen and E. Zimmerman (eds.), The 
Game Design Reader, pp. 172 – 191. Cambridge, Massachusetts: The MIT Press. 



 
 

 Page 144 

 

Sutherland, J. and van den Heuvel, W.-J. (2002). ‘Enterprise Application Integration and 
Complex Adaptive Systems.’ Communications of the ACM, vol. 45, no. 10 
(October), pp. 59 – 64. 

Tan, J., Wen, H. J. and Awad, N. (2005). ‘Health Care and Services Delivery Systems as 
Complex Adaptive Systems.’ Communications of the ACM, vol. 48, no. 5 (May), 
pp. 36 – 44. 

Tang, C., Lai, P., Tang, W., Davis, H., Frankland, S., Oldfield, K., Walters, M., Ng, M. L., 
Tse, P., Taylor, G., Tiwari, A., Yim, M. and Yuen, E. (1997). ‘Developing a 
Context-Based PBL Model.’ In J. Conway, R. Fisher, L. Sheridan-Burns and G. 
Ryan (eds.), Research and Development in Problem Based Learning:  Integrity, 
Innovation, Integration, pp. 588 – 589. Newcastle: Australian Problem Based 
Learning Network. 

Taran, G. (2007). ‘Using Games in Software Engineering Education to Teach Risk 
Management.’ Proceedings of the 20th Conference on Software Engineering 
Education & Training, (Dublin, Ireland, 3 - 5 July), pp. 211 – 220. Los Alimitos: 
IEEE Computer Society Press. 

Tennyson, R. D. (1994). ‘The Big Wrench vs. Integrated Approaches: The Great Media 
Debate.’ Educational Technology Research and Development, vol. 42, no. 3, pp. 
15 – 28. 

Thomas, C. J. and Deemer, W. L. (1957). ‘The Role of Operational Gaming in Operations 
Research.’ Operations Research, vol. 5, no. 1 (February), pp. 1 – 27. 

Tipton, R. (2000). ‘Make 5/1/00 National “Hug-a-Programmer” Day.’ NEWS/400, no. 3 
(March), p. 17. 

Toffler, A. (1970). Future Shock. London: The Bodley Head 

Toth, F. L. (1994). ‘Policy Exercises: The First 10 Years.’ In D. Crookall and K. Arai 
(eds.), Simulation and Gaming Across Disciplines and Cultures, pp. 257 – 264. 
Thousand Oaks: Sage Publications. 

Truex, D. P., Baskerville, R. and Klein, H. (1999). ‘Growing Systems in Emergent 
Organizations.’ Communications of the ACM, vol. 42, no. 8 (August), pp. 117 – 
123. 

Tvedt, J. D. (1996). An Extensible Model for Evaluating the Impact of Process 
Improvements on Software Development Cycle Time. Unpublished PhD thesis, 
Arizona State University, Phoenix, Arizona. 

van der Meij, H., Albers, E. and Leemkuil, H. (2011). ‘Learning from Games: Does 
Collaboration Help?’ British Journal of Educational Technology, vol. 42, no. 4, 
pp. 655 – 664. 

Van Joolingen, W. R. and De Jong, T. (1998). ‘Scientific Discovery Learning with 
Computer Simulations of Conceptual Domains.’ Review of Educational Research, 
vol. 68, no. 2, pp. 179 – 201. 

van Vliet, H. (2006). ‘Reflections on Software Engineering Education.’ IEEE Software, 
vol. 23, no. 3 (May/June), pp. 55 – 61. 

VanSickle, R. L. (1986). ‘A Quantitative Review of Research on Instructional Gaming: A 
Twenty-Year Perspective.’ Theory and Research in Social Education, vol. 14, no. 
3, pp. 245 – 264. 



 
 

 Page 145 

 

Variale, T., Rosetta, B., Steffen, M., Rubin, H. and Yourdon, E. (1994). ‘Modeling the 
Maintenance Process.’ American Programmer, vol. 7, no. 3 (March), pp. 29 – 37. 

Veglahn, P. A., Frazer, J. R. and Bommer, M. R. W. (1978). ‘Computer Simulation— 
Training Tool for Collective Bargaining.’ Personnel Journal, vol. 57, no. 11 
(November), pp. 614 – 617. 

Visiongain (2010). The Military Simulation and Virtual Training Market 2010-2020. 
London: Visiongain. 

Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K. and Wright, M. 
(2006). ‘Computer Gaming and Interactive Simulations for Learning: A Meta-
Analysis.’ Journal of Educational Computing Research, vol. 34, no. 3, pp. 229-
243. 

von Bertalanffy, L. (1968). General System Theory. New York: George Braziller 

Wang, A. I., Øfsdahl, T. and Morch-Storstein, O. K. (2008). ‘An Evaluation of a Mobile 
Game Concept for Lectures.’ Proceedings of the 21 Conference on Software 
Engineering Education and Training, (Charleston, South Carolina, 14 - 17 April), 
pp. 197 – 204. Los Alimitos: IEEE Computer Society Press. 

Wang, T. and Zhu, Q. (2009). ‘A Software Engineering Education Game in a 3-D Online 
Virtual Environment.’ Proceedings of the 1st International Workshop on 
Education Technology and Computer Science, (Wuhan, Hubei, China, 7 - 8 
March, 2009), pp. 708 – 710. Los Alimitos: IEEE Computer Society Press. 

Watson, H. J. and Blackstone, J. H. (1989). Computer Simulation, 2nd edition. New York: 
John Wiley & Sons 

Watt, K. E. F. (1977). ‘Why Won't Anyone Believe Us?’ Simulation, vol. 28, no. 1 
(January), pp. 1 – 3. 

Weinberg, G. M. (1998). The Psychology of Computer Programming, silver anniversary 
edition. New York: Dorset Housing Publishing 

Wenzler, I. (2009). ‘The Ten Commandments for Translating Simulation Results into Real-
Life Performance.’ Simulation & Gaming, vol. 40, no. 1 (February), pp. 98 – 109. 

Williams, D. (1978). ‘Computer Games that Planners Play.’ Business Week, no. 2565 (18 
December), p. 66. 

Wilson, A. (1968). The Bomb and the Computer. London: Barrie & Rockliff, The Cresset 
Press 

Wilson, K. A., Bedwell, W. L., Lazzara, E. H., Salas, E., Burke, C. S., Estock, J. L., Orvis, 
K. L. and Conkey, C. (2009). ‘Relationships Between Game Attributes and 
Learning Outcomes.’ Simulation & Gaming, vol. 40, no. 2 (April), pp. 217 – 266. 

Wolfe, J. (1978). ‘The Effects of Game Complexity on the Acquisition of Business Policy 
Knowledge.’ Decision Sciences, vol. 9, no. 1 (January), pp. 143 – 155. 

Wolfe, J. (1997). ‘The Effectiveness of Business Games in Strategic Management Course 
Work.’ Simulation & Gaming, vol. 28, no. 4 (December), pp. 360 – 376. 

Wolfe, J. and Fritzsche, D. J. (1998). ‘Teaching Business Ethics with Management and 
Marketing Games.’ Simulation & Gaming, vol. 29, no. 1 (March), pp. 44 – 59. 



 
 

 Page 146 

 

Wolfe, J. and Guth, G. R. (1975). ‘The Case Approach versus Gaming in the Teaching of 
Business Policy: An Experimental Evaluation.’ The Journal of Business, vol. 48, 
no. 3 (July), pp. 349 – 364. 

Wolstenholme, E. F. (1990). System Enquiry: A System Dynamics Approach. Brisbane: 
John Wiley & Sons 

Woods, D. R. (1996). ‘Problem-Based Learning for Large Classes in Chemical 
EDngineering.’ In L. Wilkserson and W. H. Gijselaers (eds.), Bringing Problem-
Based Learning to Higher Education: Theory and Practice, pp. 91 – 99. New 
York: Jossey-Bass. 

Woolfolk, A. E. (2009). Educational Psychology, 11th edition. Upper Saddle River: 
Prentice Hall 

Ye, E., Chang, L. and Polack-Wahl, J. A. (2007). ‘Enhancing Software Engineering 
Education Using Teaching Aids in 3-D Online Virtual Worlds.’ Proceedings of the 
37th Annual Frontiers In Education Conference - Global Engineering: Knowledge 
Without Borders, Opportunities Without Passports, (San Antonio, Texas, 18 - 21 
October), pp. T1E-8 – T1E-13. Los Alimitos: IEEE Computer Society Press. 

Yeh, R. T. (2002). ‘Educating Future Software Engineers.’ IEEE Transactions on 
Education, vol. 45, no. 1 (February), pp. 2 – 3. 

Yourdon, E. (1992). Decline and Fall of the American Programmer. Sydney: Prentice-Hall 

Yourdon, E. (1998). Rise and Resurrection of the American Programmer. Sydney: 
Prentice-Hall 

Yourdon, E. (2000). ‘Y2K Success Lessons.’ Computerworld, vol. 34, no. 4 (24 January), 
p. 40. 

Yourdon, E. (2004). Death March, 2nd edition. Upper Saddle River: Prentice Hall 

Zagal, J. P., Rick, J. and Hsi, I. (2006). ‘Collaborative Games: Lessons Learned from Board 
Games.’ Simulation & Gaming, vol. 37, no. 1 (March), p. 24 — 40. 

Zapata, C. M. (2010). ‘A Classroom Game for Teaching Management of Software 
Companies.’ Dyna, vol. 77, no. 163, pp. 290 – 299. 

Zapata, C. M. and Awad-Aubad, G. (2007). ‘Requirements Game: Teaching Software 
Project Management.’ CLEI Electronic Journal, vol. 10, no. 1 (June). 

Zhu, Q., Wang, T. and Tan, S. (2007). ‘Adapting Game Technology to Support Software 
Engineering Process Teaching: From SimSE to MO-SEProcess.’ Proceedings of 
the 3rd International Conference on Natural Computation, (Hainan, China, 25 - 
27 August). Washington: IEEE Computer Society. 

Zorpette, G. (1991). ‘Emulating the Battlefield.’ IEEE Spectrum, vol. 28, no. 9 
(September), pp. 36 – 39. 

 
  



 
 

 Page 147 

 

Appendices 

Appendix	A:	Causal	Loop	Diagrams	

A causal-loop diagram is a set of variables connected by arrows that denote the 

causal influences between the variables, and which can be used to elicit, capture, 

and communicate mental models (Sterman, 2000, p. 137). For instance, consider 

the following causal-loop diagram: 

 

 
Figure 14: A simple causal loop diagram 

 

This causal-loop diagram describes a self-fulfilling prophecy, a false definition of a 

situation that evokes a new behaviour which makes the originally false conception 

come true (Merton, 1948, p. 195; Richardson, 1991, pp. 83 - 84). In this case, 

Depression-era bank depositors, fearing for the solvency of their bank for some 

reason (rumour, speculation, national economic performance…), decide to 

withdraw their funds. The solvency of the bank is slightly affected but, more so, 

less skittish depositors see this happening and decide it is now time to withdraw 

their funds, and so the snowball grows until the solvency of the bank is truly 

affected. 

 

The arrows in the diagram represent a causal link or relationship between two 

variables, between the cause and the effect, meaning that when one changes it will 

affect the other. Such a relationship is causal “if it is necessarily sequential in time 

and incorporates some hypothesis about the mechanisms whereby one element 

directly influences another” (Meadows & Robinson, 1985, p. 11). The S 

(sometimes represented as a +) and the O (sometimes represented as a -) at the 

head of the arrows indicate the polarity, or the way in which this change will 

happen (Maruyama, 1963, pp. 175 - 176): 

Perceived solvency
of bank

Weak or uncertain
economic conditions

Fear of bank
failure

Tendency to withdraw
personal savings

Bank reserves on
hand

Solvency of bank

O

O

S

S

O

S

S



 
 

 Page 148 

 

 

S, or +, means that if the cause changes, the effect will change in the same 

direction (either increase or decrease) beyond what it would have otherwise done. 

O, or -, means that if the cause changes, the effect will change in the opposite 

direction (either increase or decrease) beyond what it would have otherwise done. 

 

The key phase in the above descriptions is beyond what it would have otherwise 

done. A change in a cause variable may not necessarily mean the effect will also 

change because there may be other factors feeding into the effect. Therefore, to 

know what actually happens, we need to also know how all the other variables are 

changing at that time (Richardson, 1986, p. 161; Sterman, 2000, p. 139). In this 

quest, there is some debate over whether the S/O or +/- notation is better, or 

whether an altogether fresh notation is needed (Richardson, 1997; Ford, 1999, p. 

82). Still, if a causal-loop diagram is being used as an initial exploration of a topic, 

and changes in other parts of the diagram are appreciated, then the choice of either 

notation should be a personal preference. 

 

Where a series of causal relationships form a loop, for example, Perceived solvency 

of bank  Tendency to withdraw personal savings  Perceived solvency of bank, 

then the loop itself has a polarity (Roberts et al., 1983, p. 40): 

 

When the number of opposite causal relationships (those with O or – at the head) in 

the loop is an odd number, then the loop represents balancing feedback: changes 

within the loop feed back to negate or stabilise the original change. Balancing 

feedback usually seeks a goal, or seeks to reduce the difference between where a 

system is now and where it should be. As long as there is a difference between the 

present state of the system and its desired state, balancing feedback will move the 

system in the direction of the desired change. 

 

When the number of opposite causal relations is even, as in this case, then the loop 

represents reinforcing feedback: changes within the system amplify the original 

change in the same direction. This may lead to either growth or decline depending 

on the starting conditions. 

 

A causal-loop diagram consisting of even three or four such loops can rightly be 

called complex (Forrester, 1969, p. 108) since the interplay of different behaviours 

can be difficult to infer. Therefore, any causal-loop diagram needs to be read 



 
 

 Page 149 

 

critically, particularly to confirm that it depicts causal relations between variables 

and not just correlations. Correlations among variables reflect the past behaviour of 

the system, but may not hold in all circumstances. Sterman (2000, pp. 142 - 143) 

describes a trivial example in which there appears be a causal relationship between 

ice-cream sales and a city’s murder rate: data points to an increasing murder rate 

during a time when ice-cream sales also increase. Naturally, drawing a direct 

causal link between the two is dangerous since it suggests that cutting ice-cream 

consumption would cut the murder rate. In fact, temperature is more likely to be a 

causal link affecting both variables. 

 

Causal loop diagrams are a communication tool, not a simulation tool. They help 

us think about the structure of the system (Ford, 1999, p. 82). 

 	



 
 

 Page 150 

 

Appendix	B:	Stock	and	Flow	Diagrams	

Whereas causal-loop diagrams emphasise the feedback structure of systems, stock-

and-flow diagrams emphasise the underlying physical structure of the system and 

depict its state at certain points in time (Sterman, 2000, p. 102). For instance, 

consider the following stock-and-flow diagram: 

 
Figure 15: A stock and flow diagram of the classic predator-prey relationship 

 

This stock-and-flow diagram describes a classic predator-prey relationship between 

the snowshoe hare and lynxes in the area surrounding Hudson Bay in North 

America in the nineteenth century (Roberts et al., 1983, pp. 119 - 130; Schaffer, 

1984) and is based on detailed time-series data of pelts sold to the Hudson Bay 

Company. The number of hares is a function of the forage they have access to in 

the area, less the number taken by lynxes. Meanwhile, the number of lynxes is a 

function of how many hares they can catch, assuming that their birth rate is 

moderated by current environmental conditions. If the hare population increases to 

a level that cannot be sustained by the available forage, then their numbers will fall 

through starvation as well as through predation. The lynxes will thereafter have 

less prey and their population will be similarly affected. The conditions are then set 

for a fresh oscillation of both predator and prey as shown in Figure 16. 

 



 
 

 Page 151 

 

 
Figure 16: Predator and prey oscillations. 

 

The stock-and-flow notation of this diagram, first described by Forrester (1961, pp. 

67 - 72), consists of a small number of symbols that together form a grammar 

telling a story: 

 

 Stocks or levels can be thought of as nouns since they represent an 

accumulation of something (hares, lynxes, money, inventory, staff, morale…) 

at a point in time.  

 Flows or rates determine how the stocks will be filled or drained and so are 

analogous to verbs. Stuff (hares, lynxes, money, material, people, orders…) 

flows through the pipe of the flow in the direction of the arrow and at a rate 

determined by the flow regulator in the middle. The flow regulator is fitted 

with a spigot that can be conceptually tightened or loosened by other variables 

within the model. The cloud at the end of the flow represents the boundary of 

the model. 

 Converters modify flows within the system, just as adverbs modify verbs. They 

are often used to break out the detail of the logic that might otherwise be buried 

within a flow and might be used to represent constant values. Converters 

typically influence the behaviours of the regulators on the flows. 

 Connectors tie the other three building blocks together. They represent inputs 

and outputs, not inflows and outflows. Connectors do not take on numerical 

values— they merely transmit values taken on by other building blocks. 

 



 
 

 Page 152 

 

Beneath these symbols are stored the functions and values (depending on the 

implementing software) that drive the simulation and ultimately yield the output 

shown in Figure 16. 

 

 

 

 	



 
 

 Page 153 

 

Appendix	C:	Simsoft	Game	Board	

 

 

 

 

 

 	



 
 

 Page 154 

 

Appendix	D:	Simsoft	Instructions	to	Players	

About	Simsoft	

Simsoft is a game based on problem-based learning principles that is designed to 

demonstrate some fundamental principles of software project management in a 

controlled and inexpensive way so that software engineers and software project 

managers don't repeat the same mistakes in the real world. 

  

In Simsoft, you play the role of a project manager for a software development 

company. For each project, you can draw on a pool of software developers, each 

with different levels of experience, skills, and charge-out rates. You will be 

presented with a scenario for a software development project, which you will then 

manage through to delivery. A business analyst and technical architect from your 

company have already worked with your client to flesh out the requirements of the 

project and a high-level technical architecture. The results are in an attached 

project document. Your job as project manager will be to: 

  

 Read the requirements and come up with time and cost estimates. 

 Decide on the number and composition of your software development team. 

 Manage the project through to completion. 

  

Don't be too concerned with specific technologies such as programming languages 

or databases, or with re-engineering business processes: these have already been 

worked out by the business analyst and technical architect in discussions with the 

client. 

  

Good luck! 

  

Playing	Simsoft	

To play Simsoft you will need to read and analyse the scenario and the project 

documentation and then become familiar with the model behind Simsoft. This is a 

system dynamics model but the causal loop model over the page gives a high-level 

view of this. 

 

The basic cycle of play is: 

 



 
 

 Page 155 

 

 Review the state of the game from the board and decide if any adjustment is 

needed to the project's personnel. If you feel you need to hire more staff, use 

your poker chips to buy an appropriate piece from the game administrator. The 

administrator will place the piece on the board in the correct place. 

 You should also review the project report panel of the Calculator (Section One) 

to see if anything else needs to be considered. There may be surprise project 

events popping up that you will need to factor into your decisions. 

 If your team has decided to make changes, enter the changes into the calculator 

(Section Two). Press the Submit button even if you have decided to make no 

changes. 

 Section 3 of the calculator will tell you which pieces to move around the board. 

 Press the Advance key to move the project on by one week.   

 The game is now in a new state and the cycle begins again. 

 

Feel free to use the game board as your scratch pad for any notes and thoughts you 

may have during the game. 

 

You can ask your administrator for any help during the course of the game.  

 

Statement	of	Work	

Your new client is Musty Books. 

  

Musty Books is a second-hand book retailer that two years ago started selling its 

books online. Now, online sales exceed over-the-counter sales by a ratio of 4:1. 

Online customers normally pay for their online purchases by credit cards, but the 

commission fees charged by Musty Books’ credit card provider are becoming 

expensive. Also, some customers don't have credit cards or are wary about buying 

online. While Musty Books allows these customers to order online and then post a 

cheque or money order, the process of matching mailed cheques to online orders, 

sometimes separated by a couple of weeks, is cumbersome and error-prone. 

  

To streamline its order processing and to help its cashflow, Musty Books has 

decided to offer its customers the option of paying for their purchases by BPAY, a 

centralised bill paying system in which all the major Australian banks and credit 

unions participate. Under this scheme, customers will be given Musty Books’ 

BPAY biller reference number and an order number in the final stage of the 



 
 

 Page 156 

 

ordering process. Later, they can then log onto their own bank’s web site and pay 

for their purchases by quoting these two numbers. After a couple of days, the funds 

will be credited to Musty Books’ bank account and Musty Books’ bank, Robba 

Bank, will send them a daily comma-separated text file detailing the amounts and 

order numbers. 

  

Robba Bank won’t email the potentially sensitive BPAY file to its clients and won't 

allow clients to connect to its own systems to collect the file. Instead, Robba Bank 

will install a small application, FileSucker, on one of Must Books’ computers 

which will periodically connect to the bank and securely download the BPAY file. 

Once the file has been downloaded, Musty Books can process it to fulfil any 

outstanding orders and reconcile its bank account. 

  

The necessary paper work has been completed with the bank and Musty Books has 

received its BPAY biller number and a copy of the FileSucker software. Changes 

have been made to the online ordering process to offer the new payment option and 

these will be turned on once the backend processing is complete. 

  

Your job is to manage the project and see that it is delivered according to the 

statement of work, which covers the installation and configuration of the 

FileSucker software and automating the collection and processing of the BPAY 

file. Musty Books have told you they plan to relaunch their online store and its new 

payment option in exactly four months time and they have already committed to 

expensive print and television advertising. They also believe their online store and 

the BPAY option will become the company’s major source of income and a vital 

part of its cashflow so the speed and accuracy of processing are critical. 

  

 

 

 	



 
 

 Page 157 

 

Appendix	E:	Simsoft	Instructions	to	Game	Administrators	

 

For each game session, the following materials are needed: 

 

 Simsoft game boards 

 Marker pens 

 Note pads and pencils 

 Laptops or PCs for the calculator, including spare extension cords 

 Poker chips 

 Unit-of-work counters 

 Personnel pieces 

 Statements of work 

 Instructions to participants 

 

Set up the laptops or PCs as close as possible to the related game board. Start the 

calculator by double clicking on the SimsoftCalc.bat file in the bin directory. 

 

Ask the players to complete the pre-game survey as soon as they come in. 

 

When all players have completed the pre-game survey and are ready to start 

playing, ask them to form into teams of two or three or more. If possible rearrange 

the teams so they aren't composed of all the same skills sets (all developers, all 

students, or all project managers.) 

 

Give a brief introduction to the game session and how things will play out. 

 

Hand out the player instructions and briefly describe the game scenario. Ask the 

players to read it together and discuss before they start playing the game. Describe 

how the game will work by referring to the player instructions. Reiterate that the 

basic cycle of play is: 

 

 Review the state of the game from the board and decide if any adjustment is 

needed to the project's personnel. If they want to hire more staff, they need to 

use their poker chips to buy a piece from the game administrator. They should 

also review the project report panel of the Calculator (Section One) to see if 

anything else needs to be considered.  



 
 

 Page 158 

 

 

 If the team has decided to make changes, the changes should be entered into 

the calculator (Section Two). Press the Submit button even if no changes are 

made. 

 Move the unit of work pieces and personnel pieces around on the board 

according to Section 3 of the calculator. 

 Press the Advance key to move the project on by one week.   

 The game is now in a new state and the cycle begins again. 

 

Encourage the players to use the game board as their scratch pad for notes and 

thoughts as they play the game. 

 

While the game sessions are in progress, keep an eye out for any players hanging 

back and not participating or who are being overridden or dominated by other 

players. Encourage them to participate in the game by, for example, asking them 

what they thought of the last decision. 

 

 

 	



 
 

 Page 159 

 

Appendix	F:	Information	Letter	to	Participants	

 



 
 

 Page 160 

 

 

 	



 
 

 Page 161 

 

Appendix	G:	Informed	Consent	Document	

 

 



 
 

 Page 162 

 

 

 

 	



 
 

 Page 163 

 

Appendix	H:	Simsoft	Database	Design	

 

Game transactions are captured in a simple event-based relation data model (Figure 

17). 

 

 

 
Figure 17: Simsoft data model 

 

 	



 
 

 Page 164 

 

Appendix	I:	Pre‐Game	Survey	

The following are the questions participants answered for the pre-game survey. 

Page	1.	Introduction	

Dear participant, 

 

Shortly you are going to play a game called Simsoft, in which you'll manage a 

simple software project from inception to completion. 

 

This quick pre-test questionnaire will ask you some general questions about project 

management and software development so that we have a baseline against which to 

measure the effectiveness of Simsoft.  

 

Don't worry if you don't know the answer to a question– there's an option on each 

question to cover that. 

Page	2.	About	You	and	Your	Team	

Tell a little about yourself and the team you played with. As mentioned in the 

Informed Consent and Information to Participants letters, we won't be able to 

identify individuals from this information. 

 

1. What was the reference number for your team? (This is in the title bar of the 

calculator and will look something like 21FA-61B2-2F5). 

 

2. Select the option that best describes your current position and the number of 

years you've been doing it. 

 

  Current Position  Experience 

 Software developer  0 – 1 year 

 Project Manager  2 to 5 years 

 General manager  5 to 10 years 

 Student (under-graduate) 10 to 15 years 

 Student (post-graduate)  15 or more years. 

 

Page	3.	About	Project	Management	and	Software	Engineering	

3. Software engineering is best described as:  



 
 

 Page 165 

 

 The practice of designing, building, and maintaining off-the-shelf software 

from prefabricated parts. 

 The practice of designing, building and maintaining ad-hoc software without 

the use of formal methods. 

 The practice of designing, building and maintaining reliable and cost-effective 

software using standard techniques. 

 The practice of designing, building and maintaining fast and flexible software 

specifically for Engineering applications. 

 The practice of designing, building and maintaining flashy, cheap and buggy 

software engineered to generate large initial sales and an on-going market for 

updates. 

 Don't know. 

 

4. The software crisis is: 

 

 How expensive software is to develop. 

 How long it takes to build software. 

 How hard software is to write. 

 How quickly software becomes obsolete. 

 All of the above. 

 Don't know. 

 

5. The software crisis exists because: 

 

 Programmers are lazy and managers are ignorant. 

 There is as yet no proven scientific method for building robust, efficient, 

reliable and cost-effective software. 

 There can never be a proven scientific method for building robust, efficient, 

reliable and cost-effective software. 

 There are proven scientific methods for building robust, efficient, reliable and 

cost-effective software, but they are too difficult for most software developers 

to understand. 

 There are proven scientific methods for building robust, efficient, reliable and 

cost-effective software, but they are being suppressed by the multinational 

software development conglomerates, who rely on selling annual software 

updates and bug-fixes. 



 
 

 Page 166 

 

 Don't know 

 

6. Which form of software development model is most suited to a system where all 

the requirements are known at the start of a project and remain stable throughout 

the project: 

 

 Waterfall model 

 Incremental model 

 Evolutionary model 

 Spiral model 

 Don't know 

 

7. A milestone in project management indicates: 

 

 The passing of 50% of the time allocated to the project. 

 The completion of the project 

 The conclusion of an important stage of a project and has zero time duration. 

 The conclusion of an important stage of a project and has a timer duration 

equal to the sum of the time durations for each step of that stage. 

 Don't know. 

 

8. You find that your project is going to miss its deadline by two months. What 

action do you take: 

 

 Meet with the client and negotiate to have the team size doubled until the 

project is back on track. 

 Meet with the client and negotiate a reduced scope or a new deadline. 

 Do nothing for now and review progress again in a week. 

 Keep quiet and ask the team to work over-time to make sure the original 

deadline is met. 

 Don't know. 

 

9. The correct order of steps to solve a problem is: 

 

 Analyse, design, develop, test, evaluate, implement, document. 

 Analyse, design, test, develop, document, implement, evaluate. 



 
 

 Page 167 

 

 Design, analyse, develop, document, implement, test, evaluate. 

 Analyse, design, develop, test, document, implement, evaluate. 

 Don't know. 

 

10. The success rate for software projects is very low. Although viewed from 

different perspectives, studies in the 1990s by Caper Jones, The Standish Group 

and the Defense Science Board conclude that the success rate for software projects 

is very low and that the high level of software scrap and rework is mostly 

indicative of: 

 

 Lack of software development skills 

 Immature process 

 Lack of adequate schedule 

 Lack of adequate budget 

 

Page	4.	Thank	you	

Thank you for taking the time to complete this questionnaire. When all of your 

teams mates have also finished, let the game facilitator know and they will start 

you on the game. 

 	



 
 

 Page 168 

 

Appendix	J:	Post‐Game	Survey	

The following are the questions participants answered for the post-game survey. 

 

Page	1.	Simsoft	and	Problem‐Based	Learning	Evaluation	

Dear participant, 

 

Recently, you played Simsoft, a game about managing a development project. 

 

The way in which this was treated is often called problem-based learning (PBL for 

short), and is somewhat different to the way of teaching and learning that you are 

probably familiar with. This means rather than giving people knowledge and then 

giving them some practice to apply the theory afterwards (such as tutorials, 

laboratory exercises and so on), it gives participants a problem to examine first and 

then goes through a solution later, but only after they have had time to digest the 

problem and discuss it amongst themselves. 

 

We are interested to know your views about this learning approach. Please 

therefore, take a few minutes to answer the following questions. 

 

Page	2.	About	You	and	Your	Team	

Tell a little about yourself and the team you played with. 

 

As mentioned in the Informed Consent and Information to Participants letters, we 

won't be able to identify individuals from this information. 

 

1. What was the reference number for your team? (This is in the title bar of the 

calculator and will look something like 21FA-61B2-2F5). 

 

2. Select the option that best describes your current position and the number of 

years you've been doing it. 

 

 Current Position    

Software developer   

 Project Manager    

General manager    

Student (under-graduate)  



 
 

 Page 169 

 

 Student (post-graduate)   

 

Experience 

0 – 1 year 

2 to 5 years 

5 to 10 years 

10 to 15 years 

15 or more years 

 

Page	3.	About	Games	in	General	

These questions are about games, like Simsoft, in general. 

 

3. Did you find the game interesting? 

 

 Very Boring 

 Boring 

 Neutral 

 Interesting 

 Very interesting 

 

4. Did you find that working on a detailed problem scenario helped put some 

aspects of project management or software engineering theory into context? 

 

 Not at all 

 Not really 

 Neutral 

 Somewhat 

 Very much 

Any other comments? 

 

5. Do you agree with the following statement: 

 

"Games are a better way to learn and understand technical material than more 

conventional ways such as through books, case studies, or lectures" 

 

 Not at all 



 
 

 Page 170 

 

 Not really 

 Neutral 

 Somewhat 

 Very much 

Any other comments? 

 

6. Do you agree with the following statement: 

 

"Do you think that games are a way of more thoroughly learning a topic than more 

conventional means (books, case studies, lectures)." 

 

 Not at all 

 Not really 

 Neutral 

 Somewhat 

 Very much 

 Other (please specify) 

 

Page	4.	About	Simsoft	in	Particular	

The following questions ask for your thoughts about playing Simsoft and whether 

it was easy to use and understand. 

 

7. Have you enjoyed playing the game? 

 

 Not at all 

 Not really 

 Neutral 

 Somewhat 

 Very much 

Any other comments? 

 

8. In general, did you find the task of playing Simsoft: 

 

 Too easy 

 Easy 

 About right 



 
 

 Page 171 

 

 Hard 

 Very hard 

 Other (please specify) 

 

9. Were the written instructions for Simsoft easy to understand? 

 

 Very difficult 

 Difficult 

 Neutral 

 Easy 

 Very easy 

Any other comments? 

 

10. Was Simsoft easy to use and navigate around? 

 

 Very difficult 

 Difficult 

 Neutral 

 Easy 

 Very easy 

Any other comments? 

 

11. Do you think the scenario represented something you might encounter in the 

real world? 

 

 Not at all 

 Not really 

 Neutral 

 Somewhat 

 Very much 

Any other comments? 

 

12. Was the logic of the game play apparent from the design of the game board? 

 

 Not at all 

 Not really 



 
 

 Page 172 

 

 Neutral 

 Somewhat 

 Very much 

 Other (please specify) 

 

13. Was it useful to play the game as a team? 

 

 Not at all 

 Not really 

 Neutral 

 Useful 

 Very useful 

Any other comments? 

 

14. Simsoft comes in two parts: the game board and a small calculator in which 

you entered your decisions. Would you have preferred a fully computerised 

version? 

 

 Definitely not 

 Not really 

 Neutral 

 Yes 

 Positively yes 

 Other (please specify) 

 

15. Did you think the length of time you played the game was: 

 

 Far too short 

 Too short 

 About right 

 Too Long 

 Far too long 

 Other (please specify) 

 

16. Considering the amount of time you spent playing Simsoft, would you be 

prepared to spend more or less time playing future, more comprehensive versions? 



 
 

 Page 173 

 

 

 Much less time time 

 A little less time 

 About the same amount of time 

 A little more time 

 Much more time 

 Other (please specify) 

 

17. Simsoft is an example of a 'serious game' or a game used for learning rather 

than pure entertainment. Have you played any other serious games? 

 

 Yes 

 No 

 

18. If you have played other serious games, how do you think Simsoft compares? 

 

 Much worse 

 Slightly worse 

 About the same 

 Better 

 Much better 

 Any other comments? 

 

19. How do you think Simsoft could be improved? 

 

Page	5.	Test	Your	Knowledge	

Just before you started playing Simsoft, you completed a short survey that asked 

some general project management and software engineering questions. The 

following are some similar questions. Use your general knowledge and anything 

you learned during the game to answer these. 

 

Don't worry if you don't know the answer to a question– there's an option for that. 

 

20. What is the single largest computer-related cost for most organisations? 

 

 Software analysis and design. 



 
 

 Page 174 

 

 Software implementation. 

 Software testing. 

 Software maintenance. 

 Coca Cola and pizza. 

 Don't know. 

 

21. Which of the following it the logical flow of any project? 

 

 Planning, Initiating, Executing, Controlling, Closing 

 Initiating, Planning, Controlling, Executing, Closing 

 Planning, Initiating, Executing, Controlling, Closing 

 Initiating, Planning, Executing, Controlling, Closing 

 Don't know. 

 

22. "Analysis requires the software engineer to become 'consciously expert' in the 

domain". This means: 

 

 The software engineer has to be conscientious about how they deal with 

experts. 

 The software engineer has to have a good and trained mind (i.e. an "expert 

consciousness") 

 The software engineer has to learn what to do in the domain, without thinking 

about how that knowledge was achieved. 

 The software engineer has to learn what to do in the domain, and be aware of 

what it is that they are doing. 

 The software engineer doesn't have to learn what to do in the domain, because 

it is enough to identify those experts who already do. 

 Don't know. 

 

23. Most common cause of conflicts in a project is: 

 

 Schedules 

 Technical opinions 

 Personal Issues 

 Project priorities 

 Don't know 



 
 

 Page 175 

 

 

24. Your project has just been assigned some critical extra work that must be 

completed by the original deadline in two month's time. What action do you take? 

 

 Calculate the number of extra people required and negotiate with the client to 

increase the size of the team accordingly. 

 Negotiate with the client to see what features can be deferred until later in 

order the fit in the new critical work. 

 Refuse to accept the work because it is outside the agreed scope. 

 Don't know. 

 

25. Product quality can be defined as: 

 

 Delivering a product with correct requirements 

 Delivering a product using correct development procedures 

 Delivering a product which is developed iteratively 

 Delivering a product using high quality procedures 

 Don't know. 

 

26. Which form of software development model is most suited to a system where 

the requirements are still being defined and the client is very concerned about the 

overall development cost. 

 

 Waterfall model 

 Incremental model 

 Evolutionary model 

 Spiral model 

 Don't know 

 

27. The project manager of a large multi-location software project team has 24 

members, out of which 5 are assigned to testing. Due to recent recommendations 

by an organisational quality audit team, the project manager is convinced to add a 

quality professional to lead the test team at additional cost, to the project. 

 



 
 

 Page 176 

 

The project manager is aware of the importance of communication, for the success 

of the project and takes this step of introducing additional communication 

channels, making it more complex, in order to assure quality levels of the project. 

 

How many additional communication channels are introduced as a result of this 

organizational change in the project? 

 

 25 

 24 

 5 

 1 

 

Page	6.	Anything	Else?	

28. Have we missed anything you think we should know about? Please let us know. 

 

Page	7.	Thank	you	

Thank you for taking the time to complete this questionnaire. All of your answers 

are completely confidential. 

 

 

 	



 
 

 Page 177 

 

Appendix	K:	Simsoft	Finding	Review	

The following are the questions four random participants were asked answer in 

order to confirm the findings described in Chapter 4— Findings. 

 

Page	1.	Simsoft	Findings	Review	

Dear participant, 

 

Recently, you played Simsoft, a game about managing a development project. You 

would be aware that Simsoft is being used as part of a research project to see if and 

how games can be used as part of software engineering and project management 

education. A preliminary set of findings have now been determined and as one of 

the original participants of the game sessions, we would like your views on 

whether the findings seem reasonable and are in line with your experience of 

playing the game. 

 

Feel free to add any further comments. 

 

1. The main finding of the project was that there was evidence the participants 

were learning by doing and building their own mental models about what was 

happening. Also, all groups of participants (students, software developers, and 

project managers) increased their scores between the pre- and post-game surveys. 

 

 Do you think this finding was reasonable? 

 No 

 Yes 

 Other (please specify) 

 

2. The second finding was that games such as Simsoft are not sufficient learning 

vehicles by themselves and need to be supplemented by other methods. The 

software developers and project managers were able to make decisions based on 

experience or completed university studies, but many students said they needed to 

know more than the game provided. 

 

 Do you think this finding is reasonable? 

 No 

 Yes 



 
 

 Page 178 

 

 Other (please specify) 

 

3. The third finding was that Simsoft is a suitable pedagogical device for 

participants of different skills and backgrounds. The participants in this research 

project came from a variety of Western and Eastern cultures; there were differences 

in language abilities; and experience in their fields ranged from nothing to 

seasoned professionals with a wide breadth of work and life experience. Yet, a 

majority of participants said they found the game interesting and it was pitched at 

the right level and was something they could easily play and understand. 

 

 Do you think this finding is reasonable? 

 No 

 Yes 

 Other (please specify) 

 

4. The fourth finding was that a majority of participants said they would be 

prepared to invest greater time and effort in games such as Simsoft if the reward 

was deeper understanding of a problem domain. Many participants said the game 

ended too soon or that they would like to create a scenario similar to their own 

work place or that they wanted more time to discuss their decisions. A group of ten 

players had previously played a real-time stock market game and felt that games 

run in real time gave time for considered judgments and added verisimilitude. 

 

 Do you think this finding is reasonable? 

 No 

 Yes 

 Other (please specify) 

 

5. The fifth finding was that the majority of the participants found working in 

groups was a positive experience. It has already been mentioned that the 

participants were a diverse group of cultures, skills, and experience and many felt 

they were able to work out collaborative decisions in a constructive manner. 

However, as with any group activity, facilitators need to be cognisant of any 

individuals dominating a group or others who might need a gentle prompt to 

contribute more. 

 



 
 

 Page 179 

 

 Do you think this finding is reasonable? 

 No 

 Yes 

 Other (please specify) 

 

6. The last finding was a majority of participants preferred to play around a game 

board rather than a fully computerised game because this was a familiar and simple 

activity and less time was lost to overcoming technological problems and to 

making simple ergonomic arrangements such as fitting all the team around a single 

computer. Even so, facilitators need to prepare the participants for the game 

sessions by giving them clear instructions and sufficient lead time to absorb the 

information. 

 

 Do you think this finding is reasonable? 

 No 

 Yes 

 Other (please specify) 

 

 



 
 

 Page 180 

 

Appendix	L:	Full	Data	Extract	of	Games	Used	in	Software	Engineering	Education	

 

ID  Study  Description  Experimental 

Design 

Sample Size (if 

known) and 

Population 

Data Collection 

Tool 

SWEBOK 

Knowledge Area 

Bloom Learning 

Outcome 

Observed Learning Outcomes 

GS‐01  University/Industry 

Collaboration in 

Developing a 

Simulation Based 

Software Project 

Management Training 

Course. (Collofello, 

2000).  

A single‐player game, based on a system 

dynamics model with an iThink user 

interface that models a software project. 

Players attempt different management 

exercises (risk management, life cycle 

model comparison, critical path 

scheduling, etc.) that follow the lecture 

material. 

Non‐ 

experimental 

16 students  Questionnaire  Software 

engineering 

management 

Software 

engineering 

process 

Knowledge  Learning was not assessed. 

GS‐02 
1 
Quantitative 

Modeling for the 

Interactive Simulation 

of Software Project 

(Drappa & Ludewig, 

1999) 

 

2
 Simulation in 

Software Engineering 

(Drappa & Ludewig, 

2000) 

SESAM (Software Engineering Simulation 

by Animated Models) is a model of a 

software project. Users run the model 

loaded with its initial project state and 

then tweak it to simulate different 

scenarios before running it again. Players 

take the role of a project manager and 

must plan and control a simulated 

project. Rather than a graphical user 

interface, players control the game by 

typing commands in a modelling 

language.  

Players analyse their performance 

through an after‐game analysis tool. 

1
 Non‐ 

experimental 

2
 True 

Experimental 

1
 10 

undergraduate 

project 

management 

students 

2
 19 second‐year 

computer 

science students 

1
 n/a 

2
 Pre‐ and post‐

game tests 

Project plan 

Software 

engineering 

management 

Knowledge 
1 
A qualitative assessment that the 

players experienced something 

similar to a real project, including 

panic when the deadlines were 

approaching. 

2
 Students in the experimental and 

control groups improved their 

performance in successive game 

sessions.  

GS‐03  An Interactive 

Multimedia Software 

Case studies are presented through a 

simulated office environment and then 

Non‐ 

experimental 

Post‐graduate 

distance 

Questionnaire  Software 

requirements 

Knowledge  Learning was not assessed. 



 
 

 Page 181 

 

House Simulation for 

Postgraduate Software 

Engineers (Sharp & 

Hall, 2000) 

completed outside of the game 

environment.  

education 

software 

engineering 

students. 

Software design

Software 

construction 

Software testing 

GS‐04  How to Successfully 

Use Software Project 

Simulation for 

Educating Software 

Project Managers 

(Mandl‐Striegnitz, 

2001) 

Participants play two sessions of SESAM 

(GS‐02) and their tutor analyzed their 

performance and provided feedback in 

between. 

Non‐ 

experimental 

40 

undergraduate 

software 

engineering 

students 

Questionnaire  Software 

engineering 

management 

Knowledge  Players improved their 

performance in the second session 

but still had problems monitoring 

their project and tracking progress. 

GS‐05  An Experiment for 

Evaluating the 

Effectiveness of Using 

a System Dynamics 

Simulation Model in 

Software Project 

Management 

Education (Pfahl et al., 

2001)   

A three‐phase (design, implementation, 

test) waterfall project modeled using 

System Dynamics. Key project variables 

were project duration, effort 

consumption, product size, and quality 

after testing. Participants were 

separated in two groups: one group 

managed a simulated software project 

with the aid of a System Dynamics model 

(Abdel‐Hamid, 1989); the other group 

used COCOMO (Boehm et al., 2000).  

True 

Experimental 

12 post‐graduate 

software 

engineering 

students 

Pre‐ and post‐

test 

questionnaires 

Software 

engineering 

management 

Knowledge Pre‐ and post‐session surveys 

indicated that participants were 

improving their knowledge of 

project management patterns and 

behaviors. Those using the 

simulation models performed 

better that those using COCOMO. 

GS‐06  An Externally 

Replicated Experiment 

for Evaluating the 

Learning Effectiveness 

of Using Simulations in 

Software Project 

Management 

Education (Pfahl et al., 

Same as for GS‐05.  True 

Experimental 

1
 12 graduate 

and post‐

graduate 

students 

majoring in 

computer 

science. 

 

Pre‐ and post‐

test 

questionnaires 

Software 

engineering 

management 

Knowledge  The results confirmed the initial 

findings in which students using the 

System Dynamics model generally 

performed better in the pre‐ and 

post‐test questionnaires than those 

using COCOMO. 



 
 

 Page 182 

 

2003).  

 

Evaluating the 

Learning Effectiveness 

of Using Simulations in 

Software Project 

Management 

Education: Results 

From a Twice 

Replicated Experiment 

(Pfahl et al., 2004). 

2
13 senior 

under‐graduate 

students 

majoring in 

computer 

science, electrical 

engineering, and 

computer 

engineering. 

GS‐07  Problems and 

Programmers: An 

Educational Software 

Engineering Card 

Game (Baker et al., 

2003). 

 

An Experimental Card 

Game for Teaching 

Software Engineering 

Processes (Baker et al., 

2005). 

 

Teaching Software 

Engineering Using 

Simulation Games 

(Navarro et al., 2004). 

A competitive card game called 

Problems and Programmers in which 

students play the role of project 

manager in a waterfall project. All 

players lead the same project. Players 

must balance several competing 

concerns including budget and the 

client’s demands regarding the reliability 

of the final software. Who finishes first, 

wins.  

Non‐ 

experimental 

28 

undergraduate 

students who 

had completed 

an introductory 

software 

engineering unit 

Questionnaire  Software 

engineering 

managementSoft

ware engineering 

process 

Knowledge  Players self‐assessed their level of 

learning in a post‐game survey.  

Most said the game was not good 

at teaching new knowledge or 

reinforcing existing knowledge. 

GS‐08  Engendering an 

Empathy for Software 

Players act as a project manager to 

deliver a product within time and budget 

Non‐ 

experimental 

Undergraduate 

software 

Post‐test 

questionnaire 

Software 

engineering 

Knowledge  The degree of learning was self‐

assessed by the participants and 



 
 

 Page 183 

 

Engineering (Shaw & 

Dermoudy, 2005). 

constraints. SimjavaSP uses discrete‐

event simulation as the game engine.  

engineering 

students 

management was found to be positive. 

GS‐09  Model‐Driven Game 

Development: 

Experience and Model 

Enhancements in 

Software Project 

Management 

Education (Barros et 

al., 2006)  

 

A Simulation‐Based 

Game for Project 

Management 

Experiential Learning 

(Dantas et al., 2004). 

Uses simulation to support decision‐

making on software project 

management. In the game, The 

Incredible Manager, the player sets 

project parameters such as staffing and 

work hours and executes the project for 

a period of time. The simulation can be 

stopped so the parameters can be 

tweaked. 

Non‐ 

experimental 

7 post‐graduate 

students in a 

software project 

management 

course, 8 

undergraduate 

and post‐

graduate 

students from a 

software 

development 

laboratory, and 9 

other 

undergraduates. 

Questionnaire  Software 

engineering 

management 

Knowledge  Players self‐assessed their level of 

learning in a post‐game survey.  

Most said they had learned 

something new but only one 

person completed their project 

successfully. 

GS‐10  SimVBSE: Developing a 

Game for Value‐Based 

Software Engineering 

(Jain & Boehm, 2006). 

Focused on value‐based software project 

management: every requirement, use 

case, object, test case and defect is 

treated as equally important; earned 

value is used to track project cost and 

schedule; a separation of concerns is 

practiced, in which the responsibility of 

software engineers is confined to turning 

software requirements into verified 

code. The player’s avatar visits different 

game rooms and collects information 

from various stakeholders about the 

current project and how to proceed.Still 

not fully implemented 

n/a n/a n/a Software 

engineering 

management 

Knowledge n/a



 
 

 Page 184 

 

GS‐11  SimSE: A Software 

Engineering 

Simulation 

Environment for 

Software Process 

Education (Navarro, 

2006).  

Same as for GS‐14.  True 

Experimental 

19 under‐

graduate 

software 

engineering 

students 

Pre‐ and post‐

test 

questionnaires 

Software 

engineering 

management 

Software 

engineering 

process 

Knowledge All groups improved their 

knowledge, but those in the control 

groups outperformed those who 

had played SimSE in the post‐test. 

 

When players play SimSE for longer 

periods, their scores improved. But, 

many dropped out due to boredom 

or frustration before this point. 

GS‐12  e‐Learning in Project 

Management Using 

Simulation Models: A 

Case Study Based on 

the Replication of an 

Experiment (Rodriguez 

et al., 2006). 

A replication of the GS‐05  True 

Experimental 

11 second‐year 

undergraduate 

students taking a 

software 

engineering 

module 

Pre‐ and post‐

test 

questionnaires 

Software 

engineering 

management 

Knowledge  According to the post‐test and 

qualitative results, students using 

the simulation appear to have 

understood the software 

engineering principles it was trying 

to teach better than those in the 

control group 

GS‐13  Using Games in 

Software Engineering 

Education to Teach 

Risk Management 

(Taran, 2007). 

A competitive board/card game that 

focuses on risk management. Players 

take the role of project manager and 

have to develop a product and sell it in 

the market. The player with most money 

at the end wins. A dice is used to 

simulate eventuated risk events. 

Non‐

experimental 

150 on‐campus 

and distance 

students. 

5‐question 

questionnaire 

Software 

engineering 

management 

Knowledge Players said they understood the 

learning objectives of the game. 

The degree of learning was not 

assessed. 

GS‐14  Towards Game‐Based 

Simulation as a 

Method of Teaching 

Software Engineering 

(Oh & van der Hoek, 

2002). 

 

A single‐player game for multiple 

development methodologies (waterfall, 

RUP, rapid prototyping) in which the 

player takes the role of a project 

manager leading a team of developers. 

The team must complete a virtual 

software project by hiring staff, assigning 

Non‐

experimental 

29 under‐

graduate 

software 

engineering 

students 

Post‐test 

questionnaires 

Software 

engineering 

management 

Software 

engineering 

process 

Knowledge Players felt the game reinforced 

what they already knew but 

provided little new knowledge.  

 

Players are demonstrating aspects 

of learning theories such as 

learning by doing, situated learning, 



 
 

 Page 185 

 

Design and Evaluation 

of an Educational 

Software Process 

Simulation 

Environment and 

Associated Model 

(Navarro & van der 

Hoek, 2005).  

 

SimSE: A Software 

Engineering 

Simulation 

Environment for 

Software Process 

Education (Navarro, 

2006). 

 

Comprehensive 

Evaluation of an 

Educational Software 

Engineering 

Simulation 

Environment (Navarro 

& van der Hoek, 2007).  

tasks, monitoring progress, purchasing 

resources.  

 

At the end of the game the player 

receives a score and can analyse their 

results with an explanatory tool.  

discovery learning, learning 

through failure, and Keller’s ARCS.  

 

SimSE is most effective when used 

with other teaching methods. 

GS‐15  Enhancing Software 

Engineering Education 

Using Teaching Aids in 

3‐D Online Virtual 

Worlds (Ye et al., 

2007). 

Two exercises were performed in Second 

Life, an online virtual environment.
1
 

Groupthink exercise: groups of students 

are given a software specification and 

must reach a design consensus. 

Afterwards, individuals are asked 

Non‐ 

experimental 

1
 29 

undergraduate 

students 

 

2
 26 

undergraduate 

Questionnaire  Software 

engineering 

processSoftware 

requirementsSoft

ware engineering 

management 

Comprehension  Most students said the exercises 

helped them understand the 

fundamentals of software 

specification activities and the 

principles of software development 

processes. 



 
 

 Page 186 

 

questions about the specification and 

points are awarded for correct answers.
2
 

SimSE exercise: the game from GS‐14 

was modified to run in Second Life. 

students

GS‐16  Requirements Game: 

Teaching Software 

Project Management 

(Zapata & Awad‐

Aubad, 2007). 

Teams of 4 or 5 players take on roles 

such as project manager, developers, 

designers, or analysts. For a given case‐

study, the players must produce 

documentation such as an ER diagram, 

sketches of at least 3 GUIs, and an 

estimation of the effort required, and 

then build the application in, say, 

Microsoft Access. A facilitator plays the 

role of a client giving more instructions 

or clarifications. Fines may be imposed 

for time or budget over‐runs. 

Non‐ 

experimental 

47 systems 

engineering 

undergraduate 

students. 

8 systems 

engineering 

Masters 

students.  

30 systems, 

industrial, and 

administrative 

engineering 

undergraduate 

students. 

Performance in 

the game alone 

Software 

requirements 

Knowledge  Not assessed 

GS‐17  A Game for Taking 

Requirements 

Engineering More 

Seriously (Knauss et 

al., 2008). 

A web‐based game that can be 

completed in about 10 minutes.  

Software requirements are visualized as 

a bag of balls that flow from the 

customer to an analyst, a designer, and a 

developer depending on the 

development process chosen. Alternate 

flows may be taken (such as the client 

speaking directly to the developers to 

clear up misunderstandings), which can 

change the rate of flow. 

n/a n/a n/a Software 

requirements 

Knowledge Not assessed

GS‐18  On the Role of  Same as for GS‐14.  Quasi‐  11 under‐ Observation and  Software  Knowledge  Players demonstrated aspects of 



 
 

 Page 187 

 

Learning Theories in 

Furthering Software 

Engineering Education 

(Navarro & van der 

Hoek, 2008). 

experimental graduate 

students who 

had passed an 

introductory 

software 

engineering 

course. 

post‐test 

interview 

engineering 

management 

Software 

engineering 

process 

learning theories such as learning 

by doing, situated learning, 

elaboration, discovery learning, 

learning through failure, Keller’s 

ARCS, and learning by reflection. 

GS‐19  An Evaluation of a 

Mobile Game Concept 

for Lectures (Wang et 

al., 2008). 

The lecturer acts as a game show host 

and students answer multiple choice 

questions about a particular software 

design issue through their laptop or 

mobile phone. Players have to answer 

correctly to get to the next round. The 

winner is the last person standing. 

Non‐ 

experimental 

20 software 

engineering 

Masters 

students. 

Questionnaire 

Performance in 

the game 

Software design  Knowledge  Players felt the system made them 

pay closer attention during the 

lecture and that they learned more 

than through a traditional lecture. 

GS‐20  Multi‐Site Evaluation 

of SimSE (Navarro & 

van der Hoek, 2009). 

Same as for GS‐14. 

 

SimSE was run in game sessions in which 

the original game designers were not 

directly involved. 

True 

Experimental 

Site 1: 14 

students in a 

senior research 

seminar course, 

most of whom 

had passed a 

software 

engineering 

course. 

Site 2: 19 under‐

graduate 

software 

engineering 

students. 

Site 3: 48 under‐

graduate 

Post‐test 

questionnaires, 

performance in 

SimSE, and final 

course grades. 

Software 

engineering 

managementSoft

ware engineering 

process 

Knowledge  Students seemed to learn the 

concepts the game is designed to 

teach.The game was suitable for 

students of varying abilities and 

backgrounds.SimSE is most 

effective when used with other 

teaching methods. 



 
 

 Page 188 

 

software 

engineering 

students. 

GS‐21  Empirical Evaluation of 

an Educational Game 

on Software 

Measurement (Gresse 

von Wangenheim et 

al., 2009). 

In X‐MED, the player takes the role of a 

measurement analyst and defines and 

executes a measurement exercise based 

on a given development scenario. A 

score is calculated based on the number 

of correct decisions made, and the 

player is presented with an analysis of 

their performance. 

True 

Experimental 

15 computer 

science post‐

graduate 

students 

Pre‐ and posttest 

questionnaires 

Software 

engineering 

management 

Software 

engineering 

process 

Knowledge The results don't conclusively point 

to a positive learning effect, 

although most players' subjective 

evaluation was that the game 

helped them understand the topic. 

GS‐22  Adapting Game 

Technology to Support 

Software Engineering 

Process Teaching: 

From SimSE to MO‐

SEProcess (Zhu et al., 

2007). 

 

A Software 

Engineering Education 

Game in a 3‐D Online 

Virtual Environment 

(Wang & Zhu, 2009). 

A game based on SimSE (GS‐14) using 

the rapid prototyping profile and 

deployed to Second Life.  

Non‐

experimental 

52 software 

engineering 

students 

A six‐question 

post‐test 

questionnaire. 

Software 

engineering 

process 

Knowledge Players self‐assessed their level of 

learning in a post‐game survey. 

Most said the game had helped 

them understand the software 

development process better. 

GS‐23  PlayScrum‐ A Card 

Game to Learn the 

Scrum Agile Method 

(Fernandes & Sousa, 

2010). 

Focused on the Scrum (Schwaber, 2004) 

agile development process. Further 

development of Problems and 

Programmers (Baker et al., 2005). Played 

by 2 to 5 people. Cards are used to 

represent tasks, problems, developers, 

Non‐ 

experimental 

13 post‐graduate 

students. 

Questionnaire  Software 

engineering 

management 

Software 

engineering 

process 

Knowledge  Students improved their 

performance in successive game 

sessions. Players analyze their 

performance through an after‐

game analysis tool 



 
 

 Page 189 

 

and artifacts. The winner is the person 

who performs all tasks with the least 

number of errors. A roll of a dice 

determines the flow of the game.  

GS‐24  Evaluation of a Game 

to Teach 

Requirements 

Collection and Analysis 

in Software 

Engineering at Tertiary 

Level (Hainey et al., 

2010).  

 

An Application of 

Games‐Based Learning 

Within Software 

Engineering (Connolly 

et al., 2007). 

Players take on specific roles (project 

manager, systems analyst, systems 

designer, team leader). The systems 

analyst moves their avatar through the 

game world to collect requirements by 

asking questions of game characters. 

When the analyst thinks they have all 

requirements, they prepare a 

requirements document and send it to 

the project manager, who must decide 

whether to proceed with the project. 

True 

Experimental 

55 university 

students and 37 

higher‐education 

students (92 in 

total). The 

majority had 

little or no 

instruction in 

requirements 

collection or 

analysis. 

Pre‐ and post‐

test 

questionnaires 

Software 

requirements 

Knowledge  Comparison of pre‐ and post‐game 

test scores showed an increase in 

knowledge.  Control groups who 

did not play the game also showed 

in increased in knowledge. The 

game was found to be a good 

supplement to existing courses. 

Higher education students gained 

more from the game (better post‐

game scores) and were more 

accepting of the teaching technique 

than further education students. 

GS‐25  Learning Software 

Engineering Basic 

Concepts Using a Five‐

Phase Game (Rusu et 

al., 2010). 

Players take the role of a requirements 

engineer in a waterfall development 

(requirements, design, implementation, 

testing, maintenance phases) software 

project. The player's avatar must ask 

questions of on‐screen characters to 

determine the right requirements. 

Subsequent phases use arcade‐style 

graphics to kill 'computer bugs' or to 

'shoot' answers in a multiple choice quiz.  

Non‐

experimental 

Developed by 

teams of under‐

graduate 

software 

engineering 

students and 

used by a class of 

nine middle and 

high school 

students with 

limited or no 

computer 

Pre‐ and post‐

test 

questionnaires 

Software 

engineering 

management 

Knowledge Comparing pre‐ and post‐game 

surveys most participants said they 

gained a better understanding of 

software development. 



 
 

 Page 190 

 

science 

background. 

GS‐26  A Classroom Game for 

Teaching Management 

of Software 

Companies (Zapata, 

2010). 

Players take turns in rolling a dice and 

answering a technical question about 

software development. If the answer is 

right, the player’s team has the chance 

to solve a project estimation problem. 

The team with the most correct 

responses to the questions and 

estimation problems wins. 

Non‐ 

experimental 

40 systems 

engineering 

students 

Post‐test 

questionnaire 

Software 

requirements 

Knowledge  Players self‐assessed their level of 

learning in a post‐game survey. 

Most said they had learned 

something new. 

 

  



 
 

 Page 191 

 

Appendix	M:	Spatial	Distribution	of	Games	Used	in	Software	Engineering	Education	

 

  



 
 

 Page 192 

 

Appendix	N:	Review	Studies	of	the	Instructional	Effectiveness	of	Games	

ID  Year  Study  Number of 
Studies 

Studies 
Spanned 

Findings

GE‐1  1966  Cherryholmes, C. H. (1966). ‘Some Current 
Research on Effectiveness of Educational 
Simulations: Implications for Alternative 
Strategies.’ American Behavioral Scientist, vol. 10, 
no. 2 (October), pp. 4 – 7. 

6 1963 ‐ 1966 While students appeared to be more motivated and interested in playing games, "there are no 
consistent or significant differences in learning, retention, critical thinking or attitude change" 
(Cherryholmes, 1966, p. 6).  
 
However, there were side benefits for the developer of the game because they had to 
understand the decisions, processes, and responses represented by the game in order to build it. 

GE‐2  1973  Greenblat, C. S. (1973). ‘Teaching with Simulation 
Games: A Review of Claims and Evidence.’ Teaching 
Sociology, vol. 1, no. 1, pp. 62‐83. 

Many Up to 1972 Noticed methodological problems in the extant studies, of which there weren't then many. 
Concluded that it is difficult to compare games to other forms of instruction when the data for 
these latter is also lacking.  
 
Of note: "although there is little evidence that students learn more when taught by games than 
by conventional methods, there is no evidence that they learn less. In fact, studies of cognitive 
learning point to "no difference" or differences in favor of games that are not statistically 
significant." Hence, games seem to be at least as effective as other modes of teaching, and 
further studies may show yet more significant results." (Greenblat, 1973, p. 80). 

GE‐3  1973  Greenlaw, P. S. and Wyman, F. P. (1973). ‘The 
Teaching Effectiveness of Games in Collegiate 
Business Courses.’ Simulation & Games, vol. 4, no. 
3 (September), pp. 259 – 294 

Many Up to 1972 Although games were popular and widespread, very little true experimental data had been 
collected. Many games didn't show a marked learning bias in favour of games; some had 
descriptive data that this was happening but few had hard, statistical data. 
 
However, in some games "varied and effective team interaction may be a more effective source 
of learning than the model itself" (Greenlaw & Wyman, 1973, p. 263). 

GE‐4  1976  Neuhauser, J. J. (1976). ‘Business Games Have 
Failed.’ Academy of Management Review, vol. 1, 
no. 4 (October), pp. 124 – 129.  

6 1966 ‐ 1974 A subjective rather than analytical assessment, Neuhauser believes the early enthusiasm for 
games was linked in part to access to affordable computers by universities and businesses with 
which to run the games. However, the games were not engaging enough to sustain players' 
attention.   

GE‐5  1977  Pierfy, D. A. (1977). ‘Comparative Simulation Game 
Research: Stumbling Blocks and Steppingstones.’ 
Simulation & Games, vol. 8, no. 2 (June), pp. 255 ‐ 
268 

22 1963 ‐ 1975 The results for much the same as Cherryholmes'. Pierfy concluded that:
 
“In terms of fostering student learning, simulation games are no more effective than 
conventional classroom instruction. However, the research also suggested that games appear to 
have an advantage when it comes to retention of information. In terms of the ability to change 
attitudes and student interest, the simulation games appear to have an advantage over 
conventional instruction.” (Pierfy, 1977, p. 266). 



 
 

 Page 193 

 

GE‐6  1981  Bredemeier, M. E. and Greenblat, C. S. (1981). ‘The 
Educational Effectiveness of Simulation Games.’ 
Simulation & Gaming, vol. 12, no. 3 (September 1, 
1981), pp. 307‐332. 

Many 1963 ‐ 1980 Even though there was some evidence that material was being remembered by players, hard 
data that the games were actually effective was difficult to justify. However, affective learning 
was noticed more than cognitive learning. 
 
A more definite evaluation would depend on the following being place: "(1) a theoretically based 
taxonomy of games with (2) clear theories about (a) what aspects of them are expected to have 
(b) what sorts of distinct effects (c) on what sorts of students (d) for what reasons. Until these 
tasks are addressed, we shall probably continue to see results of investigations about 
"effectiveness"; that are inconsistent, ambiguous, and nondefinitive in support or revision of 
widespread  "impressions" (Bredemeier & Greenblat, 1981, p. 327). 

GE‐7  1986  VanSickle, R. L. (1986). ‘A Quantitative Review of 
Research on Instructional Gaming: A Twenty‐Year 
Perspective.’ Theory and Research in Social 
Education, vol. 14, no. 3, pp. 245 ‐ 264.  

26 Up to 1984 Found that there was little evidence to say that games were more effective than other teaching 
techniques. However, the way the data was analysed was obscure and involved some 
mathematical transformations of dubious benefit.  

GE‐8  1989  Dorn, D. S. (1989). ‘Simulation Games: One More 
Tool on the Pedagogical Shelf.’ Teaching Sociology, 
vol. 17, no. 1, pp. 1‐18.  

157 books 
and articles 

Up to 1988 In general, players were motivated to play games and interested in the game play, but this did 
not translate to greater interest in the subject matter.Affective learning was noticed but this was 
not consistently demonstrated across all studies.  

GE‐9  1992  Randel, J. M., Morris, B. A., Wetzel, C. D. and 
Whitehill, B. V. (1992). ‘The Effectiveness of Games 
for Educational Purposes: A Review of Recent 
Research.’ Simulation & Gaming, vol. 23, no. 3 
(September), pp. 261‐276.  

68 1963 to 1984 Of the 68 studies examined, 56% found no difference between games and other forms of 
instruction; 32% found differences favouring games; 7% favoured games, but the controls were 
dubious; and 5% found differences favouring conventional instruction. 
 
The area in which the game was applied seemed to have some bearing on its effectiveness. For 
example, 7 out of 8 studies involving maths found that games were superior to traditional 
instruction. In most studies, students reported more interest in the game than in more 
conventional instruction. 
 
The authors found many of the studies needed to be more rigorous in their experimental design.  

GE‐10  1994  Dempsey, J., Lucassen, B., Gilley, W. and 
Rasmussen, K. (1994). ‘Since Malone's Theory of 
Intrinsically Motivating Instruction: What's the 
Score in the Gaming Literature.’ Journal of 
Educational Technology Systems, vol. 22, no. 2, pp. 
173 ‐ 183. 

51 Up to 1993 Most of the games were used to teach new skills or practice existing skills, but in many of the 
studies the learning objectives couldn't be determined.  

GE‐11  1997  Wolfe, J. (1997). ‘The Effectiveness of Business 
Games in Strategic Management Course Work.’ 
Simulation & Gaming, vol. 28, no. 4 (December), 
pp. 360 – 376.  

Not 
explicitly 

stated 

1964 ‐ 1990 By far, games were being compared to case studies rather than other pedagogical means. On this 
basis, "games produced higher learning levels except in studies in which case method protocols 
were used to determine knowledge scores. In those studies in which the evaluation criteria 
favored cases, games were equal to the case method in their teaching ability"  (Wolfe, 1997, p. 
371) 



 
 

 Page 194 

 

GE‐12  1998  Van Joolingen, W. R. and De Jong, T. (1998). 
‘Scientific Discovery Learning with Computer 
Simulations of Conceptual Domains.’ Review of 
Educational Research, vol. 68, no. 2, pp. 179 – 201. 

Not 
explicitly 

stated 

Up to 1997 "The general conclusion that emerges from these studies is that there is no clear and univocal 
outcome in favor of simulations. An explanation of why simulation‐based learning does not 
improve learning results can be found in the intrinsic problems that learners may have with 
discovery learning." (Van Joolingen & De Jong, 1998, p. 181) 

GE‐13  1999  Lee, J. (1999). ‘Effectiveness of Computer‐Based 
Instructional Simulation: A Meta Analysis.’ 
International Journal of Instructional Media, vol. 
26, no. 1, pp. 71‐ 85.  

19 Up to 1999 Many of the studies had confounding variables and experimental design of different quality. 
Nevertheless, three initial finding were made:  1. If used in presentation mode, hybrid simulations 
were more effective than the pure simulations; 2. Simulations are almost equally effective for 
both the presentation and the practice mode if a hybrid simulation was used; 3. students need 
specific guidance in how to use the game before they start. 

GE‐14  2004  Gosen, J. and Washbush, J. (2004). ‘A Review of 
Scholarship on Assessing Experiential Learning 
Effectiveness.’ Simulation & Gaming, vol. 35, no. 2, 
pp. 270‐293.  

19 1989 ‐ 2004 "Based on Bloom’s taxonomy... and rigorous research design standards, there have not been 
enough high‐quality studies to allow us to conclude players learn by participating in simulations 
or experiential exercises." (Gosen & Washbush, 2004, p. 286).  

GE‐15  2006  Vogel, J. J., Vogel, D. S., Cannon‐Bowers, J., Bowers, 
C. A., Muse, K. and Wright, M. (2006). ‘Computer 
Gaming and Interactive Simulations for Learning: A 
Meta‐Analysis.’ Journal of Educational Computing 
Research, vol. 34, no. 3, pp. 229‐243.  

32 Not specified Those using simulations or games reported higher cognitive gains and more engagement with 
their own learning than those whose tried traditional pedagogical means. 
 
However, the authors had to disregard many other studies because they contained 
methodological and reporting failings.  

GE‐16  2011  Sitzmann, T. (2011). ‘A Meta‐Analytic Examination 
of the Instructional Effectiveness of Computer‐
Based Simulation Games.’ Personnel Psychology, 
vol. 64, no. 2, pp. 489 ‐ 528. 

65 1976 ‐ 2009 "Overall, declarative knowledge was 11% higher for trainees taught with simulation games than a 
comparison group; procedural knowledge was 14% higher; retention was 9% higher; and self‐
efficacy was 20% higher." (Sitzmann, 2011, p. 520). 
 
Players gained most from the experience when they were motivated to become actively involved 
in the game and when the game was embedded in an instructional program rather than a stand‐
alone exercise. 

 

 

 



 
 

 Page 195 

 

Appendix	O:	Peer‐Reviewed	Conference	and	Journal	Articles	Stemming	

From	This	Research	Project	

 

The following papers based on this research project have been published in peer-

reviewed conference papers and journal articles. 

 

Caulfield, C. W. and Maj, S. P. (2001). ‘A Case for System Dynamics.’ In Z. J. 

Pudlowski and D. W.-S. Tai (eds.), Proceedings of the 3rd Asia-Pacific 

Forum on Engineering & Technology Education, (Changhua, Taiwan, 8 - 

11 July), pp. 49 - 53. Melbourne: UNESCO International Centre for 

Engineering Education. 

 

Notes: This paper was awarded the UICEE diamond award (first grade) by 

popular vote of Forum participants for the most significant contribution to 

the field of engineering education. 

 

Abstract: Engineering education provides a thorough and systematic 

training in the design, development, maintenance and management of 

complex technical systems. While such education provides the necessary 

technical depth to graduates, many technical systems are best understood 

from the perspective of human and socio-economic relationships. A case in 

point may be Fred Brooks' law that states adding more developers to a late 

software engineering project will only make it even more behind schedule. 

Brooks' law is based on the understanding that additional, new software 

engineering staff will need time to come up to speed with the project and in 

doing so will divert the existing developers from their primary tasks. While 

Brooks' law is intuitively appealing, students and practicing software 

engineers really have no way of testing its efficacy in their particular 

situations. A tool to overcome this difficulty may be system dynamics. 

System dynamics is a systems thinking methodology for building 

quantitative and qualitative models of complex situations so that they can 

ultimately be better understood and managed. Accordingly, it can be 

argued, that system dynamics should be an essential part of the education 

of engineers from most, if not all, of the major disciplines. 

 



 
 

 Page 196 

 

Caulfield, C. W. and Maj, S. P. (2001). ‘A Case for Systems Thinking and System 

Dynamics.’ Proceedings of the 2001 IEEE International Conference on 

Systems, Man & Cybernetics, (Tucson, Arizona, 7 - 10 October), pp. 2793 

- 2798. Pitscataway, New Jersey: IEEE. 

 

Abstract: The title of this paper is too brief to be quite accurate. Perhaps 

with the following subtitle it does not promise too much: a review of 

systems thinking that considers its unique history and influences, 

paradigms and methodologies, and presenting a case for the system 

dynamics methodology as the best tool for the most diverse range of 

problem situations. 

 

Caulfield, C. W. (2002). ‘A Case for Games in Software Engineering.’ In P. 

Ledington and J. Ledington (eds.), Proceedings of the 8th Australian and 

New Zealand Systems Conference, (Mooloolaba, Queensland), pp. 82 - 94. 

 

Abstract: Computerised management simulation games have been shown 

to be effective learning tools in a variety of socio-economic and socio-

technical environments. Originating in war-gaming and drawing on 

influences from a range of different fields, games have become established 

instructional elements in many business, military and educational 

institutions because of their ability to expand the notional experience of 

players in a safe, yet challenging, environment. However, they appear to be 

under represented in the field of software project management. A case is 

developed that a need and opportunity exists for games in this area. 

 

Caulfield, C. W. and Maj, S. P. (2002). ‘A Case for System Dynamics.’ Global 

Journal of Engineering Education, vol. 6, no. 1, pp. 25 – 34. 

 

Notes: a revised and expanded version of  a conference paper presented at 

the 3rd Asia-Pacific Forum on Engineering & Technology Education, 

Changhua, Taiwan, 8 - 11 July 2001. 

 

Abstract: Engineering education provides a thorough and systematic 

training in the design, development, maintenance and management of 

complex technical systems. While such education provides the necessary 

technical depth to graduates, many technical systems are best understood 



 
 

 Page 197 

 

from the perspective of human and socio-economic relationships. A case in 

point may be Fred Brooks’ law that states adding more developers to a late 

software engineering project will only make it even more behind schedule. 

Brooks’ law is based on the understanding that additional, new software 

engineering staff will need time to come up to speed with the project and in 

doing so will divert the existing developers from their primary tasks. While 

Brooks’ law is intuitively appealing, students and practicing software 

engineers really have no way of testing its efficacy in their particular 

situations. A tool to overcome this difficulty may be system dynamics. 

System dynamics is a systems thinking methodology for building 

quantitative and qualitative models of complex situations so that they can 

ultimately be better understood and managed. Accordingly, it can be 

argued, that system dynamics should be an essential part of the education 

of engineers from most, if not all, of the major disciplines. 

 

Caulfield, C. W., Kohli, G. and Maj, S. P. (2004). ‘Sociology in Software 

Engineering.’ Proceedings of the 2004 American Society for Engineering 

Education Annual Conference & Exposition (Salt Lake City). American 

Society for Engineering Education. 

 

 Notes: ERA category C. 

 

Abstract: The sociology of software project management is an often 

under-represented component in the education and professional 

development of software engineers even though factors such as team 

formation, role assignment, motivation, training, hiring, and many other 

peopleware practices have been identified many times as at least equally 

important to the success of software projects as the technical. The reasons 

for this may be two-fold: the seeming arbitrariness of the sociological 

factors in software development is at odds with the formal and familiar 

technical aspects; and the lack of suitable tools with which to model and 

understand human dynamics.  

However, these impediments may be overcome. For example, system 

dynamics is a modelling approach to dynamic socio-technical problems, 

stemming from the work of Forrester at MIT and since developed, that 

allows a modeller to mix soft variables (morale, perceptions, motivations) 

with familiar hard variables (time, cost, resources). A system dynamics 



 
 

 Page 198 

 

model is not so much a tool for time-point prediction, but more of an 

experimental device to see how certain variables might change over time 

under the influence of unappreciated causal relationships, dynamic 

complexity, and structural delays. The end result is hopefully a more 

informed mind set with which to manage the situation at hand.  

By way of illustration, this paper presents some initial results of a system 

dynamics model based on Frederick Brooks’ well-known informal law 

which warns against adding more software developers to a late project for 

risk of making matters worse. Brooks’ law, the crystallisation of many 

years of practical software project experience, has been critiqued many 

times in the literature and generally enjoys wide support, making it a solid 

basis for any model of the socio-technical aspects of software project 

management. However, it operates at a high level of  aggregation and is 

most often associated with large-scale software development projects. In 

contrast, the system dynamics model presented here creates a  small-team, 

small-project environment more likely to be encountered by software 

engineers in the current market. 

 

Caulfield, C. W. and Maj, S. P. (2007). ‘Come Play.’ In M. Iskander (ed.) 

Innovative Techniques in Instruction Technology, E-Learning, E-

Assessment, and Education, pp. 86 – 91. Springer. doi: 10.1007/978-1-

4020-8739-4_15. 

 

Abstract: Games have been used as learning tools in many different 

business, military and social environments, but appear to be under-

represented in a critical modern situation—software engineering: the 

systematic, disciplined, and quantifiable approach to the development, 

operation, and maintenance of software. Despite the name, software 

engineering may not enjoy the same standing as the more established 

engineering professions. Anecdotal evidence suggests that an urgent 

software crisis exists (a gap between expectations of software and the 

product and performance actually delivered) and has been growing since 

the 1960s. While quantitative data proving the existence of a software 

crisis is thin, it might be conceded that software engineering has room for 

improvement. This paper presents a case that the use of games as a 

research tool in software engineering needs to be more fully explored and 



 
 

 Page 199 

 

an opportunity exists to use games to tackle some of the current issues in 

the field. 

 

Caulfield, C., Veal, D. and Maj, S. P. (2011). ‘Teaching Software Engineering 

Project Management – A Novel Approach for Software Engineering 

Programs.’ Modern Applied Science, vol. 5, no. 5 (October), pp. 87 – 104. 

 

 Notes: ERA category A. 

 

Abstract: In response to real and perceived short-comings in the quality 

and productivity of software engineering practices and projects, 

professionally-endorsed graduate and post-graduate curriculum guides 

have been developed to meet technical developments and evolving 

industry demands. Each of these curriculum guidelines identifies better 

software project management skills as critical for all graduating students, 

but they provide little guidance on how to achieve this. One possible way 

is to use a serious game — a game designed to teach and educate players 

about some of the dynamic complexities of the field in a safe and 

inexpensive environment. This paper presents the results of a qualitative 

research project that used a simple game of a software project to see if and 

how games could contribute to better software project management 

education. Initial results suggest that suitably-designed games are able to 

teach software engineering and project management concepts at higher-

order Bloom taxonomy levels. 

 

Caulfield, C. W., Veal, D. and Maj, S. P. (2011). ‘Implementing System Dynamics 

Models in Java.’ International Journal of Computer Science and Network 

Security vol. 11, no. 7 (July), pp. 43 – 49. 

 

 Notes: ERA category C. 

 

Abstract: For a research project into the value of serious games — games 

that teach and educate — in software engineering and project management 

education, a game called Simsoft was developed. Two keys parts of 

Simsoft were the system dynamics engine that captured the fundamental 

causal relationships of the software project being modelled; and the Java 

dashboard through which the players entered their project decisions. Java 



 
 

 Page 200 

 

also provided a means of saving the players individual decisions so these 

could later be analysed and replayed. While there are currently no Java 

libraries for implementing system dynamic models, a system dynamics 

model is simply a collection of non-linear differential equations, and open-

source Java libraries for these do exist. Therefore, it is possible to 

implement a system dynamics model in Java and take advantage of the 

features of a powerful, general purpose programming language. This paper 

describes how the model behind Simsoft was created using system 

dynamics modeling tool called iThink and how the model was 

subsequently implemented in Java using the Apache Commons 

Mathematics library. 

 

Caulfield, C. W., Veal, D. and Maj, S. P. (2011). ‘Teaching Software Engineering 

Management – Issues and Perspectives.’ International Journal of 

Computer Science and Network Security vol. 11, no. 7 (July), pp. 50 – 54. 

 

 Notes: ERA category C. 

 

Abstract: The ACM/IEEE regularly proposes guidelines for software 

engineering education, in particular what should be part of the software 

engineering core body of knowledge and how this knowledge can be 

taught. The 2004 curriculum guidelines define seven student outcomes, 

two of which relate to teamwork and project control, and one Software 

Engineering Education Knowledge (SEEK) area on software management. 

The software management knowledge area is concerned with the entire 

software development life cycle and hence the control of people and 

processes. Significantly, the majority of topics within this area are 

classified with the Bloom taxonomy level of Application i.e. ability to use 

learned material in new and concrete situations. However the laboratory 

and assignment exemplars fail to demonstrate the dynamic, human 

centered complexity of project management. Simsoft, a serious game, has 

been designed to potentially address this pedagogical gap. 

 

Caulfield, C. W., Xia, J., Veal, D. and Maj, S. P. (2011). ‘A Systematic Survey of 

Games Used for Software Engineering Education.’ Modern Applied 

Science., vol. 5, no. 6 (December), pp. 28 – 43. 

 



 
 

 Page 201 

 

Notes: ERA category A.  

 

Abstract: Simsoft is a serious game— one that trains or educates— at the 

centre of a research project designed to see if and how games can 

contribute to better software engineering management education by 

helping software engineers and project managers explore some of the 

dynamic complexities of the field in a safe and inexpensive environment. 

A necessary precursor for this project was to establish what games already 

existed in the field and how effective they had been. To this end a 

systematic review of the literature was conducted using a collection of 

online science, engineering, education, and business databases looking for 

games or simulations used for educational or training purposes in software 

engineering or software project management across any of the SWEBOK 

knowledge areas. The initial search returned 243 results, which was filtered 

to 36 papers by applying some simple quality and relevance 

inclusion/exclusion criteria. These remaining papers were then analysed in 

more depth to see if and how they promoted education in the field of 

software engineering management. The results showed that games were 

mainly used in the SWEBOK knowledge areas of software engineering 

management and development processes, and most game activity was in 

Europe and the Americas. The results also showed that most games in the 

field have learning objectives pitched at the first rung of Bloom’s 

taxonomy (knowledge), most studies followed a non-experimental design, 

and many had very small sample sizes. This suggests that more rigorous 

research is needed into the efficacy of games in teaching software 

engineering management, but enough evidence exists to say that educators 

could include serious games in their courses as a useful and interesting 

supplement to other teaching methods. 

 

Caulfield, C. W., Maj, S. P., Xia, J. and Veal, D. (2011). ‘Shall We Play a Game?’ 

Modern Applied Science. Vol.6, no. 1 (January), pp. 2 – 16 

 

Notes: ERA category A. 

 

Abstract: This paper presents the results of a qualitative research project 

that used a simple game of a software project to see if and how games 

could contribute to better software project management education, and, if 



 
 

 Page 202 

 

so, what features would make them most efficacious. The results suggest 

that while games are useful pedagogical tools and are well-received by 

players, they are not sufficient in themselves and must be supplemented by 

other learning devices. 

 



3rd Asia-Pacific Forum on Engineering & Technology Education     2001 UICEE 
Changhua, Taiwan, 8 – 11 July 2001 
 

 

 
 
INTRODUCTION 

Engineering education provides a thorough and systematic 
training in the design, development, maintenance and 
management of complex technical systems. Without question 
such education provides the necessary technical depth to 
graduates. However, many technical systems are best 
understood from the perspective of human perceptions and also 
that of a wider socio-economic context. It is well documented 
that the success of technical projects, in many instances, is 
almost entirely dependent on these factors. 

 
It is a curious paradox that the software industry has helped 
provide the means by which others have been able to automate, 
reengineer, and economy-scale their businesses, that is, reduce 
the human variable, and yet remains itself very people sensitive 
and intensive. For example: 
 
Highly skilled people with appropriate experience, talent, and 
training are key to producing software that satisfies user needs 
on time and within budget. The right people with insufficient 
tools, languages, and process will succeed. The wrong people 
(or the right people with insufficient training or experience) 
with appropriate tools, languages, and process will probably 
fail. [4, p. 150] 
 
Tom DeMarco, co-author of the often-cited Peopleware [6] has 
found that most software development managers agree with this 
premise that a project’s sociology will contribute more to the 
final outcome than the project’s technology. Sociology, in this 
context, means addressing issues such as team formation and 
dynamics, role assignment, hiring, motivation, workplace 
design, training, and many other peopleware practices. 
However, the same managers do not conduct their projects with 
this regard, and instead focus on that aspect they are most 
comfortable with: technology. “The evident reason for this is 
that the manager knows how to do technology, but not how to 

do sociology. He/she doesn’t know how to manage” [22, p. 
149]. 
 
One of the golden rules of software engineering texts maybe a 
case in point— Fred Brooks’ [3] informal law that states that 
adding more software developers to a late project will only 
make it later. Brooks’ law is based on the understanding that 
the new developers will need time to come up to speed with the 
project and in doing so will divert the existing developers from 
their primary, and now critical, tasks. While Brooks’ law is 
intuitively appealing, students and practicing software 
engineers really have no way of testing its efficacy in their 
particular situations because such systems are difficult to 
model. 
 
One possible way to address such situations is by using the 
systems thinking methodology, system dynamics. 
 
System dynamics is concerned with building quantitative and 
qualitative models of complex problem situations and then 
experimenting with and studying the behaviour of these models 
over time. Often such models will demonstrate how 
unappreciated causal relationships, dynamic complexity, and 
structural delays may lead to counter-intuitive outcomes of less-
informed efforts to improve the situation. System dynamic 
models make room for soft factors such as motivation and 
perceptions so that engineering projects can ultimately be better 
understood and managed.  
 
This paper presents some initial results of implementing a 
simple model of Brooks’ law using a system dynamics  
modelling software package called iThink to support the 
argument that system dynamics should be an essential part of 
the education of engineers from most, if not all, of the major 
disciplines. 
SYSTEM DYNAMICS 
 

A Case for System Dynamics 
 

C W Caulfield, S P Maj 
 

Computing Science. Edith Cowan University (ECU).  
 

Perth. Western Australia. 
 
 

ABSTRACT: Engineering education provides a thorough and systematic training in the design, development, maintenance and 
management of complex technical systems. While such education provides the necessary technical depth to graduates, many 
technical systems are best understood from the perspective of human and socio-economic relationships. A case in point may be Fred 
Brooks' law that states adding more developers to a late software engineering project will only make it even more behind schedule. 
Brooks' law is based on the understanding that additional, new software engineering staff will need time to come up to speed with the 
project and in doing so will divert the existing developers from their primary tasks. While Brooks' law is intuitively appealing, 
students and practicing software engineers really have no way of testing its efficacy in their particular situations. A tool to overcome 
this difficulty may be system dynamics. System dynamics is a systems thinking methodology for building quantitative and qualitative 
models of complex situations so that they can ultimately be better understood and managed. Accordingly, it can be argued, that 
system dynamics should be an essential part of the education of engineers from most, if not all, of the major disciplines.  
 



  

 

In the late 1950s, Jay Forrester of the Sloan School of 
Management at MIT was asked by General Electric to review 
the operations of their Kentucky appliance parts plant. The 
company was concerned about the oscillating nature of their 
production cycles that often saw periods of intense activity 
followed by times of virtual dormancy during which workers 
had to be laid off. Fluctuating demand and normal business 
cycles did not seem to adequately explain the situation. Coming 
from an electrical engineering background, and with a keen 
interest in management science, Forrester approached the 
problem systematically, but with just a pencil and a note pad. 
Starting with columns for inventory, employees and orders, and 
factoring in “the policies they were following, one could decide 
how many people would be hired in the following week. This 
gave a new condition of employment, inventories, and 
production” [23].  Forrester’s calculations amounted to a 
simulation of the system operating at General Electric’s plant. 
 
Stemming from this first analysis came an article for the 
Harvard Business Review in 1958 entitled “Industrial 
Dynamics— A Major Breakthrough for Decision Makers” with 
the theme being developed and expanded in the seminal work, 
Industrial Dynamics [7]. Industrial dynamics became system 
dynamics, reflecting its use in areas other than business and 
industry.  
 
For some time following the publication of Industrial 
Dynamics, system dynamics was used as a tool for looking at 
big-picture issues such as urban decay, major sociological 
conditions, and world economics [8, 9, 11]. But in more recent 
times, system dynamics has come back from the big end of 
town and has been finding a purpose for itself in a range of 
business and social applications. Instrumental in this change 
have been the publication of Peter Senge’s The Fifth Discipline 
[13], and the development of intuitive, graphical software 
packages which have made system dynamic modelling more 
democratic by hiding the computer source-code look of 
traditional models. As a measure of this democracy, system 
dynamics now finds a place for itself in primary and secondary 
schools in the United States, Australia, and Europe well beyond 
its ground zero at MIT. 
 
To more formally define system dynamics we might say that it: 
 
is concerned with creating models or representations of real 
world systems of all kinds and studying their dynamics (or 
behaviour). In particular, it is concerned with improving 
(controlling) problematic system behaviour… The purpose in 
applying System Dynamics is to facilitate understanding of the 
relationship between the behaviour of the system over time and 
its underlying structure and strategies/policies/decision rules. 
[16, p. 2] 
 
A key element of this definition is the need to build a model of 
the system under consideration. The model is used to help 
understand the patterns of change, or dynamics, that a system 
exhibits over time and to identify the conditions which cause 
these patterns to be stable or unstable. This knowledge of the 
system can then suggest what kinds of prescriptions and 
approaches to governing it will work and what kinds will not 
[14, p. 248].   
However, building system dynamics models demands patience 
and thought. Translating real-world information into model 
elements is still an inexact science— trial and error can be just 

as valid as considered judgment based on experience. Perhaps a 
useful parallel can be drawn with that other hard, inexact 
activity: finding object-oriented classes. Bjarne Stroustrup, the 
creator of C++, notes that in design and programming there are 
no cookbook methods that can replace intelligence, experience 
and good taste; even he just tries things [15, p. 362]. The lesson 
for system dynamics modellers would seem to be the same: just 
start, try things, take advice of experienced modellers, and then 
iterate, iterate, iterate. 
 
Yet, the effort of building a system dynamic model has some 
benefits: 
 
• Modelling brings about an understanding of the system 

because of the analytical and critical thinking process it 
calls for. It helps bring to the surface the mental models 
driving the current situation— those models “that one 
carries around in one’s head for dealing with a problem 
or situation. Such a model maybe based on experience or 
intuition, or on folklore and myth; it may be influenced by 
politics and a wide spectrum of human emotions” [17, p. 
86]. Mental models may also be totally inappropriate or 
counter-productive, or equally priceless, but unless we turn 
them into something more tangible, we will never know. 

  
• System dynamics models allow room for both quantitative 

or hard variables, being things we can measure directly like 
program size, staffing numbers, dollars spent; and 
qualitative or soft variables such as motivation, 
commitment, confidence, or perceptions. Soft variables 
have traditionally been left out of engineering models 
because they are difficult to measure and their importance 
may have been under-estimated. Yet, “if you omit ‘soft’ 
variables you run the risk of failing to capture something 
essential to driving human affairs. Leaving out something 
so essential is the only hypothesis that you can reject with 
absolute certainty!”  [21, p. 9-1). A system dynamics 
model can therefore be more informed about its problem 
space. 

 
With a system dynamics model in hand and George Box’s 
tongue-in-cheek caution in mind (all models are wrong, but 
some are useful), the model can be to run. Certain variables can 
be held steady while others are changed, it can be placed under 
stress, and tested for sensitivities and leverage points. In short, 
the model can be experimented with to better understand the 
present situation and to search for alternatives for 
improvement. “The alternatives may come from intuitive 
insights generated during the [initial analysis], from 
experience of the analyst, from proposals advanced by people 
in the operating system [or, in the] experience, art, and skill 
for imagining the most creative and powerful policy 
alternatives” [20, p. 246]. 
 
Peter Senge points out that the causes of many problems “lay in 
the very well-intentioned policies designed to alleviate them. 
These problems were actually ‘systems’ that lured policy 
makers into interventions that focused on obvious symptoms 
not underlying causes, which produced short-term benefit but 
long term malaise, and fostered the need for still more 
symptomatic interventions” [13, pp. 14 – 15]. 
 
By simulating a problem space using a system dynamics model 
it is possible to potentially make more informed decisions 



  

 

about events beyond our bounded rationality safe from the 
dangers of real-world experimentation. 
 
BROOKS’ LAW 
 
During the 1950s and early 1960s, Fred Brooks worked for 
IBM as a programmer and hardware architect. In 1964 he 
became the manager of IBM’s Operating System/360 
development, a large-scale and complex project intended to 
provide IBM’s mainframe computers with a leading-edge 
operating system. To give an idea of the size of the project “the 
initial Windows NT project required about 1,500 staff-years of 
effort, but the development of IBM’s OS/360, which was 
completed in 1966, required more than three times as much 
effort”  [10, p. 4]. 
 
His experiences, frustrations, and joys during this time, and his 
observations of the wider industry after moving to the 
University of North Carolina, are embodied in the collection of 
essays The Mythical Man-Month [3]. The title refers to that 
fundamental unit of measurement and scheduling, the man-
month; a unit that Brooks believes is often misunderstood:  
 
Cost does indeed vary as the product of the number of men and 
the number of months. Progress does not. Hence the man-
month as a unit for measuring the size of a job is a dangerous 
and deceptive myth. It implies that men and months are 
interchangeable. [3, p. 16] 
 
His law that states adding more software developers to an 
already late project will only make the problem worse is based 
on this lack of interchangeability of manpower and time. The 
cause lies in two areas: 
 
• The new developers will need to be acquainted with the 

overall aims of the project, its strategy and the general plan 
of work. During this time the new developers will not be 
full contributors and will likely divert the existing 
developers away from their primary tasks. 

 
• If a group of developers, n,  need to coordinate their efforts 

with each other then the number of communication paths 
can be represented by n(n – 1)/2. This represents an 
interaction overhead, which may be realised in the form of 
project meetings, technical walkthroughs, and complying 
with any progress reporting requirements. 

 
Brooks’ law is intuitively appealing and is generally supported 
in the literature [2, 5, 12, 17]. Writing in the anniversary 
edition of The Mythical Man-Month in 1995, Brooks 
acknowledged that his law was outrageously simplified yet he 
still felt that it was the: 
 
best zeroth-order approximation to the truth, a rule of thumb to 
warn managers against blindly making the instinctive fix to a 
late project.[3, p. 275]. 
 
Yet, turning Brooks’ law into something more than a rule of 
thumb we should be able to test whether it is a useful concept 
outside the large-scale big business and government projects 
Brooks’ was most familiar with. 
 
MODEL EXPLANATION 
 

The following model of Brooks’ law has been created using a 
system dynamics modelling package called iThink. The 
grammar of iThink consists of only four basic elements (stocks, 
flows, rates, and connectors) and is largely intuitive so it wont 
be expanded upon here. Further details are provided in the 
appendix. 
 
In addition, a range of assumptions is made that will naturally 
vary according to local conditions. What is important is not so 
much the magnitude of these assumptions in this particular 
instance, but that they are relevant to the problem space under 
consideration and that they can be changed as needed. 
 
Looking to the model, we have a hypothetical software 
development project in hand that has been estimated at 36-man 
months, or 6240 hours, and must be completed within six 
months. To meet this deadline a staffing level of six developers 
has been approved. However, the project starts with only five 
developers, three of whom are experienced, meaning they are 
aware of the objectives of the project and the plan of work; and 
two who are new-hires. It is assumed that the new-hires will 
only be half as productive as their colleagues, but will gradually 
come up to speed as they are assimilated. This transitioning 
from new-hires to experienced developers has been set at three 
months. 
 
Recruiting is under way to bring the team up to full strength but 
advertising the position, assessing the applicants, and making a 
decision all takes time. Therefore, a delay of some two months 
is not unreasonable [17, p. 98]. At the same time staff are likely 
to leave. For the purposes of this model, it is assumed that the 
average employment time will be nine months, and for 
simplicity, it is assumed that developers will not quit the team 
before becoming experienced developers. 
 
Figure 1 represents to model to this stage.  
 

���������������������
���������������������
�����������������

�����
�����

���
���

�
�
����
����

��
��

New Hires ����������������
�
�
���������������
���������������

���
���
���

����
����
����

���
���
���

�
�
�

����
����
����

Experienced Workforce

Quit Rate

������������������������������������������������������
�������������������������������

���������

Hiring Rate

����������������������������������������������������������������

Assimilation Rate

�����������������������������������������������
�������������������������������������������������������������������������������������������������

���
���
����

Hiring Delay

Workforce Gap

Approved Workforce

Total Present Workforce

����

����
����

�����

��� ������

�����

Figure 1 
 
Staff enter the ‘plumbing’ of the iThink diagram from the left, 
progressing to the right as they pass from being new-hires to 
experienced developers until they perhaps eventually leave the 
team. The Total Present Workforce will therefore be the sum of 
the two groups of developers. If the Total Present Workforce is 
less than the Approved Workforce, a Workforce Gap will exist 
and the hiring process will be initiated, subject to the 
prescribed delay of two months. 
 



  

 

Figure 2 represents the workflow of the project. 
 

���������������������
���������������������

�����
�����

Remaining Work �����������������
�����������������

���
���

Work Completed
Total Production Rate

������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������

��
��
��������

Person Hours

Hours per person per week

Spike

����������������������������������������������������
������������������������������

��������

Interaction Penalty

�����
�����

����
�����
�����

 
Figure 2 

 
The team has 36 man-months of work to complete, therefore at 
the start of simulation Remaining Work will represent this 
amount. Work units will flow towards Work Completed at a 
rate determined by the overall productivity of the team. 
Occasionally, there may be a spike in Work Remaining if the 
scope of the project is expanded or if the original work 
estimates have been found to be underestimated. 
 
The total productivity of the team will be a function of the total 
workforce, the number of hours each person works per week, 
which has been set at a standard 40, the assumed productivity 
of the new-hires versus their more experienced colleagues, and 
taking into account the interaction overhead required to 
coordinate all the individual development efforts. For the 
purposes of this model, it is assumed that the interaction 
overhead represents one hour per developer per week per 
communications path. If there are five developers, this equates 
to ten communications paths, and therefore ten hours per week 
per developer consumed in this overhead. 
 
The model in its entirety is represented by figure 3.  
 
MODEL RESULTS 
 
Setting the model to run under the initial conditions described 
above produces the graph in figure 4. 

The approved workforce is six developers, but at the start of the 
project only five are on hand. After allowing for the recruiting 
delay, the number of new-hires increases reflecting the addition 
of one extra developer. And, over time, the number of 
experienced workers increases as the new-hires come up to 
speed with the project. After nine months, or 36 weeks, 
experienced developers begin to leave, which initiates the 
hiring process again. 
 
Even allowing for the fact that the project started with one 
developer less than required, the graph indicates that simply 
dividing  the  effort  by  the number of staff  on  hand  will  not  

������������������
������������������

���
���

Remaining Work �������������������
�������������������

���
���

Work Completed
Total Production Rate����������������������������������������������������������������������������������������������������������������������������

����������������
����������������
����
����
��������������������

����
����
����

��
��
��

�����
�����
�����

���
���
���

�
�
�

New Hires
���������������
�������������������
�������������������

���
���

��
��
��

����
����
����

���
���
���

�����
�����
�����

Experienced Workforce

Quit Rate

������������������������������������������������������������

Hiring Rate

���������������������������������������������
�
�������

Assimilation Rate

����������������������������������������������������������������������������������������������

Hiring Delay

Person Hours

Hours per person per week

Spike

�����������������������������������������������������
���
�������

Workforce Gap

Interaction Penalty

Approved Workforce

Total Present Workforce

�����
�����

�� ���

���

�����
�����
�����

����

����� ������

����

�����

�����

���
���

 
Figure 3 

 
yield an overall completion time. With the best will, the project 
will take nearly twelve months to complete rather than the 
original six. 
 

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����

������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

08:48 am   Sun, 17 Dec 2000

1.00 15.75 30.50 45.25 60.00

Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0.00

5.00

10.00

0.00

4500.00

9000.00

0.00

5.00

10.00

1: Experienced W… 2: New Hires 3: Remaining Work 4: Work Completed 5: Approved Work…

1

1 1

1

2

2 2

2

3

3

3

3

4

4

4

4

5 5 5 5

Graph 1 (Brooks Law)  
Figure 4 

 
Assume now that the project has been underway for five 
months, or 20 weeks, when it is discovered the original man-
month estimates were understated.  
 

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����

������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

11:02 am   Sat, 23 Dec 2000

1.00 18.75 36.50 54.25 72.00

Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0.00

5.00

10.00

0.00

4500.00

9000.00

0.00

5.00

10.00

1: Experienced W… 2: New Hires 3: Remaining Work 4: Work Completed 5: Approved Work…

1

1

1 1

2 2
2 2

3
3

3

3

4

4

4

4

5

5 5 5

Graph 1 (Brooks Law)  
Figure 5 



  

 

Another twelve man-months of work have been assessed. 
Assuming 40-hour weeks and a present staff of six developers, 
this means the project will be extended by another eight weeks. 
To bring this figure down, the project manager decides to 
increase the approved staffing to eight developers. The 
resulting graph under these circumstances now looks figure 5. 
 
Despite bringing on more staff, the project is still not able to hit 
its revised completion date and now takes nearly eighteen 
months to complete. 
 
CONCLUSIONS 

The system dynamics model of Brooks’ law presented here is 
necessarily generic and simplified, and is part of an as yet 
incomplete project. But, even at this level it is one realisation of 
a mental model that can now be shared, discussed and 
hopefully improved upon. 
 
The results in this case tend to support Brooks’ law that adding 
more software developers to an already late project will only 
make matters worse. However, this may not always be so. For 
example, using a more detailed model of Brooks’ law, Abdel-
Hamid and Madnick [1, 18, 19] found that if the developers are 
added early in the project rather than towards the end, the 
project will have more chance of hitting its deadlines. But, 
without the model, the belief that this might be so would have 
been without support. 
 
Making system dynamics a part of all engineering disciplines 
would seem to be an incremental rather than a discontinuous 
step since engineers are likely already familiar with the benefits 
of building models. System dynamics can bring to this process 
its underlying theme that more informed socio-technical models 
are possible.  
 
As a means of capturing mental models, building decision 
flight-simulators, and communicating complex ideas at a higher 
level than verbal descriptions, system dynamics deserves 
serious consideration. But, in response, the methodology 
demands the patience to understand its concepts, nuances, and 
power. 
  
REFERENCES 
 
[1] Abdel-Hamid, T. K. and Madnick, S. E., Software 

Project Dynamics: An Integrated Approach. 
Englewood Cliffs: Prentice Hall (1991). 

[2] Boehm, B., Software Engineering Economics. Upper 
Saddle River: Prentice Hall (1981). 

[3] Brooks F. P., The Mythical Man-Month: Essays on 
Software Engineering, anniversary edition. Sydney: 
Addison-Wesley (1995). 

[4] Davis A. M., 201 Principles of Software Development. 
Sydney: McGraw-Hill (1995). 

[5] DeMarco, T., The Deadline: A Novel About Project 
Management. New York: Dorset House (1997). 

[6] DeMarco T. and Lister T., Peopleware: Productive 
Projects and Teams, second edition. New York: 
Dorset House (1999). 

[7] Forrester J. W., Industrial Dynamics, Waltham: 
Pegasus Communications (1961). 

[8] Forrester J. W., Urban Dynamics. Portland: 
Productivity Press (1969). 

[9] Forrester J. W., World Dynamics. Portland: 
Productivity Press (1971). 

[10] McConnell S., After the Gold Rush. Redmond: 
Microsoft Press (1999). 

[11] Meadows D. H., Meadows D. L., Randers J.,  and 
Behrens W. W., The Limits to Growth. New York:  
Universe Books (1972). 

[12] Pressman, R. G., Software Engineering: A 
Practitioner's Approach, fourth edition. New York: 
McGraw-Hill (1997). 

[13] Senge P. M., The Fifth Discipline: The Art and 
Practice of the Learning Organization. Sydney: 
Random House (1990). 

[14] Stacey, R. D., Strategic Management & 
Organisational Dynamics. Melbourne: Pitman 
Publishing (1996). 

[15] Stroustrup B., The C++ Programming Language, 
second edition. Sydney: Addison-Wesley Publishing 
Company (1993). 

[16] Wolstenholme E. F., System Enquiry: A System 
Dynamics Approach. Brisbane: John Wiley & Sons, 
(1990). 

 [17] Yourdon E., Rise and Resurrection of the American 
Programmer. Upper Saddle River: Prentice Hall 
(1998). 

[18] Abdel-Hamid, T. K., The Dynamics of Software 
Project Staffing: A System Dynamics Based 
Simulation Approach. IEEE Transactions on Software 
Engineering, 15, 2, 308 - 318 (1989). 

[19] Abdel-Hamid, T. K. and Madnick, S. E., Lessons 
Learned from Modeling the Dynamics of Software 
Development. Communications of the ACM, 32, 12, 
1426 - 1455 (1989). 

[20] Forrester, J. W., System Dynamics, Systems Thinking 
and Soft OR. System Dynamics Review, 10, 2-3, 245 - 
256 (1994).  

[21] Richmond, B., Modelling "Soft" Variables. An 
Introduction to Systems Thinking, Hanover, High 
Performance Systems, 9-1 - 9-10 (1999). 

[22] DeMarco, T., Non-Technological Issues in Software 
Engineering.  Proceedings of the 13th International 
Conference on Software Engineering.  Austin, USA, 
149 – 150 (1991). 

 [23] Forrester J. W., The Beginnings of Systems 
Dynamics’ [on-line]. Available WWW: 
http://sysdyn.mit.edu/sd-intro/home.html (1989). 

 
APPENDIX I: THE LANGUAGE OF iTHINK 
 
At its core, iThink is a language that can be used to tell a story. 
Therefore, system dynamic models described by it use the 
following elements of grammar to tell their story. 
 

• Stocks, , are the nouns of iThink. They represent an 
accumulation of something at a point in time. The slatted 
stocks used in the above model are a special version known 
as conveyors. They work in the same way as normal stocks 
except that anything entering the conveyor ‘rides’ along it 
for a set period of time and then leaves. 

 

• Flows, , are the verbs of iThink. Stuff flows 
through the pipe of the flow in the direction of the arrow 
and at a rate determined by the flow regulator in the 
middle. The flow regulator is fitted with a spigot that can 

http://sysdyn.mit.edu/sd-intro/home.html


  

 

be conceptually tightened or loosened by other variables 
within the model. The cloud at the end of the flow 
represents the boundary of the model. 

 
• Converters, , can be thought of as adverbs which modify 

flows. They are often used to break out the detail of the 
logic that might otherwise be buried within a flow and 
might be used to represent constant values. These typically 
influence the behaviour of the regulators on the flows 

 
• Connectors, , tie the other three building blocks 

together. They represent inputs and outputs, not inflows 
and outflows. Connectors do not take on numerical 
values— they merely transmit values taken on by other 
building blocks. 

 
 
 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference 
Copyright   2001 

Session xxxx 
 
 

A CASE FOR SYSTEMS THINKING AND SYSTEM DYNAMICS 
 

CW CAULFIELD and SP MAJ 
Department of Computer Science, Edith Cowan University, Perth Western Australia 

 
1   Introduction 

 
The title of this paper is too brief to be quite 

accurate. Perhaps with the following subtitle it does 
not promise too much: a review of systems thinking 
that considers its unique history and influences, 
paradigms and methodologies, and presenting a case 
for the system dynamics methodology as the best tool 
for the most diverse range of problem situations.  

Systems thinking is a way of thinking that 
focuses on the relationships between the parts 
forming a purposeful whole. Its intellectual integrity 
draws from a number of fields and influences 
including philosophy, sociology, organisational 
theory, feedback thought, and a reaction against the 
method of science. Aspects of these influences have 
been examined. 

Systems thinking can be practiced in more than 
one way. A collection of methodologies 
representative of both sides of the main hard/soft 
divide within the paradigm have been evaluated 
including soft systems methodology, systems 
engineering and analysis, operations research, 
organisational cybernetics, interactive planning, and 
organisational learning. Each has been considered in 
terms of its advantages and disadvantages and most 
appropriate applications. 

Completing the list of system methodologies is a 
special case in the instance of this paper— system 
dynamics. System dynamics is concerned with 
building computer models of complex problem 
situations and then experimenting with and studying 
the behaviour of these models over time. Often such 
models will demonstrate how unappreciated causal 
relationships, dynamic complexity, and structural 
delays may lead to the counter-intuitive outcomes of 
less-informed efforts to improve the situation. System 
dynamic models make room for soft factors such as 
motivation and perceptions so that problem spaces 
can ultimately be better understood and managed. 

A case is made as to why systems thinking in 
general and system dynamics in particular represent a 
choice of first resort for the broadest range of 
problem spaces. In brief, the argument is they boast 
the best tool set, they have the best intellectual 
credentials, and they are best suited to contemporary 
business and social situations. 

 
2   Systems Thinking History and Influences 

 
Humans have always been a part of systems but 

for the most part there was no realisation of the 
actuality of systems. Primitive societies accepted their 
role in a divinely given order of things without too 
much contemplation, and adjusted themselves as 
circumstances required. With industrialisation, 
political, economic and social systems became more 
noticeable but no more easy to grasp. “A search for 
orderly structure, for cause and effect relationships, 
and for a theory to explain system behaviour gave 
way at times to a belief in random, irrational events” 
[6, p. 1-1]. 

However, philosophers and sociologists have 
attempted some explorations.  

In the early nineteenth century, the German 
Idealist philosopher Georg Hegel (1770 – 1831) 
conceived of an enormously broad, holistic fashion of 
thinking in which there was room for everything— 
logical, natural, human, and divine. Hegel believed 
that the truth about reality could not be grasped by 
studying phenomena in isolation; rather, a higher, 
more abstract philosophical vantage point was 
needed. 

Although likely unappreciated and unintended at 
the time, Hegel’s dialectic also contains a key 
systemic construct— a negative feedback loop. The 
tension between thesis and antithesis, between the 
desired and the actual, eventually forces a new state 
of affairs, the synthesis [20, p. 71]. 

Writing around the turn of the last century, the 
French sociologist Emile Durkheim (1858 – 1917) 
carefully and critically absorbed the ideas of the 
French sociologist Auguste Comte (1798 – 1857) and 
other contemporaries such as Herbert Spencer (1820 
– 1903), particularly accepting the notion that the 
scientific viewpoint was the best from which to study 
social reality. However, Durkheim did not believe 
that scientific reductionism or “an analysis of the 
parts which existed in the social organism and the 
role they performed was adequate as an end of 
sociological analysis” [1, p. 44]. Instead, he felt that 
causal analysis (why) of social phenomena was 
required in additional to functional analysis (what). 
For example, the study of a social formation needs to 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference 
Copyright   2001 

take account of the social and historical forces that 
bring it into being and allow it to operate. Any such 
group, though not necessarily superior to its 
individual parts, is different from them and demands 
an explanation on the level peculiar to it. That is, the 
whole is more than just the sum of it parts [9, pp. 22 – 
26]. 

If a common thread can be said to run through 
the work of this small collection of social theorists, it 
may be that each saw value in using biological and 
mechanical metaphors to understand social 
phenomenon. At a period in European history 
dominated by industrialisation, positivism, and 
evolutionism, it seems only logical that similar 
threads became woven into their writings. Even 
though the overly scientific and rigorous methods 
they advocated are at some odds with softer, current 
versions, the underlying systemic understanding 
shows itself as an idea of some age and magnetism. 

In more modern times organisational theorists 
have also contributed to the field of systems thinking 
particularly through open systems theory: a way of 
thinking that recognises the dynamic interaction of 
the system with its environment in which inputs are 
transformed by some internal process and made into 
outputs.  

Influential in early open systems theory was the 
US sociologist and Harvard professor, Talcott 
Parsons (1902 – 1979). He advocated a structural-
functionalist approach to analysing social systems, an 
approach built upon the biological metaphor and that 
focuses on the concepts of holism, interrelationships 
between parts, structure, functions, and needs [1, p. 
50]. 

Parson’s writings have been criticised as being 
too conservative and avoiding or being unable to 
explain change and dysfunction in social systems 
[11]. More able to do this was a contemporary of 
Parsons, Robert Merton, who believed that the 
structural-functionalist approach was valuable 
because it required the viewer to examine the 
consequences of social action, that is, its latent 
functions, rather than relying solely on superficial 
manifest functions. Even so, less fully developed in 
Merton’s theory was an explanation of why 
dysfunctions might continue. It may be that Merton 
had not stepped back far enough to see these 
dysfunctions as ongoing issues, particularly if he 
accepted Vilfredo Pareto’s (1848 – 1923) equilibrium 
proposition: 

His view of society was that of a system of 
interrelated parts which, though in a continual state 
of surface flux, were also in a state of underlying 
equilibrium, in that movements away from the 
equilibrium position were counterbalanced by 
changes tending to restore it. [1, p. 47] 

That is, deviations from the norm are mended by 
the system. The feedback theory underlying Pareto’s 
model of society is premised on the mechanical, 
rather than the biological, metaphor and herein may 
lay a reason why dysfunctions continue in spite of a 
Pareto system’s innate search for equilibrium. The 
mechanical metaphor assumes that any deviation 
from the norm will feed back into the system and be 
invariably acted upon by certain rules. Yet, in any 
system composed of decidedly unmechanical humans 
this feedback may be indeed be handled in this way, 
or it may just as likely be misinterpreted or arbitrarily 
ignored. 

To more formally define the feedback that Pareto 
talks of we might say that it is a process through 
which an action (an event or piece of information) 
passes through a series of causal relationships to 
eventually affect the original action. 

Examples of virtually fully developed concepts 
of feedback thought can be found in the inventions 
and writings of the ancient Greeks while many of the 
most influential machines of the Industrial Revolution 
employed some form of automatic regulation [17]. 

It is interesting to note that after a long hiatus, 
there was a sudden explosion of feedback inventions 
in Europe at the time of the Industrial Revolution. 
Mayr [17] believes that technical and economic 
factors alone do not adequately explain this sudden 
burst of interest in automatic regulation. In fact, the 
same interest had a much wider cast as the writings of 
some of the philosophers and sociologists discussed 
already demonstrate. It would seem that at a point in 
time marked by great social, economic, and political 
uncertainty, largely brought about by fundamental 
technological changes, people at all levels were 
searching for meaningful stability and structure. 

Given that feedback thought has a history of 
many centuries and was being used intuitively and 
elegantly, if unknowingly, in many fields, it is 
perhaps surprising that its self-awareness is only 
relatively recent. Richardson [20] believes that 
Rosenblueth, Wiener, and Bigelow’s ‘Behavior, 
Purpose, and Telelogy’ (1943) was the first published 
work to link human systems with the engineer’s 
concept of feedback. In this article, the authors make 
the distinction between non-purposeful behaviour, 
which is basically random, and purposeful behaviour, 
which is directed towards some goal. If signals from 
the goal modify the action in the course of the 
behaviour, then feedback is happening. 

In Cybernetics, or Control and Communication 
in the Animal and the Machine (1948), Norbert 
Wiener expanded on the theme, in the process coining 
the word cybernetics, being a metaphorical 
application of the Greek kubernetes, meaning 
steermanship. Wiener and his colleagues had applied 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference 
Copyright   2001 

the concept during World War II looking for ways to 
develop and refine devices for the control of gunfire. 

Traces of holistic thinking can therefore be found 
in many areas of study. Yet from an early stage each 
discipline had been using holistic thinking to cope 
with its own elements of complexity and had tended 
to use a language unique to its environment, meaning 
that the systems movement was late in gaining a 
degree of self-awareness. It was not until the late 
1940s that the organismic biologist Ludwig von 
Bertalanffy appreciated that the parallel ideas in 
various disciplines could be generalized in a systems 
theory. 

As a biologist von Bertalanffy was interested in 
the nature of life but noted that an organism’s 
constituent physico-chemical processes did not 
explain all there was to know. Never a vitalist, von 
Bertalanffy suggested that a return to the organismic 
biology that preceded the invention of the microscope 
was a more fruitful avenue of thought. That is, 
organisms should be studied as irreducible, whole 
systems, contrary to a central tenet of the method of 
science that advocated reductionism. 

From the 1950s, von Bertalanffy shifted his focus 
from the biological sciences to the methodology of 
science. He was concerned that scientific endeavour 
was following too faithfully one of its own rules: 

Modern science is characterized by its ever-
increasing specialization, necessitated by the 
enormous amount of data, the complexity of 
techniques and of theoretical structures within each 
field. Thus science is split into innumerable 
disciplines continually generating new subdisciplines. 
In consequence, the physicist, the biologist, the 
psychologist and the social scientist are, so to speak, 
encapsulated in their private universes, and it is 
difficult to get word from one cocoon to the other. 
[23, p. 30] 

Despite this fragmentation, von Bertalanffy 
noticed that there existed a certain parallelism of 
general cognitive principles in fields such as 
chemistry, physics, biology, and sociology, made all 
the more striking by having developed independently 
in each [23, p. 31]. If this underlying isomorphism 
could be captured and made known then a tool would 
be at hand to reunify science and to move it forward 
more quickly. With the publication of two influential 
articles in 1950, ‘The Theory of Open Systems in 
Physics and Biology’ and ‘An Outline of General 
Systems Theory’, von Bertalanffy introduced the tool 
he had conceived for the task— general systems 
theory (GST). 

However, the generality of an analytical 
framework such as GST is both a weakness and a 
strength: 

•  Weakness: by taking a holistic view, general 
systems theory takes away the comfort of 
mastering details and means understanding 
relationships instead of absolute facts. However, 
the relatively vague, initial totality is transitory. 
As a general understanding of the overall system 
is attained, the focus of study can then narrow to 
the analysis of details, but with a broader 
understanding in mind. 

•  Strengths: if we study the parts of a system alone, 
we will lack essential knowledge of the whole; 
and if we study the overall entity without 
comprehending its makeup, we will lack a 
fundamental awareness. General systems theory 
is a coherent way of resolving the parts-versus-
whole dilemma. 
Being aware that the word ‘paradigm’ can be 

easily misused, GST could be called a paradigm shift. 
According to Kuhn [15] paradigm shifts occur when 
the prevailing normal science is unable to answer 
those questions left in the too-hard basket. The 
reductionist method of science had certainly not dealt 
adequately with all the difficult problems it had been 
presented with, but then neither has systems theory. 
The reason lies in each, in their purest paradigmatic 
form, being suited to particular tasks. This theme of 
selecting the right tool for the job at hand recurs when 
we come to consider specific ways of practicing 
systems thinking. 

 
3   The Systems Thinking Paradigm and 
Methodologies 
 

The systems community is no more immune to 
paradigm or methodological racism than any other. In 
fact, Midgley [18] talks of paradigmatic wars and 
caustic sniping between the different schools of 
system thought, with the two dominant combatants 
being hard and soft systems thinking. The literature 
generally supports the distinction between the two on 
the basis of their most-suited problem contexts: 
•  Hard systems thinking is best applied to well-

defined, goal-oriented, quantifiable, and real-
world problems. Examples would include 
systems analysis and engineering and old-style 
operations research 

•  Soft systems thinking is best applied to ill-
defined, fuzzy problem spaces, usually made this 
way because of the unpredictability of people, 
uncertainty, and other cultural considerations. 
Examples would include soft systems 
methodology and soft operations research. 
Hard systems thinking predates its soft relation 

and retains traces of its origins in World War II 
logistical and scientific support of military operations. 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference 
Copyright   2001 

In peacetime the paradigm found purpose in 
government and industry. 

But in less predictable times, hard systems 
thinking was found wanting when it was applied to 
problems a good deal softer than its ‘home’ 
disciplines of engineering and defense economics, 
mainly because precise objectives were not so easy to 
pin down [2, p. 141]. Something else was needed to 
analyse softer, ill-defined problems. 

Enter soft systems thinking. 
Before soft systems thinking had properly settled 

itself, however, its methodological and 
epistemological foundations were being challenged. 
Around 1990, two main areas of concern had arisen: 
•  “That the interpretive theory underpinning soft 

systems thinking is inadequate for understanding 
and acting in social situations where there are 
inequalities in power and economic relations” [4, 
p. 79]. 

•  That soft systems thinking practised too 
rigorously paradigm incommensurability, 
refusing to accept that any of the tenets of hard 
systems thinking might have value. 
Enter, this time, critical systems thinking, a 

research perspective embracing three fundamental 
commitments: critical awareness, emancipation, and 
methodological pluralism. 

In essence, critical systems thinking argues that 
practitioners be just that— critical. It accepts that no 
single paradigm or methodology is best in all 
circumstances and that an informed judgment needs 
to be made based primarily on the nature of the 
problem space being addressed. 

In this light, a literature review of a representative 
range of systems thinking methodologies has been 
conducted. The methodologies include soft systems 
methodology, operations research, organisational 
cybernetics, interactive planning, organisational 
learning, systems analysis, systems engineering, and 
system dynamics. Each was critiqued from a critical 
systems thinking viewpoint of selecting the most 
appropriate methodology for the issue at hand.  

However, not all authors accept that, when faced 
with a particular problem, we are free to choose an 
appropriate methodology from within a certain 
paradigm: “paradigms cannot be like spectacles that 
we can change when necessary” [19, p. 452].  

If we take the critical systems thinking view that 
methodological pluralism is an attainable concept, 
then a valid question to ask at this point is which is 
most appropriate in certain circumstances? Research 
since the early 1990s at the University of Hull in the 
United Kingdom has been directed at this question. 
Using the principles of critical systems thinking as a 
basis, total systems intervention (TSI) is a meta-
methodology that: 

uses a range of systems “metaphors” to 
encourage creative thinking about organisations and 
the difficult issues their managers have to confront. 
These metaphors are linked by a framework (a 
“system of systems methodologies”) to various 
systems approaches, so that once agreement is 
reached about which metaphors are most relevant to 
an organisation’s concerns and problems, an 
appropriate systems-based intervention methodology 
(or set of methodologies) can be employed. Choice of 
an appropriate systems methodology will guide 
problem management in a way that ensures that it 
addresses what are found to be the main concerns of 
the particular organisation involved [5, p. 322]. 

The system of system methodologies is typically 
that proposed by Jackson and Keys [14]. The authors 
define a matrix made up of the two essential 
dimensions of any problem space: the nature of the 
people who are the would-be problem solvers, 
described using the language of industrial relations; 
and the environment or context of the problem. 

The value of Jackson and Keys matrix is that it 
“helps get inside methodologies and to assess the 
fundamental assumptions that they hold about the 
nature of social reality” [3, p. 129] so that the best 
tool for the job at hand can be used. For example, if 
the problem context is seen to be one in which there 
are differing opinions that might still allow consensus 
(pluralist), and none of the participants seem to have 
the whole picture (systemic), then a methodology 
based on systemic-pluralist assumptions is the most 
appropriate, for example soft systems methodology or 
interactive planning. 

However, Jackson warns those using the system 
of systems methodologies to be critically aware of 
their particular choice since “the aim is… [also] to 
reveal the particular strengths and weaknesses of 
available systems approaches and to make explicit the 
consequences, because of the assumptions each 
makes about systems and the relationships between 
participants, of using any of these” [13, p. 664]. That 
is, the system of systems methodologies should not be 
used slavishly. 

As meta concepts, critical systems thinking and 
total systems intervention have been criticised for 
following too closely the functionalist’s predilection 
for classifying things like ‘insects on pins in shirt 
boxes’. If we take this criticism to an absurd end then 
we might not classify or organise anything. 
Therefore, in reviewing the collection of systems 
methodologies here, a more productive line of 
thought has always been held: at a time characterised 
by increasing detail and dynamic complexity, 
paradigm blindness is wasteful. Instead, problem 
solvers and thinkers need to be practised in the art of 
scanning for ideas— greedy almost in looking for 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference 
Copyright   2001 

concepts, visions, tools or paradigms that make sense 
to them, at this time, and in their organisations.  
 
4   Conclusions 
 

Humans need help; help in coping with the 
information overload made possible by technology; 
help in dealing with the new dynamic complexities of 
the shift to knowledge economies; and help in 
compensating for those human attributes that often 
mean we do not act to our own best advantage.  

The argument of this paper has been that systems 
thinking has the historical intellectual integrity and 
practical application to provide this help.  

Systems thinking offers an opportunity to 
become more fully aware, to make informed 
decisions that extend beyond our otherwise bounded 
rationality, and to view problem spaces in their proper 
context. It does this by taking a worldview opposite 
to the atomised simplicity or specialised 
decomposition that Laszlo [16] criticises. Breaking a 
whole into its parts is analysis, through which we 
gain knowledge. Building parts into wholes is 
synthesis, through which we gain understanding. 
Through this understanding it becomes possible to 
achieve change that truly address the root causes of 
problems, rather than simply hoping that it might do 
so. 

Systems thinking also fosters a collective 
understanding of a problem situation. Many of the 
tools of systems thinking, such as causal loop 
diagrams, rich pictures, or system archetypes, are 
visual rather than verbal descriptions. “A systems 
diagram is a powerful means of communication 
because it distils the essence of a problem into a 
format that can be easily remembered, yet is rich in 
implications and insights” [10, p. 6]. 

Yet, systems thinking is not as widely practised 
as these points might suggest it should be. 

Systems thinking does not provide the linear 
quick fix needed in many political and organisational 
settings. In these situations, action, any action, is 
mistaken for achievement so that a problem deferred 
or shifted is a problem solved. Systems thinking 
forsakes the quick fix for hopefully the right fix. 

Furthermore, the counter-intuitive and sometimes 
painful solutions offered by systems thinking can be 
hard to sell:  

There are no utopias in social systems. There 
appear to be no sustainable modes of behavior that 
are free of pressures and stresses. But many modes of 
behavior are possible and some are more desirable 
than others. The more attractive behaviors in social 
systems seem possible only if we act on a good 
understanding of the dynamic behavior of systems 
and are willing to endure the self-discipline and 

short-term pressures that will accompany the route to 
a desirable future. [8, p. 23] 

These are issues that are not insurmountable and 
more widespread systems thinking is possible, 
however, the remedy may still be incubating. Systems 
thinking is being incorporated into the curriculum of 
a small but significant number of primary and 
secondary schools in the United States, Australia, 
Europe and some other places. Not necessarily as a 
topic in itself, but as a tool for understanding and 
teaching other subjects [12]. A systems view that has 
been absorbed at this much more fundamental level 
has the opportunity to innately influence the thought 
processes of future decision makers and has a greater 
chance of finding a ready ear in a systems-aware 
community. 

It is interesting to note that where the philosophy 
of systems thinking has been adopted in K-12 
education, system dynamics has been chosen as the 
practical implementation. The reason for this 
partnering likely lies in the rich and democratic tool 
set provided by system dynamics. 

The tool set is rich in that various vendors offer 
intuitive software applications built upon system 
dynamic credentials that can create models at 
different points along the qualitative—quantitative 
spectrum. The user determines the level of detail. 
More generic, shrink-wrapped microworlds can also 
help people appreciate the subtle tenets of causal 
relationships, and show how they might be mapped 
into different environments [21]. 

Meanwhile, the tools are democratic in that the 
knowledge required to drive them need not rest solely 
in the hands of guru-like modellers. In fact, actively 
involving stakeholders in the system dynamics 
process is a critical success factor. Moreover, the 
system dynamics modelling package STELLA is 
being widely used in American primary and 
secondary schools, and even the more advanced 
iThink product contains just four fundamental 
building blocks. 

For all this, systems dynamics can be difficult to 
learn, with its history in engineering and computing 
possibly dissuading some people. 

Of course, system dynamics is not the only way 
of practicing systems thinking. Yet, it is the case of 
this paper that when compared to a representative 
sample of other systems methodologies, system 
dynamics has a number of advantages. 

Methodologies such as operation research, 
systems analysis and systems engineering can be 
called systematic rather than systemic because of the 
methodical way they decompose a problem and then 
comprehensively address each component. Therefore, 
they are ways of dealing with detail rather than 
dynamic complexity, with jigsaws rather than chess 



Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference 
Copyright   2001 

games. There is nothing intrinsically wrong in taking 
this approach if, for example, a meta-methodology 
such as TSI, points to it.  

Each of the methodologies considered in this 
paper, except system dynamics, lack an important 
final step. While soft systems methodology, 
organisational learning, and interactive planning may 
produce a conceptual solution that is both desirable 
and feasible, in moving the solution ‘into production’ 
there still exists an unknown quantity because the 
solution has not really been tested. Forrester [7] has 
criticised this leap of faith in many methodologies.  

Still, no model, not even the best system 
dynamics model, can perfectly predict the future. 
Nonetheless, simulation means our store of 
incomplete knowledge is at least reduced: 

Simulation speeds and strengthens the learning 
feedbacks. Discrepancies between formal and mental 
models stimulate improvements in both, including 
changes in basic assumptions such as model 
boundary, time horizon, and dynamic hypotheses. 
[22, p. 37]. 

Maybe the essence of this paper is captured by 
John Sterman’s appeal at the end of his new text book 
on systems thinking and system dynamics: 

Be humble about what you know and listen to 
your critics. Strive always to make a difference. And 
have fun [22, p. 901]. 

Few other ways of thinking offer this 
provocation. 
 
References 
 
[1] G. Burrell and G. Morgan, Sociological 
Paradigms and Organisational Analysis, Vermont: 
Ashgate Publishing Company, 1979. 
[2] P. B. Checkland, Systems Thinking, Systems 
Practice, Brisbane: John Wiley & Sons, 1981. 
[3] R. L. Flood and E. R. Carson, Dealing With 
Complexity: An Introduction to the Theory and 
Application of Systems Science, London: Plenum 
Press, 1993. 
[4] R. L. Flood and M. C. Jackson (eds.), Critical 
Systems Thinking: Directed Readings, Brisbane: John 
Wiley & Sons, 1991. 
[5] R. L. Flood and M. C. Jackson, ‘Total Systems 
Intervention: A Practical Face to Critical Systems 
Thinking’, pp. 321 – 337. In R. L. Flood & M. C. 
Jackson (eds.), Critical Systems Thinking: Directed 
Readings, Brisbane: John Wiley & Sons, 1991. 
[1] J. W. Forrester, Principles of Systems. Cambridge: 
Wright-Allen Press, 1968. 
[7] J. W. Forrester, ‘System Dynamics, Systems 
Thinking, and Soft OR’, System Dynamics Review, 
vol. 10, nos. 2 – 3, pp. 245 – 256, 1994. 

[8] J. W. Forrester, ‘Counterintuitive Behavior of 
Social Systems’ [on-line]. Available WWW: 
http://sysdyn.mit.edu/sd-intro/home.html, 1995. 
[9] A. Giddens, Durkheim. Glasgow: Fontana, 1978. 
[10] M. R. Goodman, ‘Systems Thinking as a 
Language’. In D. H. Kim (ed.), Systems Thinking 
Tools, Waltham: Pegasus Communications, 1995. 
[11] A. W. Gouldner, The Coming Crisis of Western 
Sociology. New York: Basic Books, 1970. 
[12] P. L. Hopkins, ‘Simulating Hamlet in the 
Classroom’. System Dynamics Review, vol. 8, Winter, 
pp. 91 – 98, 1992. 
[13] M. C. Jackson, ‘Beyond a System of Systems 
Methodologies’, Journal of the Operational Research 
Society, vol. 41. no. 8, pp. 657 – 668, 1990. 
[14] M. C. Jackson and P. Keys, ‘Towards a System 
of Systems Methodologies’, pp. 139 – 158. In R. L. 
Flood & M. C. Jackson (eds.), Critical Systems 
Thinking: Directed Readings, Brisbane: John Wiley 
& Sons, 1991. 
[15] T. S. Kuhn, The Structure of Scientific 
Revolutions, Chicago: University of Chicago Press, 
1996. 
[16] E. Laszlo, The Systems View of the World: A 
Holistic Vision for Our Time, Cresskill: Hampton 
Press, 1996. 
[17] O. Mayr, The Origins of Feedback Control, 
Cambridge: MIT Press, 1970. 
[18] G. Midgley, ‘The Ideal of Unity and the Practice 
of Pluralism in Systems Science’, pp. 25 – 36. In R. 
L. Flood & N. R. A. Romm (eds.), Critical Systems 
Thinking: Current Research and Practice, New York: 
Plenum Press, 1996. 
[19] M. Parker and G. McHugh, ‘Five Texts in 
Search of an Author: A Response to John Hassard’s 
“Multi-Paradigms and Organizational Analysis”’, 
Organizational Studies, vol. 12, no. 3, pp. 451 – 456, 
1991. 
[20] G. P. Richardson, Feedback Thought in Social 
Science and Systems Theory. Waltham: Pegasus 
Communications, 1999. 
[21] J. D. Sterman, People Express Management 
Flight Simulator [computer software]. Banbury: 
Phontis Limited, 1988. 
[22] J. D. Sterman, Business Dynamics: Systems 
Thinking and Modelling for a Complex World. New 
York: Irwin McGraw-Hill, 2000. 
[23] L. von Bertalanffy, General System Theory, New 
York: George Braziller, 1968. 
 
 

http://sysdyn.mit.edu/sd-intro/home.html


A Case for Games in Software Engineering 
 
 

Craig Caulfield 
Paul Maj 

 
 

School of Computer and Information Science 
Edith Cowan University 

Email: speck@cps.net.au, s.maj@cowan.edu.au 
 
 

Abstract: Computerised management simulation games have been shown to be effective 
learning tools in a variety of socio-economic and socio-technical environments. Originating in 
war-gaming and drawing on influences from a range of different fields, games have become 
established instructional elements in many business, military and educational institutions 
because of their ability to expand the notional experience of players in a safe, yet challenging, 
environment. However, they appear to be under represented in the field of software project 
management. A case is developed that a need and opportunity exists for games in this area. 
 
 
 
 
Keywords: games, systems thinking, system dynamics, software engineering, anticipatory 
learning 
 
INTRODUCTION 
 
In 1979 The Learning Report (Botkin et al.), the culmination of two years of meetings, 
seminars, and discussions concerning the world problematique, was presented at a Club of 
Rome conference. The report saw a growing gap between a complexity of human making and 
a lagging development of our own capacities to deal with it, and proposed a means of 
bridging this gap— anticipatory learning. Anticipatory learning differs from other types of 
learning in that it is: 
 
• Future-oriented. It assumes an orientation that prepares for possible contingencies and 

considers long-range future alternatives. “Through anticipatory learning, the future may 
enter our lives as a friend, not as a burglar” (Botkin et al., 1979, p. 13). 

 
• Participative. Anticipatory learning is not possible while there is a paternalistic assumption 

that one group has all the answers, and will deliver these to a less-informed constituency. 
When issues are explored as a joint venture then solutions become “almost self-evident, are 
better supported, can be more readily implemented, and are less likely to generate 
unwanted repercussions” (Botkin et al., 1979, p. 30). 

 
Many of the tools of anticipatory learning draw on systems thinking principles (Fulmer, 1993; 
Senge & Fulmer, 1993); perhaps the one with the greatest potential, games, is the subject of 
this paper. 
 

mailto:speck@cps.net.au�


Within the literature, terms such as business management game, simulation, microworld, 
virtual world, and the like, have been used to mean the same and different things all at once 
(Maier & Grossler, 2000). Within this paper, however, ‘game’ will be used to refer to a 
computer-based model of a real-world domain (business or otherwise) that supports the 
learning of a single user, or group of users, about some kind of socio-economic or socio-
technical system.  
 
Games of this kind draw their intellectual integrity from a number of fields including war-
gaming, education theory, small group behaviour, systems analysis and operations research, 
and general systems theory (Raser, 1969, pp. 46 - 65). By way of illustration, the most 
dominant antecedent, war-gaming will be followed here. 
 
Games have been used as learning tools in many different business, military and social 
environments, but appear to be under-represented in a critical modern situation—software 
engineering: the systematic, disciplined, and quantifiable approach to the development, 
operation, and maintenance of software. Despite the name, software engineering does not 
enjoy the same standing as the more established engineering professions. Anecdotal evidence 
suggests that an urgent software crisis exists (a gap between expectations of software and the 
product and performance actually delivered) and has been growing since the 1960s. While 
quantitative data proving the existence of a software crisis is thin, it might be conceded that 
software engineering has room to do things better. This paper presents some preliminary 
research that aims to make a case for the greater use of games in this field. 
 
DEALING WITH CHANGE AND COMPLEXITY 
 
Senge comments: 
 
“Perhaps for the first time in history, humankind has the capacity to create far more 
information than anyone can absorb, to foster far greater interdependency than anyone can 
manage, and to accelerate change far faster than anyone’s ability to keep pace.” (Senge, 1990, 
p. 69). 
 
The driving force behind this change and complexity has many sources, notably advances in 
communications and information technology. However, the pace and substance of change has 
been seen for many years. For example, Adams (1918, pp. 489 - 498) discusses an informal 
law of acceleration in which technology tended to double its ability roughly every ten years 
between 1820 and 1900. Along the same lines, Boulding has said: 
 
“As far as many statistical series related to activities of mankind are concerned, the date that 
divides human history into two equal parts is well within living memory… In a very real 
sense the changes in the state of mankind since the date of my birth [1910] have been greater 
than the changes that took place in many thousands of years before this date.” (Boulding, 
1964, pp. 7, 8) 
 
Meanwhile, Toffler (1970, p. 16) has noted that it is still within living memory that 
agriculture, the original basis of civilisation, has lost its dominance as the primary employer 
of  the economically active population. 
 



If we accept, just for the length of this paper, that change is happening for whatever reasons 
and at whatever pace, then we should also accept that we need to deal with its consequences 
in some manner. There are two classic ways in which this can be done: 
 
• Simplify reality. Look for the primitives and hierarchy of the problem domain. Seeing 

abstractions or commonalities and understanding how they relate to each other can help 
orient our thinking when confronted with something unfamiliar (von Bertalanffy, 1968; 
Courtois, 1985). 

 
• Absorb the complexity or achieve a level of requisite variety (Ashby, 1956). When we are 

confronted with some new situation or piece of information, it is typically compared to an 
array of previous knowledge, our mental models. An inference process then tries to makes 
sense of the new information by relating it to what is already known.   

 
Simplifying reality is the first step in analysing something new; we then need to decide what 
to do based on what we know. Yet, in order for the later inference process to have any 
substance with which to work, our store of mental models, or contexts, must be sufficient: 
 
“In order to enhance the human capacity to act in new situations and to deal with unfamiliar 
events, [anticipatory] learning requires the absorption of vast collections of contexts. When 
contexts are restricted, the probability of shock learning increases, for shock may be 
conceived as a sudden event that occurs outside the known contexts. Hence one task of 
innovative learning is to enhance the individual’s ability to find, absorb, and create new 
contexts— in short, to enrich the supply of contexts.” (Botkin et al., 1979, p. 24) 
 
A way to enrich the supply of contexts is to use one of the tools of anticipatory learning: 
games. The argument is illustrated by the feedback diagram in the Figure 1 (Sterman, 2000, p. 
34).  

Real  World

Information Feedback

Mental Models of
the Real World

Decisions

Strategy, Structure,
Decision Rules

Games

 
Figure 1. A learning feedback process that incorporates experimentation through games. 
 
We receive information in its many forms from the real world in which we live. Based on this 
feedback, we make decisions that are filtered through our existing mental models, in the 
process changing or confirming the structure of our real-world systems and creating new 
decision rules and new strategies or reinforcing the existing. Games act as an alternative to 
applying our decisions to the real-world, a way of quickly and inexpensively experimenting 
with different policies and thereby increasing our supply of contexts. Without this tool, we 
must directly respond to real-world feedback that is “very slow and often rendered ineffective 



by dynamic complexity, time delays, inadequate and ambiguous feedback, poor reasoning 
skills, defensive reactions, and the costs of experimentation” (Sterman, 2000, p. 37). 
 
THE RATIONALE OF GAMES 
 
An Origin in War Games 
 
While the exact origins of war games are somewhat unclear, students of the history of chess, 
and similar board games played for pleasure, have noted that at an early stage such games 
were used as symbolic equivalents of warfare (Murray, 1913, pp. 46 - 50). For example, in the 
ancient Chinese game of Wei-Hai, dating from around 3000 BC, players moved coloured 
stones on a grid with the goal of controlling as much space as possible. While no diagrams or 
game pieces for Wei-Hai have survived, descriptions suggest it resembled the modern 
Japanese game of Go (Smith, 1998, p. 805). In the Indian game of Chaturanga (c. 1000 BC), 
generally assumed to be the oldest form of chess, a group of up to four players used a board 
divided into squares, and pieces in the shapes of elephants, soldiers, cavalry, and nobles. In 
contrast to Wei-Hai, the object was to capture the opponents’ pieces rather than to control 
territory. Chance elements were introduced by a dice. 
 
War games continued to draw on chess and variations on the theme up to the 17th century, 
adding verisimilitude by using pieces shaped as soldiers, weapons of war, and royalty. 
Koenigspiel, or Kings Game, developed by Christopher Weikhmann at Ulm, Germany in 
1664 consisted of thirty pieces and a large board, but remained essentially chess. A more 
elaborate version of Koenigspiel, called War Chess, was developed by Dr C. L. Helwig in 
1780 at the German Court of Brunswick. Helwig’s game had a playing board with 1666 
squares, over 200 specialised pieces representing various military units, with the rules applied 
and adjudicated by an impartial game director (Wolfe, 1993, p. 449). 
 
Around the late 18th and early 19th centuries, war-gaming experienced several developments. 
The games became an accepted tool of military training, particularly in Germany, and moved 
to a new level of complexity. For example, New Kriegspiel, developed by Georg Venturini at 
Schleswig in 1798 followed a 60-page rule book that defined hundreds of troop lists and 
supporting batteries and was played on a 3600-square surface representing the Franco-Belgian 
border (Wolfe, 1993, p. 449). 
 
From its intellectual home in Germany, the war games concept spread to other countries in the 
latter part of the 19th century. In 1872, war games were introduced into the British Royal 
Artillery (Lane, 1995, p. 608). Meanwhile, the American McCarthy Little devised a war game 
in 1887 that used miniature battleships on maps (Macedonia, 2002, p. 36), and other war 
games were used extensively at West Point at the same time. 
 
As well as being vehicles for training and education, war games were used to exercise 
operational plans. Germany’s Schlieffen Plan for the invasion of France in World War I was 
informed by war game findings (Wolfe, 1993, p. 450), and as early as 1929 Germany was 
gaming a various conflicts with Poland and studying the possible international reactions 
(Raser, 1969, pp. 47 - 48). Meanwhile, in Japan, war games conducted at the Total War 
Research Institute and the Naval War College allowed participants from both government and 
the military to experience the domestic and international factors of war. 
 



Until the 1970s, the practice of war games has largely been physical: pieces had been moved 
around boards, map-based manoeuvres had added a degree of realism, and different scenarios 
had been played out. While computers had been used for some of the behind-the-scenes 
processing, they hadn’t become an integral part of the war games themselves. 
 
In 1976, then-Captain Jack Thorpe was working a research scientist in flight training at the 
Williams Air Force base near Phoenix, Arizona. His research was centred around improving 
the flight simulators used by the Air Force to initially train pilots (Sterling, 1993; Riddell, 
1997). Essentially, these machines were stand-alone devices not far removed from Edwin 
Link’s original, pre-World War II flight simulator which had itself been an amusement park 
ride before being adopted by the military (Macedonia, 2002, pp. 36 - 37). The simulators were 
also sometimes more expensive than the vehicle they emulated and ongoing running costs 
were exorbitant (Fullford, 1996, p. 179). Instead, Thorpe imagined a network of cheap 
simulators, for aircraft and other vehicles, through which military personnel could learn group 
skills as well as the traditional sole-operator skills (Alluisi, 1991). 
 
At the time the technology did not exist to implement Thorpe’s plan, but when he moved to 
the Defense Advanced Research Projects Agency (DARPA) in the early 1980s he became 
aware of a continuing experiment in distributed networking known as the ARPANET, the 
forerunner of the Internet. The means were then at hand. The eventual outcome was SIMNET 
(for simulator network), an interactive network of real-time, person-in-the-loop battle 
engagement and war-gaming (Alluisi, 1991). SIMNET was designed from the outset to be 
cheap and uncomplicated— factors which meant it worked and which made it highly 
attractive to its sponsors. From this starting point, the US military now spends some $4b each 
year on simulation training and equipment (Macedonia, 2002, p. 33). 
 
Arrival of Business Games 
 
In 1956 the American Management Association developed what is generally considered to be 
the first Western business game, Top Management Decision Simulation, explicitly 
acknowledging its direct relation to military war-gaming: 
 
“In the war games conducted by the Armed Forces, command officers of the Army, Navy, 
and Air Force have an opportunity to practice decision making creatively in a myriad of 
hypothetical yet true-to-life competitive situations. Moreover, they are forced to make 
decisions in areas outside their own specialty; a naval communications officer, for example 
may play the role of a task force commander. Why then, shouldn’t businessmen have the 
same opportunity?” (Ricciardi et al. cited in Cohen & Rhenman, 1961, p. 135) 
 
In this game teams of players managed a company that produced a single product and 
competed with the products of other teams. Around the same time, the RAND Corporation 
developed a game called Monopologs based on the supply logistics of the US Air Force 
(Jackson, 1959). Other similar games quickly followed. For example, Andlingers’s (1958) 
Business Management Game sets two or three teams of players in competition within a 
market in which each team has a single product. The teams needed to make decisions relating 
to production, finance, research and development, advertising as they managed their 
companies from quarter to quarter.  
 
Up until this time, business games were mostly conducted by consulting firms for the benefit 
of corporate decision makers and executives. However, educators were also seeing the 



benefits of business games. The Top Management Decision Game developed by Schreiber, 
was the first business simulation game used in a university class, the business policy class at 
University of Washington in 1957 (Watson & Blackstone, 1989, p. 486). From this point 
onwards, the use of business games in industry and academia grew rapidly. By 1961 it was 
estimated that about 100 business games had been developed and more than 30,000 
executives had played at least one game (Kibbee et al., 1961). Meanwhile, a survey of 90 
American business schools found that only eight had not, and were not intending to, introduce 
business games into the curriculum in the near future (Dale & Klasson, 1962). 
 
By the late 1960s and early 1970s business game penetration in business and academia had 
plateaued. While the tool had gained a certain degree of saturation, there were also some 
validity and reliability concerns (Neuhauser, 1976). But, since the 1980s there has been 
something of a resurgence because: 
 
• There have been improvements in the symbols and software used to map and model system 

structure, for example STELLA, iThink, and Powersim. 
 
• New ideas have been adopted from behavioural decision theory which help to transfer 

policymakers’ knowledge into computer models. “Behavioural decision theory can help 
modelers to ask better questions of policymakers, to specify decision processes more 
accurately, and to capture more or (sic) policymakers’ knowledge in maps and algebra” 
(Morecroft, 1988, p. 315). 

 
• There have been improvements in methods of simulation analysis that enable modellers and 

model users to gain better insight into dynamic behaviour.  
 
• Greater emphasis has been placed on small transparent models, on games and on dialogue 

between mental models and the tools. 
 
Currently the state of business games is alive and growing (Burgess, 1991; McKenna, 1991; 
Faria, 1998).  
 
Why Games? 
 
To a large degree, games have been found to be more expensive and more administratively 
demanding that some other forms of instruction (Petranek, 1994). However, there are some 
significant offsetting advantages. 
 
Boat builders, aircraft manufacturers, and engineers have long recognised that it is far cheaper 
to study a given phenomenon in a model in the first instance than to build the real thing 
(Raser, 1969, p. 15). In relation to policy formulation, where the end product may not be a 
physical construction, it can also be cheaper in the sense that a particular course of action can 
be tested in a simulation and potentially avoid costly mistakes. 
 
A game is a visible representation of a problem space and as such has the potential to foster 
collective understanding. It is interesting to note that many of the tools of systems thinking, 
such as causal loop diagrams, rich pictures, or system archetypes, are visual rather than verbal 
descriptions. “A systems diagram is a powerful means of communication because it distils the 
essence of a problem into a format that can be easily remembered, yet is rich in implications 
and insights” (Goodman, 1995, p. 6). Of course, the substance of a systems diagram, or a 



game, will be the mental models of those creating it. It has been noted that the human 
capacity to understand the implications of our mental models and to accurately trace through 
even a smaller number of causal relationships is fairly limited (Miller, 1956, p. 457; Simon, 
1957, p. 198). But, if we are able to capture a mental model in a game, we have a tool that can 
be run and re-run, shared, placed under stress, and learned from. 
 
For all these good points there are some dangers to be heeded. 
 
For example, computers make it possible to implement games of incredible richness. Such 
games might be able to accommodate elements of time pressure, role-playing, systems 
thinking, decision-making, computer skills, random events, analysis and negotiation skills, all 
presented through a multi-media interface. Participants might also tend to play the game to 
win, as they might an arcade game, rather than to learn; alternatively, the richness of the 
interface may overwhelm or discourage other participants. Therefore, there needs to be an 
appropriate emphasis on technology and a balance of game elements at each stage (Meadows, 
1989, p. 639). 
 
For best effect, games need to be accompanied by an appropriate level of pre-game briefing 
and post-game debriefing (Petranek et al., 1992). Some games are deliberately vague 
regarding the details they supply to participants, forcing the players to work out issues as part 
of the experience. The post-game debrief is perhaps the most critical learning component 
since it is here that participants can be helped to create a comparison between the game 
experience and their own mental models (Simons, 1993, p. 136). “The debrief can be very 
important in helping people to reflect on what they have experienced, in enabling them to 
share and debate experiences, feelings and views, and finally, in helping them to construct 
their experiences into understanding which can be re-applied” (Lane, 1995, p. 616).  
 
A CASE IN POINT: SOFTWARE ENGINEERING 
 
In 1968 and 1969 NATO convened conferences of computer industry representatives and 
academics to help address what was seen as a growing gap between what was generally hoped 
for in complex software systems and what was actually achieved (Naur & Randell, 1969; 
Buxton & Randell, 1970). At the time it was recognised that the demands on software 
practitioners from industry, defence, and consumers would likely grow at an exponential rate. 
Yet, software engineering was then more of a craft than a profession (the term software 
engineering in the conference titles was considered deliberately provocative) and was already 
struggling to meet quality and performance measures; a software crisis in fact. 
 
By 1982, it was estimated that 15% of all software projects failed to deliver anything, and cost 
over-runs of 100% to 200% were not uncommon (DeMarco, 1982, p. 3). In more recent times, 
the situation is still common: 
 
“For every six new large-scale software systems that are put into operation, two others are 
canceled. The average software development project overshoots its schedule by half; larger 
projects generally do worse. And some three quarters of all large systems are “operating 
failures” that either do not function as intended or are not used at all.” (Gibbs, 1994, p. 86) 
 
Despite some admirable successes (for example Copeland et al., 1995), software project and 
product failures  tend to gather more attention (for example Sauer, 1993; Myers, 1994; Stix, 
1994; Applegate et al., 1996a; Applegate et al., 1996b; Barlas, 1996; Glass, 1998, 1999) and 



influence how the industry is perceived. For the most part, runaway projects such as these can 
be seen failures of management rather than failures of technology (DeMarco & Lister, 1987, 
p. 4; Schlender, 1989, p. 72; Flowers, 1996). 
 
Glass (1994, p. 43) suggests that anecdotal software project war stories do not provide 
sufficient hard data to support the claim of a software crisis. Indeed: 
 
“Next time you’re on the Internet, or making an airline reservation, or depositing money in 
your bank, or checking out at the grocery store, or using a credit card, or watching a space 
mission evolve on the evening new, or driving your fairly modern car, think about the 
computers and software that make all those things possible.” (Glass, 2000, p. 2) 
 
Whichever view is individually more attractive, it may be conceded that the demands placed 
on the software development community will continue to grow and that room exists to 
improve both the quality of software and other key project management processes. 
 
It is the argument of this paper, and the subject of continuing research of which this is just the 
beginning, that one way to address issues of software and project management quality is to 
expand the experience of software practitioners and managers through the use of games.  
 
The software development process has been represented in computer models a number of 
times in the past (for example Abdel-Hamid & Madnick, 1991; Variale et al., 1994; Hansen, 
1996; Lin et al., 1997; Collofello, 2000; Ruiz et al., 2001) often making use of system 
dynamics, but for the most part these models have been more estimating, rather than learning, 
tools and so do not fit the definition of a game given above. The penetration rate of these 
models into business and academia has also been minimal.  
 
It was previously mentioned that a critical success factor for any game is its ability to link the 
experience to the user’s mental model. Adequate debriefing can help create this link, but the 
model or game itself can also add support: 
 
• The game needs to be set within what Churchman (1968, p. 5) might call an environmental 

context. To provide this environmental context, a game should not be a stand-alone device 
but should ideally be a hub interlinked with other resources than enrich the game’s 
experience (Simons, 1993, p. 143). 

 
• The structure of the game’s assumptions should be as simple as needed and transparent to 

the user. 
 
To varying degrees, software development process models have so far failed to address these 
factors. Continuing research in this area is aimed at seeing how games can contribute to better 
software engineering practices by incorporating a richer context and more transparent 
structure. 
 
CONCLUSION 
 
Software is inherently complex, and this complexity is an essential rather than an accidental 
characteristic. This complexity can be attributed to several elements: 
 



• Software needs to conform as best as possible to the arbitrary complexity imposed upon it 
by human institutions and systems (Brooks, 1995, p. 184). It is the usual case that these 
institutions and systems have been designed by different people with no underlying theme; 
still, software must be made to tie them together. 

 
• Software “is pure thought-stuff, infinitely malleable” (Brooks, 1995, p. 185). This property 

is both seductive and dangerous: when change is needed it is likely that it will be easiest to 
change the software, but constant change, if not managed, can erode the integrity of the 
original design. 

 
• Software is invisible and difficult to visualise. Architects or engineers have blueprints or 

schemas so that “contradictions become obvious, omissions can be caught. Scale drawings 
of mechanical parts and stick-models of molecules, although abstractions, serve the same 
purpose. A geometric reality is captured in a geometric abstraction. The reality of software 
is not inherently embedded in space” (Brooks, 1995, p. 185). 

 
It is perhaps understandable, then, that software practitioners have struggled to keep pace with 
the expectations of all consumers of their product. Nevertheless, games represent an 
opportunity to address some of the performance issues. 
 

References 
 

Abdel-Hamid, T. K. & Madnick, S. E. (1991), Software Project Dynamics: An Integrated 
Approach, Englewood Cliffs, Prentice-Hall. 

Adams, H. (1918), The Education of Henry Adams: An Autobiography, London, Constable & 
Co. 

Alluisi, E. A. (1991), The Development of Technology for Collective Training: SIMNET, A 
Case History, Human Factors, 33(3), pp. 343 - 362. 

Andlinger, G. R. (1958), Business Games - Play One!, Harvard Business Review, 36(2), pp. 
115 - 125. 

Applegate, L. M., Montealegre, R. & Knoop, C.-I. (1996a), BAE Automated Systems (B): 
Implementing the Denver International Airport Baggage-Handling System (Case study 
9-396-312), Boston, Harvard Business School. 

Applegate, L. M., Montealegre, R., Nelson, H. J. & Knoop, C.-I. (1996b), BAE Automated 
Systems (A): Denver International Airport Baggage-Handling System (Case study 9-
396-311), Boston, Harvard Business School. 

Ashby, W. R. (1956), Self-Regulation and Requisite Variety, in F. E. Emery (ed.) Systems 
Thinking, Ringwood, Penguin Books, pp. 105 - 124. 

Barlas, S. (1996), Anatomy of a Runaway: What Grounded the AAS, IEEE Software, 13(1), 
pp. 104 - 106. 

Botkin, J. W., Elmandjra, M. & Malitza, M. (1979), No Limits to Learning: Bridging the 
Human Gap: A Report to the Club of Rome, Oxford, Pergamon Press. 



Boulding, K. E. (1964), The Meaning of the Twentieth Century: The Great Transition, New 
York, Harper & Row. 

Brooks, F. P. (1995), The Mythical Man-Month: Essays on Software Engineering, Sydney, 
Addison-Wesley. 

Burgess, T. F. (1991), The Use of Computerized Management and Business Simulation in the 
United Kingdom, Simulation & Gaming, 22(2), pp. 174 - 195. 

Buxton, J. N. & Randell, B., (eds.). (1970). Software Engineering Techniques: Report on a 
Conference Sponsored by the NATO Science Committee, Rome, Italy, 27th to 31st 
October 1969, Brussels, Scientific Affairs Division, NATO. 

Churchman, C. W. (1968), The Systems Approach, New York, Dell Publishing Co. 

Cohen, K. J. & Rhenman, E. (1961), The Role of Management Games in Education and 
Research, Management Science, 7, pp. 131 - 166. 

Collofello, J. (2000), University/Industry Collaboration in Developing a Simulation Based 
Software Project Management Training Course, in S. A. Mengel and P. J. Knoke 
(eds.), Proceedings of the Thirteenth Conference on Software Engineering Education 
& Training, Los Alamitos, IEEE Computer Society Press, pp. 161 - 168. 

Copeland, D. G., Mason, R. O. & McKenney, J. L. (1995), Sabre: The Development of 
Information-Based Competence and Execution of Information-Based Competition, 
IEEE Annals of the History of Computing, 17(3), pp. 30 - 56. 

Courtois, P. J. (1985), On Time and Space Decomposition of Complex Structures, 
Communications of the ACM, 28(6), pp. 590 - 603. 

Dale, A. G. & Klasson, C. R. (1962), Business Gaming: A Survey of American Collegiate 
Schools of Business, Austin, Bureau of Business Research, Univerisity of Texas. 

DeMarco, T. (1982), Controlling Software Projects, New York, Yourdon Press. 

DeMarco, T. & Lister, T. (1987), Peopleware: Productive Projects and Teams, New York, 
Dorset House Publishing Co. 

Faria, A. J. (1998), Business Simulation Games: Current Usage Levels - An Update, 
Simulation & Gaming, 29(3), pp. 295 - 308. 

Flowers, S. (1996), Software Failure, Management Failure: Amazing Stories and Cautionary 
Tales, New York, John Wiley & Sons. 

Fullford, D. A. (1996), Distributed Interactive Simulation: It's Past, Present, and Future, in J. 
M. Charnes, D. J. Morrice, D. T. Brunner and J. J. Swain (eds.), Proceedings of the 
1996 Winter Simulation Conference, New York, ACM Press, pp. 179 - 185. 

Fulmer, R. M. (1993), The Tools of Anticipatory Learning, Journal of Management 
Development, 12(6), pp. 7 - 14. 

Gibbs, W. W. (1994), Software's Chronic Crisis, Scientific American, 271(3), pp. 86 - 95. 



Glass, R. L. (1994), The Software-Research Crisis, IEEE Software, 11(6), pp. 42 - 47. 

Glass, R. L. (1998), Software Runaways, Upper Saddle River, Prentice Hall. 

Glass, R. L. (1999), Computing Calamities: Lessons Learned from Products, Projects, and 
Companies That Failed, Upper Saddle River, Prentice Hall. 

Glass, R. L. (2000), Talk About a Software Crisis - Not!, The Journal of Systems and 
Software, 55(1), pp. 1 - 2. 

Goodman, M. R. (1995), Systems Thinking as a Language, in D. H. Kim (ed.) Systems 
Thinking Tools, Waltham, Pegasus Communications, pp. 6 - 7. 

Hansen, G. A. (1996), Simulating the Software Development Process, IEEE Computer, 29(1), 
pp. 73 - 77. 

Jackson, J. R. (1959), Learning From Experience in Business Decision Games, California 
Management Review, 1(1), pp. 23 - 29. 

Kibbee, J. M., Craft, C. J. & Nanus, B. (1961), Management Games: A New Technique for 
Executive Development, New York, Reinhold Publishing Corporation. 

Lane, D. C. (1995), On a Resurgence of Management Simulation Games, Journal of the 
Operational Research Society, 46(5), pp. 604 - 625. 

Lin, C. Y., Abdel-Hamid, T. K. & Sherif, J. S. (1997), Software-Engineering Process 
Simulation Model (SEPS), The Journal of Systems and Software, 38, pp. 263 - 277. 

Macedonia, M. (2002), Games Soldiers Play, IEEE Spectrum, 39(3), pp. 32 - 37. 

Maier, F. H. & Grossler, A. (2000), What Are We Talking About? - A Taxonomy of 
Computer Simulations to Support Learning, System Dynamics Review, 16(2), pp. 135 - 
148. 

McKenna, R. J. (1991), Business Computerized Simulation: The Australian Experience, 
Simulation & Gaming, 22(1), pp. 36 - 62. 

Meadows, D. L. (1989), Gaming to Implement System Dynamics Models, in P. M. Milling 
and E. O. K. Zahn (eds.), Computer-Based Management of Complex Systems, Berlin, 
Springer-Verlag, pp. 635 - 640. 

Miller, G. A. (1956), The Magical Number Seven, Plus or Minus Two: Some Limits on Our 
Capacity for Processing Information, Psychological Review, 63(2), pp. 81 - 97. 

Morecroft, J. D. W. (1988), System Dynamics and Microworlds for Policymakers, European 
Journal of Operational Research, 35, pp. 301 - 320. 

Murray, H. J. R. (1913), A History of Chess, Oxford, Clarendon Press. 

Myers, M. D. (1994), A Disaster for Everyone to See: An Interpretive Analysis of a Failed IS 
Project, Accounting, Management, and Information Technologies, 4(4), pp. 185 - 201. 



Naur, P. & Randell, B., (eds.). (1969). Software Engineering: Report on a Conference 
Sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October 
1968, Brussels, Scientific Affairs Division, NATO. 

Neuhauser, J. J. (1976), Business Games Have Failed, Academy of Management Review, 1(4), 
pp. 124 - 129. 

Petranek, C. F. (1994), A Maturation in Experiential Learning: Principles of Simulation and 
Gaming, Simulation & Gaming, 25(4), pp. 513 - 522. 

Petranek, C. F., Corey, S. & Black, R. (1992), Three Levels of Learning in Simulations: 
Participating, Debriefing, and Journal Writing, Simulation & Gaming, 23(2), pp. 174 - 
185. 

Raser, J. R. (1969), Simulation and Society: An Exploration of Scientific Gaming, Boston, 
Allyn and Bacon Inc. 

Riddell, R. (1997), Doom Goes to War, Wired, 5(4), pp. 11pp. 113 - 118, 164 - 166. 

Ruiz, M., Ramos, I. & Toro, M. (2001), A Simplified Model of Software Project Dynamics, 
The Journal of Systems and Software, 59(3), pp. 299 - 309. 

Sauer, C. (1993), Why Information Systems Fail: A Case Study Approach, Henley-on-
Thames, Alfred Waller Limited. 

Schlender, B. R. (1989), How to Break the Software Logjam, Fortune, 120(7), pp. 72 - 76. 

Senge, P. M. (1990), The Fifth Discipline: The Art & Practice of The Learning Organization, 
Milsons Point, Random House. 

Senge, P. M. & Fulmer, R. M. (1993), Simulations, Systems Thinking and Anticipatory 
Learning, Journal of Management Development, 12(6), pp. 21 - 33. 

Simon, H. A. (1957), Models of Man Social and Rational: Mathematical Essays on Rational 
Human Behavior in a Social Setting, New York, John Wiley & Sons. 

Simons, K. L. (1993), New Technologies in Simulation Games, System Dynamics Review, 
9(2), pp. 135 - 152. 

Smith, R. D. (1998), Essential Techniques for Military Modeling & Simulation, Proceedings 
of the 1998 Winter Simulation Conference, Los Alamitos, IEEE Computer Society 
Press, pp. 805 - 812. 

Sterling, B. (1993), War is Virtual Hell, Wired, 1(1). 

Sterman, J. D. (2000), Business Dynamics: Systems Thinking and Modelling for a Complex 
World, New York, Irwin McGraw-Hill. 

Stix, G. (1994), Aging Airways, Scientific American, 270(5), pp. 96 - 104. 

Toffler, A. (1970), Future Shock, London, The Bodley Head. 



Variale, T., Rosetta, B., Steffen, M., Rubin, H. & Yourdon, E. (1994), Modeling the 
Maintenance Process, American Programmer, 7(3), pp. 29 - 37. 

von Bertalanffy, L. (1968), General System Theory, New York, George Braziller. 

Watson, H. J. & Blackstone, J. H. (1989), Computer Simulation, New York, John Wiley & 
Sons. 

Wolfe, J. (1993), A History of Business Teaching Games in English-Speaking and Post-
Socialist Countries: The Origination and Diffusion of a Management Education and 
Development Technology, Simulation & Gaming, 24(4), pp. 446 - 463. 

 
 
COPYRIGHT DECLARATION 
  
Craig Caulfield and Paul Maj 2002. We grant a non-exclusive licence to ANZSYS 2002 and 
its organisers to publish this document in full in the conference papers and proceedings which 
may include publication on the world wide web including mirror sites, CD-Rom, or in printed 
form. Any other usage is prohibited without the express permission of the authors. I/we assign 
to ANZSYS 2002, its organisers, and educational and non-profit institutions a non-exclusive 
licence to use this document for personal use and in courses of instruction provided that the 
article is used in full and this copyright statement is reproduced. 

 



25

© 2002 UICEEGlobal J. of Engng. Educ., Vol.6, No.1
Published in Australia

INTRODUCTION

Engineering education can deliver training that is all-
inclusive and systematic in the design, development,
maintenance and management of intricate technical
systems. Without question, such education provides the
necessary technical depth to graduates. However,
many technical systems are best understood from the
perspective of human perceptions and also that of a
wider socio-economic context. It has been well docu-
mented that the success of technical projects is quite
often almost entirely dependent on these factors.

It is a curious paradox that the software industry
has helped provide the means by which others have
been able to automate, reengineer and economy-scale
their businesses, that is, reduce the human variable,
and yet remains itself very people sensitive and
intensive. For example:

A Case for System Dynamics*

Craig W. Caulfield
S. Paul Maj

Edith Cowan University, 2 Bradford Street, Mount Lawley, Perth, WA 6050, Australia

Engineering education provides a thorough and systematic training in the design, development,
maintenance and management of complex technical systems. While such education provides the
necessary technical depth to graduates, many technical systems are best understood from the
perspective of human and socio-economic relationships. A case in point may be Fred Brooks’ law
that states adding more developers to a late software engineering project will only make it even
more behind schedule. Brooks’ law is based on the understanding that additional, new software
engineering staff will need time to come up to speed with the project and in doing so will divert the
existing developers from their primary tasks. While Brooks’ law is intuitively appealing, students
and practicing software engineers really have no way of testing its efficacy in their particular
situations. A tool to overcome this difficulty may be system dynamics. System dynamics is a
systems thinking methodology for building quantitative and qualitative models of complex situations
so that they can ultimately be better understood and managed. Accordingly, it can be argued, that
system dynamics should be an essential part of the education of engineers from most, if not all, of
the major disciplines.

*A revised and expanded version of a keynote address
presented at the 3rd Asia-Pacific Forum on Engineering
and Technology Education, held in Changhua, Taiwan,
from 8 to 11 July 2001. This paper was awarded the UICEE
diamond award (first grade) by popular vote of Forum
participants for the most significant contribution to the
field of engineering education.

Highly skilled people with appropriate
experience, talent, and training are key to
producing software that satisfies user needs
on time and within budget. The right people
with insufficient tools, languages, and
process will succeed. The wrong people (or
the right people with insufficient training or
experience) with appropriate tools, lan-
guages, and process will probably fail [1].

Tom DeMarco, co-author of the often-cited
Peopleware, has found that most software develop-
ment managers agree with this premise that a project’s
sociology will contribute more to the final outcome
than the project’s technology [2]. Sociology, in this
context, means addressing issues such as team
formation and dynamics, role assignment, hiring,
motivation, workplace design, training and many other
peopleware practices. However, the same managers
do not conduct their projects with this regard and
instead focus on that aspect they are most comfort-
able with: technology;

The evident reason for this is that the man-
ager knows how to do technology, but not
how to do sociology. He/she doesn’t know
how to manage [3].



C.W. Caulfield & S.P. Maj26

One of the golden rules of software engineering
texts maybe a case in point - Fred Brooks’ informal
law that states that adding more software developers
to a late project will only make it later [4]. Brooks’
law is based on the understanding that the new devel-
opers will need time to come up to speed with the
project and in doing so will divert the existing devel-
opers from their primary and now critical tasks. While
Brooks’ law is intuitively appealing, students and
practicing software engineers really have no way of
testing its efficacy in their particular situations because
such systems are difficult to model.

One possible way to address such situations is by
using the systems thinking methodology, system
dynamics.

System dynamics is concerned with building
quantitative and qualitative models of complex prob-
lem situations and then experimenting with and study-
ing the behaviour of these models over time. Often
such models will demonstrate how unappreciated
causal relationships, dynamic complexity and struc-
tural delays may lead to counter-intuitive outcomes of
less-informed efforts to improve the situation. System
dynamics models make room for soft factors such as
motivation and perceptions so that engineering projects
can ultimately be better understood and managed.

This paper presents some initial results of imple-
menting a simple model of Brooks’ law using a
system dynamics modelling software package called
iThink to support the argument that system dynamics
should be an essential part of the education of
engineers from most, if not all, of the major disciplines.
The model is then extended beyond Brooks’ exact
scope to demonstrate how it might be possible to
incorporate and validate soft variables alongside the
more traditional variety.

SYSTEM DYNAMICS

In the late 1950s, Jay Forrester of the Sloan School of
Management at the Massachusetts Institute of Tech-
nology (MIT) was asked by General Electric to
review the operations of their Kentucky appliance parts
plant. The company was concerned about the oscil-
lating nature of their production cycles that often saw
periods of intense activity followed by times of virtual
dormancy during which workers had to be laid off.
Fluctuating demand and normal business cycles did
not seem to adequately explain the situation. Coming
from an electrical engineering background and with a
keen interest in management science, Forrester
approached the problem systematically, but with just
a pencil and a note pad. Starting with columns for
inventory, employees and orders, and factoring in:

...the policies they were following, one could
decide how many people would be hired in the
following week. This gave a new condition of
employment, inventories, and production [5].

Forrester’s calculations amounted to a simulation of
the system operating at General Electric’s plant.

Stemming from this first analysis came an article for
the Harvard Business Review in 1958 entitled Indus-
trial Dynamics - A Major Breakthrough for Decision
Makers with the theme being developed and expanded
in the seminal work, Industrial Dynamics [6]. Industrial
dynamics became system dynamics as it came to be
used in areas other than industry.

For some time following the publication of Indus-
trial Dynamics, system dynamics was used as a tool
for looking at big-picture issues such as urban decay,
major sociological conditions and world economics
[7-9]. In more recent times, system dynamics has come
back from the big end of town and has been finding a
purpose for itself in a range of business and social
applications. Instrumental in this change have been
Peter Senge’s The Fifth Discipline [10], and the
development of intuitive, graphical software packages
that have made system dynamics modelling more
democratic by hiding the computer source-code look
of traditional models. As a measure of this democ-
racy, system dynamics now finds a place for itself in a
number of primary and secondary schools in the
United States of America, Australia and Europe, well
beyond its ground zero at MIT.

To more formally define system dynamics, it could
be said that it:

…is concerned with creating models or
representations of real world systems of all
kinds and studying their dynamics (or
behaviour). In particular, it is concerned
with improving (controlling) problematic
system behaviour… The purpose in applying
System Dynamics is to facilitate under-
standing of the relationship between the
behaviour of the system over time and its
underlying structure and strategies/policies/
decision rules [11].

A key element of this definition is the need to build
a computer model of the system under consideration.
The model is used to help understand the patterns of
change or dynamics that a system exhibits over time
and to identify the conditions that cause these
patterns to be stable or unstable. This knowledge of the
system can then suggest what kinds of prescriptions
for governing it will work and what kinds may
not [12].



A Case for System Dynamics... 27

However, building system dynamics models
demands persistence. Translating real-world informa-
tion into model elements is still an inexact science -
trial and error can be just as valid as considered judge-
ment based on experience. Perhaps a useful parallel
can be drawn with that other hard, inexact activity:
finding object-oriented classes. Bjarne Stroustrup, the
creator of C++, notes that in design and programming
there are no cookbook methods that can replace intel-
ligence, experience and good taste; even he just tries
things [13]. The lesson for system dynamics modellers
would seem to be the same: just start, try things, take
advice of experienced modellers and then iterate,
iterate, iterate.

Yet the effort of building a system dynamics model
has some benefits including:

• Modelling brings about an understanding of the
system because of the analytical and critical think-
ing process it calls for. It helps bring to the
surface the mental models driving the current
situation - those models

...that one carries around in one’s head
for dealing with a problem or situation.
Such a model maybe based on experience
or intuition, or on folklore and myth; it
may be influenced by politics and a wide
spectrum of human emotions [14].

Mental models may also be totally inappropriate
or counter-productive, or equally priceless. But
unless they are turned into something more tangible,
one may never know.

• System dynamics models make room for both
quantitative or hard variables, being things that can
be measured directly like program size, staffing
numbers or dollars spent; and qualitative or soft
variables such as motivation, commitment, confi-
dence or perceptions. Soft variables have tradi-
tionally been left out of engineering models
because they are difficult to measure and their
importance may have been underestimated. Yet,

...if you omit soft variables you run the risk
of failing to capture something essential
to driving human affairs. Leaving out some-
thing so essential is the only hypothesis that
you can reject with absolute certainty! [15].

A system dynamics model can therefore be more
informed about its problem space.

With a system dynamics model in hand and George
Box’s tongue-in-cheek caution in mind (all models are
wrong, but some are useful), the model can be run.
Certain variables can be held steady while others are

changed, it can be placed under stress and tested for
sensitivities and leverage points. In short, the model
can be experimented with to better understand the
present situation and to search for alternatives for
improvement. It has been stated that:

The alternatives may come from intuitive
insights generated during the [initial analy-
sis], from experience of the analyst, from
proposals advanced by people in the oper-
ating system [or in the] experience, art, and
skill for imagining the most creative and
powerful policy alternatives [16].

Peter Senge points out that the causes of many
problems

...lay in the very well-intentioned policies
designed to alleviate them. These problems
were actually systems that lured policy
makers into interventions that focused on
obvious symptoms not underlying causes,
which produced short-term benefit but long
term malaise, and fostered the need for still
more symptomatic interventions [10].

By simulating a problem space using a system
dynamics model, it is possible to potentially make more
informed decisions about events beyond our bounded
rationality safe from the dangers of real-world experi-
mentation.

BROOKS’ LAW

During the 1950s and early 1960s, Fred Brooks worked
for IBM as a programmer and hardware architect. In
1964, he became the manager of IBM’s Operating
System/360 development, a large-scale and complex
project intended to provide IBM’s mainframe
computers with a leading-edge operating system. To
give an idea of the size of the project:

…the initial Windows NT project required
about 1,500 staff-years of effort, but the
development of IBM’s OS/360, which was
completed in 1966, required more than three
times as much effort [17].

His experiences, frustrations and joys during this
time, and his observations of the wider industry after
moving to the University of North Carolina, are
embodied in the collection of essays The Mythical
Man-Month [4]. The title refers to that fundamental
unit of measurement and scheduling, the man-month;
a unit that Brooks believes is often misunderstood:

Cost does indeed vary as the product of the
number of men and the number of months.



C.W. Caulfield & S.P. Maj28

Progress does not. Hence the man-month as
a unit for measuring the size of a job is a
dangerous and deceptive myth. It implies that
men and months are interchangeable [4].

His law that states adding more software developers
to an already late project will only make the problem
worse is based on this lack of interchangeability of
manpower and time. The cause lies in two areas:

• The new developers will need to be acquainted
with the overall aims of the project, its strategy
and the general plan of work. During this time,
the new developers will not be full contributors
and will likely divert the existing developers away
from their primary tasks.

• If a group of developers, n, need to coordinate
their efforts with each other then the number of
communication paths can be represented by
n (n – 1)/2. This represents an interaction over-
head, which may be realised in the form of project
meetings, technical walkthroughs and complying
with any progress reporting requirements.

Brooks’ law is intuitively appealing and is gener-
ally supported in the literature [14][18-20]. Writing in
the 20th anniversary edition of The Mythical
Man-Month in 1995, Brooks acknowledged that his
law was outrageously simplified, yet he still felt that it
was the:

…best zeroth-order approximation to the
truth, a rule of thumb to warn managers
against blindly making the instinctive fix to
a late project [4].

Yet, turning Brooks’ law into something more than
a rule of thumb, it should be able to be tested whether
it is a useful concept outside the large-scale big
business and government projects Brooks’ was most
familiar with.

MODEL EXPLANATION

The following model of Brooks’ law has been created
using a system dynamics modelling package called
iThink. The grammar of iThink consists of only four
basic elements (stocks, flows, rates and connectors)
and is largely intuitive so it will not be expanded upon
here. Further details are provided in Appendix 1.

In addition, a range of assumptions is made that
will naturally vary according to local conditions. What
is important is not so much the magnitude of these
assumptions in this particular instance, but that they
are relevant to the problem space under consideration
and that they can be changed as needed.

Looking to the model, there is a hypothetical soft-

ware development project in hand that has been
estimated at 36-man months, or 6,240 hours, and must
be completed within six months. To meet this deadline
a staffing level of six developers has been approved.
However, the project starts with only five developers,
three of whom are experienced, meaning they are
aware of the objectives of the project and the plan of
work; and two who are new-hires. It is assumed that
the new-hires will only be half as productive as their
colleagues but will gradually come up to speed as they
are assimilated. This transitioning from new-hires to
experienced developers has been set at three months.

Recruiting is under way to bring the team up to full
strength but advertising the position, assessing the
applicants and making a decision all takes time. There-
fore, a delay of some two months is not unreasonable
[14]. At the same time, staff are likely to leave. For
the purposes of this model, it is assumed that the
average employment time will be nine months and,
for simplicity, it is assumed that developers will not
quit the team before becoming experienced developers.
Figure 1 represents to model to this stage.

Staff enter the plumbing of the iThink diagram
from the left, progressing to the right as they pass
from being new-hires to experienced developers until
they perhaps eventually leave the team. The Total
Present Workforce will therefore be the sum of the
two groups of developers. If the Total Present
Workforce is less than the Approved Workforce, a
Workforce Gap will exist and the hiring process will
be initiated, subject to the prescribed delay of two
months. Figure 2 represents the workflow of the
project.

The team has 36 man-months of work to complete,
therefore at the start of the simulation Remaining
Work will represent this amount. Work units will flow
towards Work Completed at a rate determined by

Figure 1: Model for personnel development in the project.

New Hires Experienced Workforce

Quit Rate
Hiring Rate Assimilation Rate

Hiring Delay

Workforce Gap

Approved Workforce

Total Present Workforce



A Case for System Dynamics... 29

the overall productivity of the team. Occasionally, there
may be a spike in Work Remaining if the scope of
the project is expanded or if the original work
estimates have been found to be underestimated.

The total productivity of the team will be a
function of the total workforce, the number of hours
each person works per week, which has been set at
a standard 40, the assumed productivity of the new-
hires versus their more experienced colleagues and
taking into account the interaction overhead required
to coordinate all the individual development efforts.
For the purposes of this model, it is assumed that
the interaction overhead represents one hour per
developer per week per communications path. If
there are five developers, this equates to ten
communications paths, and therefore ten hours
per week per developer consumed in this over-
head. The model in its entirety is represented by
Figure 3.

MODEL RESULTS

Setting the model to run under the initial conditions
described above produces the graph in Figure 4.

The approved workforce consists of six developers,
but at the start of the project only five are on hand.

08:48 am   Sun, 17 Dec 2000

1.00 15.75 30.50 45.25 60.00

Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0.00

5.00

10.00

0.00

4500.00

9000.00

0.00

5.00

10.00

1: Experienced W 2: New Hires 3: Remaining Work 4: Work Completed 5: Approved Work

1

1 1

1

2

2 2

2

3

3

3

3

4

4

4

4

5 5 5 5

Graph 1 (Brooks Law)

Figure 4: Graphical representation of the initial conditions.

Remaining Work Work Completed
Total Production Rate

New Hires Experienced Workforce

Quit Rate
Hiring Rate Assimilation Rate

Hiring Delay

Person Hours

Hours per person per week

Spike

Workforce Gap

Interaction Penalty

Approved Workforce

Total Present Workforce

Figure 3: The model in its entirety.

Remaining Work Work Completed
Total Production Rate

Person Hours

Hours per person per wee

Spike

Interaction Penalty

Figure 2: Workflow of the project.



C.W. Caulfield & S.P. Maj30

The number of experienced workers gradually in-
creases and the number of new hires dips as the latter
come up to speed. The employment of one new de-
veloper, after the prescribed two-month delay, is
masked in this transition. After nine months, or 36
weeks, experienced developers begin to leave, which
initiates the hiring process again.

Even allowing for the fact that the project started
with one developer less than required, the graph
indicates that simply dividing the effort by the number
of staff on hand will not yield an overall completion
time. With the best will, the project will take nearly 12
months to complete rather than the original six.

Assume now that the project has been underway
for five months, or 20 weeks, when it is discovered
the original man-month estimates were understated.

Another 12 man-months of work have been
assessed. Assuming 40-hour weeks and a present staff
of six developers, this means the project will be
extended by another eight weeks. To bring this figure
down, the project manager decides to increase the
approved staffing to eight developers. The resulting
graph under these circumstances is shown in
Figure 5.

Despite bringing on more staff, the project is still
not able to hit its revised completion date and now
takes nearly 18 months to complete.

ENHANCEMENTS TO BROOKS’ LAW

The variables that make up the model of Brooks’ law
thus far are informed by the quantitative, or hard, data
typical to an engineering project. Yet, it may be as

11:02 am   Sat, 23 Dec 2000

1.00 18.75 36.50 54.25 72.00

Weeks

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0.00

5.00

10.00

0.00

4500.00

9000.00

0.00

5.00

10.00

1: Experienced W 2: New Hires 3: Remaining Work 4: Work Completed 5: Approved Work

1

1

1 1

2 2
2 2

3
3

3

3

4

4

4

4

5

5 5 5

Graph 1 (Brooks Law)

Figure 5: Graphical representation of the revised conditions.

relevant to consider such a project from a socio-tech-
nical point of view, raising the need to evaluate quali-
tative, or soft, data. For example, soft factors may
need to be considered, such as morale, commitment
and knowledge levels, alongside hard factors such
as headcounts, dollars spent and deliverablesThis is
because such factors can have an impact in areas
such as productivity and hence completion times and
cost.

As mentioned previously, system dynamics makes
room for these soft factors. To demonstrate how this
might be possible the model of Brooks’ law has been
extended to incorporate a number of soft variables
such as occupational stress and stakeholders’ percep-
tions of quality of the deliverables.

The relationship between occupational stress and
job performance has been well documented, discussed
and modelled [21-25]. A certain level of stress is

…healthy and enables employees to feel a
sense of achievement and to get satisfaction
from the job. However, if the amount of stress
exceeds the optimum and starts to place
excessive demands on the employee, the
result will be lower performance. At this
point, the employee loses the ability to cope,
finds difficulty in making decisions and
demonstrates erratic behaviour [25].

Meanwhile, the way in which clients perceive the
quality of the service they receive can be considered
a key performance indicator that has implications for
remuneration packages and other penalties or rewards
defined in service level agreements. These factors are,



A Case for System Dynamics... 31

therefore, considered as relevant additions to a model
of a software development project.

The aim here is to show how it might be possible to
incorporate qualitative factors, specifically perceptions
of quality, into a model and then to show how it might
be validated to the point where it could be used as a
tool to influence policy decisions, despite lacking total
quantitative comfort.

PERCEIVED AND ACTUAL QUALITY

In many human transactions there is often a gap
between perception and reality. Festinger discusses
something similar in A Theory of Cognitive
Dissonance [26]. Elements of an individual’s cogni-
tion (things a person knows about themself, their
behaviour, their surroundings) may deviate markedly
from reality creating an uncomfortable dissonance. The
cause of this dissonance may be imperfect knowledge
about a situation or simply a factor of human society:
very few things are all black or all white; very few
situations are clear-cut enough so that opinions
or behaviours are not to some extent a mixture of
contradictions [26]. Furthermore, the dissonance may
be fleeting or long-lasting; or an individual may be
working to resolve and reduce the dissonance in some
way or equally simply ignoring it. The result is that
what we know and what we do may be inconsistent.

An example might illustrate the point. The quality
of service experienced by a client, and therefore their
perception of that quality, may be different for the
actual quality being offered by the provider more
generally. It could be the case that at a point in time, a
client happened to encounter a staff member fully
aware of their needs and were able to have their trans-
action completed quickly and efficiently. However, the
rest of the provider’s clients that day may not have
been so lucky. Through incomplete knowledge a gap
is created between perceived and actual quality.

The size of this gap can also grow, shrink and over-
shoot because there is often resistance, and therefore
a delay, in adjusting perceptions and then taking
action. A single experience of good or bad service
may not cause a reaction, but an accumulation of such
experiences will. The magnitude of this delay can be
influenced by factors including the level of industry
competition, client loyalty and mobility and the
frequency of client contact [27].

Furthermore, this relationship will likely be
asymmetric. When reality is less than perception,
perceptions are adjusted rapidly as represented in
Figure 6 (bad news travels quickly).

On the other hand, when reality is greater than
perception, the adjustment time is much longer as

Figure 8: The service quality model component.

represented in Figure 7 (it may take ten good experi-
ences to overcome a single bad experience).

Within the model of Brooks’ law, perceived and
actual quality are exhibited in Figure 8.

 The factors that determine quality have many
interpretations [28]. However, for the purposes of this
model, actual quality is taken to be a measure of the
timeliness of the deliverables and the gap between
the delivered functionality and the client’s requirements

Figure 6: When actual quality is less than perceived
quality, perceptions are quickly adjusted.

Figure 7: When actual quality is greater than perceived
quality, perceptions are more slowly adjusted.

Perceived Quality

Change in Perception

Actual Quality

~

Time to Adjust



C.W. Caulfield & S.P. Maj32

[29]. The dynamics of these variables influencing ac-
tual quality are outside the scope of this fragment of
the model and are only shown as a generic inflow.
Meanwhile, perceived quality is taken to be a subjec-
tive gauge of how the project’s clients see the service
level they are receiving. The inconsistency between
actual and perceived quality and their relative levels
will determine the rate at which the level of perceived
quality will change in line with Figures 6 and 7.

Variables such as actual and perceived quality are
soft factors that cannot be measured in the same way
as physical quantities. So, for the purposes of model-
ling, these need to be quantified instead, that is, set
them against an index of some kind [15]. In this case,
0 is taken to be a total absence of quality, while 100 is
taken to be total fulfilment. At the start of the model,
perceived quality is set to a value between 0 and 100
representing the current circumstances. As the
dynamics of the model are played out over time, the
levels of actual and perceived quality may rise and
fall, in turn influencing other model variables.

For example, the level of quality perceived by the
project’s clients may influence future remuneration
contracts and have broader market implications
[29][30]. Internal to the project, this perception may
influence the resources devoted to testing and quality
procedures [31-33]. Again, such impacts appear
outside the scope of this fragment of the model are
shown as a simple outflow.

VALIDATION

For those familiar with models based on more demon-
strable data certainty, the treatment of soft variables
such as occupational stress and perceptions of quality
may seem to threaten the integrity of the final
product. Yet:

As long as the purpose of your model is not to
predict the numerical magnitude of particular
soft variables, you can greatly benefit from
including them in your models. Doing so will
cause you to think in a rigorous manner
about the relationships the variables bear
to other variables in the system [15].

Furthermore, the particular calibration of these
relationships, and therefore the behaviour of the
resulting model, will depend on the individual circum-
stances in which it is applied. For example, the present
model assumes that instances of poor service will be
quickly reflected in a declining perception of the
quality of that service. In an industry with few repeat
clients or long delays between client contacts, the
delay in adjusting perceptions may be longer.

The calibration of soft variables may also seem an
arbitrary process in which the model is made to
respond in a certain manner. However, the way in
which the soft variables react must be internally
consistent, that is, they must generate behaviour that
matches what is observed in the actual system [15].
For example, if delivery deadlines are being consist-
ently missed and required functionality is not being
addressed, then the perceived level of service quality
must decline. If the model produces behaviour
contrary to this real-world pattern, then it needs to be
reworked.

Sensitivity analyses designed to demonstrate inter-
nal consistency feature significantly amongst the range
of tests that Forrester and Senge discuss through which
a system dynamics model may be validated [34].
Importantly, these accepted tests focus more on
validating rather than proving system dynamics
models, on building confidence in a model’s sound-
ness and usefulness as a policy tool rather than rigorous
time point predictions. The compass of a system
dynamics model means that the rules by which it is
validated will be slightly different.

Perhaps the ultimate test of any model is the qual-
ity of the decisions that result from it. It deserves
mention that sometimes very few decisions flowed
from some of the significant, early system dynamics
modelling exercises [35-37]. These models tended to
be large, complex and constructed by academics with
only minimal involvement from the model’s
stakeholders beyond the initial problem definition and
data collection.

Yet, as it is presently practiced, system dynamics
is a very democratic and collaborative process.
Sterman says that system dynamics is not a spectator
sport by which he means involving the stakeholders
early in the process and in doing so, giving them own-
ership of the model, is a critical success factor [38].
Furthermore, by making room for traditionally ignored
soft variables and calibrating the variables according
to real-world knowledge, by facilitating rather than
creating in isolation, a more informed socio-technical
model may be possible.

CONCLUSIONS

The system dynamics model of Brooks’ law presented
here is necessarily generic and simplified and is part
of ongoing research. But, even at this level, it is one
realisation of a mental model that can now be shared,
discussed, calibrated according to local circumstances
and (hopefully) improved upon.

The results in this case tend to support Brooks’
law that adding more software developers to an



A Case for System Dynamics... 33

already late project will only make matters worse.
However, this may not always be so. For example,
using a more detailed model of Brooks’ law, Abdel-
Hamid and Madnick [31-33] found that if the devel-
opers are added early in the project rather than
towards the end, the project will have more chance of
hitting its deadlines. But, without the model, the belief
that this might be so would have been without
support.

Making system dynamics a part of all engineering
disciplines would seem to be an incremental rather
than a discontinuous step since engineers are likely to
be already familiar with the benefits of building
models. Typically these models have been informed
by hard, quantitative data drawn from the model’s
domain. Also present in that domain may be softer,
more qualitative, data that could be equally consid-
ered relevant to the model’s outcome. System dynam-
ics is one way of incorporating soft variables into
models alongside the more traditional variety, while
adding also its underlying theme that more informed
socio-technical models are possible.

As a means of capturing mental models, building
decision flight-simulators and communicating complex
ideas at a higher level than verbal descriptions,
system dynamics deserves serious consideration. In
response, the methodology demands the patience to
understand its concepts, nuances, and power.

REFERENCES

1. Davis, A.M., 201 Principles of Software
Development. Sydney: McGraw-Hill (1995).

2. DeMarco, T. and Lister, T., Peopleware:
Productive Pro-jects and Teams (2nd edn). New
York: Dorset House (1999).

3. DeMarco, T., Non-technological issues in
software engineering. Proc. 13th Inter. Conf. on
Software Engng., Austin, USA, 149-150
(1991).

4. Brooks, F.P., The Mythical Man-Month: Essays
on Software Engineering (anniversary edn).
Sydney: Addison-Wesley (1995).

5. Forrester, J.W., The beginnings of systems
dynamics. Banquet talk given at the Inter. Meet-
ing of the System Dynamics Society, Stuttgart,
Germany, 13 July (1989),
ftp://sysdyn.mit.edu/ftp/sdep/papers/D-4165-1.pdf

6. Forrester, J.W., Industrial Dynamics. Waltham:
Pegasus Communications (1961).

7. Forrester, J.W., Urban Dynamics. Portland:
Productivity Press (1969).

8. Forrester, J.W., World Dynamics. Portland:
Productivity Press (1971).

9. Meadows, D.H., Meadows, D.L., Randers, J. and
Behrens, W.W., The Limits to Growth. New York:
Universe Books (1972).

10. Senge, P.M., The Fifth Discipline: the Art and
Practice of the Learning Organization.
Sydney: Random House (1990).

11. Wolstenholme, E.F., System Enquiry: a System
Dynamics Approach. Brisbane: John Wiley &
Sons (1990).

12. Stacey, R.D., Strategic Management and
Organisational Dynamics. Melbourne: Pitman
Publishing (1996).

13. Stroustrup B., The C++ Programming Language
(2nd edn). Sydney: Addison-Wesley Publishing
Company (1993).

14. Yourdon, E., Rise and Resurrection of the Ameri-
can Programmer. Upper Saddle River: Prentice
Hall (1998).

15. Richmond, B., Modelling “Soft” Variables. An
Introduction to Systems Thinking. Hanover: High
Performance Systems, 9-1 - 9-10 (1999).

16. Forrester, J.W., System dynamics, systems think-
ing and soft OR. System Dynamics Review, 10,
2-3, 245-256 (1994).

17. McConnell, S., After the Gold Rush. Redmond:
Microsoft Press (1999).

18. Boehm, B., Software Engineering Economics.
Upper Saddle River: Prentice Hall (1981).

19. DeMarco, T., The Deadline: a Novel about
Project Management. New York: Dorset House
(1997).

20. Pressman, R.G., Software Engineering: a
Practitioner’s Approach (4th edn). New York:
McGraw-Hill (1997).

21. Selye, H., Stress Without Distress. Philadelphia:
Signet Books (1974).

22. Homer, J.B., Worker burnout: a dynamic model
with implications for prevention and control.
System Dynamics Review, 1, 1, 42-62 (1985).

23. Hooper, N., Coping with the modern ‘madness’.
Business Review Weekly, 17, 17, 38-42 (1995).

24. Kramar, R., McGraw, P. and Schuler, R.S.,
Human Resource Management in Australia.
South Melbourne: Addison Wesley Longman (1997).

25. Stone, R.J., Human Resource Management.
Brisbane: John Wiley & Sons (1998).

26. Festinger, L., A Theory of Cognitive Dissonance.
Stanford: Stanford University Press (1957).

27. McIntyre, P., Loyalty not enough. Business
Review Weekly, 22, 15 December, 104-107 (2000).

28. Crosby, P.B., Quality is Free. New York:
Penguin Books (1980).

29. Aranda, R.R., Fiddaman, T. and Oliva, R.,
Quality microworlds: modeling the impact of



C.W. Caulfield & S.P. Maj34

quality initiatives over the software product
life cycle. American Programmer, 6, 5, 52-61
(1993).

30. Chichakly, K.J., The bifocal vantage point:
managing software projects from a systems think-
ing perspective. American Programmer, 6, 5,
18-25 (1993).

31. Abdel-Hamid, T.K. and Madnick, S.E., Software
Project Dynamics: An Integrated Approach.
Englewood Cliffs: Prentice Hall (1991).

32. Abdel-Hamid, T.K. and Madnick, S.E., Lessons
learned from modeling the dynamics of software
development. Communications of the ACM, 32,
12, 1426-1455 (1989).

33. Abdel-Hamid, T.K., The dynamics of software
project staffing: a system dynamics based
simulation approach. IEEE Transactions on
Software Engng., 15, 2, 308-318 (1989).

34. Forrester, J.W. and Senge, P.M., Tests for
Building Confidence in System Dynamics
Models. In: Legasto, A.A., Forrester, J.W. and
Lyneis, J.M. (Eds), System Dynamics. New York:
North Holland 209-228 (1980).

35. Carlson, B.R., An Industrialist Views Industrial
Dynamics. In: Roberts, E.B. (Ed.), Managerial
Applications of System Dynamics. Waltham:
Pegasus Communications, 139-144 (1999).

36. Fey, W.R., An Industrial Dynamics Case Study.
In: Roberts, E.B. (Ed.), Managerial Applications
of System Dynamics. Waltham: Pegasus
Communications, 117-138 (1999).

37. Schlager, K.J., How Managers Use Industrial
Dynamics. In: Roberts, E.B. (Ed.), Managerial
Applications of System Dynamics. Waltham:
Pegasus Communications, 145-153 (1999).

38. Sterman, J.D., Business Dynamics: Systems
Thinking and Modelling for a Complex World.
New York: Irwin McGraw-Hill (2000).

APPENDIX 1: THE LANGUAGE OF
iTHINK

Essentially, iThink is a language that can be used to
tell a story. System dynamics models described by it
use the following elements of grammar to tell their
story:

Stocks,        , are the nouns of iThink. They repre-
sent an accumulation of something at a particular point
in time. The slatted stocks used in the model of Brooks’
law are a special version known as conveyors. They
work in the same way as regular stocks except that
anything entering the conveyor rides along it for a set
period of time and then leaves.

Flows,               , are the verbs of iThink. Stuff
flows through the pipe of the flow in the direction of
the arrow and at a rate determined by the flow regu-
lator in the middle. The flow regulator is fitted with a
spigot that can be conceptually tightened or loosened
by other variables within the model. The cloud at the
end of the flow represents the boundary of the model.

Converters,        , can be thought of as adverbs that
modify flows. They are often used to break out the
detail of the logic, that might otherwise be buried within
a flow, and might be used to represent constant
values. These typically influence the behaviour of the
regulators on the flows.

Connectors,                 , tie the other three building
blocks together. They represent inputs and outputs,
not inflows and outflows. Connectors do not take on
numerical values: they merely transmit values taken
on by other building blocks.

BIOGRAPHIES

Craig W. Caulfield graduated
from Murdoch University in
Perth, Australia in 1994 with
a Bachelor of Science in
computer science and
completed a Masters of
Science in software engi-
neering in 2001 through
Edith Cowan University in
Perth, Australia.

He currently works as a
software developer for Wesfarmers Ltd while
studying towards a PhD in computer science at Edith
Cowan University. His particular focus is on system
dynamics and software engineering.

S. Paul Maj is a senior
academic at the School of
Computer and Information
Science, Edith Cowan
University, Perth, Australia,
and also Adjunct Professor
at the Department of Infor-
mation Systems and Opera-
tions Management, Univer-
sity of North Carolina
(Greensboro) in the USA.

He was previously Adjunct Professor in Computer
Control Systems at the Technical University of
Denmark. He is an internationally recognised author-
ity in laboratory automation and has published a
commissioned book in this field.



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 

 

Sociology in Software Engineering 
 

 

Craig Caulfield, Gurpreet Kohli , S. Paul Maj 

 

Edith Cowan University, Perth, Western Australia 

 

 

 

 

Introduction 

 

The sociology of software project management is an often under-represented component in 

the education and professional development of software engineers even though factors such 

as team formation, role assignment, motivation, training, hiring, and many other peopleware
18
 

practices have been identified many times as at least equally important to the success of 

software projects as the technical
14,16,18,42,44,45,46

. The reasons for this may be two-fold: the 

seeming arbitrariness of the sociological factors in software development is at odds with the 

formal and familiar technical aspects; and the lack of suitable tools with which to model and 

understand human dynamics. 

 

However, these impediments may be overcome. For example, system dynamics is a 

modelling approach to dynamic socio-technical problems, stemming from the work of 

Forrester
20,21,22

 at MIT and since developed
36,39,43

, that allows a modeller to mix soft variables 

(morale, perceptions, motivations) with familiar hard variables (time, cost, resources). A 

system dynamics model is not so much a tool for time-point prediction, but more of an 

experimental device to see how certain variables might change over time under the influence 

of unappreciated causal relationships, dynamic complexity, and structural delays. The end 

result is hopefully a more informed mind set with which to manage the situation at hand
13
. 

 

By way of illustration, this paper presents some initial results of a system dynamics model 

based on Frederick Brooks’
11
 well-known informal law which warns against adding more 

software developers to a late project for risk of making matters worse. Brooks’ law, the 

crystallisation of many years of practical software project experience, has been critiqued 

many times in the literature and generally enjoys wide support, making it a solid basis for any 

model of the socio-technical aspects of software project management. However, it operates at 

a high level of aggregation and is most often associated with large-scale software 

development projects. In contrast, the system dynamics model presented here creates a small-

team, small-project environment more likely to be encountered by software engineers in the 

current market.  

 

Brooks Law 

 

Frederick Brooks was an IBM programmer and hardware architect who in 1964 became the 

manager of IBM’s OS/360 development. Then and now, OS/360 was one the largest and 

most complex operating systems ever attempted
6,27

, and was a significant business risk for 

IBM given that it would not be backward-compatible with IBM’s older machines
19,38

. 

Brooks’ experiences on the OS/360 project and his observations of the industry in general are 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

collected in his book The Mythical Man-Month
11,12

. The title refers to that fundamental unit 

of measurement and scheduling, the man-month; a unit that Brooks believes is often 

misunderstood: 

 

Cost does indeed vary as the product of the number of men and the number of 

months. Progress does not. Hence the man-month as a unit for measuring the size 

of a job is a dangerous and deceptive myth. It implies that men and months are 

interchangeable.
12
 

 

Because of this lack of interchangeability, Brooks’ informal law states that adding more 

developers to a late software project in the hope of meeting a looming deadline will only 

make matters worse. The reason lies in the fact that software projects often cannot be broken 

into isolated, independent units of work, meaning that the developers need to coordinate their 

activities at a detailed level. Therein lies an unappreciated communications overhead. For 

example, if a group of n developers need to coordinate their efforts with each other then the 

number of communication paths can be represented by n (n – 1)/2. Time spent navigating 

these paths is time not spent being directly productive. 

 

When new developers are added to the equation, the communications overhead is amplified. 

The new developers are usually not immediately productive because they need to become 

acquainted with the overall aims of the project, its strategy and the general plan of work
10,37

, 

and they possibly need to undergo some form of organisational socialisation
34
. The best, and 

often only, people able to provide this training and socialisation are the existing developers, 

who are in the process diverted from their primary tasks. 

 

The net result is that more time is lost in bringing the new developers up to speed and in 

additional coordination efforts than is gained in productive time. 

 

Brooks’ law has an intuitive appeal and has been generally supported in the 

literature
7,15,17,41,45

. Writing recently, Brooks acknowledged that his law was a gross 

generalisation and yet, in the absence of anything more conclusive, it remained the “best 

zeroth-order approximation to the truth, a rule of thumb to warn managers against blindly 

making the instinctive fix to a late project”
12
. 

 

However, not all would agree with this assessment. For example, the effects of Brooks’ law 

can be actively mitigated by strategies such as adding developers early in the development 

cycle
3,26

, adding more developers than are expected to be needed
24
, and ensuring that 

documentation, technical reviews, and a less territorial ownership of software artefacts by 

individual developers are used to spread the knowledge about the project
28,42

. Raymond
30
 

even suggests that Brooks’ law breaks down completely under large-scale, distributed 

development such as Linux.  

 

So, what are students and practitioners to make of these different views? In many respects 

Brooks’ law has stood the test of time but has perhaps been learned too well, becoming a 

mantra rather than a considered decision-making tool applicable to modern software 

development
28
. This will continue to be the case until it is turned into something more 

concrete than a rule-of-thumb, and some of its underlying assumptions are challenged. For 

example, most debate around Brooks’ law accepts that the communications structure of 

software projects is a complete graph in which all developers need to talk each other, yet this 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

need not be so. Creating a system dynamics model is one way of turning a rule-of-thumb into 

something more tnagible. 

 

System Dynamics Model Description 

 

The model described here has been built using a system dynamics software package called 

iThink (High Performance Systems, http://www.hps-inc.com/), the components of which are 

described more fully in the Appendix. The model describes a hypothetical software 

development project and makes a range of assumptions that will naturally vary according to 

local conditions. What is important is not so much the magnitude of these assumptions in this 

particular instance, but that they can be tuned to the environment they are modelling as 

needed. 

 

Figure 1 shows the Human Resources section of the model which describes the hiring, 

assimilation, and resignation of software developers on the project. As new developers are 

recruited they enter the ‘plumbing’ of the model from the left and progress from being New 

Hires to Midrangers, and finally to Old Hands, reflecting their growing ability as they come 

up to speed with the project. The average time that a New Hire will take to progress to a 

Midranger and then an Old Hand has been set at two and four months respectively, meaning a 

new developer is expected to be fully productive after a total of six months
24
. 

 

 
Figure 1. Human resources section of the model. 

 

As might be expected, the project has an approved workforce level which reflects the amount 

of work to be done within the required time. Should the total number of developers fall below 

this approved level through resignations, then the process of hiring new staff is begun. 

However, this takes time and a delay of up to two months is not unreasonable between a 

position becoming available and it being eventually filled
1,37,40

. For simplicity, it is assumed 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

that no New Hires will resign and the average resignation rate of Midrangers and Old Hands 

will be 5%
4,5
. 

 

Figure 2 shows the Productiveness section of the model.  

 

 
Figure 2. Productivity section of the model. 

 

For the purposes here, productivity is considered to be potential productivity in the hours 

allowed during the working week, minus any losses due to faulty processes
2
. A faulty process 

might be excessive administrative duties, red tape, or demands for prolonged over-time, 

amongst other local factors. The model here considers only three basic factors: the interaction 

penalty discussed by Brooks, the varying levels of productivity between the New Hires, 

Midrangers, and the Old Hands; and an allowance that some of each developer’s day may be 

occupied in personal pursuits. The assumptions behind these factors are summarised in Table 

1. 

 

The project to be modelled is made up of 8 developers of varying skills levels. New Hires are 

considered to be working at only 50% of their capacity during the time in which it takes them 

to come up to speed with the project, Midrangers are working at 75% capacity, while Old 

Hands are considered to be as productive as possible at 95%
24
. In addition each developer has 

an activity profile: net productive time during a working week is taken to be 100% of that 

possible, less unproductive personal time, set at a standard 10% of the working week
35
, less 

the interaction penalty. The symmetric matrix to the side of table 1 represents the time in 

hours per week that developers spend coordinating their activities with other developers. In 

contrast with a key assumption behind Brooks’ law, not all developers necessarily need to 

communicate with all other developers. 

 

For example, Developer 1 is net productive for 77.5% of the working week, losing 10% of 

the week in personal time, 12.5% of the week coordinating activities with Developers 3, 4, 5, 

6, and 7, and of that time is working at 50% effective capacity. 

 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

  

Activity Profile (% of the working 
week) D

e
v
e
lo
p
e
r 
1
 

D
e
v
e
lo
p
e
r 
2
 

D
e
v
e
lo
p
e
r 
3
 

D
e
v
e
lo
p
e
r 
4
 

D
e
v
e
lo
p
e
r 
5
 

D
e
v
e
lo
p
e
r 
6
 

D
e
v
e
lo
p
e
r 
7
 

D
e
v
e
lo
p
e
r 
8
 

 Productive 
Capacity 

Net 
Productive 

Personal 
Time 

Interaction 
Penalty 

        

Developer 1 New Hire 
50% 

77.5 10.0 12.5 0 0 1 1 1 1 1 0 

Developer 2 Midranger 
75% 

77.5 10.0 12.5 0 0 1 1 1 1 0 1 

Developer 3 Midranger 
75% 

82.5 10.0 7.5 1 1 0 0 0 0 0 1 

Developer 4 Midranger 
75% 

80.0 10.0 10.0 1 0 1 0 0 1 0 1 

Developer 5 Old Hand 
95% 

77.5 10.0 12.5 1 1 0 0 0 1 1 1 

Developer 6 Old Hand 
95% 

77.5 10.0 12.5 1 1 0 1 1 0 0 1 

Developer 7 Midranger 
75% 

82.5 10.0 7.5 1 0 0 0 1 0 0 1 

Developer 8 New Hire 
50% 

75.0 10.0 15.0 0 1 1 1 1 1 1 0 

Table 1. Individual developer productive capacity and activity profiles. 

 

The actual work to which the developers’ productivity is applied is represented by the 

Development Work section of the model shown in Figure 3. 

 

 
Figure 3. Development Work section of the model. 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 

This section of the model broadly follows the classic project structure defined by Roberts
32,33

. 

The project starts with a certain amount of Work to Do measured in person-months. The 

overall productivity of the developers is applied to reduce this work, but in the process new 

work may be discovered because requirements have changed or the original specifications 

were incomplete, and some work already done may need to be reworked because mistakes 

have been made. Undiscovered work and the need for rework are influenced by many factors 

such as schedule pressure, the presence or absence of quality control and change control 

mechanisms, and general management of the project. In this simple model, these extraneous 

factors have not been modelled, and it is considered that 10% of all completed work will need 

to be reworked in some way. A Likely Completion Date is calculated by dividing the Work to 

Do by the Overall Productivity of the developers and adding it to the time already elapsed. 

 

The project is complete when there is no more Work to Do or Undiscovered Work. 

 

Running the Model 

 

The hypothetical project modelled here has been sized at 90-person months which, using 

accepted cost-estimation tools such as COCOMO II
8
, would take the eight developers about 

12 months to complete. 

 

Figure 4 shows the human resource numbers over a period of 24 months. The number of Old 

Hands gradually rises and the number of Midrangers gradually drops as the Midrangers gain 

experience. Likewise, the number of New Hires drops as they transition to become 

Midrangers. 

 

 
Figure 4. Human resource profile under the model’s initial conditions.  

 

Around the fourth month of the project, normal attrition (resignation of Midrangers and 

Oldhands) has meant that the total number of developers has fallen below the Approved 

Workforce of eight, and the hiring process is initiated. But, because of the hiring delay, the 

new developers don’t make an appearance until around the seventh month. 

 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

Figure 4 also shows that the project settles down to a certain human resource profile: mainly 

Old Hands with a smaller number of Midrangers and New Hires, and a certain constant level 

of recruitment. 

 

Under this human resource profile, the development proceeds as shown in Figure 5. 

 

 
Figure 5. Development progress under the model’s initial conditions. 

 

Disturbingly, Figure 5 shows that the project will not be completed (no more Work to Do or 

Undiscovered Work) until just after the twenty-fourth month, double the original estimate.  

 

To test Brooks’ law, it is surmised that in the eighth month the development manager realises 

the project will not be completed within its scheduled period of 12 months and therefore 

decides to hire an additional four developers. The project under these circumstances is shown 

in Figures 6 and 7. 

 

 
Figure 6. The human resource profile showing the hiring of four additional developers after 

the eighth month of the project. 

 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 

 
Figure 7. Development progress with four new developers joining after the eighth month. 

 

Productivity begins to rise in the tenth month as the New Hires join the project, yet the 

overall effect of increasing the development workforce by 50% has been to bring the 

project’s completion date forward only marginally. In fact, setting out to double the 

workforce after the eighth month has the effect of only bringing the completion date forward 

only one more month to that shown in Figure 7. 

 

Given the parameters of this model, Brooks’ law is not fully supported. Under a human 

resource profile that acknowledges that not all developers contribute equally to the project all 

the time, and which does not assume complete communications between all developers, 

perhaps Brooks’ law could be rephrased as: 

 

Adding more developers to a late project may not make the project later, but 

doing so will be of only marginal assistance.  

 

Indeed, if the project had been realistically sized and resourced at the start, then the need to 

consider changes mid-stream may not be needed. 

 

System Dynamics Model Validation 

 

George Box has famously said that all models are wrong, but some are useful. The reason 

that models are wrong is that they are necessarily selective abstractions of reality: just as a 

map as detailed as the landscape it described would be as big as the landscape itself (and of 

no use), a model that perfectly replicated a system under study would serve no purpose
9
. 

Even so, models can be useful: 

 

Models have this merit, that they do not allow us to comfort ourselves with the 

notion that we are following up an “idea” when we are only moving from one 

observation to the next in the hope that something will turn up. Too often the 

hypotheses with which we work are at home in the twilight regions of the mind, 

where their wavering outlines blend into a shadowy background. There they are 

safe from sudden exposure, and are free to swoop down for sustenance on 

whatever datum comes their way. Models are at any rate conscious, explicit, and 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

definite; there is nothing ghostly in their appearance or manner; they look healthy 

even up to the very moment of their death… The model saves us from a certain 

self-deception. Forced into the open, our ideas may flutter helplessly; but at least 

we can see what bloodless creatures they are. As inquiry proceeds, theories must 

be brought out into the open sooner or later; the model simply makes it sooner.
25
 

 

When a model becomes more than a mental model, it has a form that allows it to be shared, 

discussed, and hopefully improved upon; yet, it must be able to demonstrate a degree of 

validity for this to happen.    

 

The compass of a system dynamics model, such as the one of Brooks’ law discussed here, 

means that the rules by which it is validated will be slightly different from other modelling 

techniques. For example, the output of a system dynamics model is meant to be read, not for 

particular time-point predictions, but for qualitative behavioural patterns such as growth, 

decline, oscillation, stability, and instability
29
. This goal of understanding general dynamic 

tendencies means that the model’s parameters are less reliant on highly precise numerical 

data. Furthermore, the long-term nature of system dynamic problem statements means that 

parameters are likely to exceed historic ranges in any case; while the non-linear feedback 

structure of the models makes them less sensitive to precise parameter changes. 

 

System dynamics models also make room for soft variables such as degrees of motivation, 

perception, understanding. For those familiar with models based on more demonstrable data 

certainty, including these soft variables may seem to threaten the integrity of the model. Yet: 

 

As long as the purpose of your model is not to predict the numerical magnitude of 

particular soft variables, you can greatly benefit from including them in your 

models. Doing so will cause you to think in a rigorous manner about the 

relationships the variables bear to other variables in the system.
31
 

 

The calibration of soft variables may also seem an arbitrary process in which the model is 

‘made’ to respond in a certain manner. However, the way in which the soft (and hard) 

variables react must be internally consistent, that is, they must generate behaviour that 

matches what is observed in the actual system
23,29,31

.  

 

Conclusions 

 

The results of this model are at variance with Brooks’ law, but this might be expected 

because the model attempts to more realistically reflect the profile of current software 

development projects. For example, not all developers should be considered to be equally or 

immediately productive, and it need not be the case of each developer needs to coordinate 

their activities with each other developer. Nevertheless, the effect of adding more developers 

to the project only seems to help in a marginal way suggesting that there is some constraining 

force at work. If a software development project seems unlikely to meet its published 

completion date, then the common practice of adding more resources may not be the solution. 

Rather than attempting mid-course corrections, correctly sizing and resourcing projects from 

the start would appear to be a more appropriate solution and is the subject of continuing 

research. 

 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

While just one interpretation of the human dynamics of software project management, the 

system dynamics model discussed here is a means of further exploring the domain and 

hopefully contributing to the more rounded professional development of software engineers.  

 

Appendix: The Language of iThink 

 

System dynamics models described by iThink use the following grammatical elements: 

 

• Stocks, , are the nouns of iThink. They represent an accumulation of something at a 

particular point in time. The slatted stocks used in the model of Brooks’ law are a special 

version known as conveyors. They work in the same way as regular stocks except that 

anything entering the conveyor rides along it for a set period of time and then leaves. 

 

• Flows, , are the verbs of iThink. Stuff (information, material, staff, money…) 

flows through the pipe of the flow in the direction of the arrow and at a rate determined 

by the flow regulator in the middle. The flow regulator is fitted with a spigot that can be 

conceptually tightened or loosened by other variables within the model. The cloud at the 

end of the flow represents the boundary of the model. 

 

• Converters, , can be thought of as adverbs that modify flows. They are often used to 

break out the detail of logic, that might otherwise be buried within a flow, and might be 

used to represent constant values. These typically influence the behaviour of the 

regulators on the flows.  

 

• Connectors, , tie the other three building blocks together. They represent inputs 

and outputs, not inflows and outflows. Connectors do not take on numerical values: they 

merely transmit values taken on by other building blocks. 

 

Because iThink models can quickly become cluttered, any model element can be ‘ghosted’. 

For example, in the Productiveness section of the Brooks’ law model, the stocks New Hires, 

Midrangers, and Old Hands have been ‘ghosted’ (indicated by dotted outlines) rather than 

drawing connectors from the Human Resources section. The aim is to keep the model 

depiction clear and simple. 

 

 

 

 
References 

 

1. Abdel-Hamid, T. K. (1989). ‘The Dynamics of Software Project Staffing: A System Dynamics Based 

Simulation Approach.’ IEEE Transactions on Software Engineering, vol. 15, no. 2 (February), p. 308 – 

318. 

2. Abdel-Hamid, T. K. (1989). ‘A Study of Staff Turnover, Acquisition, and Assimilation and Their Impact on 

Software Development Cost and Schedule.’ Journal of Management Information Systems, vol. 6, no. 1 

(Summer), p. 21 – 40. 

3. Abdel-Hamid, T. K. and Madnick, S. E. (1991). Software Project Dynamics: An Integrated Approach. 

Englewood Cliffs: Prentice-Hall. 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

4. Bartol, K. M. (1983). ‘Turnover Among DP Personnel: A Casual Analysis.’ Communications of the ACM, 

vol. 26, no. 10 (October), p. 807 – 811. 

5. Bartol, K. M. and Martin, D. C. (1982). ‘Managing Information Systems Personnel: A Review of the 

Literature and Managerial Implications.’ MIS Quarterly, vol. 6, no. 5 (December), p. 49 – 70. 

6. Belady, L. A. and Lehman, M. M. (1976). ‘A Model of Large Program Development.’ IBM Systems Journal, 

vol. 15, no. 3, p. 225 – 252. 

7. Boehm, B. W. (1981). Software Engineering Economics. Sydney: Prentice-Hall. 

8. Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., Madachy, R. J., Reifer, D. J. 

and Steece, B. (2000). Software Cost Estimation with Cocomo II. Upper Saddle River: Prentice Hall. 

9. Bonini, C. P. (1963). Simulation of Information and Decision Systems in the Firm. Englewood Cliffs: 

Prentice-Hall. 

10. Bradley, J. and McGrath, G. M. (2000). ‘Boot Camp or Bordello: Whipping Rookies into Shape.’ 

Proceedings of the Twenty First International Conference on Information Systems, (Brisbane), p. 467 – 

472. Association for Information Systems, Atlanta, GA, USA. 

11. Brooks, F. P. (1982). The Mythical Man-Month: Essays on Software Engineering. Reading: Addison-

Wesley. 

12. Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, 20th anniversary edition. 

Sydney: Addison-Wesley. 

13. Caulfield, C. W. and Maj, S. P. (2002). ‘A Case for System Dynamics.’ Global Journal of Engineering 

Education, vol. 6, no. 1, p. 25 – 34. 

14. Constantine, L. L. (1995). Constantine on Peopleware. Englewood Cliffs: Yourdon Press. 

15. Davis, A. M. (1995). 201 Principles of Software Development. Sydney: McGraw-Hill. 

16. DeMarco, T. (1991). ‘Non-Technological Issues in Software Engineering.’ Proceedings of the 13th 

International Conference on Software Engineering, (Austin, Texas), p. 149 – 150. Los Alamitos: IEEE 

Computer Society Press. 

17. DeMarco, T. (1997). The Deadline: A Novel About Project Management. New York: Dorset House 

Publishing. 

18. DeMarco, T. and Lister, T. (1999). Peopleware: Productive Projects and Teams, 2nd edition. New York: 

Dorset House Publishing Co. 

19. Evans, B. O. (1986). ‘System/360: A Retrospective View.’ IEEE Annals of the History of Computing, vol. 8, 

no. 2 (April – June), p. 155 – 179. 

20. Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications. 

21. Forrester, J. W. (1969). Urban Dynamics. Portland: Productivity Press. 

22. Forrester, J. W. (1971). World Dynamics. Portland: Productivity Press. 

23. Forrester, J. W. and Senge, P. M. (1980). ‘Tests for Building Confidence in System Dynamics Models.’ In 

A. A. Legasto, J. W. Forrester and J. M. Lyneis (eds.), System Dynamics, (1980), pp. 209 - 228. New 

York: North Holland. 

24. Gordon, R. L. and Lamb, J. C. (1977). ‘A Close Look at Brooks' Law.’ Datamation, vol. 23, no. 6 (June), p. 

81 – 86. 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

25. Kaplan, A. (1973). The Conduct of Inquiry: Methodology for Behavioral Science. Aylesbury: Intertext 

Books. 

26. McCarthy, J. (1995). Dynamics of Software Development. Redmond: Microsoft Press. 

27. McConnell, S. (1999). After the Gold Rush. Redmond: Microsoft Press. 

28. McConnell, S. (1999). ‘Brook's Law Repealed.’ IEEE Software, vol. 16, no. 6 (November/December), p. 6 – 

8. 

29. Meadows, D. H. and Robinson, J. M. (1985). The Electronic Oracle: Computer Models and Social 

Decisions. New York: John Wiley & Sons. 

30. Raymond, E. S. (2001). The Cathedral and the Bazaar: Musings on Linux and Open Source by an 

Accidental Revolutionary. Sebastopol, California: O'Reilly & Associates. 

31. Richmond, B. (1999). ‘Modelling "Soft" Variables.’ An Introduction to Systems Thinking, pp. 9-1 - 9-10. 

Hanover: High Performance Systems. 

32. Roberts, E. B. (1962). The Dynamics of Research and Development. Unpublished PhD dissertation, 

Massachusetts Institute of Technology, Cambridge, Massachusetts. 

33. Roberts, E. B. (1981). ‘A Simple Model of R&D Project Dynamics.’ In E. B. Roberts (ed.) Managerial 

Applications of System Dynamics, pp. 293 – 314. Waltham: Pegasus Communications. 

34. Schein, E. H. (1980). Organizational Psychology, 3rd edition. Englewood Cliffs: Prentice-Hall. 

35. Scott, R. F. and Simmons, D. B. (1975). ‘Predicting Programming Group Productivity— A Communications 

Model.’ IEEE Transactions on Software Engineering, vol. 1, no. 4 (December), p. 411 – 414. 

36. Senge, P. M. (1990). The Fifth Discipline: The Art & Practice of The Learning Organization. Milsons Point: 

Random House. 

37. Sengupta, K., Abdel-Hamid, T. K. and Bosley, M. (1999). ‘Coping with Staffing Delays in Software Project 

Management: An Experimental Investigation.’ IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, vol. 29, no. 1, p. 77 – 91. 

38. Stallings, W. (1992). Operating Systems. New York: Macmillian Publishing Company. 

39. Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modelling for a Complex World. New 

York: Irwin McGraw-Hill. 

40. Stone, R. J. (1998). Human Resource Management, 3rd. Brisbane: John Wiley & Sons. 

41. Weinberg, G. M. (1992). Quality Software Management: Volume 1 Systems Thinking. New York: Dorset 

House Publishing. 

42. Weinberg, G. M. (1998). The Psychology of Computer Programming, silver anniversary edition. New York: 

Dorset Housing Publishing. 

43. Wolstenholme, E. F. (1990). System Enquiry: A System Dynamics Approach. Brisbane: John Wiley & Sons. 

44. Yourdon, E. (1992). Decline and Fall of the American Programmer. Sydney: Prentice-Hall. 

45. Yourdon, E. (1997). Death March: Managing "Mission Impossible" Projects. Upper Saddle River: Prentice 

Hall. 

46. Yourdon, E. (1998). Rise and Resurrection of the American Programmer. Sydney: Prentice-Hall. 

 



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 

 

 
Biographies 

 

CRAIG CAULFIELD graduated from Murdoch University in Perth, Australia in 1994 with a Bachelor of 

Science in computer science and completed a Masters of Science in software engineering in 2001 through Edith 

Cowan University in Perth, Australia. He currently works as a senior software developer for a large Australian 

agribusiness while studying towards a PhD in computer science at Edith Cowan University. 

 

GURPREET KOHLI is a PhD student at Edith Cowan University with two years of experience in Lecturing and 

Developing Network and Data Communication units at Edith Cowan University. Gurpreet is currently looking 

into web services and capacity planning of e-business sites as part of his research at Edith Cowan University. 

 

S. PAUL MAJ is a senior academic at the School of Computer and Information Science, Edith Cowan 

University, Perth, Australia, and also Adjunct Professor at the Department of Information Systems and 

Operations Management, University of North Carolina (Greensboro) in the USA. He is an internationally 

recognised authority in laboratory automation and has published a commissioned book in this field. 















www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 87

Teaching Software Engineering Project Management – A Novel 
Approach for Software Engineering Programs 

Craig Caulfield (Corresponding author)  

School of Computer Science and Security Science, Edith Cowan University  

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia 

Tel: 61-8-9370-6295   E-mail: ccaulfie@our.ecu.edu.au 

 

David Veal  

School of Computer Science and Security Science, Edith Cowan University 

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia 

Tel: 61-8-9370-6295   E-mail: d.veal@ecu.edu.au 

 

S. Paul Maj 

School of Computer Science and Security Science, Edith Cowan University 

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia 

Tel: 61-8-9370-6277   E-mail: p.maj@ecu.edu.au 

 

Received: July 21, 2011             Accepted: August 15, 2011               doi:10.5539/mas.v5n5p87 

 

Abstract 

In response to real and perceived short-comings in the quality and productivity of software engineering practices 
and projects, professionally-endorsed graduate and post-graduate curriculum guides have been developed to 
meet technical developments and evolving industry demands. Each of these curriculum guidelines identifies 
better software project management skills as critical for all graduating students, but they provide little guidance 
on how to achieve this. One possible way is to use a serious game — a game designed to teach and educate 
players about some of the dynamic complexities of the field in a safe and inexpensive environment. This paper 
presents the results of a qualitative research project that used a simple game of a software project to see if and 
how games could contribute to better software project management education. Initial results suggest that 
suitably-designed games are able to teach software engineering and project management concepts at higher-order 
Bloom taxonomy levels. 

Keywords: Software engineering, Project management education, Peopleware, System dynamics, Serious games 

1. Introduction 

1.1 Background and Significance 

In 1968 and 1969 NATO convened conferences of computer industry representatives and academics to help 
address what was seen as a growing gap between what was generally hoped for in complex software systems and 
what was actually achieved (Buxton & Randell, 1970; Naur & Randell, 1969). At the time it was recognised that 
the demands on software practitioners from industry, defence, and consumers would likely grow at an 
exponential rate. Yet, software engineering was then more of a craft than a profession (the term software 
engineering in the conference titles was considered deliberately provocative) and was already struggling to meet 
quality and performance measures; a software crisis in fact. 

By 1982, it was estimated that 15% of all software projects failed to deliver anything, and cost over-runs of 100% 
to 200% were not uncommon (DeMarco, 1982, p. 3). In the 1990s, little had changed: 

For every six new large-scale software systems that are put into operation, two others are cancelled. The average 
software development project overshoots its schedule by half; larger projects generally do worse. And some three 
quarters of all large systems are “operating failures” that either do not function as intended or are not used at all. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 88

(Gibbs, 1994, p. 86) 

Getting an accurate picture of the current state of the software crisis is difficult because companies are naturally 
reluctant to publicise failures and they may also oversell their successes. Recent Standish Group CHAOS reports 
into software project successes and failures (cited in Eveleens & Verhoef, 2010, p. 31) shows an improving trend 
over the last decade (Table 1), but these reports have been criticised because the research methods and 
population they are based on are obscure (Eveleens & Verhoef, 2010; Glass, 2006). In the absence of reliable 
data, it may be conceded that the net societal benefit of software has been positive, but even so the long and 
expensive history of software project and product failures continues to accrue new examples (see for example 
Baber, 1982, pp. 26-59; Charette, 2005; Glass, 1998, 1999; Leveson, 1995; Neumann, 1995) and influences how 
the industry is perceived. 

There are some key indicators that the field of software engineering is trying to address these issues. A software 
engineering body of knowledge (SWEBOK) has been defined to characterise the contents of the software 
engineering and to provide a foundation for curriculum development (Bourque, Dupuis, Abran, Moore, & Tripp, 
1999); there are now professional accreditation and certification programs by which members of the field can be 
assessed (Naveda & Seidman, 2005); and professionally-endorsed curriculum recommendations have been 
developed to meet technical developments and evolving industry demands. Of these latter, the following are 
representative:  

 Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering (SE2004) (Joint Task 
Force on Computing Curriculum, 2004) 

 Curriculum Guidelines for Graduate Degree Programs in Software Engineering (GSwE2009) (iSSEc Project, 
2009) 

 Curriculum Guidelines for Undergraduate Degree Programs in Information Systems (IS2010) (Joint IS2010 
Curriculum  Task Force, 2010) 

Each of these curriculum guidelines mentioned above identifies better software project management skills as 
critical for all graduating students, but they provide little guidance on how to achieve this. Recognising that 
competent software engineering students need to supplement the abstract, theoretical side of their studies with 
some form of practical experience, educational institutions have typically used practicums where the students 
work in small groups to take a product idea from conception, through design, building and testing, to final 
delivery. These practicums can be delivered on a number of ways: 

 Capstone projects: these are projects designed to synthesise what the students have learned so far and give 
them a practical way to exercise their skills. The projects themselves may be instructor-designed or proposed 
by industry and usually cover the final semester of the course (Brereton et al., 2000; Cheng & Lin, 2010).  

 Work placements and sandwich courses: students are placed with software companies where they participate 
in real projects as paid employees. These placements may happen in the later parts of the student’s course and 
may be single opportunities, or intertwined— sandwiched— over a longer period (Lay, Paku, & Swan, 2008; 
Ribaud & Saliou, 2008). 

 Laboratories: student teams work for extended periods on large-scale, ongoing projects within a standardized 
and evolving development process, which can accommodate team members leaving and joining (Sebern, 
2002). 

Often, these practicums come near the end of the students' studies, where they can tie together any loose threads 
by allowing the students to practice what they have learned. “However, this appears to be too little, too late. 
Projects are often only a single semester in length, students do not benefit from the integration of ideas and 
practice until the end of their studies, and team orientation is often undermined by scholastic competition for 
grades” (Schlimmer, Fletcher, & Hermens, 1994). 

While the practicums are designed to give students an opportunity to apply their knowledge in a practical way, 
they often fail because the students are overloaded with many conflicting concerns and often “aren’t mature 
enough to appreciate the importance of many SE topics. On one hand… pay attention to documentation, apply 
configuration control, test thoroughly… On the other hand, our students have difficulty appreciating issues— 
such as team organization and cost estimation— that software professionals know from the trenches” (van Vliet, 
2006, p. 56). 

The purpose of this paper is to explore one way of tackling some of these issues by using a serious game— a 
game designed to teach and educate players about some of the dynamic complexities software development 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 89

projects in a safe and inexpensive environment. 

2. Software Engineering Project Management 

2.1 Software Project Management in a Social Environment 

The sociology of software project management is an often under-represented component in the education and 
professional development of software engineers even though factors such as team formation, role assignment, 
motivation, training, hiring, and many other peopleware practices  (DeMarco & Lister, 1999) have been 
identified many times as at least equally important to the success of software projects as the technical 
(Constantine, 1995; DeMarco, 1991; DeMarco & Lister, 1999; Weinberg, 1998; Yourdon, 1992, 1998, 2004). 
The reasons for this may be two-fold: the seeming arbitrariness of the sociological factors in software 
development is at odds with the formal and familiar technical aspects; and the lack of suitable tools with which 
to model and understand human dynamics. 

Successful project management also depends on accepting that in any social environment, such as a software 
development team, sensible decisions can result in counter-intuitive, and possibly counter-productive, outcomes. 
Consider, for example, Brooks’ Law from Fred Brooks Mythical Man Month (Brooks, 1995). The title refers to 
that fundamental unit of measurement and scheduling, the man-month; a unit that Brooks believes is often 
misunderstood: 

Cost does indeed vary as the product of the number of men and the number of months. Progress does not. 
Hence the man-month as a unit for measuring the size of a job is a dangerous and deceptive myth. It implies 
that men and months are interchangeable. (Brooks, 1995, p. 16) 

Because of this lack of interchangeability, Brooks’ informal law states that adding more developers to a late 
software project in the hope of meeting a looming deadline will only make matters worse. The reason lies in the 
fact that software projects often cannot be broken into isolated, independent units of work, meaning that the 
developers need to coordinate their activities at a detailed level. Therein lies an unappreciated communications 
overhead. For example, if a group of n developers need to coordinate their efforts with each other then the 
number of communication paths can be represented by n (n – 1)/2. Time spent navigating these paths is time not 
spent being directly productive. 

When new developers are added to the equation, the communications overhead is amplified. The new developers 
are usually not immediately productive because they need to become acquainted with the overall aims of the 
project, its strategy and the general plan of work (Bradley & McGrath, 2000; Sengupta, Abdel-Hamid, & Bosley, 
1999), and they possibly need to undergo some form of organisational socialisation (Schein, 1980). The best, and 
often only, people able to provide this training and socialisation are the existing developers, who are in the 
process diverted from their primary tasks. 

The net result is that more time is lost in bringing the new developers up to speed and in additional coordination 
efforts than is gained in productive time (see Caulfield, Kohli, Maj, 2004 for a worked example). 

2.2 Software Project Management in the Curriculum 

The IS2010 curriculum guidelines address some of these peopleware practices because, “it is impossible for IS 
graduates to exhibit the required high-level IS capabilities without these foundation knowledge and skills” (Joint 
IS2010 Curriculum  Task Force, 2010, p. 21). The recommended educational experiences include leadership & 
collaboration; communication, and negotiation. Negotiation skills are needed in order to navigate the often 
competing interests of the stakeholders involved in a typical project. The recommended course, IS2010.5 IS 
Project Management, is designed to teach students the processes, methods, techniques, and tools that 
organizations use to manage their information systems projects. However, “the course specification intentionally 
leaves discussion regarding specific methods and approaches unanswered” (Joint IS2010 Curriculum  Task 
Force, 2010, p. 50), which means institutions need to figure out for themselves how best to teach these aspects. 

Similarly, the SE2004 curriculum guidelines, which are explicitly based on the SWEBOK, specify student 
outcomes that include: 

 Work as an individual and as part of a team to develop and deliver quality software artefacts. 

 Reconcile conflicting project objectives, finding acceptable compromises within limitations of cost, time, 
knowledge, existing systems, and organizations (Joint Task Force on Computing Curriculum, 2004, p. 15). 

To achieve these outcomes, the SE2004 guidelines define nine Software Engineering Education Knowledge 
(SEEK) knowledge areas and associated knowledge units that include Software Management (MGT), which 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 90

represents approximately 4% of the taught-load component. For all knowledge areas and units, Bloom (Bloom, 
Masia, & Krathwohl, 1956) attributes of knowledge, comprehension or application are assigned. To recap, the 
Bloom taxonomy is a classification of learning objectives consisting of three domains: cognitive, affective and 
psychomotor. The cognitive domain defines six levels of taxonomy from the lowest to the highest: 

 Knowledge: remember previously-learned materials by recalling specific facts, terminology, theories and 
answers 

 Comprehension: demonstrate an understanding of information by being able to compare, contrast, organize, 
interpret, describe, and extrapolate. 

 Application: use previously-learned material in new situations. 

 Analysis: decompose previously-learned material into parts in order find patterns and to make inferences 
and generalizations. 

 Synthesis: use existing ideas in different ways to create new ideas or to propose alternative solutions. 

 Evaluation: judge the validity of ideas or information with a certain context. 

The SE2004 Software Management knowledge area consists of five knowledge units: Management Concepts, 
Project Planning, Project Personnel and Organization, Project Control and Software Configuration and 
Management (Table 2). Within this, the knowledge units Project Planning and Project Personnel and 
Organization are each given the Bloom classification level of application (Tables 3, 4). SE2004 curriculum 
guideline #17 encourages a variety of teaching and learning methods that include problem-based learning, 
just-in-time learning, learning by failure and self-study. Specifically the Software Project Management course 
(SE323) identifies sample laboratories and assignments that include: 

 Use a commercial project management tool to assist with all aspects of software project management 

 Make cost estimates for a small system using a variety of techniques 

 Developing a project plan for a significant system 

 Writing a configuration management plan 

 Using change control and configuration management tools 

 Evaluating a software contract or license 

In a similar way to IS2010 and SE2004, the GSwE2009 defines a Core Body of Knowledge (CBOK) along with 
associated Bloom classifications; the distinction between GSwE2009 and SE2004 is that the former takes more 
units to a higher Bloom taxonomy level: 

SE2004 recommends mastery of many topics at level 1. Every topic in GWwE2009 must be mastered at 
level 2 or higher. Moreover, many more topics in GWwE2009 require mastery at level 3 than does SE2004; 
e.g., in SE2004, the topic of software process is addressed only at levels 1 and 2. In GSwE2009, the same 
topic is covered at levels 2 and 3. (iSSEc Project, 2009, p. 15) 

But, software project management is a human-centered activity concerned with a complex and dynamic system 
often characterised by conflicting demands, changing deadlines, and personality conflicts. It is suggested that 
these learning outcomes are associated with Bloom taxonomy levels 4, 5 and 6.  

3. Simsoft 

3.1 Background 

In the previous section is was shown that the various software engineering and information systems curriculums 
place great emphasis on making sure graduates are cognisant of the value of sound software project management, 
including peopleware, but they provide little guidance on how to achieve this. Given that software development 
projects are complex socio-technical systems then arguably what is needed is an instructional method that 
provides students with an opportunity to experience the dynamics of a software project in something akin to a 
real-world environment. Importantly, this experience needs to demonstrate how a project can rapidly escalate out 
of control, for example through Brooks’ Law, even though seemingly sensible decisions have been made. 

But, experience can be expensive. There is a story of a young IBM executive whose innocent mistake caused a 
$10 million loss for the company. Coming before Thomas J Watson, the formidable IBM boss, the contrite 
executive said, “I’m here to tender my resignation”.  Watson replied, “You must be kidding! We’ve just spent 
ten million dollars training you” (Awad & Ghaziri, 2008, p. 281). 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 91

The young IBM executive was lucky to have an enlightened boss, but must things always happen this way? Must 
mistakes be made in the real before we can learn from them? Perhaps not: games are a way of experiencing the 
real in a controlled and inexpensive way so that software engineers and software project managers don’t repeat 
the same expensive mistakes (cost and time over-runs, dissatisfied end-users, burnt out staff, unstable or 
unreliable software) that bedevil modern software projects (Caulfield & Maj, 2008; Caulfield, 2002). Of course, 
games aren’t the only way of achieving this, but: 

 Games have been used as learning tools in many different business, military, and social environments, and 
have proven to be efficacious (Gee, 2007a; Michael & Chen, 2005; Perla, 1990; Prensky, 2007; Schrage & 
Peters, 1999). 

 Games draw their intellectual integrity from a number of sources including educational theory (Dewey, 
1938/1963; Kolb, 1984; Papert, 1980), operations research (Thomas & Deemer, 1957; Wilson, 1968, pp. 
36-50), small-group behaviour research (Kennedy, 1971a, 1971b), war-gaming, decision sciences, and 
systems engineering (Raser, 1969, pp. 46-55), and problem-based learning (Savin-Baden & Major, 2004). 

So, games have a pedigree to be taken seriously as research and learning tools. For this research project, a game 
called Simsoft (Caulfield, Veal, & Maj, 2011a) was developed to see what contribution it could make to the 
education of software engineers and software project managers and thereby fill some of the pedagogical gaps in 
the SE2004, IS2010, and GSwE2009 curriculum guidelines. 

3.2 Description of Simsoft  

Physically, Simsoft comes in two pieces: 

 An A0-sized printed game board around which the players gather to discuss the current state of the project 
and to consider their next move. The board shows the flow of the game while plastic counters are used to 
represent the staff of the project. Poker chips represent the team’s budget, with which they can purchase 
more staff, and from which certain game events may draw or reimburse amounts depending on decisions 
made during the course of the game. 

 A simple Java-based dashboard (Caulfield, Veal, & Maj, 2011b) through which the players can: 

o See the current and historical state of the project through a series of simple reports, messages, and 
other information. 

o Can adjust the project’s settings, for example to recruit new staff, before advancing the game’s time 
to create the state of the project. 

The aim of the game is to complete the project on time and with funds (poker chips) left over. 

The engine behind Simsoft is a model which embodies the fundamental causal relationships of a simple software 
development project. Software development projects have been popular targets for modellers trying to 
understand how and why they work the way they do (Abdel-Hamid & Madnick, 1991; Belady & Lehman, 1976; 
Boehm, 1981; Collofello, 2000; McCabe, 1976; Remus & Zilles, 1979; Tvedt, 1996; Variale, Rosetta, Steffen, 
Rubin, & Yourdon, 1994). For the research project described here, system dynamics has been used.  

System dynamics is a modelling approach to dynamic socio-technical problems, stemming from the work of 
Forrester (1961, 1969, 1971) at MIT and since developed (Senge, 2006; Sterman, 2000; Wolstenholme, 1990), 
that allows a modeller to mix soft variables (morale, perceptions, motivations) with familiar hard variables (time, 
cost, resources). A system dynamics model is not so much a tool for time-point prediction, but more of an 
experimental device to see how certain variables might change over time under the influence of unappreciated 
causal relationships, dynamic complexity, and structural delays. The end result is hopefully a more informed 
mind set with which to manage the situation at hand (C. W. Caulfield & Maj, 2002). 

Behind the system dynamics model is be a relational database to store the decisions entered by the players, the 
parameters which define the particular project (for example, budget and time), and which will capture the state of 
the model at each time slice. This will allow the game to be rolled backward or forwards, replayed, and studied. 

3.3 The Simsoft Game Play 

Simsoft players are formed into teams of two or three or more and they are given a scenario that describes the 
requirements for a small software development project. Taking the role of project manager, the team must 
manage the project from start-up to final delivery. What the players must deliver is handled by boxes on the left 
side of the Simsoft game board (Figure 1). 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 92

At the start of the game there is a pool of work to do. This pool is represented on the game board with small 
plastic counters in the Work To Do box. These counters can be thought of as Use Cases or items in a work 
breakdown structure; whatever is most familiar to the players. Depending on the resources available to do the 
work, the units of work (the counters) move from the Work To Do box to a For Review box, where the work is 
reviewed before passing to the Completed Work box. Not unexpectedly, some work will fail the review and go to 
the Rework box, before passing back to For Review and trying again to get to Completed Work. The team can 
reduce the amount of rework by ‘buying’ more quality assurance staff. 

The work-to-do, review, rework, work-completed cycle is a fundamental project work structure first discussed 
and modelled by Roberts (1964). Roberts’ initial work has been expanded greatly by subsequent researchers who 
have added rich details based on actual projects (see Lyneis & Ford, 2007 for a comprehensive survey of the 
field), but the underlying work structure remains unchanged. 

Based on the starting scenario of the game, information provided during the game, and their own real-world 
experience, the players make decisions about how to proceed: whether to hire more staff, what hours should be 
worked and so on. The team is given a budget for the project (poker chips), with which they ‘buy’ more staff. 
But, there are trade-offs: more experienced (and therefore more productive) staff  are more expensive (New 
Hires are $500, Quality Assurance are $600, Mid-Rangers are $700, and Old Hands are $1000), and the staff do 
not become available immediately— there are recruiting delays to be considered (Yourdon, 1998, p. 98). The 
players can also see from the game board (Figure 2), that staff naturally gain experience (and therefore become 
more productive) as the project proceeds— something further they need to consider before spending their 
precious budget chips. 

These decisions are entered through the software dashboard (Figure 3), project time is advanced by one week, 
and the dashboard tells the participants which pieces to move around the board. The game is now in a new state, 
which the participants must interpret and then consider their next move.  

As in the real world, not everything runs smoothly in Simsoft world and the players may need to rethink their 
plan. At random times, Simsoft will generate one of the following events: 

 A major design flaw has been discovered. Add 5 more units of work to the Rework box. 

 Your team wins lotto and three staff have resigned, effective immediately. Remove three staff from the game 
board. 

 The Finance department have made a mistake. Collect $500 from the bank. 

Events like these are called games pulses: an event outside of normal play that the teams must take account of 
when formulating their next decision set (Duke, 1980, p. 368; Schumann, Anderson, & Scott, 1996; Wolfe & 
Fritzsche, 1998). How the players react to these pulses will be revealed in their subsequent decision sets. 

Play continues in this manner until there is no more work to do (all the unit-of-work counters are in the 
Completed Work box of the game board), or until the project deadline passes, whichever comes first. The aim of 
the game is to deliver the software before the deadline and on budget (with poker chips left over). 

4. Evaluation 

4.1 Simsoft Game Sessions 

For the research project described in this paper, a series of game sessions were conducted between May and 
September 2010. Purposive sampling (Lincoln & Guba, 1984, p. 40; Patton, 2002) was used to select the 
participants of the study from the following pools: 

 Post-graduate project management students from two Perth, Western Australia universities. 

 Software engineers, project managers, and account managers from a Perth-based software consulting 
company. 

Although the participants (n=59) each had an information technology or project management background, they 
exhibited notable variances in experience (from recent graduates to 25-year industry veterans); skills (from those 
still studying to highly-certified professionals); and cultural diversity (the participants came from Australia, 
Europe, the Middle East, Asia, and South Africa). 

Simsoft was used as the primary research tool, before and after which players completed a survey. The pre-game 
survey was designed to assess the players’ knowledge of general software engineering and project management 
concepts; and the post-game survey was designed to capture their experience of playing the games, whether they 
found it useful, and how it might compare to other forms of instruction such as lectures or case studies. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 93

Therefore, this research project had multiple data sources: the Simsoft game database, the pre- and post-game 
surveys, interviews with the players, researcher memos (Maxwell, 2004, p. 12), and field notes. 

4.2 Learning-Design Principles in Simsoft 

In his seminal book on video games and education, What Video Games Have to Teach Us About Learning and 
Literacy, Gee (2007b) discusses 36 principles of learning he believes should be designed into every good game. 
Originally conceived for video games, and later condensed to 13 (Gee, 2007a) under three main categories 
(empowering users, problem solving, and understanding), the principles parallel those found by other cognitive 
researchers (Bereiter & Scardamalia, 1993; diSessa, 2000) and they have since been adopted for situations 
involving an active learner and any game. It is instructive to see how Simsoft addresses Gee’s principles (Table 
5). 

In summary, Simsoft addressed Gee's learning principles this way: 

 Empowering users: meets the criteria of empowering users allowing them to organize themselves, take on 
different roles and have full control over their workforce, subject to budget constraints and hiring delays.  

 Problem solving: the problem solving aspect of Simsoft allowed students to experience initially a well 
ordered problem, in particular human resource, which required more complex decisions as the game 
proceeded. Significantly game players experienced the causal loop that invariably can lead to the 
counterintuitive outcomes in project cycles. As noted by one participant, ‘We have to be careful about 
bringing on too many new hires. It’ll ultimately clog things up.’ 

 Understanding: experienced software developers indicated the game had demonstrated aspects of systems 
thinking in which things fit into a larger systems in which they have meaning. This was evident by 
comments that included:  ‘Now I see why’ and ‘I hope that future versions will let me set up specific 
scenarios and play them out. That would really help me at work’.  

A simple game like Simsoft cannot hope to fully address each of the above learning principles and call itself, in 
Gee’s loaded term, a good game, at least in its first iteration. Nevertheless, Simsoft comes close, if not for the 
tolerable parity demonstrated in Table 5, then only for the final comment against principle 13. A student was seen 
to scribble on a game board beside the Rework box, “I must remember this”. If Simsoft’s raison d'être is to allow 
software professionals to fail early and often in a place where failure is safe and can be learned from, then this 
comment shows that at least one person will be carrying a useful nugget of information into their next project. 

The results were further analysed in the context of Bloom’s (1956) cognitive taxonomy. Of particular interest for 
this research project was how Simsoft addressed the higher-order Bloom levels of analysis, synthesis and 
evaluation: 

 Analysis: Simsoft provided players with the opportunity to formulate and assess the evaluations of both 
themselves and other team players. After the game sessions, the players were invited to stay and discuss 
their results with other teams. Often these post-game gatherings lasted longer the game sessions themselves 
as the players gathered around the boards and discussed strategies and experiences. 

 Synthesis: Simsoft provided students with the opportunity to aggregate the elements of resourcing into a 
dynamic, interactive whole. For example, one player commented: ‘I see my part in the machinery now’. 

 Evaluation: Simsoft provided players with the opportunity to analyse the elements of resourcing, their 
relationships and organizational principles. 

On this basis, Simsoft would be a suitable pedagogical tool in curriculums from SE2004 and up to and including 
IS2010 and GSwE2009. 

5. Conclusions 

The preliminary results of this research project suggest that Simsoft meets the criteria of the higher-order Bloom 
taxonomy levels of analysis, synthesis and evaluation and as such could be used as a viable teaching approach by 
the IS2010 curriculum. Furthermore, Simsoft may be used to teach the dynamic, human-centered aspects of 
software project management identified in the SE2004 curriculum, for example as a useful laboratory exercise. It 
is also submitted that Simsoft may be used as the basis of a graduate program such as GSwE2009 to emphasize 
the topic of software project management and meet the requirement of raising the Bloom taxonomy level.  

While Simsoft could be used at many points during these programs, it is at the end, where the students are 
preparing for their capstone project or work placement assignments— and where the curriculum guides provide 
little guidance— that it would be of most use. Students enter these final phases often with little preparation for 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 94

the realities of working in teams and delivering a real product. Admitted, they may learn by doing and learn from 
their mistakes, but in doing they risk their academic grades or the time and money of their sponsor. Games such 
as Simsoft can move this learning-by-doing and learning-through-failure into a safe and inexpensive 
environment. 

References 

Abdel-Hamid, T. K., & Madnick, S. E. (1991). Software Project Dynamics: An Integrated Approach. Englewood 
Cliffs: Prentice-Hall. 

Awad, E. M., & Ghaziri, H. M. (2008). Knowledge Management. Delhi: Dorling Kindersley. 

Baber, R. L. (1982). Software Reflected: The Socially Responsible Programming of Our Computers. Amsterdam: 
North-Holland Publishing Company. 

Belady, L. A., & Lehman, M. M. (1976). A Model of Large Program Development. IBM Systems Journal, 15(3), 
225 – 252. doi:10.1147/sj.153.0225, http://dx.doi.org/10.1147/sj.153.0225 

Bereiter, C., & Scardamalia, M. (1993). Surpassing Ourselves: An Inquiry into the Nature and Implications of 
Expertise. Chicago: Open Court. 

Bloom, B. S., Masia, B. B., & Krathwohl, D. R. (1956). Taxonomy of Educational Objectives: The Classification 
of Educational Goals (Handbook I: Cognitive Domain ed.). London: Longman. 

Boehm, B. W. (1981). Software Engineering Economics. Sydney: Prentice-Hall. 

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, L. (1999). The Guide to the Software Engineering 
Body of Knowledge. IEEE Software, 16(6), 35 - 44. doi:10.1109/52.805471, 
http://dx.doi.org/10.1109/52.805471 

Bradley, J., & McGrath, G. M. (2000). Boot Camp or Bordello: Whipping Rookies into Shape. Proceedings of 
the Twenty First International Conference on Information Systems, 467 – 472 

Brereton, O. P., Lees, S., Bedson, R., Boldyreff, C., Drummond, S., Layzell, P. J., et al. (2000). Student Group 
Work Across Universities: A Case Study in Software Engineering. IEEE Transactions on Education, 43(4), 394 
– 399 

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering (20th anniversary ed.). 
Sydney: Addison-Wesley. 

Buxton, J. N., & Randell, B. (Eds.). (1970). Software Engineering Techniques: Report on a Conference 
Sponsored by the NATO Science Committee, Rome, Italy, 27th to 31st October 1969. Brussels: Scientific Affairs 
Division, NATO 

Caulfield, C. W., & Maj, S. P. (2008). Come Play. In M. Iskander (Ed.), Innovative Techniques in Instruction 
Technology, E-learning, E-assessment, and Education (pp. 86-91). New York: Springer Netherlands. 

Caulfield, C. W. (2002). A Case for Games in Software Engineering. Proceedings of the 8th Australian and New 
Zealand Systems Conference, Mooloolaba, Queensland. 

Caulfield, C. W., & Maj, S. P. (2002). A Case for System Dynamics. Global Journal of Engineering Education, 
6(1), 25 – 34 

Caulfield, C. W., Kohli, G. and Maj, S. P. (2004). Sociology in Software Engineering. Proceedings of the 2004 
American Society for Engineering Education Annual Conference & Exposition (Salt Lake City). American 
Society for Engineering Education 

Caulfield, C. W., Veal, D., & Maj, S. P. (2011a). Implementing System Dynamics Models in Java. International 
Journal of Computer Science and Network Security 11(7), 43 – 49 

Caulfield, C. W., Veal, D., & Maj, S. P. (2011b). Teaching software engineering management – issues and 
perspectives. International Journal of Computer Science and Network Security, 11(7), 50 – 54 

Charette, R. N. (2005). Why Software Fails. IEEE Spectrum, 42(9 (INT)), 36 – 43 

Cheng, Y.-P., & Lin, J. M.-C. (2010). A Constrained and Guided Approach for Managing Software Engineering 
Course Projects. IEEE Transactions on Education, 53(3), 430 – 436 

Collofello, J. (2000). University/Industry Collaboration in Developing a Simulation Based Software Project 
Management Training Course. Paper presented at the Proceedings of the Thirteenth Conference on Software 
Engineering Education & Training, Austin, Texas. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 95

Constantine, L. L. (1995). Constantine on Peopleware. Englewood Cliffs: Yourdon Press. 

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press. 

DeMarco, T. (1991). Non-Technological Issues in Software Engineering. Paper presented at the Proceedings of 
the 13th International Conference on Software Engineering, Austin, Texas. 

DeMarco, T., & Lister, T. (1999). Peopleware: Productive Projects and Teams (2nd edition ed.). New York: 
Dorset House Publishing Co. 

Dewey, J. (1938/1963). Experience and Education. New York: Collier Books. 

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge, Massachusetts: The 
MIT Press. 

Duke, R. D. (1980). A Paradigm for Game Design. Simulation & Games, 11(3), 364 – 377. 
doi:10.1177/104687819903000409 http://dx.doi.org/10.1177/104687819903000409  

Eveleens, J. L., & Verhoef, C. (2010). The Rise and Fall of the Chaos Report Figures. IEEE Software, 27(1), 30 
– 36. doi:10.1109/MS.2009.154, http://doi.ieeecomputersociety.org/10.1109/MS.2009.154 

Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications. 

Forrester, J. W. (1969). Urban Dynamics. Portland: Productivity Press. 

Forrester, J. W. (1971). World Dynamics. Portland: Productivity Press. 

Gee, J. P. (2007a). Good Video Games and Good Learning: Collected Essays on Video Games, Learning and 
Literacy. New York: Peter Lang Publishing. 

Gee, J. P. (2007b). What Video Games Have to Teach Us About Learning and Literacy. New York: Palgrave 
MacMillan. 

Gibbs, W. W. (1994). Software's Chronic Crisis. Scientific American, 271(3), 86 – 95 

Glass, R. L. (1998). Software Runaways. Upper Saddle River: Prentice Hall. 

Glass, R. L. (1999). Computing Calamities: Lessons Learned from Products, Projects, and Companies That 
Failed. Upper Saddle River: Prentice Hall. 

Glass, R. L. (2006). The Standish Report: Does It Really Describe a Software Crisis? Communications of the 
ACM, 49(8), 15 – 16. doi:10.1145/1145287.1145301, http://dx.doi.org/10.1145/1145287.1145301 

iSSEc Project. (2009). Graduate Software Engineering 2009 (GSwE2009): Curriculum Guideline for Graduate 
Degree Programs in Software Engineering. 

Joint IS2010 Curriculum  Task Force. (2010). Curriculum Guideline for Undergraduate Degree Programs in 
Information Systems: Association for Computing Machinery and Association for Information Systems. 

Joint Task Force on Computing Curriculum. (2004). Software Engineering 2004: Curriculum Guidelines for 
Undergraduate Degree Programs in Software Engineering: IEEE Computer Society/Association for Computing 
Machinery. 

Kennedy, J. L. (1971a). Simulation Study of Competition in an "Open World". Journal of Applied Psychology, 
55(1), 42 – 45. doi:10.1037/h0030598 http://dx.doi.org/10.1037/h0030598  

Kennedy, J. L. (1971b). The System Approach: A Preliminary Exploratory Study of the Relation Between Team 
Composition and Financial Performance in Business Games. Journal of Applied Psychology, 55(1), 46 – 49. 
doi:10.1037/h0030599 http://dx.doi.org/10.1037/h0030599  

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood 
Cliffs: Prentice-Hall. 

Lay, M. C., Paku, L. K., & Swan, J. E. (2008). Work Placement Reports: Student Perceptions. 19th Annual 
Conference of the Australasian Association for Engineering Education: To Industry and Beyond.  

Leveson, N. G. (1995). Safeware: System Safety and Computers. Reading: Addison-Wesley Publishing 
Company. 

Lincoln, Y. S., & Guba, E. G. (1984). Naturalistic Inquiry. London: Sage Publications. 

Lyneis, J. M., & Ford, D. N. (2007). System Dynamics Applied to Project Management: A Survey, Assessment, 
and Directions for Future Research. System Dynamics Review, 23(2 – 3), 157 – 189. doi:10.1002/sdr.377, 
http://dx.doi.org/10.1002/sdr.377 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 96

Maxwell, J. A. (2004). Qualitative Research Design: An Interactive Approach (2nd edition ed.). Thousand Oaks: 
Sage Publications. 

McCabe, T. J. (1976). A Software Complexity Measure. IEEE Transactions on Software Engineering, 2(4), 308 
– 320. doi:10.1109/TSE.1976.233837, http://doi.ieeecomputersociety.org/10.1109/TSE.1976.233837 

Michael, D., & Chen, S. (2005). Serious Games: Games That Educate, Train, and Inform. Boston: Thomson 
Course Technology PTR. 

Naur, P., & Randell, B. (Eds.). (1969). Software Engineering: Report on a Conference Sponsored by the NATO 
Science Committee, Garmisch, Germany, 7th to 11th October 1968. Brussels: Scientific Affairs Division, NATO 

Naveda, J. F., & Seidman, S. B. (2005). Professional Certification of Software Engineers: The CSDP Program. 
IEEE Software, 22(5), 73 – 77. doi:10.1109/MS.2005.132, 
http://doi.ieeecomputersociety.org/10.1109/MS.2005.132 

Neumann, P. G. (1995). Computer-Related Risks. Reading, Massachusetts: Addison-Wesley Publishing 
Company. 

Papert, S. (1980). Mindstorms. Brighton, Sussex: The Harvester Press. 

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd edition ed.). Thousand Oaks: Sage 
Publications. 

Perla, P. P. (1990). The Art of Wargaming: A Guide for Professionals and Hobbyists. Annapolis, Maryland: 
Naval Institute Press. 

Prensky, M. (2007). Digital Game-Based Learning. St. Paul, Minnesota: Paragon House Publishers. 

Raser, J. R. (1969). Simulation and Society: An Exploration of Scientific Gaming. Boston: Allyn and Bacon Inc. 

Remus, H., & Zilles, S. (1979). Prediction and Management of Program Quality. Proceedings of the 4th 
International Conference on Software Engineering, Munich, Germany, 341 – 350 

Ribaud, V., & Saliou, P. (2008). Evolution of an Integrated Course Towards a Sandwich Course. ACM-IFIP 
IEEIII 2008 Informatics Education Europe III Conference. 

Roberts, E. B. (1964). The Dynamics of Research and Development. New York: Harper & Row. 

Savin-Baden, M., & Major, C. H. (2004). Foundations of Problem-Based Learning. Maidenhead: The Society 
for Research into Higher Learning & Open University Press. 

Schein, E. H. (1980). Organizational Psychology (3rd edition ed.). Englewood Cliffs: Prentice-Hall. 

Schlimmer, J. C., Fletcher, J. B., & Hermens, L. A. (1994). Team-Oriented Software Practicum. IEEE 
Transactions on Education, 37(2), 212 – 220 

Schrage, M., & Peters, T. (1999). Serious Play : How the World's Best Companies Simulate to Innovate: Harvard 
Business School Press. 

Schumann, P. L., Anderson, P. H., & Scott, T. W. (1996). Introducing Ethical Dilemmas into Computer-Based 
Simulation Exercises to Teach Business Ethics. Developments in Business Simulations and Experiential 
Exercises, 23, 74 - 80 

Sebern, M. J. (2002). The Software Development Laboratory: Incorporating Industrial Practice in an Academic 
Environment. Proceedings of the 15th Conference on Software Engineering Education and Training, 118 

Senge, P. M. (2006). The Fifth Discipline: The Art & Practice of The Learning Organization (Revised edition 
ed.). London: Random House Business Books. 

Sengupta, K., Abdel-Hamid, T. K., & Bosley, M. (1999). Coping with Staffing Delays in Software Project 
Management: An Experimental Investigation. IEEE Transactions on Systems, Man, and Cybernetics-Part A: 
Systems and Humans, 29(1), 77 – 91 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modelling for a Complex World. New York: 
Irwin McGraw-Hill. 

Thomas, C. J., & Deemer, W. L. (1957). The Role of Operational Gaming in Operations Research. Operations 
Research, 5(1), 1 – 27 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 97

Tvedt, J. D. (1996). An Extensible Model for Evaluating the Impact of Process Improvements on Software 
Development Cycle Time. Unpublished Unpublished Ph.D. dissertation, Arizona State University, Phoenix, 
Arizona. 

van Vliet, H. (2006). Reflections on Software Engineering Education. IEEE Software, 23(3), 55 – 61. doi: 
10.1109/MS.2006.80, http://doi.ieeecomputersociety.org/10.1109/MS.2006.80 

Variale, T., Rosetta, B., Steffen, M., Rubin, H., & Yourdon, E. (1994). Modeling the Maintenance Process. 
American Programmer, 7(3), 29 – 37 

Weinberg, G. M. (1998). The Psychology of Computer Programming (silver anniversary edition ed.). New York: 
Dorset Housing Publishing. 

Wilson, A. (1968). The Bomb and the Computer. London: Barrie & Rockliff, The Cresset Press. 

Wolfe, J., & Fritzsche, D. J. (1998). Teaching Business Ethics with Management and Marketing Games. 
Simulation & Gaming, 29(1), 44 – 59. doi:10.1177/1046878198291005 
http://dx.doi.org/10.1177/1046878198291005  

Wolstenholme, E. F. (1990). System Enquiry: A System Dynamics Approach. Brisbane: John Wiley & Sons. 

Yourdon, E. (1992). Decline and Fall of the American Programmer. Sydney: Prentice-Hall. 

Yourdon, E. (1998). Rise and Resurrection of the American Programmer. Sydney: Prentice-Hall. 

Yourdon, E. (2004). Death March (2nd edition ed.). Upper Saddle River: Prentice Hall. 

 

Table 1. Standish CHAOS report benchmarks 

Year Successful (%) Challenged (%) Failed (%) 

1994 16 53 31 

1996 27 33 40 

1998 26 46 28 

2000 28 49 23 

2004 29 53 18 

2006 35 46 19 

2009 32 44 24 

 

Table 2. SE2004 SEEK knowledge area and units for Software Management 

 

KA/KU Title Hours 

MGT Software Management 19 

MGT.con Management concepts 2 

MGT.pp Project planning 6 

MGT.per Project personnel and 

organization 

2 

MGT.ctl Project control 4 

MGT.cm Software configuration 

management 

5 

 

 

 

 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 98

Table 3. SE2004 project planning topics 

KA/KU Topic Bloom’s taxonomy 

MGT.pp Project planning  

MGT.pp.1 Evaluation and planning Comprehension 

MGT.pp.2 Work breakdown 

structure 

Application 

MGT.pp.3 Task scheduling Application 

MGT.pp.4 Effort estimation Application 

MGT.pp.5 Resource allocation Comprehension 

MGT.pp.6 Risk management Application 

 

Table 4. SE2004 project personnel and organization topics 

KA/KU Topic Bloom’s 

taxonomy 

MGT.per Project personnel and organization  

MGT.per.1 Organizational structures, positions, responsibilities and 

authority 

Knowledge 

MGT.per.2 Formal/informal communication Knowledge 

MGT.per.3 Project staffing Knowledge 

MGT.per.4 Personnel training, career development, and evaluation Knowledge 

MGT.per.5 Meeting management Application 

MGT.per.6 Building and motivating teams Application 

MGT.per.7 Conflict resolution Application 

 

Table 5. Simsoft evaluation against Gee’s learning principles 

Learning Principle In Simsoft 

I. Empowered Users 

1. Co-design: good learning means that 
players feel they are active agents 
(producers) not just passive recipients 
(consumers). 

 

In good games, players feel their actions 
and decisions– and not just those of the 
game designer– are co-designing the game 
world and the experiences they are having. 
It therefore matters what the player does 
because this determines a unique path 
through the game. 

The course of game play in Simsoft is 
completely determined by the decisions the 
players make. They have full control of their 
workforce planning (subject to budget and 
timing restraints) and can increase or reduce 
hours as required. 

2. Customise: different styles of learning 
work better for different people. People 
cannot be agents of their own learning if 
they cannot make decisions about how they 
learn best. At the same time, they should be 
able (and encouraged) to try new styles. 

Teams can organise themselves any way 
they wish. Some nominated a lead decision 
maker or arbiter, usually based on 
experience, while others were more 
collaborative and democratic. the game 
sessions contained enough. the game 
sessions contained enough time for the 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 99

 

Good games achieve this by naturally 
accommodating different styles of learning 
and playing or by allowing the players 
customise the game play to fit their style. 

players to debate their decisions. 

3. Identity: deep learning requires an 
extended commitment and such a 
commitment is typically created when 
people take on a new identity they value and 
in which they become heavily invested. 

 

Good games offer players identities in 
which they can rewardingly invest time and 
effort. This can be done by offering a 
character so intriguing that players want to 
inhabit the avatar and project onto it their 
own fantasies, desires, and pleasures. 
Alternatively, games may offer a relatively 
empty character upon which players can 
build a deep and consequential life history. 

Players take on the role of a project 
manager– not something so exciting, 
particularly for experienced project 
managers. But a Simsoft project manager is 
unfettered by project politics and has 
complete control over the project's budget 
and workforce planning. This comment was 
from a project manager: 

“I wish I have [sic] this power at work” 

4. Manipulation and distributed knowledge: 
cognitive research suggests perception and 
action are deeply interconnected. "Thus, 
fine-grained action at a distance - for 
example, when a person is manipulating a 
robot or watering a garden via a web cam - 
cause humans to feel as if their bodies and 
minds have stretched into a new space. 
More generally, humans feel expanded and 
empowered when they can manipulate 
powerful tools in intricate ways that extend 
their area of expertise." 

 

Good games almost always involve action 
at a (virtual) distance. The more intricately a 
player can control a character and objects in 
the game world, the more the player is 
willing to invest time and effort in the game.

The players had full control over their 
workforce, subject to budget constraints and 
hiring delays. 

II. Problem Solving 

5. Well-ordered problems: problems in good 
games are designed so that the early 
challenges a player faces allow them to 
form good hypotheses they can use now and 
later. 

Initially players made simple decisions 
about hiring more staff to ramp up the 
project. By the time they were confident 
with the mechanics of this process, the game 
state would have changed sufficiently so 
they would then have to make more 
complex decisions to balance work 
backlogs, the volume of rework, a looming 
deadline and reduced funds. 

6. Pleasantly frustrating: learning works 
best when new challenges are pleasantly 
frustrating, that is at the outer edge of, but 
within, the player's regime of competence. 
These challenges feel hard, but doable. 

Simsoft demands more careful decisions as 
the game progresses. For example, the usual 
response to a large back log of work is to 
hire more staff, but the hiring delay means 
there is no immediate effect. A number of 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 100

Players also need feedback so even if they 
fail, they have an idea of what must be done 
next time. 

teams noticed this during the game: 

"We have to be careful about bringing on 
too many new hires. It'll ultimately clog 
things up". 

For all teams, the causal loop diagram on 
the back of the project briefing document 
was used to point out the counterintuitive 
nature of many project cycles. 

7. Cycles of expertise: expertise in any field 
is created by repeated cycles of practice 
until the skills become nearly automatic. 
New skills are gradually added to the 
practice set and the cycle continues 
(Bereiter & Scardamalia, 1993). In games, 
we see this in the different levels a player 
must move through: there are cycles of 
extended practice, a test of mastery, then a 
new challenge which requires further 
extended practice. In this way the game 
moves forward at a predictable pace and the 
player senses achievement at each mastered 
skill. 

More complex decisions need to be made as 
the game proceeds, but by this time the 
players will have mastered the mechanics of 
the game and the delays and 
counter-intuitive behaviour that are 
possible.  Simsoft logs all game decisions 
so these can be studied or replayed. 

8. Information should be delivered on 
demand and just in time: humans are not 
good at using information when it has little 
context and before they can practically use 
it. Instead, information is best used when it 
is given just in time (when it can be used 
straight away) and on demand (when there 
is a need to use it). 

Each game session was preceded by a short 
briefing from the researcher about the 
mechanics of the game and then most 
sessions were under way within a couple of 
minutes. Each game schedule contained a 
causal loop diagram representing the 
underlying system dynamics model that 
players could refer to as needed in light the 
way pieces were moving on the board. The 
game board itself also shows the major 
work and personnel flows of the game. 

9. Fish tanks: a fish tank can be a simple 
eco-system containing just a few controlled 
variables (water, light, food, fish). As such, 
it can show interactions between the 
variables that might otherwise be obscured 
in the real world. In a similar way, games 
are simplified systems that stress a few key 
variables and their interactions meaning 
players are not overwhelmed by the 
complexity of a whole system. 

Simsoft represents a simplified version of a 
software project: there are no requirements 
gathering, deployment, or maintenance 
phases. Instead, the game concentrates on a 
single, important factor– human resources– 
without the noise these other phases may 
have introduced 

10. Sandboxes: in games, as in the real 
world, sandboxes are safe, protected areas 
where things cannot go too wrong, too 
quickly and where any affects on the outside 
environment are minimised.  

 

In a good game, a sandbox may be a 
tutorial, or the first couple of levels may be 
sandboxed so that decisions made here do 
not completely spoil the player's chances 

Each game session was preceded by a short 
briefing from the researcher about how to 
make and enter game decisions. The range 
of initial decisions available was small so 
the players were able to see the flow of 
work over a number if project weeks before 
making more influential decisions were 
made. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 101

later in the game. 

11. Skills as strategies: there is a paradox in 
Principles 7 and 8: players need to practice 
certain skills in order to master them, but 
without a sufficient context, this practice 
may be seen as pointless.  

 

In good games, players learn and practice 
skills in order to accomplish specific 
things– they are a strategy for 
accomplishing something first, and of value 
as skills in themselves second. 

The objective of Simsoft is the completion 
of the project within budget and on time. 
The skills the players are developing in the 
game are directly employed to this end. 

III. Understanding 

12. Systems thinking: people learn new 
things (skills, strategies, and ideas) best 
when they see how these things fit into a 
larger system in which they have meaning. 

 

Good games help players understand how 
the simplified world of the game fits into a 
broader context, either of the game or of the 
real world. 

While Simsoft only represents a slice of a 
real software development project, that slice 
sends ripples through most other areas of a 
typical project. This comment was from a 
software developer with 2 to 5 years 
experience: 

“I see my part in the machinery now” 

13. Meaning as action image: humans do 
not usually think in abstract concepts and 
according to logical principles. Rather, we 
think through experiences we have had and 
then create imaginative reconstructions of 
that experience. To reason about, say, a 
football game we think about games we 
have seen and heard about rather than 
generalities. For humans, words and abstract 
concepts have their deepest meanings when 
they are clearly tied to perception and action 
in the world. 

For experienced software developers and 
project managers, thinking about their work 
in concrete rather than abstract terms is easy 
and connections can be made: 

 

“Now I see why” 

“I hope that future versions will let me set 
up specific scenario and play them out. That 
would really help me in my work” 

For students, with less experience to draw 
on, meaning as action is harder to create. 
But, there are signs that experience in the 
game resonates: from a note scribbled on a 
game board beside the Rework box: 

“I must remember this” 

 

 

 

 

 

 

 

 

 

 

 



www.ccsenet.or

102

 

 

rg/mas        

          

Figure 1. Le

            

             

eft-hand side o

 Modern Appli

            

of the Simsoft 

ied Science   

             

game board sh

            

          ISS

howing the wo

   Vol. 5, No.

SSN 1913-1844   

ork to be done 

 5; October 201

E-ISSN 1913-185

 

1 

52 



www.cc

Publish

csenet.org/mas 

hed by Canadian

Figure 2. Rig

             

n Center of Scien

ght-hand side o

       Moder

nce and Educati

of the Simsoft 

rn Applied Scien

ion 

game board sh

nce         

howing the hu

          Vol

 

uman resources

l. 5, No. 5; Octo

s of the project

ober 2011 

103

t 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 104

 
 

Figure 3. Simsoft dashboard 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 

 

 
 

43

Manuscript received July 5, 2011 

Manuscript revised July 20, 2011 

Implementing System Dynamics Models in JavaImplementing System Dynamics Models in JavaImplementing System Dynamics Models in JavaImplementing System Dynamics Models in Java    

C. Caulfield
†
, D. Veal

††
, S. P. Maj

†††
 

  
Edith Cowan University, Perth, Western Australia 

 

Summary 
For a research project into the value of serious games — games 

that teach and educate — in software engineering and project 

management education, a game called Simsoft was developed. 

Two keys parts of Simsoft were the system dynamics engine that 

captured the fundamental causal relationships of the software 

project being modelled; and the Java dashboard through which 

the players entered their project decisions. Java also provided a 

means of saving the players individual decisions so these could 

later be analysed and replayed. While there are currently no Java 

libraries for implementing system dynamic models, a system 

dynamics model is simply a collection of non-linear differential 

equations, and open-source Java libraries for these do exist. 

Therefore, it is possible to implement a system dynamics model 

in Java and take advantage of the features of a powerful, general 

purpose programming language. This paper describes how the 

model behind Simsoft was created using system dynamics 

modeling tool called iThink and how the model was subsequently 

implemented in Java using the Apache Commons Mathematics 

library. 

Key words: 
 system dynamics, Java,  iThink, serious games 

1. System Dynamics 

1.1 Background and History 

In the late 1950s, Jay Forrester of the Sloan School of 

Management at the Massachusetts Institute of Technology 

(MIT) was asked by General Electric to review the 

operations of their Kentucky appliance parts plant. The 

company was concerned about the oscillating nature of 

their production cycles that often saw periods of intense 

activity followed by times of virtual dormancy during 

which workers had to be laid off. Fluctuating demand and 

normal business cycles did not seem to adequately explain 

the situation. Coming from an electrical engineering 

background and with a keen interest in management 

science, Forrester approached the problem systematically, 

but with just a pencil and a note pad. Starting with 

columns for inventory, employees and orders, and 

factoring in: 

 

the policies they were following, one could decide how 

many people would be hired in the following week. This 

gave a new condition of employment, inventories, and 

production [1]. 

 

Forrester’s calculations amounted to a simulation of the 

system operating at General Electric’s plant. 

 

Stemming from this first analysis came an article for the 

Harvard Business Review in 1958 entitled “Industrial 

Dynamics - A Major Breakthrough for Decision Makers” 

with the theme being developed and expanded in the 

seminal work, Industrial Dynamics [1, 2]. Industrial 

dynamics became system dynamics as it came to be used 

in areas other than industry.  

 

For some time following the publication of Industrial 

Dynamics, system dynamics was used as a tool for looking 

at big-picture issues such as urban decay, major 

sociological conditions and world economics [3-5]. In 

more recent times, system dynamics has been finding a 

purpose for itself in a range of business and social 

applications. Instrumental in this change have been Peter 

Senge’s The Fifth Discipline [6], and the development of 

intuitive, graphical software packages that have made 

system dynamics modelling more accessible by hiding the 

computer source-code look of traditional models. System 

dynamics has also found a place for itself in a number of 

primary, secondary, and tertiary institutions in the United 

States of America, Australia and Europe, well beyond its 

ground zero at MIT.  

 

To more formally define system dynamics, it could be said 

that it: 

 

…is concerned with creating models or representations of 

real world systems of all kinds and studying their 

dynamics (or behaviour). In particular, it is concerned 

with improving (controlling) problematic system 

behaviour… The purpose in applying System Dynamics is 

to facilitate understanding of the relationship between the 

behaviour of the system over time and its underlying 

structure and strategies/policies/ decision rules [7]. 

 

A key element of this definition is the need to build a 

computer model of the system under consideration. The 

model is used to help understand the patterns of change or 

dynamics that a system exhibits over time and to identify 

the conditions that cause these patterns to be stable or 

unstable. This knowledge of the system can then suggest 

what kinds of prescriptions for governing it will work and 

what kinds may not. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 

 

44

 

 

However, building system dynamics models demands 

persistence. Translating real-world information into model 

elements is still an inexact science - trial and error can be 

just as valid as considered judgment based on experience. 

Perhaps a useful parallel can be drawn with that other hard, 

inexact activity: finding object-oriented classes. Bjarne 

Stroustrup, the creator of C++, notes that in design and 

programming there are no cookbook methods that can 

replace intelligence, experience and good taste; even he 

just tries things [8]. The lesson for system dynamics 

modellers would seem to be the same: just start, try things, 

take advice of experienced modellers and then keep 

iterating. 

 

Yet the effort of building a system dynamics model has 

some benefits: 

 

• Modelling brings about an understanding of the 

system because of the analytical and critical thinking 

process it calls for. It helps bring to the surface the 

mental models driving the current situation - those 

models  

 

...that one carries around in one’s head for dealing 

with a problem or situation. Such a model maybe 

based on experience or intuition, or on folklore and 

myth; it may be influenced by politics and a wide 

spectrum of human emotions [9]   

 

Mental models may also be totally inappropriate or 

counter-productive, or equally priceless. But unless 

they are turned into something more tangible, one 

may never know. 

 

• System dynamics models make room for both 

quantitative or hard variables— things that can be 

measured directly like program size, staffing numbers 

or dollars spent—; and qualitative or soft variables— 

such as motivation, commitment, confidence or 

perceptions. Soft variables have traditionally been left 

out of engineering models because they are difficult to 

measure and their importance may have been 

underestimated. Yet,  

 

...if you omit soft variables you run the risk of failing 

to capture something essential to driving human 

affairs. Leaving out something so essential is the only 

hypothesis that you can reject with absolute certainty! 

[10]. 

 

A system dynamics model can therefore be more 

informed about its problem space.  

 

With a system dynamics model in hand and George Box’s 

tongue-in-cheek caution in mind (all models are wrong, 

but some are useful), the model can be run. Certain 

variables can be held steady while others are changed, it 

can be placed under stress and tested for sensitivities and 

leverage points. In short, the model can be experimented 

with to better understand the present situation and to 

search for alternatives for improvement. It has been stated 

that: 

 

The alternatives may come from intuitive insights 

generated during the [initial analysis], from experience of 

the analyst, from proposals advanced by people in the 

operating system [or in the] experience, art, and skill for 

imagining the most creative and powerful policy 

alternatives [11]. 

 

Peter Senge points out that the causes of many problems  

 

...lay in the very well-intentioned policies designed to 

alleviate them. These problems were actually systems that 

lured policy makers into interventions that focused on 

obvious symptoms not underlying causes, which produced 

short-term benefit but long term malaise, and fostered the 

need for still more symptomatic interventions [12]. 

 

By simulating a problem space using a system dynamics 

model, it is possible to potentially make more informed 

decisions about events beyond our bounded rationality safe 

from the dangers of real-world experimentation. 

1.2 Stock and Flow Diagrams 

At its lowest level, a system dynamics model looks like 

computer source code, but even from the earliest days 

there were graphical representations to help modellers 

visualise their problem space. The stock-and-flow notation 

(Fig. 1), first described by Forrester [1], consists of a small 

number of symbols that together form a grammar telling a 

story: 

 

• Stocks or levels can be thought of as nouns since they 

represent an accumulation of something (money, 

inventory, staff, morale, etc.) at a point in time.  

• Flows or rates determine how the stocks will be filled 

or drained and so are analogous to verbs. Stuff (again 

money, inventory, staff, morale, etc.) flows through 

the pipe of the flow in the direction of the arrow and 

at a rate determined by the flow regulator in the 

middle. The flow regulator is fitted with a spigot that 

can be conceptually tightened or loosened by other 

variables within the model. The cloud at the end of the 

flow represents the boundary of the model. 

• Converters modify flows within the system, just as 

adverbs modify verbs. They are often used to break 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 

 

45

 

out the detail of the logic that might otherwise be 

buried within a flow and might be used to represent 

constant values. Converters typically influence the 

behaviours of the regulators on the flows. 

• Connectors tie the other three building blocks together. 

They represent inputs and outputs, not inflows and 

outflows. Connectors do not take on numerical 

values— they merely transmit values taken on by 

other building blocks. 

 

Behind these symbols are stored the functions and values 

(the 'source code' of the model) that drive the simulation 

and ultimately produce the output. For a system dynamics 

model, the output is a multi-scale graph (see Fig. 4 later) 

that shows how certain variables of interest change over 

time and in relation to each other.  

 

 

 

 

 

 

 

 

Fig. 1: Stock and flow format of system dynamics models. 

2. Basic Mathematics of System Dynamics 

The basic mathematics of a system dynamics model is a 

set of coupled non-linear first-order differential equations 

[1, 13]. The advance of time is broken into small intervals 

of equal length (typically called delta time or DT), which 

is small enough that we can assume change will be 

constant over that period. For each DT, the model's stocks, 

rates, converters and auxiliary variables are evaluated to 

yield a new value, and this value is used as input for 

continuing calculations. 

 

 

Fig. 2: Calculations at time K 

In Fig. 2 [1], J, K, and L represent successive points in 

time with K being the present. Stock equations are 

evaluated first and the values are then available for use in 

the rate equations. Using the simple stock-and-flow 

diagram in Fig. 1: 

 

����� = � �	
��	������ − 	
��	����������
�

�
 (1) 

 

That is, the present value of Stock at time K is equal to the 

value of Stock at time J, plus the difference between the 

inflow rate and the outflow rate, multiplied by DT. 

Flows or rates determine how stocks are filled or depleted. 

To cater for the delay characteristics of information-

feedback systems, a rate equation is given by the outflow 

rate of a first-order exponential delay. For example: 

 

�����	��	���	� = 	 �����	��	���	�
���������	������� (2) 

 

There are many other specialised functions available to 

system dynamic modellers, but those for stocks and rates 

represent the majority of most models.  

3. System Dynamics and Java 

3.1 Simsoft 

For a research project into the value of serious games as 

teaching tools for software engineers and software project 

managers, a game — Simsoft — was developed that had 

as its engine a system dynamics model. Physically, 

Simsoft comes in two pieces: 

 

• An A0-sized printed game board around which the 

players gather to discuss the current state of the 

project and to consider their next move. The board 

shows the flow of the game while plastic counters are 

used to represent the staff of the project. Poker chips 

represent the team’s budget, with which they can 

purchase more staff, and from which certain game 

events may draw or reimburse amounts depending on 

decisions made during the course of the game. 

• A simple Java-based dashboard through which the 

players can see the current and historical state of the 

project through a series of simple reports, messages, 

and other information; and can adjust the project’s 

settings, for example to recruit new staff, before 

advancing the game’s time to create the state of the 

project. 

 

The aim of the game is to complete the project on time and 

with funds (poker chips) left over. At the start of the game 

there is a pool of work to do. This pool is represented on 



IJCSNS International Journal of Computer 

 

46

the game board with small plastic counters in the 

Do box. These counters can be thought of as Use Cases or 

items in a work breakdown structure; whatever is most 

familiar to the players. Depending on the resources 

available to do the work, the units of work (the counters) 

move from the Work To Do box to a 

where the work is reviewed before passing to the 

Completed Work box. Not unexpectedly, some work will 

fail the review and go to the Rework box, before passing 

back to For Review and trying again to get to 

Work. 

 

The work-to-do, review, rework, work-completed cycle is 

a fundamental project work structure first discussed and 

modelled by Roberts [14]. Roberts’ initial work has been 

expanded greatly by subsequent researchers who have 

added rich details based on actual projects (see 

comprehensive survey of the field), but the underlying 

work structure remains unchanged. 

 

Of interest here is the Java dashboard and the system 

dynamics model that implements the work

rework, work-completed cycle. The original design of 

these two components called for a simple but attractive 

graphical user interface on top of the stock

plumbing of the system dynamics model; and a means of 

capturing the decisions made by the players for later 

analysis. While there are a number of software packages 

that can create a graphical user interface 

dynamics models [16-18], some problems 

encountered: 

 

• There were limited features for creating attractive, 

interactive user interfaces. 

• All packages required some sort of 

software to run the model. 

• None provided a means to save the individual 

decisions of multiple teams in a single database so 

that the decisions could be later analysed or replayed.

• There is a .NET software development kit allows 

system dynamics models to be integrated with 

custom-designed software, but this limits further 

development and deployment to Windows PCs, 

the initial purchase cost and ongoing licensing 

were relatively expensive.  

 

Java was chosen because it addressed each of the above 

problems. Even so, there are currently no Java libraries for 

implementing system dynamic models. But, a system 

dynamics model is simply a collection of non

differential equations, and open-source Java libraries for 

these do exists, therefore it is possible to implement a 

system dynamics model in Java. 

 

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

the game board with small plastic counters in the Work To 

counters can be thought of as Use Cases or 

items in a work breakdown structure; whatever is most 

familiar to the players. Depending on the resources 

available to do the work, the units of work (the counters) 

box to a For Review box, 

where the work is reviewed before passing to the 

box. Not unexpectedly, some work will 

box, before passing 

and trying again to get to Completed 

completed cycle is 

a fundamental project work structure first discussed and 

nitial work has been 

expanded greatly by subsequent researchers who have 

added rich details based on actual projects (see [15] for a 

f the field), but the underlying 

Of interest here is the Java dashboard and the system 

that implements the work-to-do, review, 

. The original design of 

these two components called for a simple but attractive 

graphical user interface on top of the stock-and-flow 

plumbing of the system dynamics model; and a means of 

capturing the decisions made by the players for later 

le there are a number of software packages 

that can create a graphical user interface for system 

ome problems were 

were limited features for creating attractive, 

All packages required some sort of proprietary 

None provided a means to save the individual 

decisions of multiple teams in a single database so 

decisions could be later analysed or replayed. 

There is a .NET software development kit allows 

system dynamics models to be integrated with 

designed software, but this limits further 

development and deployment to Windows PCs, plus 

ase cost and ongoing licensing fees 

Java was chosen because it addressed each of the above 

problems. Even so, there are currently no Java libraries for 

implementing system dynamic models. But, a system 

a collection of non-linear 

source Java libraries for 

these do exists, therefore it is possible to implement a 

3.2 Model Design in iThink

 

Building a system dynamics model 

equations is time-consuming and error prone. Therefore, 

the model behind Simsoft was first buil

graphical modelling package called iThink

model included almost a hundred stock

associated equations, so the aim here is to focus on a small 

part of the model— that of worker burnout

Homer [19]. 

 

Burnout begins when a person

case of Simsoft, a software engineer on a development 

project) tries to meet unmet exp

longer hours. By working longer hours they are exposed 

more of the normal stress of

finite store of “adaptive energy”

quickly and they also have less time to recover. This 

depleted energy level may leave the person even less 

capable of meeting their expectations, 

to make mistakes that have to be fixed at the expense of 

real progress. In response, they 

which will deplete their energy levels still more. Unless 

the person is granted some respite, this 

continue until they are leave in frustration or are 

burned out and no longer able to contribute to the project. 

 

Fig. 3 shows how burnout can be modelled in iThink.

 

Fig.3: Worker burnout modelled with iThink

 Here, a person has a stock of energy 

that is depleted or recovered depending on the number of 

hours they work each week.

each week on energy recovery and depletion are given in 

Table 1. 

The recovery and depletion rates are nominal values 

normalised around a 40-hour week. As the number of 

hours worked each week beyond this point increases, the

depletion rate increases; because the person is working 

Science and Network Security, VOL.11 No.7, July 2011 

 

3.2 Model Design in iThink 

Building a system dynamics model by hand-coding 

consuming and error prone. Therefore, 

he model behind Simsoft was first built and tested using a 

graphical modelling package called iThink [16]. The final 

included almost a hundred stocks, flows and their 

associated equations, so the aim here is to focus on a small 

that of worker burnout as described by 

a person working on a project (in the 

case of Simsoft, a software engineer on a development 

t unmet expectations by working 

By working longer hours they are exposed to 

he normal stress of work and consequently their 

finite store of “adaptive energy” [20, 21] is depleted more 

have less time to recover. This 

depleted energy level may leave the person even less 

capable of meeting their expectations, or may cause them 

to make mistakes that have to be fixed at the expense of 

real progress. In response, they may try to work harder, 

deplete their energy levels still more. Unless 

the person is granted some respite, this viscous cycle may 

continue until they are leave in frustration or are they 

burned out and no longer able to contribute to the project.  

shows how burnout can be modelled in iThink. 

 

: Worker burnout modelled with iThink 

Here, a person has a stock of energy available to do work 

that is depleted or recovered depending on the number of 

week. The effect of hours worked 

on energy recovery and depletion are given in 

The recovery and depletion rates are nominal values 

hour week. As the number of 

hours worked each week beyond this point increases, the 

depletion rate increases; because the person is working 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

 

longer days, evenings, or even weekends, there is less time 

to recover, so the recovery rate slows. 

Table 1: Effect of hours worked on energy recovery and depletion

Hours per week Recovery rate 

0 1.30 

20 1.20 

40 1.10 

60 0.70 

80 0.50 

100 0.35 

120 0.25 

 

It should be noted that the recovery and depletion rates are 

known as soft or qualitative variables because they are 

based on precise numerical data; such data does not exist 

[19]. However, the compass of a system dynamics model 

means that the rules by which it is calibrated and 

will be slightly different from other modelling techniques. 

For example, the output of a system dynamics model is 

meant to be read, not for particular time

but for qualitative behavioural patterns such as growth, 

decline, oscillation, stability, and instability 

of understanding general dynamic tendencies means that 

the model’s parameters are less reliant on

numerical data: 

 

As long as the purpose of your model is not to predict 

numerical magnitude of particular soft variables, you can 

greatly benefit from including them in your models. Doing 

so will cause you to think in a rigorous manner about the 

relationships the variables bear to other variables in the 

system.[10] 

 

The calibration of soft variables may also seem an 

arbitrary process in which the model is ‘made’ to respond 

in a certain manner. However, the way in which the soft 

(and hard) variables react must be internally consistent, 

that is, they must generate behaviour that matches what is 

observed in the actual system [10]. 

 

With this in mind, when this burnout model is run, 

scale graph is produced (Fig. 4). 

 

Viewed over a 13-month period, the person starts out by 

working a 40-hour week. Every couple of weeks there is a 

spike and they have to work 50-hour weeks for a short 

time (this pattern can, of course, be changed 

real-world circumstance). The graph shows that the 

person’s energy levels rise and fall in line with oscillations 

in the work week, but the overall trend is downwards 

because the constant spikes in work never allow enough 

time for proper recovery. 

 

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

longer days, evenings, or even weekends, there is less time 

: Effect of hours worked on energy recovery and depletion 

Depletion rate 

0.30 

0.60 

1.00 

1.50 

2.00 

2.50 

3.00 

It should be noted that the recovery and depletion rates are 

known as soft or qualitative variables because they are not 

; such data does not exist 

e compass of a system dynamics model 

calibrated and validated 

will be slightly different from other modelling techniques. 

For example, the output of a system dynamics model is 

meant to be read, not for particular time-point predictions, 

ral patterns such as growth, 

decline, oscillation, stability, and instability [22]. This goal 

of understanding general dynamic tendencies means that 

the model’s parameters are less reliant on highly precise 

As long as the purpose of your model is not to predict the 

numerical magnitude of particular soft variables, you can 

greatly benefit from including them in your models. Doing 

so will cause you to think in a rigorous manner about the 

relationships the variables bear to other variables in the 

The calibration of soft variables may also seem an 

arbitrary process in which the model is ‘made’ to respond 

in a certain manner. However, the way in which the soft 

les react must be internally consistent, 

that is, they must generate behaviour that matches what is 

hen this burnout model is run, a multi-

month period, the person starts out by 

hour week. Every couple of weeks there is a 

hour weeks for a short 

time (this pattern can, of course, be changed to model any 

world circumstance). The graph shows that the 

person’s energy levels rise and fall in line with oscillations 

in the work week, but the overall trend is downwards 

because the constant spikes in work never allow enough 

 

Fig. 4: Worker burnout over a 13

With this portion of the model defined, it only remained to 

implement it in Java. 

3.3 Implementation in Java

The model behind Simsoft was 

using the open source Apache Commons Mathematics 

library [23]. Among its many function

provides a programming interface for solving differential 

equations. 

 

To implement the system dynamics model shown in Fig

we need to:  

 

• Create a class, EnergyEquations

FirstOrderDifferentialEquations

• Pass the class to an integrator 

different time points. 

Mathematics library provides a range of integrator, 

but for system dynamics models, the Euler or Runge

Kutta methods are most often used.

 

The key method in 

computeDerivatives— the one that evaluates the stock 

equation given at (1). 

 
/** 

 * Get the current time derivative of the state vector.

 *  

 * @param t current value of the independent time 

variable 

 * @param y array containing the current value of the 

state vector 

* @param yDot placeholder array where to put the time 

derivative of the state vector

*/ 

public void computeDerivatives(double t, double[] y, 

double[] yDot) throws DerivativeException {

 

yDot[0] = y[0] * (recoveryRate 

} 

 

EnergyEquations is covered by the following unit test:

 

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 47

 

 

: Worker burnout over a 13-month period 

With this portion of the model defined, it only remained to 

in Java 

model behind Simsoft was implemented in Java by 

using the open source Apache Commons Mathematics 

Among its many functions, this library 

provides a programming interface for solving differential 

To implement the system dynamics model shown in Fig. 3, 

EnergyEquations, that implements the 

FirstOrderDifferentialEquations interface.. 

Pass the class to an integrator to calculate values at 

different time points. The Apache Commons 

Mathematics library provides a range of integrator, 

ut for system dynamics models, the Euler or Runge-

Kutta methods are most often used. 

The key method in EnergyEquations is 

the one that evaluates the stock 

* Get the current time derivative of the state vector. 

* @param t current value of the independent time 

* @param y array containing the current value of the 

* @param yDot placeholder array where to put the time 

e state vector 

public void computeDerivatives(double t, double[] y, 

double[] yDot) throws DerivativeException { 

recoveryRate - depletionRate); 

red by the following unit test: 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 

 

48

 

public void testEnergyEquationsDerivatives() throws 

Exception { 

 

FirstOrderIntegrator integrator = new 

EulerIntegrator(0.25); 

FirstOrderDifferentialEquations energy = new 

EnergyEquations(0.7, 1.50);  

 

StepHandler stepHandler = new StepHandler() { 

   public void handleStep(StepInterpolator interpolator, 

boolean isLast) throws DerivativeException { 

double t = interpolator.getCurrentTime(); 

double[] y = interpolator.getInterpolatedState(); 

System.out.println(t + "\t" + y[0]); 

} 

   public boolean requiresDenseOutput() {return false;} 

}; 

   integrator.setStepHandler(stepHandler); 

   integrator.integrate(energy, 

 0.75,              // start time 

 new double[]{1.0}, // initial stock value 

    13,                // end time 

   new double[1]);   // storage 

} 

 

First, an Euler integrator is defined with a step size of 0.25. 

Then, the EnergyEquations class is constructed and 

initialised with recovery and depletion rates of 0.7 and 

1.50 respectively, being values from Table 1 that equate to 

a 60-hour week. (An inner StepHandler class is created so 

we can see the output at each step). Finally, the 

EnergyEquations instance is passed to the integrator along 

with the initial conditions of the run. The first data items 

are shown Table 2. 

Table 2: Initial data items from 

Time Energy Level Value 

1.00 0.80 

1.25 0.64 

1.50 0.512 

1.75 0.4096 

2.00 0. 32768 

2.25 0. 26214400000000004 

…  

 

In essence, the same pattern can be followed for all stocks. 

4. Conclusions 

System dynamics is concerned with building quantitative 

and qualitative models of complex problem situations and 

then experimenting with and studying the behaviour of 

these models over time. Often such models will 

demonstrate how unappreciated causal relationships, 

dynamic complexity, and structural delays may lead to 

counter-intuitive outcomes of less-informed efforts to 

improve the situation. System dynamic models also make 

room for soft factors such as burnout so that problem 

spaces can ultimately be better understood and managed. 

 

These features made system dynamics an obvious choice 

for creating the model behind Simsoft because the game 

was trying to demonstrate some of the dynamic 

complexities of software development projects. However, 

the means for implementing system dynamic models and 

integrating them with custom-designed graphical user 

interfaces and databases are limited. 

 

By using simple open source tools, such as the Apache 

Commons Mathematics library, it is possible to build 

system dynamics models that integrate with general 

purpose programming languages such as Java, meaning 

the models can draw upon all the features of those 

languages. For now this integration is largely manual: 

create the system dynamics model using tools such as 

iThink and then translate this into a matching class 

structure in Java. Based on the results presented here, 

further research is being conducted into ways of 

automating this translation and being able to perform 

round-trip translations. 

 

References 
[1] J.W. Forrester, Industrial Dynamics, Pegasus 

Communications, Waltham, 1961. 

[2] J.W. Forrester, Harvard Business Review, 36 (1958) 37 - 66. 

[3] J.W. Forrester, Urban Dynamics, Productivity Press, 

Portland, 1969. 

[4] J.W. Forrester, World Dynamics, Productivity Press, 

Portland, 1971. 

[5] D.H. Meadows, D.L. Meadows, J. Randers, W.W. Behrens, 

The Limits to Growth: A Report for the Club of Rome's 

Project on the Predicament of Mankind, Earth Island Ltd, 

London, 1972. 

[6] P.M. Senge, The Fifth Discipline: The Art & Practice of The 

Learning Organization, Revised edition ed., Random House 

Business Books, London, 2006. 

[7] E.F. Wolstenholme, System Enquiry: A System Dynamics 

Approach, John Wiley & Sons, Brisbane, 1990. 

[8] B. Stroustrup, The C++ Programming Language, special 

edition ed., Addison-Wesley, Boston, 2000. 

[9] E. Yourdon, Rise and Resurrection of the American 

Programmer, Prentice-Hall, Sydney, 1998. 

[10]  B. Richmond, Modelling "Soft" Variables, in:  An 

Introduction to Systems Thinking, High Performance 

Systems, Hanover, 1999, pp. 9-1 - 9-10. 

[11] J.W. Forrester, System Dynamics Review, 10 (1994) 245 - 

256. 

[12] P.M. Senge, The Fifth Discipline: The Art & Practice of The 

Learning Organization, Random House, Milsons Point, 

1990. 

[13] A. Ford, Modeling the Environment: An Introduction to 

System Dynamics Modeling of Environmental Systems, 

Island Press, Washington, 1999. 

[14] E.B. Roberts, The Dynamics of Research and Development, 

Harper & Row, New York, 1964. 

[15] J.M. Lyneis, D.N. Ford, System Dynamics Review, 23 

(2007) 157 – 189. 

[16] isee Systems (http://www.iseesystems.com/), 2011. iThink 

version 9.1.4. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 

 

49

 

[17] Ventana Systems (http://www.vensim.com/), 2011. Vensim 

version 5. 

[18]  Powersim (http://www.powersim.com/), 2011. Powersim 

version 8. 

[19] J.B. Homer, System Dynamics Review, 1 (1985) 42 - 62. 

[20] H. Selye, Stress Without Distress, Signet Books, 

Philadelphia, 1974. 

[21] H. Selye, The Stress of Life, 2nd edition ed., McGraw-Hill, 

New York, 1978. 

[22] D.H. Meadows, J.M. Robinson, The Electronic Oracle: 

Computer Models and Social Decisions, John Wiley & Sons, 

New York, 1985. 

[23] Apache Commons Mathematics Library 

(http://commons.apache.org/math/), 2011. Version 2.2. 

 

 

Craig Caulfield is a senior software 

engineer for a technology consulting 

company and PhD candidate at Edith 

Cowan University. His research areas 

include problem-based learning and the 

application of serious games to software 

engineering education and project 

planning. 

 

 

 

Dr. David Veal is a Senior Lecturer at 

Edith Cowan University. He is the manager 

of Cisco Network Academy Program at 

Edith Cowan University and be a unit 

coordinator of all Cisco network 

technology units. His research interests are 

in Graphical User Interface for the visually 

handicapped and also computer network 

modeling. 

 

A/Prof S. P. Maj has been highly 

successful in linking applied research with 

curriculum development. In 2000 he was 

nominated ECU University Research 

Leader of the Year award He was awarded 

an ECU Vice-Chancellor’s Excellence in 

Teaching Award in 2002, and again in 

2009. He received a National Carrick 

Citation in 2006 for “the development of 

world class curriculum and the design and implementation of 

associated world-class network teaching laboratories”.  



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 
 

50

Manuscript received July 5, 2011 
Manuscript revised July 20, 2011 

Teaching Software Engineering Management – Issues and 
Perspectives 

C. Caulfield, D. Veal, S. P. Maj 
  

Edith Cowan University, Perth, Western Australia 
 
 

Summary 
The ACM/IEEE regularly proposes guidelines for software 
engineering education, in particular what should be part of the 
software engineering core body of knowledge and how this 
knowledge can be taught. The 2004 curriculum guidelines define 
seven student outcomes, two of which relate to teamwork and 
project control, and one Software Engineering Education 
Knowledge (SEEK) area on software management. The software 
management knowledge area is concerned with the entire software 
development life cycle and hence the control of people and 
processes. Significantly, the majority of topics within this area are 
classified with the Bloom taxonomy level of Application i.e. 
ability to use learned material in new and concrete situations. 
However the laboratory and assignment exemplars fail to 
demonstrate the dynamic, human centered complexity of project 
management. Simsoft, a serious game, has been designed to 
potentially address this pedagogical gap. 
 
 
Key words: 
software engineering curriculum, serious games, project 
management, problem-based learning 

1.  Software Engineering Curriculum 2004 

The Joint Task Force on Computing Curricula (IEEE 
Computer Society and Association of Computing 
Machinery) suggests curriculum guidelines for 
undergraduate degree programs in software engineering. 
The SE2004 [1] volume defines a core body of knowledge 
called Software Engineering Education Knowledge (SEEK) 
which was the basis of curriculum recommendations. 
SE2004 also defined seven student outcomes that include: 
 
• Work as an individual and as part of a team to develop 

and deliver quality software artifacts. 
• Reconcile conflicting project objectives, finding 

acceptable compromises within limitations of cost, time, 
knowledge, existing systems and organizations.  

 
There are ten SEEK knowledge areas— sub-disciplines of 
the field that undergraduates should know— which are 
broken down into smaller knowledge units— thematic 
modules— and finally into topics. Within the Software 

Management knowledge area, there are five knowledge 
units (Table 1).  
 

Table 1: Software management knowledge units 
KA/KU Software Management Hours 

Required 
MGT.con Management concepts 2 
MGT.pp Project planning 6 
MGT.per Project personnel and organization 2 
MGT.ctl Project control 4 
MGT.cm Software configuration management 5 
 
Drilling down further, the Project Planning knowledge unit 
consists of six topics (Table 2), three of which are classified 
as the Bloom [2] taxonomy level of Application.  
 

Table 2: Project planning topics 
Project Planning Bloom’s Taxonomy 
Evaluation and planning Comprehension 
Work breakdown structure Application 
Task scheduling Application 
Effort estimation Application 
Resource allocation Comprehension 
Risk management Application 
 
The Bloom taxonomy is a classification of learning 
objectives (learning outcomes) consisting of three domains: 
cognitive, affective and psychomotor. The cognitive domain 
defines six levels of taxonomy from the lowest to the 
highest: 
 
1. Knowledge: remember previously-learned materials by 

recalling specific facts, terminology, theories and 
answers 

2. Comprehension: demonstrate an understanding of 
information by being able to compare, contrast, 
organize, interpret, describe, and extrapolate. 

3. Application: use previously-learned material in new 
situations. 

4. Analysis: decompose previously-learned material into 
parts in order find patterns and to make inferences and 
generalizations. 

5. Synthesis: use existing ideas in different ways to create 
new ideas or to propose alternative solutions. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11, No 7, 2011. 

 

51

 

6. Evaluation: judge the validity of ideas or information 
with a certain context. 

 
Meanwhile, the Project Personnel and Organization 
knowledge unit consists of seven topics, three of which are 
classified as the Bloom taxonomy level of Application 
(Table 3).  
 

Table 3: Project personnel and organization topics 
Project Personnel and Organization Bloom’s Taxonomy 
Organizational structures, positions, 
responsibilities and authority 

Knowledge 

Formal/informal communication Knowledge 
Project staffing Knowledge 
Personnel training, career development, 
and evaluation 

Knowledge 

Meeting management Application 
Building and motivating teams Application 
Conflict resolution Application 
 
 
2. SE2004 Courses 
 
The SE2004 curriculum guidelines define topic 
implementation as a series of courses. Within the context of 
software engineering management there are three associated 
courses:  
 
• SE322 Software Requirements Analysis 
• SE323 Software Project Management 
• SE324 Software Process and Management 
 
The Software Requirements Analysis course is primarily 
concerned with requirements analysis and modeling.  The 
sample laboratories and assignments require students to use 
different analysis and modeling tools.  
 
The Software Project Management course is designed to 
teach project planning. The laboratories and assignments 
include: 
 
• Use a commercial project management tool to assist 

with all aspects of software project management 
• Make cost estimates for a small system using a variety 

of techniques 
• Developing a project plan for a significant system 
• Writing a configuration management plan 
• Using change control and configuration management 

tools 
• Evaluating a software contract or license 
 
Furthermore, this unit recommends case studies of real 
industrial projects.  
 
The Software Process and Management course teaches 
standards, implementation and assurance of software 

processes. No sample laboratories and assignments are 
provided.   
 
SE2004 curriculum guideline encourages a variety of 
teaching and learning approaches that include: problem-
based learning; just-in-time learning; learning by failure and 
self-study materials (see for example [3-5]).  However in a 
commercial environment software project management is a 
human-centered activity that attempts to address the 
dynamic interactions of factors such as cost, time, staffing, 
performance, feature set, and quality.  A relatively small 
change in one factor, such as the resignation of a single 
software engineer, is likely to have a significant impact on 
the entire project. Whilst learning-to-fail is instructive [6], 
in a commercial context there are obvious economic 
implications.  
 
In order to address these concerns, SE2004 includes a 
capstone project. The course SE400 Software Engineering 
Capstone Project recommends the development of a 
significant software system along with all the appropriate 
artifacts such as project plan, requirements, design 
documents, test plans etc. Additional teaching 
considerations include: 
 
• It is suggested that students be required to have a 

‘customer’ for whom they are developing their software 
• It is strongly suggested that students work in groups of 

at least two, and preferably three or four, on their 
capstone project. Strategies must be developed to 
handle situations where the contribution of team 
members is unequal.  

 
3. Meeting a Pedagogical Gap 
 
The authors submit that there is a pedagogical gap between 
teaching software project management by means of the 
listed laboratories and assignments and the final capstone 
project. What is needed is for students to experience and 
experiment with a dynamic, interactive system that can be 
deployed by means of, for example, a game. As used here, 
to play a game: 
 
…is to engage in activity directed towards bringing about a 
specific state of affairs, using only means permitted by 
specific rules, where the means permitted by the rules are 
more limited in scope than they would be in the absence of 
the rules and where the sole reason for accepting such 
limitation is to make possible such activity.[7] 
 
The type of game that this paper is concerned with uses an 
adjective— serious— to show they want for more than 
simple amusement and that they are designed to educate, 
train, or inform their players [8-10]. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 

52

 

A suitably designed game can not only can mimic real 
world complexity but can also provide immediate feedback 
regarding system performance and the effect of decisions 
made [11].  
 
For example, in an idealized learning process (Figure 1), we 
receive information in its many forms from the real world in 
which we live, yet this information can incomplete, biased, 
delayed, or in other ways distorted. Still, based on this 
information, we make decisions that are in turn filtered 
through our existing mental models, in the process changing 
or confirming the structure of our real-world systems and 
creating new decision rules and new strategies or 
reinforcing the existing. The process then repeats against 
this new baseline. Games act as an alternative to applying 
our decisions to the real-world, a way of quickly, 
inexpensively, and consistently experimenting with 
different ideas and thereby increasing our store of contexts. 
 

 
Fig.1: Idealised learning process. 

 
For example, at its simplest, a game, such as the Beer Game, 
a four-point distribution game developed originally at MIT, 
can be used to show the cascading effects of a single 
compensating decision [12-14]. When using the beer game 
to teach planning, Caulfield [15] found that:  
 
The participants reported a sense of having little control 
over their ordering decisions and tended to see the root 
cause of their inventory problems as being caused by other 
points in the supply chain.  

 
Results such as this can potentially improve learning 
outcomes because the players can see the results of their 
actions and have to react accordingly.  
 
To achieve this effect, games do not need high fidelity and 
need not be overly complex In fact, it has been 
demonstrated that whilst: 
 
…the most complex game offered the richest leaning 
experience available, the game’s very formidable 
appearance probably intimidated a number of players or 

faced them into a learning situation they were unprepared 
or unwilling to negotiate [16] 

 
That is, rich and complex games can be daunting for players 
and they may not be willing to devote the time and effort to 
play it in depth. The next most effective game in Wolfe’s 
study was found to be the least complex, supporting similar 
research that showed relatively simple games can provide 
essentially the same benefits as the more complex [17-19]. 
Game design is therefore of paramount importance.  
 
4. Simsoft 
 
This paper reports the initial findings of a research project 
that developed a game called Simsoft to teach software 
project management. A series of game sessions were 
conducted with teams of post-graduate project management 
students (for software and general projects), and practising 
software project managers and developers (n=59) between 
May and September 2010. The data sources for the findings 
were the participants’ performance in Simsoft, pre- and 
post-game surveys, interviews with the participants, and a 
qualitative rich analysis of the interactions that were 
observed during the game sessions. 
 
Physically, Simsoft comes in two pieces. There is an A0-
sized printed game board around which the players gather to 
discuss the current state of a project and to consider their 
next move. The board shows the flow of the game while 
plastic counters are used to represent the staff of the project. 
Poker chips represent the team’s budget, with which they 
can purchase more staff, and from which certain game 
events may draw or reimburse amounts depending on 
decisions made during the course of the game. 
 
There is also a simple Java-based dashboard, through which 
the players can see the current and historical state of the 
project through a series of simple reports, messages, and 
other information; and can adjust the project’s settings, for 
example to recruit new staff, before advancing the game’s 
time to create the state of the project. 

 
The aim of the game was to complete the project on time 
and with funds (poker chips) left over.  
 
4.1 SimpleVersus Complex Games 
 
The players’ responses to different features of the game 
were generally positive (Table 4). Notable in Table 4 is that 
a majority of players (44 out of 59) preferred playing with a 
game board rather than a fully computerized version. Some 
typical comments were: 

 
“The board game [was] simple and I could easily see the 
state of the game” 

Real  World

Information Feedback

Mental Models of
the Real World

Decisions

Strategy, Structure,
Decision Rules

Games



IJCSNS International Journal of Computer Science and Network Security, VOL.11, No 7, 2011. 

 

53

 

“When a group plays the game on a PC, someone controls 
the mouse and keyboard and they tend to dominate” 
“Compared to computer-based games, the design was 
simple and we started playing without too much wasted time” 
“Sometimes technology gets in the way” 
“Everyone plays board games so we all knew what to do” 
 

 
Table 4: Evaluation of game features 

Feature Average (1 = very bad, 5 = 
very good; or 1 = strongly 
disagree, 5 = strongly 
agree) 

Written instructions Average = 4.44, SD = 0.771
The game was interesting Average = 4.37, SD = 0.963
Realistic scenario Average = 4.37, SD = 0.692
Game logic was apparent Average = 4.18, SD = 0.730
Useful to work in teams Average = 4.15, SD = 0.714
Prefer game-board version Average = 3.98, SD = 0.754
 
Outside of this research project, seven players had played 
The Beer Game mentioned before. In The Beer Game all 
calculations are performed by hand on simple worksheets. 
This found favour: 

 
“Doing the calculations by hand means we have to 
understand” 
“The calculator half of the game hides details. Just give us 
a calculator and we can work it out” 

 
Although the players’ reception of the game was generally 
positive, clear written instructions are essential to make sure 
best use is made of the game session time. This comment 
was made by a player in the very first game session: 

  
“Wasn’t sure of what we were supposed to do” 

 
Initially, instructions for playing the game were delivered 
by the researcher after the players had completed the pre-
game survey and just before they started the game. For the 
second game session onwards, a one-page instruction sheet 
was emailed to each player a couple of days beforehand so 
they could be prepared.  

 
The database of Simsoft game transactions showed that only 
three games had to be abandoned and restarted. It was 
observed that once teams had made the first couple of 
decisions, they were able to continue with too much trouble. 
 
4.2 Working in Groups 
 
An important component of many of the pedagogical 
theories behind Simsoft is the aspect of working in groups 
or teams, so it was important to assess how this was 
received by the players. A majority of players (44 out of 59) 
said they found it useful or very useful to work as a team 

and that this reflected how things often happened in the 
workplace: 

 
“It was like [the agile] stand up meeting we have every 
morning” 
“We organised our selves into roles we felt comfortable 
with or that fitted our day-job: someone on the calculator, 
someone moving the developer pieces, someone moving the 
units of work” 

 
However, one student found something new in the practice: 

 
“I thought software development was a solitary experience 
but it's not really” 

 
Others liked the opportunity to share opinions and learn 
from more experienced peers: 

 
“Everyone had a chance to offer an opinion” 
“I have little real-world project experience so it was good 
to get the advice of others and see how they approached 
problems” 

 
But, as in any group activity, the game facilitator needs to 
be aware of cultural differences that may make some less 
inclined to contribute and of players who are dominating 
their groups: 

  
“Generally, everyone had their say in final decision but a 
couple of times we were overridden” 
 
4.3 Summary 
 
These are the initial findings discovered through a series of 
Simsoft game sessions conducted with teams of post-
graduate project management students, and practising 
software project managers and developers.  

 
The first initial finding was that the majority of the 
participants found working in groups was a positive 
experience. The participants were a diverse group of 
cultures, skills, and experience and many felt they were still 
able to work out collaborative decisions in a constructive 
manner. However, as with any group activity, facilitators 
need to be cognizant of any individuals dominating a group 
or others who might need a gentle prompt to contribute 
more. 

 
The second initial finding was a majority of participants 
preferred to play around a game board rather than a fully 
computerized game because this was a familiar and simple 
activity and less time was lost to overcoming technological 
problems and to making simple ergonomic arrangements 
such as fitting all the team around a single computer. Even 
so, facilitators need to prepare the participants for the game 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 

54

 

sessions by giving them clear instructions and sufficient 
lead time to absorb the information.  

 
These findings were reviewed by four participants chosen at 
random and all concurred without comment. 

5. Conclusions 

Preparing students for employment is of paramount 
importance for universities. Not only can this help improve 
employment prospects but it can also better meet employer 
expectations. A capstone project is designed to assist with 
this transition to employment. However, prior to 
undertaking a capstone project there are potentially 
significant pedagogical benefits to teaching project 
management using a game such as Simsoft. Importantly, the 
interim results presented in this paper demonstrate that even 
simple games can help students experience the team work, 
negotiation, and consensus-building skills they will need in 
the workforce. 
 
References 
 
[1] Joint Task Force on Computing Curriculum, Software 

Engineering 2004: Curriculum Guidelines for Undergraduate 
Degree Programs in Software Engineering, IEEE Computer 
Society/Association for Computing Machinery, 2004. 

[2] B.S. Bloom, B.B. Masia, D.R. Krathwohl, Taxonomy of 
Educational Objectives: The Classification of Educational 
Goals, Handbook I: Cognitive Domain ed., Longman, London, 
1956. 

[3] J.P. Gee, Situated Language and Learning: A Critique of 
Traditional Schooling, Routledge, London, 2004. 

[4] M. Savin-Baden, C.H. Major, Foundations of Problem-Based 
Learning, The Society for Research into Higher Learning & 
Open University Press, Maidenhead, 2004. 

[5] C. Aldrich, Learning by Doing: A Comprehensive Guide to 
Simulations, Computer Games, and Pedagogy in e-Learning 
and Other Educational Experiences Pfeiffer, San Francisco, 
2005. 

[6] R.F. Baumeister, C. Finkenauer, Review of General 
Psychology, 5 (2001) 323 – 370. 

[7] B. Suits, Ethics, 77 (1967) 209 – 213. 
[8] C.C. Abt, Serious Games, The Viking Press, New York, 1970. 
[9] M. Schrage, T. Peters, Serious Play : How the World's Best 

Companies Simulate to Innovate, Harvard Business School 
Press, 1999. 

[10] D. Michael, S. Chen, Serious Games: Games That Educate, 
Train, and Inform, Thomson Course Technology PTR, Boston, 
2005. 

[11] J.D. Sterman, Business Dynamics: Systems Thinking and 
Modelling for a Complex World, Irwin McGraw-Hill, New 
York, 2000. 

[12] J.S. Goodwin, S.G. Franklin, Journal of Management 
Development, 13 (1994) 7 – 15. 

[13] E. Mosekilde, E.R. Larsen, System Dynamics Review, 4 
(1988) 131 - 147. 

[14] J.D. Sterman, Management Science, 35 (1989) 321 – 339. 

[15] C.W. Caulfield, S.P. Maj, in: M. Iskander (Ed.) Innovative 
Techniques in Instruction Technology, E-learning, E-
assessment, and Education, Springer, 2007, pp. 86 – 91. 

[16] J. Wolfe, Decision Sciences, 9 (1978) 143 – 155. 
[17] A.P. Raia, The Journal of Business, 39 (1966) 339 – 352. 
[18] K.E.F. Watt, Simulation, 28 (1977) 1 – 3. 
[19] R.J. Butler, T.F. Pray, D.R. Strang, Decision Sciences, 10 

(1979) 480 – 486. 
 

 
Craig Caulfield is a senior software 
engineer for a technology consulting 
company and PhD candidate at Edith 
Cowan University.    His research areas 
include problem-based learning and the 
application of serious games to software 
engineering education and project 
planning. 

 
 

Dr. David Veal is a Senior Lecturer at 
Edith Cowan University. He is the manager 
of Cisco Network Academy Program at 
Edith Cowan University and be a unit 
coordinator of all Cisco network technology 
units. His research interests are in Graphical 
User Interface for the visually handicapped 
and also computer network modeling.   
 

 
A/Prof S. P. Maj has been highly 
successful in linking applied research with 
curriculum development. In 2000 he was 
nominated ECU University Research 
Leader of the Year award He was awarded 
an ECU Vice-Chancellor’s Excellence in 
Teaching Award in 2002, and again in 
2009. He received a National Carrick 
Citation in 2006 for “the development of 
world class curriculum and the design and 

implementation of associated world-class network teaching 
laboratories”.  



A Systematic Survey of Games Used for Software Engineering 
Education 

Craig Caulfield (Corresponding author) 

School of Computer Science and Security Science, Edith Cowan University 

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia 

Tel: 61-8-9370-6295   E-mail: ccaulfie@our.ecu.edu.au 

 

Jianhong (Cecilia) Xia 

Department of Spatial Sciences, Curtin University 

Kent Street, Bentley, Western Australia, 6102, Australia 

Tel: 61-8-9266-7563   E-mail: c.xia@curtin.edu.au 

 

David Veal 

School of Computer Science and Security Science, Edith Cowan University 

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia 

Tel: 61-8-9370-6295   E-mail: d.veal@ecu.edu.au 

 

S Paul Maj 

School of Computer Science and Security Science, Edith Cowan University 

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia 

Tel: 61-8-9370-6277   E-mail: p.maj@ecu.edu.au 

 

Received: September 7, 2011     Accepted: October 9, 2011     Published: December 1, 2011 

doi:10.5539/mas.v5n6p00          URL: http://dx.doi.org/10.5539/mas.v5n6p00 

 

Abstract 

Simsoft is a serious game— one that trains or educates— at the centre of a research project designed to see if 
and how games can contribute to better software engineering management education by helping software 
engineers and project managers explore some of the dynamic complexities of the field in a safe and inexpensive 
environment. A necessary precursor for this project was to establish what games already existed in the field and 
how effective they had been. To this end a systematic review of the literature was conducted using a collection 
of online science, engineering, education, and business databases looking for games or simulations used for 
educational or training purposes in software engineering or software project management across any of the 
SWEBOK knowledge areas. The initial search returned 243 results, which was filtered to 36 papers by applying 
some simple quality and relevance inclusion/exclusion criteria. These remaining papers were then analysed in 
more depth to see if and how they promoted education in the field of software engineering management. The 
results showed that games were mainly used in the SWEBOK knowledge areas of software engineering 
management and development processes, and most game activity was in Europe and the Americas. The results 
also showed that most games in the field have learning objectives pitched at the first rung of Bloom’s taxonomy 
(knowledge), most studies followed a non-experimental design, and many had very small sample sizes. This 
suggests that more rigorous research is needed into the efficacy of games in teaching software engineering 
management, but enough evidence exists to say that educators could include serious games in their courses as a 
useful and interesting supplement to other teaching methods. 

Keywords: Software engineering, Project management education, Serious games 

1. Introduction 



1.1 Defining Games 

To play a game, “is to engage in activity directed towards bringing about a specific state of affairs, using only 
means permitted by specific rules, where the means permitted by the rules are more limited in scope than they 
would be in the absence of the rules and where the sole reason for accepting such limitation is to make possible 
such activity” (Suits, 1967, p. 156). 

A game is different from a model or simulation. To start, a model is “a miniature representation of a complex 
reality. A model reflects certain selected characteristics of the system it stands for. A model is useful to the extent 
that it portrays accurately those characteristics that happen to be of interest at the moment” (DeMarco, 1982, p. 
14). Meanwhile, a simulation is a special kind of model that exhibits processes in some way like the system is 
represents, and that shows how these processes change from state A to state B, between two points in time (J. G. 
Miller, 1978, p. 83). 

Games naturally come in many forms. In a seminal work in the field, Man, Play and Games, Caillois (1961) 
proposed a classification that depends on whether the role of competition (agôn), chance (alea), simulation 
(mimicry), or vertigo (ilinx) is dominant.  Agôn are those games “that would seem to be competitive… like a 
combat in which equality of chances is artificially created in order that the adversaries should confront each 
other under ideal conditions” (Caillois, 1961, p. 14).  Football, billiards, or chess fall into this category. Alea are 
games of chance such as roulette or a lottery; games of mimicry involve the players becoming other characters, 
such as cowboys and Indians; while ilinx are “those which are based in the pursuit of vertigo and which consists 
of an attempt to momentarily destroy the stability of perception and inflict a kind of voluptuous panic upon an 
otherwise lucid mind” (Caillois, 1961, p. 23). 

The games that this research project deals with are a subset of Caillois’s agôn classification and they use an 
adjective— serious— to show they want for more than simple amusement and that they are designed to educate, 
train, or inform their players (Abt, 1970; Michael & Chen, 2005; Schrage & Peters, 1999).  

1.2 The Value of Games 

Games have been used to train and educate players for many years in many different fields (see for example, 
Gee, 2007b; Michael & Chen, 2005; Perla, 1990; Prensky, 2007) and are based on learning and development 
theories such as problem-based learning (Savin-Baden & Major, 2004), experiential education (Dewey, 
1938/1963; Kolb, 1984; Papert, 1980), and decision science (Raser, 1969, pp. 46-55). Yet, to a common extent, 
games have been found to be more expensive and administratively demanding to develop and use than some 
other forms of instruction or research (Abt, 1970, pp. 110-111; Babb, Leslie, & Van Syke, 1966, p. 471; Cohen 
& Rhenman, 1961, p. 151; Petranek, 1994). Still, there are some offsetting advantages. 

For example, it has been noted that the human capacity to understand the implications of our mental models and 
to accurately trace through even a small number of causal relationships is fairly limited (G. A. Miller, 1956; 
Simon, 1957). Yet, a game is a visible and physical representation of a problem space; a captured mental model. 
As such, they are places to trial new ideas and to experiment with established theories (Feldman, 1995; 
McKenney, 1962); to replay these theories as many times as needed; places where time and space can be 
contracted or expanded (Raser, 1969); places where it is acceptable just to try different things and where more 
might be learned from failure than success (Booker, 1994). 

Even so, there are some dangers to be heeded when using games. Games are just… games, and as such are just 
one representation of how the world works. Therefore, “it is potentially dangerous to have players leave the 
gaming environment with the belief that the strategies that were effectively employed in playing the game are 
directly transferable to the real world” (Watson & Blackstone, 1989, p. 493). Participants should ideally be 
provided with more information than just the game to help them wisely discriminate between what may or may 
not work outside the game itself (Andlinger, 1958, pp. 152-158). 

It was with these pros and cons aforethought that a game—Simsoft (Caulfield, Veal, & Maj, 2011b)—was 
developed to see what value games might bring to the education of software engineers and project managers.  

1.3 Simsoft 

Simsoft comes in two pieces. There is an A0-sized printed game board around which the players gather to 
discuss the current state of their project and to consider their next move. The board shows the flow of the game 
while plastic counters are used to represent the staff of the project. Poker chips represent the team’s budget, with 
which they can purchase more staff, and from which certain game events may draw or reimburse amounts 
depending on decisions made during the course of the game. There is also a simple Java-based dashboard 
(Caulfield, Veal, & Maj, 2011a), through which the players can see the current and historical state of the project 



in a series of reports and messages; and they can adjust the project’s settings. The engine behind Simsoft is a 
system dynamics model which embodies a small set of fundamental causal relationships of simple software 
development projects. 

In Simsoft game sessions, teams of students, and practicing project managers and software engineers managed a 
hypothetical software development project with the aim of completing the project on time and within budget 
(with poker chips left over). Based on the starting scenario of the game, information provided during the game, 
and their own real-world experience, the players made decisions about how to proceed— whether to hire more 
staff or reduce the number, what hours should be worked, and so on. After each decision set had been entered, 
the game was run for another next time period, (a week, a month, or a quarter). The game was now in a new 
state which the players had to interpret from the game board and decide how to proceed. 

A necessary precursor for this project was find out what games already existed in the field of software 
engineering education, how effective they had been, and how Simsoft might be able to contribute new 
knowledge. To this end a systematic review of the literature was conducted using a collection of online science, 
engineering, education, and business databases looking for games or simulations used for educational or training 
purposes in software engineering or software project management across any of the Software Engineering Body 
of Knowledge (SWEBOK (Bourque, Dupuis, Abran, Moore, & Tripp, 1999)) knowledge areas. 

2. Survey Methods 

For this survey, we followed an established procedure for conducting systematic reviews in the field of software 
engineering (Kitchenham, 2004), which has been used to survey the game field before (Gresse von Wangenheim 
& Shull, 2009). Given the upward trend in the use of games for software engineering education revealed in that 
previous survey, it was timely to update and expand the search. 

2.1 Data Sources and Search Strategy 

To perform this review we used the IEEE Xplore Digital Library, the ACM Digital Library, ScienceDirect, Sage 
Journals Online, ProQuest, the ISI Web of Knowledge, and the Wiley Online Library. The following pseudo-
code search string was adapted for the specific query languages of each library: 

where abstract OR title OR keywords contain 

((game OR simulation) AND (learning OR teaching OR education OR training)) 

AND 

(software engineering OR software project OR 

software process OR software design OR 

software testing OR software configuration management OR 

software quality OR software management OR 

software maintenance OR software construction 

OR software requirements OR software engineering tools and methods)) 

AND 

(date >= 1990) 

That is, we looked for games or simulations (computer and non-computer based) used for educational or training 
purposes in software engineering or software project management across any of the SWEBOK knowledge areas. 
(Despite the distinction made between game and simulation in the introduction, the terms are often used 
interchangeably in the literature (Maier & Grossler, 2000), therefore simulation has been used as one of the 
search parameters). 

2.2 Inclusion and Exclusion Criteria 

We limited the results to English-language papers published from 1990 to the present in peer-reviewed journals 
and conference proceedings. We excluded position papers, papers in which no data was reported (unless they 
were preliminary papers for completed studies), and those in which the game or simulation was not used to train 
or educate the players at a tertiary level. 

2.3 Study Identification and Selection 

The initial database searches returned a total of 243 papers. The titles and abstracts were analysed according to 
the inclusion and exclusion criteria, and any off-topic papers were discarded. This left 36 papers, which were 



grouped according to the study they described. 

2.3 Data Extraction 

Each paper passing the selection process was read in depth and the following data was extracted: 

 References to the papers describing the study. 

 A brief description of the game and how it was played. 

 The experimental design used by the study, which could be either true experimental (random 
assignment and comparison with a control group), quasi-experimental (comparison with a control group only), 
or non-experimental. 

 The number and type of the players. 

 The type of research tool used to collect the data, for example questionnaires, observation, pre- and 
post-test surveys. 

 The primary SWEBOK knowledge area on which the game is focussed. The SWEBOK attempts to 
characterise and bound the software engineering body of knowledge; the ten knowledge areas are the major 
topical divisions within the field. 

 The expected learning outcomes classified according to Bloom’s (1956) cognitive domain taxonomy. 
The cognitive domain defines six incremental levels of learning objectives that educators may have for their 
students: knowledge: remember previously-learned materials by recalling specific facts, terminology, theories 
and answers; comprehension: demonstrate an understanding of information by being able to compare, contrast, 
organize, interpret, describe, and extrapolate; application: use previously-learned material in new situations; 
analysis: decompose previously-learned material into parts in order find patterns and to make inferences and 
generalizations; synthesis: use existing ideas in different ways to create new ideas or to propose alternative 
solutions; evaluation: judge the validity of ideas or information with a certain context. 

 The principal findings of the study. 

 The country in which the game sessions were conducted. 

Table 1 shows the full data extract of 36 papers describing 26 studies. 

3. Survey Results 

Figure 1 shows that the preferred medium for games in the field is computer-based (22 out of 26) rather than 
other types such as board and card games. This way the games are easier to distribute and administer across a 
large number of players who may be in remote locations. Figure 1 also shows that most of the studies were non-
experimental (16 out of 26) meaning they didn’t use control groups nor randomly assign participants to different 
groups.  

The survey results show that games have been used in a variety of ways to teach different aspects of software 
engineering and software project management. Figure 2 shows the distribution of games across the world based 
on the SWEBOK knowledge area they were designed to address. Most games (21 out of 26) focused broadly on 
software engineering management or the development process and most activity (21 out of 26) occurred in 
Europe and the Americas. 

Figure 1 shows that overwhelmingly, the learning objectives of the studies pitched at the first rung of Bloom’s 
taxonomy, knowledge. In general, those studies that assessed the degree of learning by the participants found 
that the participants were sometimes learning new concepts, but they were mainly reinforcing known theories. 
All the research projects, whether explicitly or implicitly stated, found that games alone were not sufficient 
pedagogical devices to teach software engineering or project management concepts and would have to be 
supplemented by other means. Only Navarro (2009) and Hainey et al. (2010) evaluated the effectiveness of 
games for players of different skills and backgrounds and each found that games were suitable for a wide variety 
of participants. 

It should be noted, however, that apart from Navarro’s and Drappa and Ludewig’s body of work, many of the 
research projects in Table 1 had very small sample sizes and few others were developed or repeated beyond that 
described in the initial papers.  

4. Simsoft Compared to Other Games in the Field 

Recalling the discussion of model, simulation, and game given at the beginning of this paper: a model is a 
convenient representation (in words, numbers, or other symbols) of some real-world socio-economic or socio-
technical system; a simulation is dynamic, operational model through which changes over time are revealed; and 



a game is a simulation that is purposefully run, wholly or partly determined by players’ decisions, within some 
predetermined circumstances. It can be said that software development has been modelled (Belady & Lehman, 
1976; Boehm, 1981; Boehm et al., 2000; McCabe, 1976; H. Remus & Zilles, 1979) and simulated (Abdel-
Hamid & Madnick, 1991; Collofello, 2000; Hansen, 1996; Madachy, 2008; Raffo, 1996; Tvedt, 1996; Variale, 
Rosetta, Steffen, Rubin, & Yourdon, 1994) many times. But, these are not the software engineering perspectives 
of interest here because: 

 They focus primarily on predicting rather than educating. For example, Boehm’s COCOMO model 
(2000) is designed to calculate the cost and effort of a software project based on historical data and what is 
currently known about the project at hand. COCOMO is used to validate an estimate, not necessarily find out 
why it is this number. 

 They are not interactive or designed for group participation. For example, perhaps the most well-
known simulation (Abdel-Hamid & Madnick, 1991) contains over 300 underlying variables, doesn’t have a way 
to interact with the model except through direct manipulation of these variables at a source code level, and still 
does not describe the development process in detail (Martin, 2002, pp. 32-37). 

Given their focus, it is not surprising that these models and simulations fail most, if not all, of Gee’s principles 
of interactive game design (Caulfield, Veal, & Maj, 2011c; Gee, 2007a, 2007b). In contrast, the games described 
in Table 1 more closely align with Gee’s principles. Still, there are differences between these games and Simsoft. 

SimSE, the game developed by Navarro (2009) and her colleagues at the University of California, Irvine over a 
number of years, is perhaps the most advanced game in the field and the only one in Table 1 that has been 
developed much beyond its initial implementation. SimSE supports a number of different development 
methodologies (such as rapid prototyping, inspection, and the Rational Unified Process), provides users with a 
performance report after they complete the game, and has also been tested and verified in a range of controlled 
classroom settings. Players manage their SimSE project through a rich graphical user interface that shows their 
team at work along with various management reports and dials. In contrast to Simsoft, SimSE is a single-user 
game so without players clustering around a single screen, there’s little opportunity to discuss and debate project 
decisions and come to a consensus. SimSE is also heavily focussed on the process of software development– the 
how of software development– whereas Simsoft is also concerned with the who. 

Like Simsoft, a number of the games in the field have eschewed computers, either completely or partly, in 
favour of playing cards, boards, and sometimes dice. For example, in Zapata’s (2010) game, teams throw a dice, 
that determines which of a collection of technical questions the team must answer. From here, the team gets a 
chance to estimate the size of a project component and score points. This slightly convoluted game show format 
relies more on chance than skill and means that most players are dormant and passive while other teams are 
having their turn. Chance also plays a role in games like Problems and Programmers (Baker, Oh Navarro, & van 
der Hoek, 2005)– players draw cards from a shuffled deck– and PlayScrum (Fernandes & Sousa, 2010)– a roll 
of the dice determines what resources the player can accumulate and what problems may be encountered. Unlike 
Simsoft, these games are competitive rather than co-operative. 

Some of the games in Table 1offer only a very high level of interactivity meaning players can perform just broad 
project functions and hence only see general project dynamics. In SimVBSE (Jain & Boehm, 2006), SimjavaSP 
(Shaw & Dermoudy, 2005), MO-SEProcess (Zhu, Wang, & Tan, 2007), Hainey’s game (2010), and OSS (Sharp 
& Hall, 2000) players make their avatar visit certain rooms or characters to ask questions or collect information. 
In Hainey’s game the result of this office tour is a requirements document that is then passed to the project 
manager avatar for assessment. The tour may have to be repeated if all the requirements haven’t been identified. 
A game interface makes this engaging for a while, but how it relates to real-world software project management 
is dubious. Providing the same information in a short project description, such as the one that comes with 
Simsoft, means the player can begin exploring the problem domain sooner. And, with less effort required to 
create the office environment, more could be devoted to the interesting detail of the project’s dynamics. 

SESAM (Drappa & Ludewig, 1999; Drappa & Ludewig, 2000) could almost be called a model or simulation 
rather than a game because a user runs it by typing commands in a complex modelling language and the system 
responds in kind. In exchange for this complexity, SESAM allows its users to define a wide variety of 
development methodologies as well as hire and fire staff, assign tasks, and ask developers about their progress. 
But, without an effective visual interface, playing SESAM is like programming an old VCR: there isn’t enough 
feedback to know what is happening (Norman, 1988, pp. 51-53). It is perhaps not surprising that SESAM has 
not been developed far beyond that described in the original papers. In contrast, Simsoft’s state of play is always 
visible on the game board. 

One feature common to all the projects in Table 1 is the research population they use: the participants are either 



undergraduate or post-graduate university, and in one case high school, students. In broader research circles, 
there is some debate (Camerer & Johnson, 1991; Garb, 1989; Remus, 1986) about whether students make viable 
candidates for research involving management decisions because they may lack the experience and knowledge 
to make their responses transferable to the workplace. Simsoft side-steps this still inconclusive debate because 
its research population is a mixture of university students and project managers and software developers of 
varying lengths of experience. 

In summary, there are four main differences between the approach taken in this research project and others in 
the area: 

 Simsoft is equally, if not more, concerned with who does the work in a software development as it is 
with process of how the work is done. This echoes the cover of Boehm’s (1981) Software Engineering 
Economics which shows personnel is where the greatest productivity gains are possible. 

 Simsoft is largely a board game (with a small calculator component) in contrast to other games that use 
a graphical user interface of varying levels of richness. Often the user interface is simply a conceit of the game 
for performing housekeeping functions and lends little to the real purpose. Other games that use playing cards or 
games boards contain an element of chance rather than skill. 

 Simsoft is cast at a level of detail at which the players can see the movement of individual pieces of 
work and individuals themselves. Games cast at higher levels, such as OSS, mask some fundamental project 
dynamics. 

 The research sample for this project is a mixture of students and experienced professionals rather than 
wholly students. 

5. Conclusions 

This systematic survey of games used in software engineering management education has shown that, as a 
pedagogical device, they are becoming more common, particularly in Europe and the Americas, and students in 
general enjoyed playing them and felt they got some value from the experience. However, few of the games 
were developed beyond their initial implementations suggesting their pedagogical value was not demonstrated 
sufficiently.  

From these findings, there are some implications for researchers, educators, and game developers: 

 More rigorous research is needed into the efficacy of games in teaching software engineering 
management. Most of the games in Table 1didn’t follow a true experimental design and many had very small 
sample sizes, meaning the findings should be viewed with some caution. 

 Even so, enough evidence exists to suggest that educators should consider using games as part of their 
courses in software engineering, but as an interesting supplement to other teaching materials and preferably later 
in the course when the students have had time to gain the knowledge needed to make sense of what the game is 
trying to teach. 

 In many of the games in Table 1, rich graphics and avatars contributed little to meeting the learning 
objectives of the game and sometimes distracted or frustrated the players. Making the games simpler would 
shorten the time it takes to create the games and also allow the players to focus more on the content. 

These findings have influenced the design and implementation of Simsoft, the serious game behind this research 
project. For example, Simsoft is a simple, collaborative board game, which has so far been played by combined 
teams of students and experienced software developers and project managers. Further games sessions are under 
way to test the efficacy of the current implementation. 

References 

Abdel-Hamid, T. K., & Madnick, S. E. (1991). Software Project Dynamics: An Integrated Approach. 
Englewood Cliffs: Prentice-Hall. 

Abt, C. C. (1970). Serious Games. New York: The Viking Press. 

Andlinger, G. R. (1958). Looking Around: What Can Business Games Do?. Harvard Business Review. 36(4), 
147–160. 

Babb, E. M., Leslie, M. A., & Van Syke, M. D. (1966). The Potential of Business Gaming Methods in Research. 
The Journal of Business. 39(4), 465–472. http://dx.doi.org/10.1086/294887 

Baker, A., Navarro, E. O., & van der, H., Andre. (2003). Problems and Programmers: An Educational Software 
Engineering Card Game. Proceedings of  The 25th International Conference on Software Engineering 
(ICSE'03). 3-10 May, 2003. Portland: Oregon. http://doi.ieeecomputersociety.org/10.1109/ICSE.2003.1201245 



Baker, A., Oh Navarro, E., & van der Hoek, A. (2005). An Experimental Card Game for Teaching Software 
Engineering Processes. The Journal of Systems and Software. 75(1–2). 
http://dx.doi.org/10.1016/j.jss.2004.02.033 

Barros, M. d. O., Dantas, A. R., Veronese, G. O., & Werner, C. M. L. (2006). Model-Driven Game 
Development: Experience and Model Enhancements in Software Project Management Education. Software 
Process: Improvement and Practice. 11(4), 411–421. http://dx.doi.org/10.1002/spip.279 

Belady, L. A., & Lehman, M. M. (1976). A Model of Large Program Development. IBM Systems Journal. 15(3), 
225–252. http://dx.doi.org/10.1147/sj.153.0225 

Bloom, B. S., Masia, B. B., & Krathwohl, D. R. (1956). Taxonomy of Educational Objectives: The 
Classification of Educational Goals (Handbook I: Cognitive Domain ed.). London: Longman. 

Boehm, B. W. (1981). Software Engineering Economics. Sydney: Prentice-Hall. 

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., et al. (2000). Software Cost 
Estimation with Cocomo II. Upper Saddle River: Prentice Hall. 

Booker, E. (1994, 4 July). Have You Driven a Simulated Ford Lately? Computerworld. 28, 76. 

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, L. (1999). The Guide to the Software Engineering 
Body of Knowledge. IEEE Software. 16(6), 35-44. http://dx.doi.org/10.1109/52.805471 

Caillois, R. (1961). Man, Play and Games (M. Barash, Trans.). New York: Free Press of Glencoe. 

Camerer, C. F., & Johnson, E. J. (1991). The Process–Performance Paradox in Expert Judgment. In K. A. 
Ericsson & J. Smith (Eds.). Toward a General Theory of Expertise: Prospects and Limits. (pp. 195–217). 
Cambridge: Cambridge University Press. 

Caulfield, C W., Veal, D., & Maj, S. P. (2011c). Teaching Software Engineering Project Management–A Novel 
Approach for Software Engineering Programs. Modern Applied Science. 5(5). in press. 

Caulfield, C. W., Veal, D., & Maj, S. P. (2011a). Implementing System Dynamics Models in Java. International 
Journal of Computer Science and Network Security. 11(7), 43–49. 

Caulfield, C. W., Veal, D., & Maj, S. P. (2011b). Teaching Software Engineering Management – Issues and 
Perspectives. IJCSNS International Journal of Computer Science and Network Security. 11(7), 50–54. 

Cohen, K. J., & Rhenman, E. (1961). The Role of Management Games in Education and Research. Management 
Science.7, 131–166. http://dx.doi.org/10.1287/mnsc.7.2.131 

Collofello, J. (2000). University/Industry Collaboration in Developing a Simulation Based Software Project 
Management Training Course. Proceedings of  Proceedings of the Thirteenth Conference on Software 
Engineering Education & Training. Austin: Texas. 

Connolly, T. M., Stansfield, M., & Hainey, T. (2007). An Application of Games-Based Learning within 
Software Engineering. British Journal of Educational Technology. 38(3), 416–428. 
http://dx.doi.org/10.1111/j.1467-8535.2007.00706.x 

Dantas, A. R., Barros, M. d. O., & Werner, C. M. L. (2004). A Simulation-Based Game for Project Management 
Experiential Learning. Proceedings of  The Sixteenth International Conference on Software Engineering & 
Knowledge Engineering. Banff: Alberta, Canada. 

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press. 

Dewey, J. (1938/1963). Experience and Education. New York: Collier Books. 

Drappa, A., & Ludewig, J. (1999). Quantitative Modeling for the Interactive Simulation of Software Project. 
The Journal of Systems and Software. 46(15 April), 113–122. http://dx.doi.org/10.1016/S0164-1212(99)00005-9 

Drappa, A., & Ludewig, J. (2000). Simulation in Software Engineering Training. Proceedings of  The 22nd 
International Conference on Software Engineering. Limerick, Ireland. http://dx.doi.org/10.1145/337180.337203 

Feldman, H. D. (1995). Computer-Based Simulation Games: A Viable Educational Technique for 
Entrepreneurship Classes?. Simulation & Gaming. 26(3), 346–360. 
http://dx.doi.org/10.1177/1046878195263006 

Fernandes, J. M., & Sousa, S. M. (2010). PlayScrum - A Card Game to Learn the Scrum Agile Method. 
Proceedings of The 2010 Second International Conference on Games and Virtual Worlds for Serious 
Applications. 



Garb, H. N. (1989). Clinical Judgment, Clinical Training, and Professional Experience. Psychological Bulletin. 
105(3), 387–396. 

Gee, J. P. (2007a). Good Video Games and Good Learning: Collected Essays on Video Games, Learning and 
Literacy. New York: Peter Lang Publishing. 

Gee, J. P. (2007b). What Video Games Have to Teach Us About Learning and Literacy. New York: Palgrave 
MacMillan. 

Gresse von Wangenheim, C., & Shull, F. (2009). To Game or Not to Game?. IEEE Software. 26(2), 92 – 
94.http://doi.ieeecomputersociety.org/10.1109/MS.2009.54 

Gresse von Wangenheim, C., Thiry, M., & Kochanski, D. (2009). Empirical Evaluation of an Educational Game 
on Software Measurement. Empirical Software Engineering. 14(4), 418-452. http://dx.doi.org/10.1007/s10664-
008-9092-6 

Hainey, T., Connelly, T. J., Stansfield, M., & Boyle, E. A. (2010). Evaluation of a Game to Teach Requirements 
Collection and Analysis in Software Engineering at Tertiary Education Level. Computers & Education. 56(1), 
21–35. http://dx.doi.org/10.1016/j.compedu.2010.09.008  

Hansen, G. A. (1996). Simulating the Software Development Process. IEEE Computer. 29(1), 73–77. 
http://doi.ieeecomputersociety.org/10.1109/2.481468 

Jain, A., & Boehm, B. (2006). SimVBSE: Developing a Game for Value-Based Software Engineering. 
Proceedings of  Proceedings of the 19th Conference on Software Engineering Education & Training. 
http://dx.doi.org/10.1109/cseet.2006.31 

Kitchenham, B. A. (2004). Procedures for Performing Systematic Reviews. Keele University, Staffordshire. 

Knauss, E., Schneider, K., & Stapel, K. (2008). A Game for Taking Requirements Engineering More Seriously. 
Proceedings of  The Third International Workshop on Multimedia and Enjoyable Requirements Engineering - 
Beyond Mere Descriptions and with More Fun and Games. 9 September, 2008. Barcelona, Spain. 
http://doi.ieeecomputersociety.org/10.1109/MERE.2008.1 

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood. 
Cliffs: Prentice-Hall. 

Madachy, R. J. (2008). Software Process Dynamics. Hoboken: John Wiley & Sons. 

Maier, F. H., & Grossler, A. (2000). What Are We Talking About? — A Taxonomy of Computer Simulations to 
Support Learning. System Dynamics Review. 16(2), 135–148. http://dx.doi.org/10.1002/1099-
1727(200022)16:2<135::AID-SDR193>3.0.CO;2-P 

Mandl-Striegnitz, P. (2001). How to Successfully Use Software Project Simulation for Educating Software 
Project Managers. Proceedings of The Frontiers in Education Conference. 

Martin, R. C. (2002). Agile Software Development: Principles, Patterns, and Practices. Upper Saddle River: 
Prentice-Hall. 

McCabe, T. J. (1976). A Software Complexity Measure. IEEE Transactions on Software Engineering. 2(4), 
308–320. http://doi.ieeecomputersociety.org/10.1109/TSE.1976.233837 

McKenney, J. L. (1962). An Evaluation of a Business Game in an MBA Curriculum. The Journal of Business. 
35(3), 278–286. 

Michael, D., & Chen, S. (2005). Serious Games: Games That Educate, Train, and Inform. Boston: Thomson 
Course Technology PTR. 

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for 
Processing Information. Psychological Review. 63(2), 81–97. 

Miller, J. G. (1978). Living Systems. New York: McGraw-Hill Book Company. 

Navarro, E. O. (2006). SimSE: A Software Engineering Simulation Environment for Software Process Education. 
Unpublished Thesis. University of California, Irvine. 

Navarro, E. O., & van der Hoek, A. (2005). Design and Evaluation of an Educational Software Process 
Simulation Environment and Associated Model. Proceedings of The Eighteenth Conference on Software 
Engineering Education and Training. Ottawa, Canada. 



Navarro, E. O., & van der Hoek, A. (2007). Comprehensive Evaluation of an Educational Software Engineering 
Simulation Environment. Proceedings of The Twentieth Conference on Software Engineering Education and 
Training. July 2007. 

Navarro, E. O., & van der Hoek, A. (2008). On the Role of Learning Theories in Furthering Software 
Engineering Education. In H. J. C. Ellis, S. A. Demurjian & J. F. Naveda (Eds.). Software Engineering: 
Effective Teaching and Learning Approaches and PracticesIGI Global. IGI Global. 

Navarro, E. O., & van der Hoek, A. (2009). Multi-Site Evaluation of SimSE. Proceedings of  The 40th ACM 
Technical Symposium on Computer Science Education. March 3–7. Chattanooga, Tennessee. 

Navarro, E. O., Baker, A., & van der Hoek, A. (2004). Teaching Software Engineering Using Simulation Games. 
Proceedings of  The 2004 International Conference on Simulation in Education. January 2003 San Diego, 
California 

Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books. 

Oh, E., & van der Hoek, A. (2002). Towards game-Based Simulation as a Method of Teaching Software 
Engineering. Proceedings of  The Frontiers in Education. 2002. FIE 2002. 32nd Annual, 6-9 Nov. 2002. 
http://dx.doi.org/10.1109/FIE.2002.1158674  

Papert, S. (1980). Mindstorms. Brighton. Sussex: The Harvester Press. 

Perla, P. P. (1990). The Art of Wargaming: A Guide for Professionals and Hobbyists. Annapolis, Maryland: 
Naval Institute Press. 

Petranek, C. F. (1994). A Maturation in Experiential Learning: Principles of Simulation and Gaming. Simulation 
& Gaming. 25(4), 513–522, http://dx.doi.org/10.1177/1046878194254008. 

Pfahl, D., Koval, N., & Ruhe, G. (2001). An Experiment for Evaluating the Effectiveness of Using a System 
Dynamics Simulation Model in Software Project Management Education. Proceedings of The Software Metrics 
Symposium, 2001. METRICS 2001. Proceedings. Seventh International. 
http://dx.doi.org/10.1109/METRIC.2001.915519  

Pfahl, D., Laitenberger, O., Dorsch, J., & Ruhe, G. (2003). An Externally Replicated Experiment for Evaluating 
the Learning Effectiveness of Using Simulations in Software Project Management Education. Empirical 
Software Engineering. 8(4), 367–395. http://dx.doi.org/10.1023/a:1025320418915 

Pfahl, D., Laitenberger, O., Ruhe, G., Dorsch, J., & Krivobokova, T. (2004). Evaluating the Learning 
Effectiveness of Using Simulations in Software Project Management Education: Results from a Twice 
Replicated Experiment. Information and Software Technology. 46(2), 127-147. 
http://www.sciencedirect.com/science/article/pii/S0950584903001150 

Prensky, M. (2007). Digital Game-Based Learning. St. Paul, Minnesota: Paragon House Publishers. 

Raffo, D. M. (1996). Modeling Software Processes Quantitatively and Assessing the Impact of Potential 
Process Changes on Process Performance (TQM). Unpublished Thesis, Carnegie-Mellon University, Pittsburgh, 
Pennsylvania. 

Raser, J. R. (1969). Simulation and Society: An Exploration of Scientific Gaming. Boston: Allyn and Bacon Inc. 

Remus, H., & Zilles, S. (1979). Prediction and Management of Program Quality. Proceedings of  The 4th 
International Conference on Software Engineering. Munich, Germany. 

Remus, W. (1986). Graduate Students as Surrogates for Managers in Experiments on Business Decision Making. 
Journal of Business Research. 14(1), 19–25. 

Rodriguez, D., Sicilia, M. A., Cuadrado-Gallego, J. J., & Pfahl, D. (2006). e-Learning in Project Management 
Using Simulation Models: A Case Study Based on the Replication of an Experiment. Education, IEEE 
Transactions on. 49(4), 451-463. http://dx.doi.org/10.1109/TE.2006.882367 

Rusu, A., Russell, R., Robinson, J., & Rusu, A. (2010). Learning Software Engineering Basic Concepts Using a 
Five-Phase Game. Proceedings of  The 40th ASEE/IEEE Frontiers in Education Conference. October 27-30, 
2010 Washington, DC. http://dx.doi.org/10.1109/FIE.2010.5673327 

Savin-Baden, M., & Major, C. H. (2004). Foundations of Problem-Based Learning. Maidenhead: The Society 
for Research into Higher Learning & Open University Press. 

Schrage, M., & Peters, T. (1999). Serious Play: How the Worlds Best Companies Simulate to Innovate. Harvard 
Business School Press. 



Sharp, H., & Hall, P. (2000). An Interactive Multimedia Software House Simulation for Postgraduate Software 
Engineers. Proceedings of The 22nd International conference on Software engineering Limerick. Ireland. 
http://dx.doi.org/10.1145/337180.337528 

Shaw, K., & Dermoudy, J. (2005). Engendering an Empathy for Software Engineering. Proceedings of  The 7th 
Australasian Conference on Computing Education. Newcastle, New South Wales, Australia. 

Simon, H. A. (1957). Models of Man Social and Rational: Mathematical Essays on Rational Human Behavior 
in a Social Setting. New York: John Wiley & Sons. 

Suits, B. (1967). What is a Game?. Philosophy of Science. 34(2), 148–156. 

Taran, G. (2007). Using Games in Software Engineering Education to Teach Risk Management. Proceedings of  
The Software Engineering Education & Training. 3-5 July 2007. http://dx.doi.org/10.1109/CSEET.2007.54. 

Tvedt, J. D. (1996). An Extensible Model for Evaluating the Impact of Process Improvements on Software 
Development Cycle Time. Unpublished Unpublished Ph.D. dissertation, Arizona State University, Phoenix, 
Arizona. 

Variale, T., Rosetta, B., Steffen, M., Rubin, H., & Yourdon, E. (1994). Modeling the Maintenance Process. 
American Programmer. 7(3), 29–37 

Wang, A. I., Fsdahl, T., & Morch-Storstein, O. K. (2008). An Evaluation of a Mobile Game Concept for 
Lectures. Proceedings of The 21st Conference on Software Engineering Education and Training. 14-17 April 
2008. http://dx.doi.org/10.1109/CSEET.2008.15 

Wang, T., & Zhu, Q. (2009). A Software Engineering Education Game in a 3-D Online Virtual Environment. 
Proceedings of  The First International Workshop on Education Technology and Computer Science. 7-8 March, 
2009 Wuhan, Hubei, China. http://doi.ieeecomputersociety.org/10.1109/ETCS.2009.418 

Watson, H. J., & Blackstone, J. H. (1989). Computer Simulation (2nd edition ed.). New York: John Wiley & 
Sons. 

Ye, E., Chang, L., & Polack-Wahl, J. A. (2007). Enhancing Software Engineering Education Using Teaching 
Aids in 3-D Online Virtual Worlds. Proceedings of  The Frontiers In Education Conference - Global 
Engineering: Knowledge Without Borders, Opportunities Without Passports. 10-13 Oct. 2007. 
http://dx.doi.org/10.1109/FIE.2007.4417884  

Zapata, C. M. (2010). A Classroom Game for Teaching Management of Software Companies. Dyna. 77(163), 
290–299. 

Zapata, C. M., & Awad-Aubad, G. (2007). Requirements Game: Teaching Software Project Management. CLEI 
Electronic Journal. 10(1). 

Zhu, Q., Wang, T., & Tan, S. (2007). Adapting Game Technology to Support Software Engineering Process 
Teaching: From SimSE to MO-SEProcess. Proceedings of  The Third International Conference on Natural 
Computation. http://dx.doi.org/10.1109/ICNC.2007.159 

 
 



Table 1. Full data extract of games used in software engineering education 

ID Study Description 
Experimental 
Design 

Sample Size 
(if known) 
and 
Population 

Data 
Collection 
Tool 

SWEBOK 
Knowledge 
Area 

Bloom 
Learning 
Outcome 

Observed Learning 
Outcomes 

GS-
01 

University/Industr
y Collaboration in 
Developing a 
Simulation Based 
Software Project 
Management 
Training Course. 
(Collofello, 2000).  

A single-player game, based on a 
system dynamics model with an 
iThink user interface that models 
a software project. Players 
attempt different management 
exercises (risk management, life 
cycle model comparison, critical 
path scheduling, etc.) that follow 
the lecture material. 

Non- 
experimental 

16 students Questionnaire 

Software 
engineering 
management 
Software 
engineering 
process 

Knowledge Learning was not assessed. 

GS-
02 

1 Quantitative 
Modeling for the 
Interactive 
Simulation of 
Software Project 
(A. Drappa & 
Ludewig, 1999) 
 
2 Simulation in 
Software 
Engineering 
(Anke Drappa & 
Ludewig, 2000) 

SESAM (Software Engineering 
Simulation by Animated 
Models) is a model of a software 
project. Users run the model 
loaded with its initial project 
state and then tweak it to 
simulate different scenarios 
before running it again. Players 
take the role of a project 
manager and must plan and 
control a simulated project. 
Rather than a graphical user 
interface, players control the 
game by typing commands in a 
modelling language. Players 
analyse their performance 
through an after-game analysis 
tool. 

1 Non- 
experimental 
2 True 
Experimental 

1 10 
undergraduate 
project 
management 
students 
2 19 second-
year 
computer 
science 
students 

1 n/a 
2 Pre- and 
post-game 
tests 
Project plan 

Software 
engineering 
management 

Knowledge 

1 A qualitative assessment 
that the players experienced 
something similar to a real 
project, including panic 
when the deadlines were 
approaching. 
2 Students in the 
experimental and control 
groups improved their 
performance in successive 
game sessions.  

GS-
03 

An Interactive 
Multimedia 
Software House 
Simulation for 
Postgraduate 
Software 
Engineers (Sharp 

Case studies are presented 
through a simulated office 
environment and then completed 
outside of the game 
environment.  

Non- 
experimental 

Post-graduate 
distance 
education 
software 
engineering 
students. 

Questionnaire 

Software 
requirements 
Software 
design 
Software 
construction 
Software 

Knowledge Learning was not assessed. 



& Hall, 2000) testing 

GS-
04 

How to 
Successfully Use 
Software Project 
Simulation for 
Educating 
Software Project 
Managers (Mandl-
Striegnitz, 2001) 

Participants play two sessions of 
SESAM (GS-02) and their tutor 
analyzed their performance and 
provided feedback in between. 

Non- 
experimental 

40 
undergraduate 
software 
engineering 
students 

Questionnaire 
Software 
engineering 
management 

Knowledge 

Players improved their 
performance in the second 
session but still had 
problems monitoring their 
project and tracking 
progress. 

GS-
05 

An Experiment 
for Evaluating the 
Effectiveness of 
Using a System 
Dynamics 
Simulation Model 
in Software 
Project 
Management 
Education (D. 
Pfahl, Koval, & 
Ruhe, 2001)   

A three-phase (design, 
implementation, test) waterfall 
project modeled using System 
Dynamics. Key project variables 
were project duration, effort 
consumption, product size, and 
quality after testing. Participants 
were separated in two groups: 
one group managed a simulated 
software project with the aid of a 
System Dynamics model (Abdel-
Hamid, 1989); the other group 
used COCOMO (Boehm, Abts, 
Brown, Chulani, Clark, 
Horowitz, Madachy, Reifer & 
Steece, 2000).  

True 
Experimental 

12 post-
graduate 
software 
engineering 
students 

Pre- and post-
test 
questionnaire
s 

Software 
engineering 
management 

Knowledge 

Pre- and post-session 
surveys indicated that 
participants were improving 
their knowledge of project 
management patterns and 
behaviors. Those using the 
simulation models 
performed better that those 
using COCOMO. 

GS-
06 

An Externally 
Replicated 
Experiment for 
Evaluating the 
Learning 
Effectiveness of 
Using Simulations 
in Software 
Project 
Management 
Education 
(Dietmar Pfahl, 
Laitenberger, 
Dorsch, & Ruhe, 

Same as for GS-05. 
True 
Experimental 

1 12 graduate 
and post-
graduate 
students 
majoring in 
computer 
science. 
 
2 13 senior 
under-
graduate 
students 
majoring in 
computer 

Pre- and post-
test 
questionnaire
s 

Software 
engineering 
management 

Knowledge 

The results confirmed the 
initial findings in which 
students using the System 
Dynamics model generally 
performed better in the pre- 
and post-test questionnaires 
than those using COCOMO. 



2003)  
 
Evaluating the 
Learning 
Effectiveness of 
Using Simulations 
in Software 
Project 
Management 
Education: 
Results From a 
Twice Replicated 
Experiment 
(Dietmar Pfahl, 
Laitenberger, 
Ruhe, Dorsch, & 
Krivobokova, 
2004) 

science, 
electrical 
engineering, 
and computer 
engineering. 

GS-
07 

Problems and 
Programmers: An 
Educational 
Software 
Engineering Card 
Game (Baker, 
Navarro, & van 
der, 2003) 
 
An Experimental 
Card Game for 
Teaching 
Software 
Engineering 
Processes (Baker, 
Oh Navarro, & 
van der Hoek, 
2005) 
 
Teaching 
Software 

A competitive card game called 
Problems and Programmers in 
which students play the role of 
project manager in a waterfall 
project. All players lead the same 
project. Players must balance 
several competing concerns 
including budget and the client’s 
demands regarding the reliability 
of the final software. Who 
finishes first, wins.  

Non- 
experimental 

28 
undergraduate 
students who 
had 
completed an 
introductory 
software 
engineering 
unit 

Questionnaire 

Software 
engineering 
managementS
oftware 
engineering 
process 

Knowledge 

Players self-assessed their 
level of learning in a post-
game survey.  Most said the 
game was not good at 
teaching new knowledge or 
reinforcing existing 
knowledge. 



Engineering 
Using Simulation 
Games (Navarro, 
Baker, & van der 
Hoek, 2004) 

GS-
08 

Engendering an 
Empathy for 
Software 
Engineering 
(Shaw & 
Dermoudy, 2005) 

Players act as a project manager 
to deliver a product within time 
and budget constraints. 
SimjavaSP uses discrete-event 
simulation as the game engine.  

Non- 
experimental 

Undergraduat
e software 
engineering 
students 

Post-test 
questionnaire 

Software 
engineering 
management 

Knowledge 

The degree of learning was 
self-assessed by the 
participants and was found 
to be positive.  

GS-
09 

Model-Driven 
Game 
Development: 
Experience ad 
Model 
Enhancements in 
Software Project 
Management 
Education 
(Barros, Dantas, 
Veronese, & 
Werner, 2006)  
 
A Simulation-
Based Game for 
Project 
Management 
Experiential 
Learning (Dantas, 
Barros, & Werner, 
2004) 

Uses simulation to support 
decision-making on software 
project management. In the 
game, The Incredible Manager, 
the player sets project parameters 
such as staffing and work hours 
and executes the project for a 
period of time. The simulation 
can be stopped so the parameters 
can be tweaked. 

Non- 
experimental 

7 post-
graduate 
students in a 
software 
project 
management 
course, 8 
undergraduate 
and post-
graduate 
students from 
a software 
development 
laboratory, 9 
other 
undergraduate
s. 

Questionnaire 
Software 
engineering 
management 

Knowledge 

Players self-assessed their 
level of learning in a post-
game survey.  Most said 
they had learned something 
new but only one person 
completed their project 
successfully. 

GS-
10 

SimVBSE: 
Developing a 
Game for Value-
Based Software 
Engineering (Jain 
& Boehm, 2006) 

Focused on value-based software 
project management: every 
requirement, use case, object, 
test case and defect is treated as 
equally important; earned value 
is used to track project cost and 
schedule; a separation of 

n/a n/a n/a 
Software 
engineering 
management 

Knowledge n/a 



concerns is practiced, in which 
the responsibility of software 
engineers is confined to turning 
software requirements into 
verified code. The player’s 
avatar visits different game 
rooms and collects information 
from stakeholders about the 
current project and how to 
proceed. 

GS-
11 

SimSE: A 
Software 
Engineering 
Simulation 
Environment for 
Software Process 
Education 
(Navarro, 2006).  

Same as for GS-14. 
True 
Experimental 

19 under-
graduate 
software 
engineering 
students 

Pre- and post-
test 
questionnaire
s 

Software 
engineering 
management 
Software 
engineering 
process 

Knowledge 

All groups improved their 
knowledge, but those in the 
control groups outperformed 
those who had played 
SimSE in the post-test.
 
When players play SimSE 
for longer periods, their 
scores improved. But, many 
dropped out due to boredom 
or frustration before this 
point. 

GS-
12 

e-Learning in 
Project 
Management 
Using Simulation 
Models: A Case 
Study Based on 
the Replication of 
an Experiment 
(Rodriguez, 
Sicilia, Cuadrado-
Gallego, & Pfahl, 
2006) 

A replication of the GS-05 
True 
Experimental 

11 second-
year 
undergraduate 
students 
taking a 
software 
engineering 
module 

Pre- and post-
test 
questionnaire
s 

Software 
engineering 
management 

Knowledge 

According to the post-test 
and qualitative results, 
students using the simulation 
appear to have understood 
the software engineering 
principles it was trying to 
teach better than those in the 
control group 

GS-
13 

Using Games in 
Software 
Engineering 
Education to 
Teach Risk 

A competitive board/card game 
that focuses on risk management. 
Players take the role of project 
manager and have to develop a 
product and sell it in the market. 

Non- 
experimental 

150 on-
campus and 
distance 
students. 

5-question 
questionnaire 

Software 
engineering 
management 

Knowledge 

Players said they understood 
the learning objectives of the 
game. The degree of 
learning was not assessed. 



Management 
(Taran, 2007) 

The player with most money at 
the end wins. A dice is used to 
simulate eventuated risk events.

GS-
14 

Towards Game-
Based Simulation 
as a Method of 
Teaching 
Software 
Engineering  (Oh 
& van der Hoek, 
2002) 
 
Design and 
Evaluation of an 
Educational 
Software Process 
Simulation 
Environment and 
Associated Model 
(Navarro & van 
der Hoek, 2005)  
 
SimSE: A 
Software 
Engineering 
Simulation 
Environment for 
Software Process 
Education 
(Navarro, 2006)  
 
Comprehensive 
Evaluation of an 
Educational 
Software 
Engineering 
Simulation 
Environment 
(Navarro & van 

A single-player game for 
multiple development 
methodologies (waterfall, RUP, 
rapid prototyping) in which the 
player takes the role of a project 
manager leading a team of 
developers. The team must 
complete a virtual software 
project by hiring staff, assigning 
tasks, monitoring progress, 
purchasing resources.  
 
At the end of the game the player 
receives a score and can analyse 
their results with an explanatory 
tool.  

Non- 
experimental 

29 under-
graduate 
software 
engineering 
students 

Post-test 
questionnaire
s 

Software 
engineering 
management 
Software 
engineering 
process 

Knowledge 

Players felt the game 
reinforced what they already 
knew but provided little new 
knowledge.  
 
Players are demonstrating 
aspects of learning theories 
such as learning by doing, 
situated learning, discovery 
learning, learning through 
failure, and Keller’s ARCS. 
 
SimSE is most effective 
when used with other 
teaching methods. 



der Hoek, 2007)  

GS-
15 

Enhancing 
Software 
Engineering 
Education Using 
Teaching Aids in 
3-D Online 
Virtual Worlds 
(Ye, Chang, & 
Polack-Wahl, 
2007) 

Two exercises were performed in 
Second Life, an online virtual 
environment.1 Groupthink 
exercise: groups of students are 
given a software specification 
and must reach a design 
consensus. Afterwards, 
individuals are asked questions 
about the specification and 
points are awarded for correct 
answers.2 SimSE exercise: the 
game from GS-14 was modified 
to run in Second Life. 

Non- 
experimental 

1 29 
undergraduate 
students 
 
2 26 
undergraduate 
students 

Questionnaire 

Software 
engineering 
processSoftw
are 
requirements
Software 
engineering 
management 

Comprehensi
on 

Most students said the 
exercises helped them 
understand the fundamentals 
of software specification 
activities and the principles 
of software development 
processes. 

GS-
16 

Requirements 
Game: Teaching 
Software Project 
Management 
(Zapata & Awad-
Aubad, 2007) 

Teams of 4 or 5 players take on 
roles such as project manager, 
developers, designers, or 
analysts. For a given case-study, 
the players must produce 
documentation such as an ER 
diagram, sketches of at least 3 
GUIs, and an estimation of the 
effort required, and then build 
the application in, say, Microsoft 
Access. A facilitator plays the 
role of a client giving more 
instructions or clarifications. 
Fines may be imposed for time 
or budget over-runs. 

Non- 
experimental 

47 systems 
engineering 
undergraduate 
students.  
8 systems 
engineering 
Masters 
students.  
30 systems, 
industrial, and 
administrative 
engineering 
undergraduate 
students. 

Performance 
in the game 
alone 

Software 
requirements 

Knowledge Not assessed 

GS-
17 

A Game for 
Taking 
Requirements 
Engineering More 
Seriously 
(Knauss, 
Schneider, & 
Stapel, 2008) 

A web-based game that can be 
completed in about 10 minutes.  
Software requirements are 
visualized as a bag of balls that 
flow from the customer to an 
analyst, a designer, and a 
developer depending on the 
development process chosen. 
Alternate flows may be taken 
(such as the client speaking 

n/a n/a n/a 
Software 
requirements 

Knowledge Not assessed 



directly to the developers to clear 
up misunderstandings), which 
can change the rate of flow.

GS-
18 

On the Role of 
Learning Theories 
in Furthering 
Software 
Engineering 
Education 
(Navarro & van 
der Hoek, 2008) 

Same as for GS-14. 
Quasi- 
experimental 

11 under-
graduate 
students who 
had passed an 
introductory 
software 
engineering 
course. 

Observation 
and post-test 
interview 

Software 
engineering 
management 
Software 
engineering 
process 

Knowledge 

Players demonstrated 
aspects of learning theories 
such as learning by doing, 
situated learning, 
elaboration, discovery 
learning, learning through 
failure, Keller’s ARCS, and 
learning by reflection. 

GS-
19 

An Evaluation of 
a Mobile Game 
Concept for 
Lectures (A. I. 
Wang, Fsdahl, & 
Morch-Storstein, 
2008) 

The lecturer acts as a game show 
host and students answer 
multiple choice questions about a 
particular software design issue 
through their laptop or mobile 
phone. Players have to answer 
correctly to get to the next round. 
The winner is the last person 
standing. 

Non- 
experimental 

20 software 
engineering 
Masters 
students. 

Questionnaire 
Performance 
in the game 

Software 
design 

Knowledge 

Players felt the system made 
them pay closer attention 
during the lecture and that 
they learned more than 
through a traditional lecture. 

GS-
20 

Multi-Site 
Evaluation of 
SimSE (Navarro 
& van der Hoek, 
2009) 

Same as for GS-14. 
 
SimSE was run in game sessions 
in which the original game 
designers were not directly 
involved. 

True 
Experimental 

Site 1: 14 
students in a 
senior 
research 
seminar 
course, most 
of whom had 
passed a 
software 
engineering 
course. 
Site 2: 19 
under-
graduate 
software 
engineering 
students. 
Site 3: 48 
under-

Post-test 
questionnaire
s, 
performance 
in SimSE, 
and final 
course grades. 

Software 
engineering 
managementS
oftware 
engineering 
process 

Knowledge 

Students seemed to learned 
the concepts the game is 
designed to teach.The game 
was suitable for students of 
varying abilities and 
backgrounds.SimSE is most 
effective when used with 
other teaching methods. 



graduate 
software 
engineering 
students. 

GS-
21 

Empirical 
Evaluation of an 
Educational Game 
on Software 
Measurement 
(Gresse von 
Wangenheim, 
Thiry, & 
Kochanski, 2009) 

In X-MED, the player takes the 
role of a measurement analyst 
and defines and executes a 
measurement exercise based on a 
given development scenario. A 
score is calculated based on the 
number of correct decisions 
made, and the player is presented 
with an analysis of their 
performance. 

True 
Experimental 

15 computer 
science post-
graduate 
students 

Pre- and 
posttest 
questionnaire
s 

Software 
engineering 
management 
Software 
engineering 
process 

Knowledge 

The results don't 
conclusively point to a 
positive learning effect, 
although most players' 
subjective evaluation was 
that the game helped them 
understand the topic. 

GS-
22 

Adapting Game 
Technology to 
Support Software 
Engineering 
Process Teaching: 
From SimSE to 
MO-SEProcess 
(Zhu, Wang, & 
Tan, 2007) 
 
A Software 
Engineering 
Education Game 
in a 3-D Online 
Virtual 
Environment (T. 
Wang & Zhu, 
2009) 

A game based on SimSE (GS-
14) using the rapid prototyping 
profile and deployed to Second 
Life.  

Non- 
experimental 

52 software 
engineering 
students 

A six-
question post-
test 
questionnaire. 

Software 
engineering 
process 

Knowledge 

Players self-assessed their 
level of learning in a post-
game survey. Most said the 
game had helped them 
understand the software 
development process better. 

GS-
23 

PlayScrum- A 
Card Game to 
Learn the Scrum 
Agile Method 
(Fernandes & 
Sousa, 2010) 

Focused on the Scrum 
(Schwaber, 2004) agile 
development process. Further 
development of Problems and 
Programmers (Baker et al., 
2005). Played by 2 to 5 people. 
Cards are used to represent tasks, 

Non- 
experimental 

13 post-
graduate 
students. 

Questionnaire 

Software 
engineering 
management 
Software 
engineering 
process 

Knowledge 

Students improved their 
performance in successive 
game sessions. Players 
analyze their performance 
through an after-game 
analysis tool 



problems, developers, and 
artifacts. The winner is the 
person who performs all tasks 
with the least number of errors. 
A roll of a dice determines the 
flow of the game.  

GS-
24 

Evaluation of a 
Game to Teach 
Requirements 
Collection and 
Analysis in 
Software 
Engineering at 
Tertiary Level 
(Hainey, 
Connelly, 
Stansfield, & 
Boyle, 2010)  
 
An Application of 
Games-Based 
Learning Within 
Software 
Engineering 
(Connolly, 
Stansfield, & 
Hainey, 2007) 

Players take on specific roles 
(project manager, systems 
analyst, systems designer, team 
leader). The systems analyst 
moves their avatar through the 
game world to collect 
requirements by asking questions 
of game characters. When the 
analyst thinks they have all 
requirements, they prepare a 
requirements document and send 
it to the project manager, who 
must decide whether to proceed 
with the project. 

True 
Experimental 

55 university 
students and 
37 higher-
education 
students (92 
in total). The 
majority had 
little or no 
instruction in 
requirements 
collection or 
analysis. 

Pre- and post-
test 
questionnaire
s 

Software 
requirements 

Knowledge 

Comparison of pre- and 
post-game test scores 
showed an increase in 
knowledge.  Control groups 
who did not play the game 
also showed in increased in 
knowledge. The game was 
found to be a good 
supplement to existing 
courses. Higher education 
students gained more from 
the game (better post-game 
scores) and were more 
accepting of the teaching 
technique than further 
education students. 

GS-
25 

Learning Software 
Engineering Basic 
Concepts Using a 
Five-Phase Game 
(Rusu, Russell, 
Robinson, & 
Rusu, 2010) 

Players take the role of a 
requirements engineer in a 
waterfall development 
(requirements, design, 
implementation, testing, 
maintenance phases) software 
project. The player's avatar must 
ask questions of on-screen 
characters to determine the right 
requirements. Subsequent phases 
use arcade-style graphics to kill 
'computer bugs' or to 'shoot' 

Non- 
experimental 

Developed by 
teams of 
under-
graduate 
software 
engineering 
students and 
used by a 
class of nine 
middle and 
high school 
students with 

Pre- and post-
test 
questionnaire
s 

Software 
engineering 
management 

Knowledge 

Comparing pre- and post-
game surveys most 
participants said they gained 
a better understanding of 
software development. 



answers in a multiple choice 
quiz.  

limited or no 
computer 
science 
background. 

GS-
26 

A Classroom 
Game for 
Teaching 
Management of 
Software 
Companies 
(Zapata, 2010) 

Players take turns in rolling a 
dice and answering a technical 
question about software 
development. If the answer is 
right, the player’s team has the 
chance to solve a project 
estimation problem. The team 
with the most correct responses 
to the questions and estimation 
problems wins. 

Non- 
experimental 

40 systems 
engineering 
students 

Post-test 
questionnaire 

Software 
requirements 

Knowledge 

Players self-assessed their 
level of learning in a post-
game survey. Most said they 
had learned something new. 

 



 

 
Figure 1. Game surveys classified by game type, experimental type, and Bloom taxonomy. 

 

0

5

10

15

20

25

30

C
o
m
p
u
te
r

B
o
ar
d

C
ar
d

Q
u
iz

Tr
u
e 
Ex
p
er
im

en
ta
l

Q
u
as
i E
xp
er
im

en
ta
l

N
o
n
 E
xp
e
ri
m
en

ta
l

K
n
o
w
le
d
ge

C
o
m
p
re
h
en

si
o
n

A
p
p
lic
at
io
n

Game Type Experimental Type Bloom Taxonomy



 

Figure 2. Games used for software engineering education by location and SWEBOK knowledge area 

 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 2

Shall We Play a Game? 

Craig Caulfield (Corresponding author) 

School of Computer Science and Security Science, Edith Cowan University  

2 Bradford Street, Mount Lawley, Western Australia 6050, Australia 

Tel: 61-8-9370-6295   E-mail: ccaulfie@our.ecu.edu.au 

 

S P Maj 

School of Computer Science and Security Science, Edith Cowan University  

2 Bradford Street, Mount Lawley, Western Australia 6050, Australia 

Tel: 61-8-9370-6277   E-mail: p.maj@ecu.edu.au 

 

Jianhong (Cecilia) Xia 

Department of Spatial Sciences, Curtin University  

Kent Street, Bentley, Western Australia 6102, Australia 

Tel: 61-8-9266-7563   E-mail: c.xia@curtin.edu.au 

 

D Veal  

School of Computer Science and Security Science, Edith Cowan University 

2 Bradford Street, Mount Lawley, Western Australia 6050, Australia 

Tel: 61-8-9370-6295   E-mail: d.veal@ecu.edu.au 

 

Received: October 8, 2011     Accepted: October 19, 2011     Published: January 1, 2012 

doi:10.5539/mas.v6n1p2          URL: http://dx.doi.org/10.5539/mas.v6n1p2  

 

Abstract 

This paper presents the results of a qualitative research project that used a simple game of a software project to 
see if and how games could contribute to better software project management education, and, if so, what features 
would make them most efficacious. The results suggest that while games are useful pedagogical tools and are 
well-received by players, they are not sufficient in themselves and must be supplemented by other learning 
devices. 

Keywords: Software engineering, Project management education, Serious games 

1. Introduction 

In the 1983 movie, War Games, a young Matthew Broderick plays David Lightman, a hacker who has broken 
into WOPR– the War Operation Plan Response supercomputer which is programmed to play out different 
doomsday scenarios and learn from them so it can eventually take full, automated control of the United State’s 
nuclear arsenal. When David is presented with a screen prompt that asks, “Shall we play a game?”, he innocently 
selects “Global Thermonuclear War”. As quickly becomes apparent, WOPR is ready to do more than just play 
games and it starts executing commands in readiness for a real missile strike against the Soviet Union. 

The portentous question asked by WOPR– shall we play a game?– has meaning for the research project 
discussed in this paper too, but without the same dire consequences. This paper reports on a qualitative research 
project designed to see if and how games could contribute to better software project management education by 
helping software engineers and project managers explore some of the dynamic complexities of the field in a safe 
and inexpensive environment. If games could indeed contribute, then what features made them most efficacious? 
Games have been used to good effect in other similarly dynamic areas and the researchers believed that an 
opportunity existed to see what contribution they could make to a better software project education. In effect: 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 3

shall we– should we– play games in software project management education? 

2. Literature Review and Background 

2.1 Defining Games 

To play a game, “is to engage in activity directed towards bringing about a specific state of affairs, using only 
means permitted by specific rules, where the means permitted by the rules are more limited in scope than they 
would be in the absence of the rules and where the sole reason for accepting such limitation is to make possible 
such activity” (Suits, 1967, p.156). 

A game is different from a model or simulation. For example, a model is “a miniature representation of a 
complex reality. A model reflects certain selected characteristics of the system it stands for. A model is useful to 
the extent that it portrays accurately those characteristics that happen to be of interest at the moment” (DeMarco, 
1982, p.41). Meanwhile, a simulation is a special kind of model that shows how a system, such as a biological, 
social, physical, or economic system, changes over time (Miller, 1978, p.83). 

The games that this research project deals with are a subset of Caillois’s (1961) agôn classification, those games 
“that would seem to be competitive like a combat in which equality of chances is artificially created in order that 
the adversaries should confront each other under ideal conditions” (Caillois, 1961, p.14), and they use an 
adjective— serious— to show they are not for simple amusement and they are designed to educate, train, or 
inform their players (Abt, 1970; Michael & Chen, 2005; Schrage & Peters, 1999).  

2.2 The Nature of Software 

Software development is an inherently complex endeavour because of both the ephemeral qualities of software 
itself and the dynamic socio-technical system in which it is developed. For example, software has no 
fundamental theory (Osterweil, 1987, p.3), like the law of physics, with which we can reason about its behaviour. 
This makes it difficult to thoroughly test software without actually building it and running it in a live 
environment (Kruchten, 2005) with all the attendant risks this involves.  

Software must also conform to the arbitrary design of the human institutions and processes in which it is 
deployed and accept change because in a system of software, hardware, and humans, it is the most malleable 
(Brooks, 1987, p.12). These are naturally properties that organisations want to take advantage of, but constant 
change, if not managed, can erode the integrity of the original design, and when combined with relatively low 
manufacturing costs, can lead to shortcuts: 

Program implementation is more like preparing a cast in mechanical engineering. The real “manufacturing” of 
software entails almost no cost; a CD-ROM, for example, costs less than a dollar, and delivery over the Internet 
only a few cents. Often it doesn’t matter if the design is a bit wrong; we can just fix it and manufacture it again. 
You can’t do that with a bridge or a car engine because the cost would be huge, and that forces engineers 
involved in building these things to get them right the first time (Kruchten, 2004). 

Because software is complex, difficult to reason about and test, and yet cheap and easy to change, it is perhaps 
understandable that many implementations are not right the first time, if at all. These qualities of software are 
often the root cause of many quality and productivity issues: 

From the complexity comes the difficulty of communication among team means, which leads to product flaws, 
cost overruns, schedule delays. From the complexity comes the difficulty of enumerating, much less 
understanding, all the possible states of the program, and from that comes the unreliability. From the complexity 
of the functions comes the difficulty of invoking those functions, which makes programs hard to use. From 
complexity of structure comes the difficulty of extending programs to new functions without creating side effects. 
From complexity of structure comes the unvisualized states that constitute security trapdoors (Brooks, 1987, 
p.11). 

How then do we prepare software engineers to work in an environment that is complex in and of it itself, and 
which is, in turn, used to create a complex product? To answer this we need to look at the state of current 
professional practice and the educational programs that produce new software engineers. 

2.3 The Education of Software Engineers 

In response to some of the productivity and quality problems in the field, steps are being taken to make software 
engineering more reliable, more predictable, more like its engineering namesake: 

A body of knowledge, the SWEBOK (Bourque, Dupuis, Abran, Moore, & Tripp, 1999), has been defined which 
captures accepted practice in the field and which also forms the basis of curriculum development and 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 4

accreditation, licensing and certification programs. 

Standards of ethics and conduct have been developed to guide software engineers in responsible behaviour, 
although these are still optional and unenforceable (Gotterbarn, 1999; McConnell, 2004, p.57). 

Professionally-endorsed curriculum guidelines for graduate and post-graduate software engineering education 
have been developed to meet the latest technical developments and evolving industry demands. These include 
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering (Joint Task Force on 
Computing Curriculum, 2004), Curriculum Guidelines for Graduate Degree Programs in Software Engineering 
(iSSEc Project, 2009), and Curriculum Guidelines for Undergraduate Degree Programs in Information Systems 
(Joint IS2010 Curriculum Task Force, 2010).  

Of interest for this research project was the way software engineers are educated because this directly and 
significantly affects so many other areas of professional practice. In the curriculum guidelines considered 
mentioned above, each identifies better software project management skills and better soft, or peopleware 
(DeMarco & Lister, 1999), skills as critical for all graduating students, but the guidelines are intentionally vague 
on how institutions should teach these.  

This pedagogical gap is exposed most often when students finish their requisite courses and attempt their final, 
important, and synthesising capstone project. While there are many cases of capstone projects bringing great 
benefits for the students and their clients (Boehm, et al., 1998; Johns-Boast & Patch, 2010), these are balanced 
by stories of significant failures in which student/client relationships broke down, there was severe internal team 
dissension, or the final software was unusable (Brereton, et al., 2000; Cheng & Lin, 2010; Polack-Wahl, 2006). 
For those capstone projects that failed, there was little opportunity for reflection or remedial action because the 
project was the final unit of study for the course. Some research has been conducted that recommends guidelines 
for successful capstone projects (Robillard & Robillard, 1998), such as providing students with basic training in 
project control, reviewing the design documents, and  having an experienced software engineer mentor certain 
stages, but these are relatively costly or time-consuming course attributes and there is little evidence they have 
been widely adopted. 

2.4 One Possible Solution 

One possible way to tackle these problems is to use a serious game— a game designed to teach and educate 
players about some of the dynamic complexities of the field in a safe and inexpensive environment. Importantly, 
games are not one-shot opportunities in the way capstone projects are: a game can be played, studied, tweaked, 
and replayed as many times as needed.  

Games have been used in many different business (Michael & Chen, 2005; Schrage & Peters, 1999), military 
(Perla, 1990; Riddell, 1997; Zyda, 2007), and social environments (Gee, 2007; Prensky, 2006; Salen & 
Zimmerman, 2005), and have proven to be efficacious. They also draw their intellectual integrity from sound 
education theory such as problem-based learning. Problem-based learning is a pedagogic method that uses 
problem scenarios to encourage students to work out solutions for themselves (Barell, 2006; Barrows & Tamblyn, 
1976; Savin-Baden, 2003; Savin-Baden & Major, 2004). Usually working in small teams, students explore the 
problem, bring their personal experience to bear, identify any gaps in their knowledge, and eventually come up 
with viable solutions. The problems themselves are usually complex, ill-defined, real-world situations for which 
there may not necessarily be a single right or wrong solution (Maxwell, Mergendoller, & Bellisimo, 2004, p.2). 
The students build new knowledge through self-directed learning while their tutors act as facilitators or 
consultants rather than more traditional instructors (Dempsey, Haynes, Lucassen, & Casey, 2002, p.5; McCall, 
2011). Games therefore have an authority to be taken seriously as learning and research tools. 

This research project is not the first to look at games in software engineering education. A systematic survey of 
the field (Caulfield, Xia, Veal, & Maj, 2011) discovered over two dozen research projects using mostly 
single-user computer games to teach various aspects of the software development lifecycle. However, few of 
these games were developed or repeated beyond their initial implementations, which suggests that their design 
lacked some essential feature. 

An opportunity therefore existed to explore more fully if and how games could contribute to better software 
engineering management and help fill some of the pedagogical gaps in the current curriculum guidelines; and if 
they could, then what design features were most valuable.  

 

 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 5

3. Methodology 

3.1 Introducing Simsoft 

The primary research tool for this project was a game called Simsoft (Caulfield, Veal, & Maj, 2011a). Physically, 
Simsoft comes in two pieces. There is an A0-sized printed game board around which the players gather to 
discuss the current state of their project and to consider their next move. The board shows the flow of the game 
while plastic counters are used to represent the staff of the project. Poker chips represent the team’s budget, with 
which they can purchase more staff, and from which certain game events may draw or reimburse amounts 
depending on decisions made during the course of the game. There is also a simple Java-based dashboard 
(Caulfield, Veal, & Maj, 2011b), through which the players can see the current and historical state of the project 
in a series of reports and messages; and they can adjust the project’s settings. The engine behind Simsoft is a 
system dynamics model which embodies the fundamental causal relationships of simple software development 
projects. 

3.2 Game Sessions 

Simsoft game sessions were held between May and September 2010 in which teams of students, and practicing 
project managers and software engineers managed a hypothetical software development project with the aim of 
completing the project on time and within budget (with poker chips left over). Based on the starting scenario of 
the game, information provided during the game, and their own real-world experience, the players made 
decisions about how to proceed— whether to hire more staff or reduce the number, what hours should be worked, 
and so on. After each decision set had been entered, the game was run for another next time period, (a week, a 
month, or a quarter). The game was now in a new state which the players had to interpret from the game board 
and decide how to proceed. 

3.3 Participants 

Purposive sampling (Lincoln & Guba, 1984; Patton, 2002) was used to select the participants (n=59) of the study 
from the following pools: 

Post-graduate project management students from two Perth, Western Australia Universities. 

Software engineers, project managers, and account managers from a Perth-based software consulting company. 

A call for participation was distributed by email and the participants replied if they wished to take part. Snowball 
sampling (Marshall, 1996) was allowed, whereby those reading the email were encouraged to refer others in the 
same field they thought would be interested in taking part. 

Although the participants each had an information technology or project management background, they 
exhibited notable variances in experience (from recent graduates to 25-year industry veterans); skills (from those 
still studying to highly-certified professionals); and cultural diversity (the participants came from Australia, 
Europe, the Middle East, Asia, and South Africa). 

3.4 Data Collection 

Before the game session, the players completed an online survey designed to test their knowledge of general 
software engineering and project management principles. The survey questions were based on those in 
examination preparation guides for the IEEE’s Certified Software Development professional certification 
(Naveda & Seidman, 2006) and the Project Management Professional certification (Heldman, 2007). 

After the game session, the players completed another online survey. Post-game surveys are a common feature of 
game research (Eldredge & Watson, 1996; Faria, 1987, 1998; Faria & Wellington, 2004; Faria & Wellington, 
2005; McKenna, 1991) and in problem-based learning (Tang, et al., 1997), the key foundation of Simsoft’s 
design. Based on these exemplars, a survey was designed to capture their experience of playing the game, 
whether they found it useful, how it might compare to other forms of instruction such as lectures or case studies, 
and what may have been learned through the game. 

Therefore, this research project had multiple data sources: the Simsoft game database, the pre- and post-game 
surveys, interviews with the players, researcher memos (Maxwell, 2004), and field notes. 

3.5 Data Analysis  

The analysis and interpretation of the data for this project followed a path used many times before in qualitative 
research: collect the data, analyse it for themes or perspectives, and then report on four or five of those themes 
(Bloomberg & Volpe, 2008; Creswell, 2009; Lincoln & Guba, 1984). In more detail, the following steps were 
taken: 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 6

Organized and prepared the data for analysis by transcribing the interviews, and writing up the field notes and 
memos.  

Re-read, examined, and explored the data to get a high-level sense of what had been collected. 

Started to analyse the data by first coding it— breaking it into named chunks or categories that can then be used 
to make comparisons between things in the same category and to help develop theoretical concepts (Rossman & 
Rallis, 1998; Strauss, 1987). The software package NVivo (http://www.qsrinternational.com/) was used for this 
task (Richards, 2009). 

Used the coding to identify and describe themes and patterns in the data, which then became candidates for more 
detailed analysis and, potentially, major findings of the project (Maxwell, 2004). 

Formulated the finding statements and supported these will specific data instances and then summarized the key 
findings. 

Sought meaning in the findings by linking it to experience, insight, or the literature. The most commonly asked 
question was: “What were the lessons learned?” (Lincoln & Guba, 1984). 

The above step-by-step list might give the impression that the analysis and interpretation of the data proceeded in 
a linear fashion once all the data had been collected. In reality, the process was highly iterative and started as 
soon as the first data was available— a feature common to this type of research (Lincoln & Guba, 1984, pp.241 
-242). 

3.6 Reliability, Validity, and Applicability of the Findings 

Compared to objective, deductive quantitative research, qualitative research has often been called undisciplined, 
sloppy, merely subjective, and indiscriminately responsive to the loudest bangs and brightest lights (Lincoln & 
Guba, 1984, p.289). Add to this a researcher intimately involved in the data collection and carrying certain biases, 
and it is natural to question the trustworthiness of the results: “The basic issue in relation to trustworthiness is 
simple: How can an inquirer persuade his or her audiences (including self) that the findings of an inquiry are 
worth paying attention to, worth taking account of? What arguments can be mounted, what criteria invoked, 
what questions asked, that would be persuasive on this issue?” (Guba & Lincoln, 2005, p.290). That is, how can 
we demonstrate the findings are reliable, valid, and applicable?  

For this project the following means were used: 

Reliability, or “the extent to which a measurement procedure yields the same answer however and whenever it is 
carried out” (Kirk & Miller, 1986, p.19): the coding scheme peer reviewed by an independent party. 

Validity, or the “degree to which the finding is interpreted in a correct way” (Kirk & Miller, 1986, p.20): more 
than data source was used so that the results could be triangulated; and the findings were reviewed by a random 
sample of four players from the games sessions. 

Applicability, or “the extent to which the findings of a particular enquiry have applicability in other contexts or 
with other subjects” (Guba & Lincoln, 2005, p.290): rich, detailed descriptions are provided that will allow 
subsequent researchers to determine if the findings are relevant to their particular setting. 

4. Findings 

Six major findings emerged from the research. 

4.1 Finding 1— There was evidence the participants were learning by doing. 

A key tenet of problem-based based learning (Savin-Baden & Major, 2004), one of the theoretical foundations of 
Simsoft, is that when people work through problems for themselves, the knowledge they build ‘sticks’ and they 
are more able to apply what they have learned in new situations. The following comments indicate that playing 
Simsoft indeed helped the participants figure things out for themselves:  

“Aha!” 

 “Our team figured out we could move more counters [work units] by investing in a couple of expensive, 
experienced developers, more middies, and some quality control people. Makes sense really” 

 “We spent our poker chips on lots of cheap newbies and before long had most of our counters [work units] in 
rework. We should have bought some old timers for guidance” 

 “Now I see why” 

“I hadn't appreciated the level of productivity variability between developers before” 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 7

In addition, all participants completed pre- and post-game surveys that included a number of questions designed 
to test their general level of knowledge about project management and software engineering concepts. Table 1 
shows the results of the tests broken by the participants’ role and years of experience, and shows each group 
performed better after playing the game. Two non-parametric statistical tests were run over the pre- and 
post-game results to determine if this improved performance was significant. 

A Mann-Whitney U test (Z = -1.091, p = 0.275 > 0.05) indicated that there was no significant differences 
between the pre- and post-game results when considering the broad groups of project managers, software 
developers, and students. A Wilcoxon signed ranks test (Z = -1.604, p = 0.109 > 0.05) also showed there was no 
significant difference between the pre- and post-game results of the three groups.  

The same statistical tests were then run at a finer level of detail: against the years-of-experience sub-groups with 
the three main groupings of project managers, software developers, and students. Both the Mann-Whitney U test 
(Z = -2.951, p = 0.003 < 0.05) and the Wilcoxon signed ranks test (Z = -2.552, p = 0.011 < 0.05) showed there 
was a significant improvement between the pre- and post-game tests. 

Together, these results indicate that while playing the game helped, none of the three main groups performed 
significantly better than the others. However, the years of experience a person has may affect how much they 
take from the game. 

4.2 Finding 2— Games such as Simsoft are not sufficient learning vehicles by themselves and need to be 
supplemented by other methods. 

While most players (40 out of 59) said that Simsoft helped put project management and software engineering 
theories into a practical context, the mean score was 2.64 out 5 (SD = 0.760) when they were asked if games 
were a better way of learning and understanding technical material than through more conventional methods 
such as books, lectures, case studies. 

From an experienced software developer: 

“I saw in the game aspects of theory covered at uni, but without knowing the theory first I probably wouldn't 
have recognised the significance.” 

And these comments from two students:  

“I was out of my depth” 

“I could see the logic behind my team’s decision, but I wouldn't have known enough to make the decision by 
myself.” 

One project manager expressed an interest in using Simsoft as part of an under-graduate computer science he 
teaches part-time, but: 

“It would have to be used on the final weeks of the course when the students have some theory under their belt. 
Plus, there is little momentum behind problem-based learning at [my university] so the resources aren’t 
available to design a proper PBL based curriculum” 

Table 1 also shows that the greatest improvement between the pre- and post-game tests was in those groups with 
the greatest work experience, so that relatively inexperienced participants took less from the game. This suggests 
that some level of a priori knowledge is needed for games like Simsoft to be truly effective. 

However, when asked if games were a better way of more thoroughly learning a topic than through more 
conventional methods such as books, lectures, case studies, a significant minority (21 out of 59 participants) 
agreed or strongly agreed (mean = 3.00 out of 5, SD = 0.964). Self discovery seems to be the motive: 

“I like to figure things out for myself” 

On six occasions over the seven game sessions, the researcher overheard players saying they wished they could 
set Simsoft to match their work environment so they could game through some current issues. 

4.3 Finding 3— Simsoft is a suitable pedagogical device for participants of different skills and backgrounds. 

When asked if the game was easy or hard to play (1 = too easy, 3 = about right, and 5 too hard), the majority of 
the participants (47 out of 59) felt that the game was a pitched at about the right level of difficulty (see Table 2). 

This comment was from a student: 

“Even though I'm still studying and don’t have much [practical work] experience, I was able to understand the 
game's project and contribute to the decisions” 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 8

And, from a project manager with 10 to 15 years experience:  

“[The] game was not too easy so that it was boring, but not too hard that newbies couldn't undetstad (sic) it.” 

Across the seven game sessions there were no teams composed entirely of one group only, so each had a mixture 
of skills and experience. This was viewed positively:  

“Our team had a mixture of abilities and life experience. I think this helped us make good choices” 

“[One of our team] had read about Brooks’ model and could let us know if we were on the right track” 

4.4 Finding 4— The majority (49 out of 59) of participants said they would be prepared to invest greater time 
and effort in games such as Simsoft if the reward was deeper understanding of a problem domain. 

Many players said they reached the end of the game before they had time to fully explore the dynamics of the 
scenario, or they wanted to take more discussing their options before committing to a decision. For example: 

"The game was too short to discover what I wanted to know" 

"I wanted to know more" 

“We wanted more time to talk about our options” 

The database of Simsoft game transactions showed that games lasted an average of 35 minutes (SD = 7.082) and 
that 80% of games finished within 40 minutes. The players were encouraged to stay behind after the game 
sessions to discuss and compare their results with other teams. Often, these after-game sessions lasted longer 
than the games themselves. 

Considering the amount of time they had spent playing Simsoft, a majority of the players (49 out of 59) said 
would be prepared to invest greater time and effort in games like Simsoft if the reward was greater understanding 
of the problem domain: 

“What about running the game in real time, like the stock market game. That would give us time to make really 
considered judgements, people could be assigned research topics during the week” 

“I hope that future versions will let me set up specific scenario and play them out. That would really help me in 
my work” 

Outside of this research project, 10 players had previously participated in a long-running online stock market 
game in which notional shares were bought and sold based on actual prices published in a daily newspaper. Buy 
and sell decisions were submitted weekly and the team with the largest portfolio after three months was declared 
the winner. 

4.5 Finding 5— The majority (44 out of 59) of the participants found that working in groups was a positive 
experience 

An important component of many of the pedagogical theories behind Simsoft is the aspect of working in groups 
or teams, so it was important to assess how this was received by the players. A majority of players (44 out of 59) 
said they found it useful or very useful to work as a team and that this reflected how things often happened in the 
workplace: 

“It was like [the agile] stand up meeting we have every morning” 

“We organised ourselves into roles we felt comfortable with or that fitted our day-job: someone on the calculator, 
someone moving the developer pieces, someone moving the units of work” 

However, one student found something new in the practice: 

“I thought software development was a solitary experience but it's not really” 

Others liked the opportunity to share opinions and learn from more experienced peers: 

“Everyone had a chance to offer an opinion” 

“I have little real-world project experience so it was good to get the advice of others and see how they 
approached problems” 

But, as in any group activity, the game facilitator needs to be aware of cultural differences that may make some 
less inclined to contribute and of players who are dominating in their groups:  

“Generally, everyone had their say in final decision but a couple of times we were overridden” 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 9

4.6 Finding 6— The majority (44 out of 59) of participants preferred playing a board game rather than a fully 
computerized game 

The players’ responses to different features of the game were generally positive (Table 3). Notable in Table 3 is 
that a majority of players (44 out of 59) preferred playing with a game board rather than a fully computerized 
version. Some typical comments were: 

“The board game [was] simple and I could easily see the state of the game” 

“When a group plays the game on a PC, someone controls the mouse and keyboard and they tend to dominate” 

“Compared to computer-based games, the design was simple and we started playing without too much wasted 
time” 

“Sometimes technology gets in the way” 

“Everyone plays board games so we all knew what to do” 

Outside of this research project, seven players had played The Beer Game, four-point distribution chain, 
originally developed at MIT and now used widely as a management educational tool in a variety of academic and 
commercial settings (Caulfield, Kohli, & Maj, 2004; Goodwin & Franklin, 1994; Senge, Kleiner, Roberts, Ross, 
& Smith, 1994; Sterman, 1989). In The Beer Game all calculations are performed by hand on simple worksheets. 
This found favour: 

“Doing the calculations by hand means we have to understand” 

“The calculator half of the game hides details. Just give us a calculator and we can work it out” 

Although the players’ reception of the game was generally positive, clear written instructions are essential to 
make sure best use is made of the game session time. This comment was made by a player in the very first game 
session: 

“Wasn’t sure of what we were supposed to do” 

Initially, instructions for playing the game were delivered by the researcher after the players had completed the 
pre-game survey and just before they started the game. For the second game session onwards, a one-page 
instruction sheet was emailed to each player a couple of days beforehand so they could be prepared.  

The database of Simsoft game transactions showed that only three games had to be abandoned and restarted. It 
was observed that once teams had made the first couple of decisions, they were able to continue with too much 
trouble. 

5. Discussion 

The purpose of this research project was to see if and how games could contribute to better software project 
management education by helping software engineers and project managers explore some of the dynamic 
complexities of the field in a safe and inexpensive environment.   

The major finding was that participants were learning as they played the game. However, the findings also 
suggested that games alone are not more effective than more traditional pedagogical means such as lectures, case 
studies, and readings. It also seems that simple games, and games in which the participants are able to relate 
game play to an external context, such as their real-world roles, are the most efficacious. 

This section analyses and discusses the findings in more detail along the following broad analytic categories: 

Games and learning in Simsoft. 

Games in context. 

The relative complexity of games. 

5.1 Learning in Simsoft 

The results showed that each group of participants (students, project managers, and software developers) 
improved their performance between the pre- and post-game tests. This suggests that the participants were 
constructing knowledge for themselves based on what they had experienced in the game. Comments from the 
participants supported this: 

“Aha!” 

“Now I see why” 

When each group was further classified by years of experience in the field, the same improvement between the 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 10

pre- and post-game tests was seen, with the greatest improvement being in those with more experience. For 
example, students gained relatively less from the game than more experienced software developers and project 
managers.  

Together these results suggest that learning is happening, but for some participants at least some level of a priori 
knowledge is necessary to make more sense of what is happening in the game. So, participants can learn some, 
but not all, of what they need to know from a game. 

5.2 Games in Context 

A common comment during the after-game gatherings, and something that was reflected in the post-game survey, 
was that most participants were prepared to invest greater time and effort in games such as Simsoft if the reward 
was deeper understanding of the problem domain. 

With this in mind, one participant suggested running the game in real time, so that one week of real time equated 
to one week of project time. During the week, the team members could do research and discuss their options 
before coming to a carefully considered decision about their next step. This suggestion was influenced by a stock 
market game a number of participants had played the previous year. Players bought and sold shares on a fantasy 
stock exchange based on real prices published in the daily newspaper. The winner after three months was the 
team with the largest portfolio. In the week between submitting buy and sell orders, the players researched likely 
companies, scanned market reports, and took note of interest rate decisions, the price of oil and gold, and 
currency fluctuations to see how they might affect the market. 

This suggestion represents a desire to put Simsoft more in context, by allowing the participants to step out of the 
fantasy world of the game, do some study, and then step back into the game with better knowledge. However, 
Simsoft, and all other software engineering management games discovered during a systematic search of the 
literature (Caulfield, Xia, Veal, & Maj, 2011), are played in one-off sessions. What players learned, must be 
learned within the hour or so of the game session. Of course, games can be replayed, but they must have 
sufficient depth to present alternate, engaging paths through the game in repeat. For even the most sophisticated 
game in the field, SimSE, players became bored when playing second and subsequent times (Navarro & van der 
Hoek, 2007). 

One way to satisfy this desire for more depth, would be to play the game across multiple sessions over weeks or 
months as some participants have done with other games. In between, research could be undertaken in order to 
make the most informed decision. 

For some participants, this break is necessary. Evaluation of the pre- and post-game scores showed that students 
gained relatively less from the game than more experienced project managers and developers. The following 
comment from a student is illustrative: 

“I saw in the game aspects of theory covered at uni, but without knowing the theory first I probably wouldn't 
have recognised the significance.” 

That is, students in this research population didn't have the a priori knowledge needed to make full sense of the 
game's dynamics. 

Playing the game over multiple, rather than single, sessions would more closely conform to the tenets of 
problem-based learning where participants begin their project with imperfect knowledge and then have to 
identify and learn what they needed in order to solve the issue at hand. 

5.3 The Relative Complexity of Games 

When asked, most Simsoft players said they preferred a board game to a fully computerized version because 
they could start playing more quickly without having to learn how to navigate a new user interface and without 
fear of making an unintended move. Apart from the mechanics of playing Simsoft, the simple design meant the 
state of the game and its underlying causal model were always visible. 

The appeal of simplicity over complexity has been noted before. While complex games offer “the richest 
learning experience available, the game’s very formidable appearance probably intimidated a number of players 
or forced them into a learning situation they were unprepared or unwilling to negotiate” (Wolfe, 1978, p.152). 
The next most effective game in Wolfe’s study was found to be the least complex, supporting similar research 
that showed relatively simple games can provide essentially the same, if not more, benefits as the more complex 
(Butler, Pray, & Strang, 1979; Dempsey, et al., 2002; Meadows, 1999; Raia, 1966; Watt, 1977). Therefore, 
making games only as complex as necessary, or hiding unnecessary detail, could be a way of achieving the best 
learning outcomes while avoiding the player mortality (boredom and dropout) noted by Wolfe. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 11

A board game also more easily fosters the collaboration needed in any team enterprise such as a software 
development project. When a computer or online game is played by multiple participants, likely at different 
physical locations, the basic cues of identity, personality, and body language are hidden. Without these cues, 
researchers have found that many computer games explicitly designed to be collaborative will degenerate into 
competitive games at worst or games in which “everyone just kind of does their own thing” (Zagal, Rick, & Hsi, 
2006, p.25) at best. 

In Simsoft, group play was viewed positively by most participants. It reflected real-world experience and also 
meant ideas and opinions could be shared: 

“It was like [the agile] stand up meeting we have every morning” 

“I thought software development was a solitary experience but it's not really” 

“Everyone had a chance to offer an opinion” 

Notwithstanding these positive aspects, any group activity may devolve into groupthink (Janis, 1971) in which 
the opinion of a dominant individual or clique prevails, possibly against reasonable evidence. In the Simsoft 
game sessions, no teams were larger than four participants and many participants were known to each, either 
professionally or socially, so there was ample opportunity to contribute to the discussions or even dispute the 
idea of a colleague or friend. There were also no more than four game sessions running at once, which meant the 
researcher was able to notice any participants standing back and gently prompt them for a contribution. 

Few other software development game researchers have looked closely at these same aspects of game design. In 
(Hainey, Connelly, Stansfield, & Boyle, 2010), players were asked to rate game features such as graphics, 
realism of the characters, realism of the environment, and sound, but these were evaluations of the verisimilitude 
of these features, not their appropriateness to the task at hand. On this same rating of game features, 
collaboration ranked last or second last across all players, but this is to be expected in a single-player game. 
Similarly, other researchers (Baker, Oh Navarro, & van der Hoek, 2005; Navarro & van der Hoek, 2009; Zapata, 
2010) asked their participants if they enjoyed playing the game or whether they found it engaging, but these 
questions ask the participants to evaluate a particular game’s representation of its environment rather than its 
comparative complexity or its value as a collaborative tool. 

5.4 Related Work 

A recent systematic survey of games used in software engineering education (C. W. Caulfield, J. Xia, et al., 2011) 
found that, as a pedagogical device, they are becoming more common, particularly in Europe and the Americas, 
and students generally enjoyed playing them and felt they gained some value from the experience.  

Simsoft differs from these other games in four main areas: 

Simsoft is equally, if not more, concerned with who does the work in a software development as it is with 
process of how the work is done. This echoes the cover of Boehm’s (1981) Software Engineering Economics 
which shows personnel is where the greatest productivity gains are possible. 

Simsoft is largely a board game (with a small calculator component) in contrast to most other games that use a 
graphical user interface of varying levels of richness. Often the user interface is simply a conceit of the game for 
performing housekeeping functions and lends little to the real purpose. Other games that use playing cards or 
games boards contain an element of chance rather than skill. 

Simsoft is cast at a level of detail at which the players can see the movement of individual pieces of work and 
individuals themselves. Games cast at higher levels can mask some fundamental project dynamics. 

The research sample for this project is a mixture of students and experienced professionals rather than wholly 
students.  

6. Conclusions 

At the end of War Games, as Matthew Broderick and his girlfriend Ally Sheedy reflect on the world’s narrow 
escape, the message is obvious: everyone has learned a lesson and blind reliance on computers is foolish. WOPR 
is quietly dismantled and won’t be able to ask anyone else, “Shall we play a game?” 

This paper posed the same question in a different context: shall we– should we– play games in software project 
management education? The answer, we believe, is a qualified, yes. The answer is qualified because our findings 
show that while games are useful pedagogical tools and are well-received by players, they are not sufficient in 
themselves and must be supplemented by other learning devices. Also, unless the games are designed with 
learning aforethought, they will probably miss their mark. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 12

This project also points to some interesting directions for future research. Many participants said they preferred 
simple, collaborative games to complex games, and they were also prepared to play games in more depth if the 
reward was greater knowledge of the problem domain. The plan is to develop Simsoft further in these directions.  

References 

Abt, C. C. (1970). Serious Games. New York: The Viking Press. 

Baker, A., Navarro, E., & Van der Hoek, A. (2005). An Experimental Card Game for Teaching Software 
Engineering Processes. The Journal of Systems and Software, 75(1 – 2). 
http://dx.doi.org/10.1016/j.jss.2004.02.033  

Barell, J. (2006). Problem-Based Learning: An Inquiry Approach (2nd edition ed.). Thousand Oaks: Corwin 
Press. 

Barrows, H. S., & Tamblyn, R. (1976). An Evaluation of Problem-Based Learning in Small Groups Utilizing a 
Simulated Patient. Journal of Medical Education, 51(1), 52 – 54. 
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ131167  

Bloomberg, L., Dale, & Volpe, M. (2008). Completing Your Qualitative Dissertation. Thousand Oaks: Sage 
Publications. 

Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J., & Madachy, R. (1998). A Stakeholder Win–Win Approach to 
Software Engineering Education. Annals of Software Engineering, 6(1), 295 - 321. 
http://dx.doi.org/10.1023/A:1018988827405  

Boehm, B. W. (1981). Software Engineering Economics. Sydney: Prentice-Hall. 

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, L. (1999). The Guide to the Software Engineering 
Body of Knowledge. IEEE Software, 16(6), 35 - 44. http://dx.doi.org/10.1109/52.805471  

Brereton, O. P., Lees, S., Bedson, R., Boldyreff, C., Drummond, S., Layzell, P. J., et al. (2000). Student Group 
Work Across Universities: A Case Study in Software Engineering. IEEE Transactions on Education, 43(4), 394 – 
399. http://dx.doi.org/10.1109/13.883348   

Brooks, F. P. (1987). No Silver Bullet: Essence and Accidents of Software Engineering. IEEE Computer, 20(4), 
10 – 19. http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663532  

Butler, R. J., Pray, T. F., & Strang, D. R. (1979). An Extension of Wolfe's Study of Simulation Game Complexity. 
Decision Sciences, 10, 480 – 486. http://dx.doi.org/10.1111/j.1540-5915.1979.tb00038.x  

Caillois, R. (1961). Man, Play and Games (M. Barash, Trans.). New York: Free Press of Glencoe. 

Caulfield, C. W., Veal, D., & Maj, S. P. (2011a). Implementing System Dynamics Models in Java. International 
Journal of Computer Science and Network Security, 11(7), 43 – 49. 

Caulfield, C.W., Veal, D., & Maj, S. P. (2011b). Teaching Software Engineering Project Management – A Novel 
Approach for Software Engineering Programs. Modern Applied Science, 5(5), 87 – 104. 
http://dx.doi.org/10.5539/mas.v5n5p87  

Caulfield, C. W., Kohli, G., & Maj, S. P. (2004). Sociology in Software Engineering. Proceedings of  
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition, Salt 
Lake City. 

Caulfield, C. W., Xia, J., Veal, D., & Maj, S. P. (2011). A Systematic Survey of Games Used for Software 
Engineering Education. Modern Applied Science, in press. 

Cheng, Y. P., & Lin, J. M. C. (2010). A Constrained and Guided Apprach for Managing Software Engineering 
Course Projects. IEEE Transactions on Education, 53(3), 430 – 436. http://dx.doi.org/10.1109/TE.2009.2026738   

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (3rd edition 
ed.). Thousand Oaks: Sage Publications. 

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press. 

DeMarco, T., & Lister, T. (1999). Peopleware: Productive Projects and Teams (2nd edition ed.). New York: 
Dorset House Publishing Co. 

Dempsey, J. V., Haynes, L. L., Lucassen, B. A., & Casey, M. S. (2002). Forty Simple Computer Games and What 
They Could Mean to Educators. Simulation & Gaming, 33(2), 157 – 168. 
http://dx.doi.org/10.1177/1046878102332003   



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 13

Eldredge, D. L., & Watson, H. J. (1996). An Ongoing Study of the Practice of Simulation in Industry. Simulation 
& Gaming, 27(3), 375 – 386. http://dx.doi.ord/10.1177/1046878196273008   

Faria, A. J. (1987). A Survey of the Use of Business Games in Academia and Business. Simulation & Games, 
18(2), 207 – 224. http://dx.doi.org/10.1177/104687818701800204   

Faria, A. J. (1998). Business Simulation Games: Current Usage Levels—An Update. Simulation & Gaming, 
29(3), 295 – 308. http://dx.doi.org/10.1177/1046878198293002   

Faria, A. J., & Wellington, W. J. (2004). A Survey of Simulation Game Users, Former-Users, and Never-Users. 
Simulation & Gaming, 35(2), 178 – 207. http://dx.doi.org/10.1177/1046878104263543   

Faria, A. J., & Wellington, W. J. (2005). Validating Business Gaming: Business Game Conformity with PIMS 
Findings. Simulation & Gaming, 36(2), 259 – 273. http://dx.doi.org/10.1177/1046878105275454  

Gee, J. P. (2007). Good Video Games and Good Learning: Collected Essays on Video Games, Learning and 
Literacy. New York: Peter Lang Publishing. 

Goodwin, J. S., & Franklin, S. G. (1994). The Beer Distribution Game: Using Simulation to Teach Systems 
Thinking. Journal of Management Development, 13(8), 7 – 15. http://dx.doi.org/10.1108/02621719410071937  

Gotterbarn, D. (1999). How the New Software Engineering Code of Ethics Affects You. IEEE Software, 16(6), 
58 – 64. http://doi.ieeecomputersociety.org/10.1109/52.805474  

Guba, E. G., & Lincoln, Y. S. (2005). Paradigmatic Controversies, Contradictions, and Emerging Confluences. In 
N. K. Denzin & Y. S. Lincoln (Eds.), The Sage Handbook of Qualitative Research (3rd edition ed., pp.191 – 215). 
Thousand Oaks: Sage Publications. 

Hainey, T., Connelly, T. J., Stansfield, M., & Boyle, E. A. (2010). Evaluation of a Game to Teach Requirements 
Collection and Analysis in Software Engineering at Tertiary Education Level. Computers & Education, 56(1), 21 
– 35. http://dx.doi.org/10.1016/j.compedu.2010.09.008   

Heldman, K. (2007). PMP: Project Management Professional Exam Study Guide (4th edition ed.). San Francisco: 
Sybex. 

iSSEc Project. (2009). Graduate Software Engineering 2009 (GSwE2009): Curriculum Guideline for Graduate 
Degree Programs in Software Engineering. 

Janis, I. L. (1971). Groupthink. Psychology Today, 5(5), 43 - 46, 74 – 76. 

Johns-Boast, L., & Patch, G. (2010). A Win-Win Situation: Benefits of Industry-Based Group Projects. 
Proceedings of  Australasian Association for Engineering Education Conference (AaeE 2010). 

Joint IS2010 Curriculum Task Force. (2010). Curriculum Guideline for Undergraduate Degree Programs in 
Information Systems: Association for Computing Machinery and Association for Information Systems. 

Joint Task Force on Computing Curriculum. (2004). Software Engineering 2004: Curriculum Guidelines for 
Undergraduate Degree Programs in Software Engineering: IEEE Computer Society/Association for Computing 
Machinery. 

Kirk, J., & Miller, M. L. (1986). Reliability and Validity in Qualitative Research. London: Sage Publications. 

Kruchten, P. (2005). Editor's Introduction: Software Design in a Postmodern Era. IEEE Software, 22(2), 16-18. 
http://doi.ieeecomputersociety.org/10.1109/MS.2005.38  

Kruchten, P. B. (2004). The Nature of Software: What's So Special About Software Enginering? [Online] 
Available: www.ibm.com/developerworks/rational/library/4700.html 

Lincoln, Y. S., & Guba, E. G. (1984). Naturalistic Inquiry. London: Sage Publications. 

Marshall, M. N. (1996). Sampling for Qualitative Research. Family Practice, 13(6), 522 – 525. 

Maxwell, J. A. (2004). Qualitative Research Design: An Interactive Approach (2nd edition ed.). Thhousand Oaks: 
Sage Publications. 

Maxwell, N. L., Mergendoller, J. R., & Bellisimo, Y. (2004). Developing a Problem-Based Learning Simulation. 
Simulation & Gaming, 35(4), 488 - 498. http://dx.doi.org/10.1177/1046878104264789   

McCall, J. (2011). Gaming the Past: Using Video Games to Teach Secondary History London: Routledge. 

McConnell, S. (2004). Professional Software Development. Boston: Addison-Wesley. 

McKenna, R. J. (1991). Business Computerized Simulation: The Australian Experience. Simulation & Gaming, 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 14

22(1), 36 – 62. http://dx.doi.org/10.1177/1046878191221003  

Meadows, D. L. (1999). Learning to Be Simple: My Odyssey with Games. Simulation & Gaming, 30(3), 342 – 
351. http://dx.doi.org/10.1177/104687819903000310  

Michael, D., & Chen, S. (2005). Serious Games: Games That Educate, Train, and Inform. Boston: Thomson 
Course Technology PTR. 

Miller, J. G. (1978). Living Systems. New York: McGraw-Hill Book Company. 

Navarro, E. O., & van der Hoek, A. (2007). Comprehensive Evaluation of an Educational Software Engineering 
Simulation Environment. Proceedings of The Twentieth Conference on Software Engineering Education and 
Training, July 2007 Dublin, Ireland 

Navarro, E. O., & van der Hoek, A. (2009). Multi-Site Evaluation of SimSE. Proceedings of The 40th ACM 
Technical Symposium on Computer Science Education March 3 – 7 Chattanooga, Tennessee. 

Naveda, J. F., & Seidman, S. B. (Eds.). (2006). IEEE Computer Society Real-World Software Engineering 
Problems: A Self-Study Guide for Today's Software Professional. Hoboken: John Wiley & Sons. 

Osterweil, L. (1987). Software Processes are Software Too. Proceedings of  Proceedings of the 9th 
International Conference on Software Engineering Monterey, California. 

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd edition ed.). Thousand Oaks: Sage 
Publications. 

Perla, P. P. (1990). The Art of Wargaming: A Guide for Professionals and Hobbyists. Annapolis, Maryland: Naval 
Institute Press. 

Polack-Wahl, J. A. (2006). Lessons Learned From Different Types of Projects in Software Engineering. 
Proceedings of  International Conference on Frontiers in Education: Computer Science & Computer 
Engineering, June 26-29, 2006, Las Vegas, Nevada 

Prensky, M. (2006). Don't Bother Me Mom– I'm Learning!. St. Paul, Minnesota: Paragon House Publishers. 

Raia, A. P. (1966). A Study of the Educational Value of Management Games. The Journal of Business, 39(3), 339 
– 352. http://dx.doi.org/doi:10.1086/294863  

Richards, L. (2009). Handling Qualitative Data (2nd edition ed.). Thousand Oaks: Sage Publications. 

Riddell, R. (1997, April). Doom Goes to War. Wired, 5, 113 – 118, 164 – 166. 

Robillard, P. N., & Robillard, M. (1998). Improving Academic Software Engineering Projects: A Comparative 
Study of Academic and Industry Projects. Annals of Software Engineering, 6(1), 343 - 363. 
http://dx.doi.org/10.1023/A:1018925902814  

Rossman, G. B., & Rallis, S. F. (1998). Learning in the Field: An Introduction to Qualitative Research. Thousand 
Oaks: Sage Publications. 

Salen, K., & Zimmerman, E. (Eds.). (2005). The Game Design Reader: A Rules of Play Anthology Cambridge, 
Massachusetts: The MIT Press. 

Savin-Baden, M. (2003). Facilitating Problem-Based Learning. Maidenhead: The Society for Research into 
Higher Learning & Open University Press. 

Savin-Baden, M., & Major, C. H. (2004). Foundations of Problem-Based Learning. Maidenhead: The Society 
for Research into Higher Learning & Open University Press. 

Schrage, M., & Peters, T. (1999). Serious Play : How the World's Best Companies Simulate to Innovate: Harvard 
Business School Press. 

Senge, P. M., Kleiner, A., Roberts, C., Ross, R. B., & Smith, B. J. (1994). The Fifth Discipline Fieldbook. 
London: Nicholas Brealey Publishing. 

Sterman, J. D. (1989). Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision 
Making Environment. Management Science, 35(3), 321 – 339. http://dx.doi.org/10.1287/mnsc.35.3.321  

Strauss, A. L. (1987). Qualitative Analysis for Social Scientists. Cambridge: Cambridge University Press. 

Suits, B. (1967). What is a Game?. Philosophy of Science, 34(2), 148 – 156. http://www.jstor.org/stable/186102  

Tang, C., Lai, P., Tang, W., Davis, H., Frankland, S., Oldfield, K., et al. (1997). Developing a Context-Based 
PBL Model. In J. Conway, R. Fisher, L. Sheridan-Burns & G. Ryan (Eds.), Research and Development in 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

Published by Canadian Center of Science and Education 15

Problem Based Learning: Integrity, Innovation, Integration (pp.588 – 589). Newcastle: Australian Problem 
Based Learning Network. 

Watt, K. E. F. (1977). Why Won't Anyone Believe Us?. Simulation, 28(1), 1 – 3. 
http://dx.doi.org/10.1177/003754977702800102  

Wolfe, J. (1978). The Effects of Game Complexity on the Acquisition of Business Policy Knowledge. Decision 
Sciences, 9(1), 143 – 155. http://dx.doi.org/10.1111/j.1540-5915.1978.tb01373.x  

Zagal, J. P., Rick, J., & Hsi, I. (2006). Collaborative Games: Lessons Learned from Board Games. Simulation & 
Gaming, 37(1), 24 — 40. http://dx.doi.org/10.1177/1046878105282279   

Zapata, C. M. (2010). A Classroom Game for Teaching Management of Software Companies. Dyna, 77(163), 
290 – 299. 

Zyda, M. (2007). Creating a Science of Games. Communications of the ACM, 50(7), 26 – 29. 
http://dx.doi.org/10.1145/1272516.1272535  

 

 

 
Table 1. Comparison of players pre- and post-game test scores 

Role and Experience 

(in years) 

n Average pre-test 

score (out of 8) 

Average pre-test 

score (out of 8) 

Difference Between 

Pre- and Post-Game 

Scores 

Students 17 4.64 (SD = 0.861) 5.41 (SD = 1.460) +0.77 

      0 to 1 years  17 4.64 (SD = 0.861) 5.41 (SD = 1.460) +0.77 

Software Developers 30 5.53 (SD = 0.995) 6.33 (SD = 1.107) +0.80 

      0 to 1 0    

      2 to 5 years 14 5.57 (SD = 1.089) 6.07 (SD = 1.268) +0.50 

      5 to 10 years 11 5.72 (SD = 1.009) 6.818 (SD = .0750) +1.098 

      10 to 15 years 5 5.00 (SD = 0.707) 6.00 (SD = 1.224) +1.00 

      15+ years 0    

Project Managers 12 4.66 (SD = 1.497) 5.42 (SD = 2.020) +0.76 

      0 to 1 0    

      2 to 5 years 6 4.5 (SD = 2.073) 5.00 (SD = 2.529) +0.50 

      5 to 10 years 1 5.00 (SD = NA) 6.00 (SD = NA) +1.00 

      10 to 15 years 4 4.75 (SD = 0.957) 5.75 (SD = 1.892) +1.00 

      15+ years 1 5.00 (SD = NA) 6.00(SD = NA) +1.00 

 59 5.10 (SD = 1.155) 5.88 (SD = 1.486) +0.78 

 

 

 

 

 

 

 

 

 

 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 1; January 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 16

Table 2. Participants’ responses when asked whether they thought Simsoft was easy or difficult to play 

Role and Experience (in 

years) 

n Average Response 

Students 17 3.17 (SD = 0.528) 

      0 to 1 years  17 3.17 (SD = 0.528) 

Software Developers 30 2.93 (SD = 0.253) 

      0 to 1 0  

      2 to 5 years 14 2.92 (SD = 0.267) 

      5 to 10 years 11 3.00 (SD = 0.000) 

      10 to 15 years 5 2.80 (SD = 0.447) 

      More than 15 years 0  

Project Managers 12 2.58 (SD = 0.514) 

      0 to 1 0  

      2 to 5 years 6 2.83 (SD = 0.408) 

      5 to 10 years 1 3.00 (SD = NA) 

      10 to 15 years 4 2.25 (SD = 0.500) 

      More than 15 years 1 2.00 (SD = NA) 

 59 2.93 (SD = 0.449) 

 

 
Table 3. Players' evaluation of game features 

Feature Average (1 = very bad, 5 = 

very good; or 1 = strongly 

disagree, 5 = strongly agree) 

Written instructions Average = 4.44, SD = 0.771 

The game was interesting Average = 4.37, SD = 0.963 

Realistic scenario Average = 4.37, SD = 0.692 

Navigation around the game Average = 4.22, SD = 0.744 

Game logic was apparent Average = 4.18, SD = 0.730 

Useful to work in teams Average = 4.15, SD = 0.714 

Prefer game-board version Average = 3.98, SD = 0.754 

 

 


	Shall we play a game?
	Recommended Citation

	ShallWePlay-20120325
	1-CaseForSystemDynamics-UICEE paper
	A Case for System Dynamics

	2-CaseForSystemDynamcsSystemsThinking
	4   Conclusions
	References

	3-CaseForGamesInSoftwareEngineering
	COPYRIGHT DECLARATION

	4-GlobalJournalEngineeringEducation
	5-SociologyinSoftwareEngineering
	6-ComePlay
	7-MAS-1-Published
	8-ImplementingSDModelsInJava20110707
	9-TeachingSEManagement20110708
	10-SystematicSurvey
	11-12536-42567-1-PB

