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ABSTRACT 

Pax3 has numerous integral functions in embryonic tissue morphogenesis while 

knowledge of its complex function in cells of adult tissue continues to unfold. Across a 

variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of 

the tissue’s resident stem and progenitor cell population. In adult peripheral nerves, 

Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is 

known about the purpose of this expression. Based on the evidence of its role in other 

adult tissue stem and progenitor cell maintenance, it was hypothesised that the cells in 

adult peripheral nerve that express Pax3 may be Schwann glioblasts. Here, methods 

have been developed for visualisation of Pax3 expressant cells in normal 60 day old 

mouse peripheral nerve. Visualisation allowed morphological, anatomical and 

phenotypic distinctions to be made between these Pax3 expressing cells and Remak 

bundle nonmyelinating Schwann cells. The distinctions described herein, together with 

the finding that Pax3 expressing cells co-express stem cell marker Sox2, provides 

compelling support for the suggestion that a progenitor Schwann cell population may be 

present in adult mouse peripheral nerve. 
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1.1 Introduction 

The master regulatory gene, PAX3, is known to orchestrate cellular phenotypes across 

several tissue lineages during embryonic development. The multiple protein isoforms 

encoded by PAX3 are transcription factors that direct downstream target genes involved 

in cellular proliferation, migration, apoptosis and differentiation. The specific function 

of the many transcribed PAX3 isoforms is contingent upon the stage of development of 

the cell and the age of the tissue in which the cell is incorporated. PAX3 continues to 

function past embryogenesis and has several regulatory roles in the ontogeny of stem 

cells throughout the postnatal lifespan of the organism. This literature review 

summarises the known functions of PAX3/Pax3 in skeletal muscle, melanocyte and 

Schwann cell development, in adult cells of these tissues and in the diseased state. The 

objective of the review is to highlight the principle role of PAX3/Pax3, namely, 

regulation of the progenitor cell state, across a diverse and complex spectrum of cell 

types through stages of development and maturation.        

 

1.2 The PAX3/Pax3 gene  

The paired-box homeotic gene 3 (PAX3) encodes the PAX3 transcription factor which 

derives its name from the 384 base pairs of DNA that encode a highly conserved DNA 

binding motif of 128 amino acids known as the paired domain (Burri et al., 1989; 

Krauss et al., 1991). Throughout the review, the conventional use of italics for gene and 

RNA transcript names (e.g., PAX3) and regular case for protein isoforms (e.g., PAX3) is 

observed; similarly, it is convention that the human gene or protein is indicated with 

uppercase letters (PAX3/PAX3) while the mouse gene or protein is denoted using 

lowercase letters (e.g., Pax3/Pax3).  

 

PAX3 is located on chromosome two at 2q35 of the human genome (Ishikiriyama, 1993) 
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while Pax3 is located on chromosome one of the mouse genome. The coding region of 

human PAX3 consists of 10 exons (Barber et al., 1999) from which seven transcripts are 

produced via alternate post-transcriptional splicing (Tsukamoto et al, 1994; Barber et al, 

1999; Parker et al, 2004) (Fig. 1). Each transcript produced may also encode a 

glutamine residue in the linker region between the subdomains of the paired-domain of 

the protein (Vogan & Gros, 1996) (Fig. 2). A search of the mouse genome in the 

National Center of Biotechnology Information database (NCBI) of the U.S. National 

Library of Medicine and National Institutes of Health reveals that four transcripts of 

Pax3 are produced in mouse. Three of these transcripts have been sequenced, with 

Pax3c and Pax3d expressed in cells of the melanogenic lineage (Barber et al, 1999), 

while Pax3^8 is expressed in myoblasts (Pritchard et al, 2003). The mouse sequences of 

Pax3c, Pax3d and Pax^8 are homologous to human sequences PAX3c, PAX3d and 

PAX3g, respectively. Barber et al (1999) have isolated an embryonic mouse cDNA 

where exon 9 is spliced onto exon 5; they designated it Pax3f, however, sequence data is 

unavailable (personal communication). Like human PAX3, each mouse Pax3 transcript 

is able to encode an additional transcript that contains a glutamine residue in the paired-

domain of the protein (Vogan, Underhill & Gros, 1996; Barber et al., 1999). 

 

Functional diversity of PAX3 is linked to its ability to produce alternatively spliced 

transcripts which alter the structure and, consequently, the DNA binding activity of the 

encoded transcription factors (Tsukamoto et al., 1994; Underhill & Gros, 1997; Seo et 

al., 1998). PAX3/Pax3 transcription factors contain two DNA-binding domains, a paired 

and a homeodomain, and a highly variant transactivation domain that regulates 

transcription of bound target genes. The DNA binding domains recognise and bind  



 

 4 

792 957 1173 1420 147485 364 45185 586858585

792 957 1173 144785 364 45185 586858585

85 364 45185 673858585

792 957 117385 364 45185 586858585 1209

85 364 45185 1080858585

792 957 117385 364 45185 586858585 1204 1221

792 957 1173 1420 145185 364 45185 586858585 1515

PAX3a

PAX3b

PAX3c

PAX3d

PAX3e

PAX3g

PAX3h

792 957 1173 1420 147485 364 45185 586858585

792 957 1173 144785 364 45185 586858585

85 364 45185 673858585

792 957 117385 364 45185 586858585 1209

85 364 45185 1080858585

792 957 117385 364 45185 586858585 1204 1221

792 957 1173 1420 145185 364 45185 586858585 1515

PAX3a

PAX3b

PAX3c

PAX3d

PAX3e

PAX3g

PAX3h

 

 

Figure 1. Pax3 transcripts. Schematic representation of human PAX3 mRNA splice 
variants shows the exons and their respective sizes (coloured boxes). The vertical black 
lines and respective numbers indicate the nucleotide number of the acceptor splice sites 
of each exon. The representation is based upon current information for human PAX3 
mRNA available on NCBI. 
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Exon 5 Exon 6 Exon 7 Exon 8 Exon 9Exon 2 Exon 3 Exon 4Exon 1 Exon 10

5’…cccaagCAGgtgaca…3’
Q

Exon 5 Exon 6 Exon 7 Exon 8 Exon 9Exon 2 Exon 3 Exon 4Exon 1 Exon 10

5’…cccaagCAGgtgaca…3’
Q

 

Figure 2. Modification of Pax3 transcripts with inclusion of a glutamine residue. 
Location of the alternative nucleic acid sequence encoding a glutamine (Q) residue  that 
occurs at the intron 2/exon 3 junction. The codon encoding the Q residue is underlined.  
 

specific regulatory sequences within promotor, enhancer and silencer regions of target 

DNA while the transactivation domain recruits components of the pre-initiation 

complex and other transcription factors to the area of the gene promotor. This facilitates 

the signals to RNA polymerase to begin initiation and transcription of the downstream 

gene (Ptashe, 1988). Alternate PAX3 transcription factors activate a variety of 

downstream cellular pathways by variant use of the paired domain, the homeodomain or 

the combined use of both to bind to target gene promoter sequences (Underhill & Gross, 

1997; Vogan & Gross, 1997) (Fig. 3).  

 

The paired domain, which is the definitive structural and functional motif of all Pax 

proteins, is divided into N-terminal and C-terminal subdomains, each of which bind  

independently to DNA recognition sequences (Jun & Desplan, 1996). Both of the 

subdomains contain three alpha-helices and the DNA-binding motif for both 

subdomains is a helix-turn-helix motif (Xu et al., 1995; Xu et al., 1999). Pax3 also 

encodes a homeo- DNA binding domain (homeodomain) and a conserved octapeptide 

region that participates in protein binding interactions. The helix-turn-helix 

homeodomain is capable of binding DNA via interaction with other homeodomain-

containing proteins (heterodimerisation) or by homodimerisation (Bennecelli et al., 

1995).  
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Figure 3. Pax3 protein structure. A depictation of the Pax3 protein is shown 
juxtaposed to a DNA helix. The paired-box domain is indicated by PD, with the amino 
and carboxyl termini indicated by N and C, respectively. The octopeptide, 
homeodomain and transactivation domains are indicated by OD, HD and TD, 
respectively. (Figure courtesy of Xu et al., 1999).   
 

In addition to the numerous DNA sequences bound individually by the paired domain or 

the homeodomain, cooperative interaction between the DNA binding motifs permits 

binding to additional nucleotide combinations (Treisman, Harris & Desplan, 1991; 

Underhill, Vogan & Gros, 1996; Jun & Desplan, 1996). Conversely, one of the functions 

of the paired domain is inhibition of homeodomain dimerisation which further affects 
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PAX3/Pax3 function (Jun & Desplan, 1996; Underhill & Gros, 1997). A mutation in 

either DNA binding domain affects DNA binding by the other and suggests that the two 

domains function dependently (Fortin et al., 1997). The Pax3 transactivation domain 

also plays a role in regulation of homeodomain binding (Cao & Wang, 2000). Overall, 

the protein structure of PAX3/Pax3 permits specific control of binding to a large array 

of DNA sequences that regulate transcriptional activation or repression of a broad 

spectrum of downstream genes in a variety of developmental pathways.  

 

1.3 Pax3 governs the development of embryonic skeletal myoblasts 

Specification of the skeletal muscle lineage begins when Pax3 is initially expressed in 

cells of the caudal segmental plate, the early mesoderm compartment that contains the 

precursors of skeletal muscle (Schubert et al., 2001). As compartmentalisation of the 

somites forms along an anterior-posterior axis, polarity is generated in the anterior 

mesoderm via Pax3 synergy with the T-box protein 18 (Farin et al., 2008). As somites 

mature, Pax3 expression becomes repressed in the anterior half of the somite and 

becomes restricted to the dermomyotome (Cairns et al., 2008). Sonic Hedgehog signals 

pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates where 

different levels of signalling elicit loss of myotomal markers and activation of 

sclerotomal gene expression. Using explants of presomitic mesoderm, it was 

demonstrated that forced expression of Pax3 in developing somites blocks Sonic 

Hedgehog mediated induction of sclerotomal gene expression and chondrocyte 

differentiation; thus, Pax3 regulates somite formation (Cairns et al., 2008).  

 

At embryonic day 9.5, Pax3 expression is concentrated in the dorsomedial and 

ventrolateral regions of the dermomyotome where modulation of expression levels 

delineates the medial and lateral halves of the dermomyotome (Williams & Ordahl, 
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1994). At the onset of myogenesis (embryonic day 10.5), myogenic precursors that 

express Pax3 proliferate and delaminate from the edge of the dermomyotome to form 

the myotome. Subsequent to loss of the epithelial structure of the dermomyotome, cells 

of the myotome become highly proliferative (Relaix et al., 2005) and survival of the 

cells is dependent upon Pax3 expression (Franz et al., 1993; Bober et al., 1994; 

Goulding et al., 1994; Tremblay et al., 1998; Borycki et al., 1999; Buckingham et al., 

2006). At the same time, Pax3 expressant myoblasts migrate from the lips of the 

dermomyotome into the limb buds (Bober et al., 1994; Williams & Ordahl, 1994; Relaix 

et al., 2005).  

 

Between embryonic day 11.5 and 17.5, myogenic determination genes, myogenic factor 

5 (Myf5) and myogenic differentiation antigen (MyoD), are increasingly upregulated in 

migrant limb myoblasts (Bajard et al., 2006; Hu et al., 2008), as the cells reach their 

target destination in the limb. Pax3 is required for regulation of this myogenic-specific 

transcriptional program (Tajbakhsh et al., 1997; Kassar-Duchossoy et al., 2004; 

Buckingham et al., 2006). Subsequently, MyoD and myogenin activate formation of 

differentiated muscle in pre- and neonatal myoblasts as downregulation of Pax3 occurs 

during myocyte fusion and elongation (Venters et al., 2004). A second population of 

Pax3 (and Pax7) expressant cells is formed between embryonic days 11.5 - 17.5 that is 

distinguishable from myoblasts that express myogenic genes. Between embryonic day 

16.5 and 18.5, this cell population is enclosed within the forming basal lamina of 

nascent muscle fibres where it remains as the resident progenitor cells, or satellite cells, 

of adult skeletal muscle (Gros et al., 2005; Relaix et al., 2005). 

 

1.4 Pax3 inhibits differentiation of myoblasts in adult skeletal muscle 

Satellite cells are the skeletal muscle progenitor cells responsible for postnatal and adult 
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muscle growth and repair (Charge & Rudnicki, 2004). In response to skeletal muscle 

growth and injury, quiescent satellite cells are activated to proliferate, self-renew and 

form a pool of myoblasts which fuse and differentiate in order to produce mature 

myofibres. Upon satellite cell activation, increased Pax3 expression does coincide with 

MyoD upregulation (Hyatt et al., 2008); however, in this context, MyoD is upregulated 

independently of Pax3 via Notch signalling (Relaix et al., 2006; Crist et al., 2009). That 

conditional Pax3 inactivation in mutant satellite cells does not compromise muscle 

regeneration and that Pax3 is not required for injury-induced myogenesis in adulthood 

suggests that it functions in satellite cell progenitors solely to decrease the propensity of 

the myoblast to differentiate by transient repression of MyoD (Relaix et al., 2005; 

Lepper et al., 2009). Pax3 expression is decreased as satellite cell-derived myoblasts 

begin to differentiate (Olguin & Olwin, 2004; Zammit et al., 2004) and exemplifies that, 

in adult skeletal muscle, Pax3 functions to temporally maintain myoblasts in a 

progenitor cell state. 

 

1.5 Aberrant PAX3/Pax3 expression in myoblasts  

The importance of PAX3/Pax3 expression in the development of skeletal muscle cells is 

highlighted by mutant phenotypes that have altered PAX3/Pax3. For example, the 

mutant Splotch mouse has a five nucleotide sequence variation in intron three of Pax3, 

including a nucleotide deletion and transversion at the invariant 3' splice acceptor site. 

This genomic mutation prevents the normal splicing of intron three, resulting in four 

incorrectly coded mRNA transcripts, three of which result in a stop codon at the splice 

site (Epstein et al., 1991). Homozygous Splotch mice die in utero around embryonic day 

13.5 due to severe neural tube defects (spina bifida and exencephaly), a lack of limb 

skeletal musculature and deficiencies in neural crest-derived lineages including 

Schwann cells, dorsal root and cranial ganglia and melanocytes (Franz, 1990; Epstein et  
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Figure 4. Photomicrograph of E13.5 Splotch embryos. The mouse embryo on the left 
is a Pax3 mutant "Splotch" mouse. Note the defects in the area of the neural tube, neural 
crest derived cranial facial structures and forming limb buds as compared to the wild 
type mouse on the right. Photo courtesy of Conway et al., 1997. 
 

al., 1991; Bober, 1994) (Fig. 4). Homozygous Splotch mice fail to develop limb 

musculature as cells derived from the somites either do not migrate into the limbs due to 

the absence of Pax3 in premigratory cells or the cells that do migrate are few in number 

due to the loss of Pax3 (Daston et al., 1996; Epstein et al., 1996). The Splotch 

phenotype indicates that Pax3 has an early, key role in normal skeletal muscle 

development.  

 

In humans, aberrant PAX3 gene dosage causes the soft tissue tumour alveolar 

rhabdomyosarcoma (Sorensen et al., 2002). This paediatric cancer is linked to a somatic 

translocation t(2;13)(q35;q14) in which the PAX3 paired and homeodomain encoding 

regions are juxtaposed with the region that encodes the DNA-binding motif of the 

homeotic gene 'forkhead ' (FKHR); the fusion protein is referred to as PAX3/FKHR 

(Galili et al., 1993). Heterozygotes display a phenotype linked to both a gain-of-
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function effect on downstream PAX3 target genes (due to a more transcriptionally active 

PAX3/FKHR fusion protein) (Xia & Barr, 2004) and the dominant negative effects of 

the fusion protein on wild type PAX3 expression (Keller et al., 2004a). Experimental 

models of Cre-mediated conditional knock-ins of Pax3/Fkhr into the Pax3 locus at 

distinct times throughout embryonic and postnatal myogenesis illustrate how Pax3 

regulates the development of myoblast progenitors across the lifespan. For example, 

mice heterozygous for a germ-line Pax3/Fkhr knock-in partially phenocopy the Splotch 

phenotype as animals have pathogenic limb and diaphragm muscles (Keller et al., 

2004a). The mutant animal has a complete absence of wild-type Pax3 linked to 

Pax3/Fhkr repression; paradoxically, mice display aberrant myoblast migration that 

results from Pax3/Fkhr mediated overexpression of downstream Pax3 target genes, 

hepatocyte growth factor receptor (cMet) and MyoD (Keller et al., 2004a). The model 

demonstrates the importance of Pax3/Pax3 regulation of delamination and migration of 

somitic muscle progenitor cells in early embryonic development.  

 

To study the consequences of Pax3/Fkhr in satellite cells, a conditional Pax3/Fkhr 

knock-in allele was combined with a Pax7-driven Cre allele. Pax7 expression was 

found to be increased in the mutant mice and was linked to Pax3/Fkhr inhibition of 

Pax3 which, in turn, normally represses Pax7 (Borycki et al., 1999). Despite increased 

Pax7 expression, viable animals had postnatal growth defects and a decreased number 

of satellite cells (phenocopying a Pax7 deficiency) which was correlated to the 

dominant-negative effects of Pax3/Fkhr on downstream Pax7 targets (Oustanina et al., 

2004). Results of the study demonstrated that Pax3/Fkhr expression in satellite cells 

does not directly lead to alveolar rhabdomyosarcoma (Keller et al., 2004a). In fact, the 

progeny cells of an activated satellite cell that harbours the PAX3/FKHR allele best 

demonstrate the effects of the PAX3 mutation. In transformed myoblasts, the gain of 
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function of PAX3/FKHR on PAX3 targets is thought to cause oncogenesis at the stage 

of terminal differentiation, where PAX3 expression is normally down-regulated 

(Qualman et al., 1998). At this stage, continued PAX3/FKHR expression leads to 

enhanced transcription of PAX3 downstream target genes that regulate the inhibition of 

cell cycle withdrawal (Keller at al., 2004b). Thus, the failure of myoblasts to 

differentiate into myocytes is thought a principle cause of neoplasia (Roeb et al., 2007; 

Charytonowicz, 2009, 2011). 

 

To summarise, Pax3 has an early role in cell fate and tissue mapping of the embryonic 

mesoderm and somites. As the proliferation and migration of specified myogenic 

precursors occurs within the developing muscle masses of the embryo, Pax3 has a key 

role in the survival of the cells. In order for developmental myoblasts to advance into 

the myogenic program, Pax3 is required for upregulation of regulatory factors Myf5, 

MyoD and myogenin and subsequent terminal differentiation. In embryonic 

development, the surrounding mesenchyme, together with Pax3, has a principle role in 

prevention of precocious differentiation of myoblasts. A population of Pax3 expressant 

progenitor cells remains in adult skeletal muscle as satellite cells. When activated by 

injury, satellite cells transiently upregulate Pax3 where expression does not have a 

direct role in cell survival but rather functions to inhibit precocious differentiation of 

myoblasts via repression of MyoD. Myogenin expression, indicative of differentiation, 

coincides with downregulation of Pax3. At this stage of myoblast development in adult 

tissue, if downregulation of PAX3 does not occur, it is thought that oncogenesis ensues 

linked to the inability of the myoblasts to properly differentiate. 

 

1.6 Pax3 regulates the specification and survival of embryonic melanoblasts 

Pax3 functions similarly in neural crest cells as they develop along the melanocytic 
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lineage where cellular specification, survival, migration and differentiation are regulated 

by its expression. Development of melanocytes, the pigment producing cells of the skin 

and hair, begins as the neural crest cells on the mediodorsal edge of the closing neural 

folds undergo an epithelial to mesenchymal transition (Le Douarin, 1980). At the axial 

trunk level, following an accumulation near the dorsal neural tube in a 'migration 

staging area' neural crest cells migrate in two waves to populate target embryonic 

tissues. One wave proceeds ventrally, adjacent to the neural tube and within the anterior 

portion of the somite where formation of the peripheral ganglia and nerves occurs. A 

further wave proceeds along a dorsolateral path between the ectoderm and the 

dermomyotome.  

 

Pax3 is, in fact, an early marker of the neural crest lineage in mice where expression is 

detected at embryonic day 8.5 (Goulding et al., 1991). As neural crest cells segregate 

from the neural epithelium to the transient migratory staging area, Pax3 is implicated in 

regulation of the neural and ectodermal interactions required for neural crest induction 

(Dottori et al., 2001). Around embryonic day 10.5, neural crest cells delaminate and 

migrate from the neural crest staging area where Pax3 expression is linked to their 

specification and proliferation (Hornyak et al., 2001). By E11.5, in cells that undergo 

dorsolateral migration, the melanogenic determination gene dopachrome tautomerase 

(Dct) is expressed and indicates the commitment of the cells to future melanin synthesis 

(Wehrle-Haller & Weston, 1995). At this stage, micropthalmia transcription factor 

(Mitf), a downstream target of Pax3, is required for survival of the melanoblasts as they 

migrate through the embryonic mesenchyme (Corry & Underhill, 2005; Watanabe et al., 

1998). Mitf activation occurs when Sry-box 10 transcription factor (Sox10) and Pax3 

synergistically bind regulatory consensus sites of its promotor region (Bondurand et al., 

2000; Potterf et al., 2000). As Pax3 has an associative role in the upregulation of the 
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melanocytic survival factor Mitf, it has an indirect role in the survival of migratory 

melanoblasts.  

 

Following regionalisation of melanoblasts in the mouse dermis (embryonic day 12.5-

13.5), Pax3 remains expressed upon entry into the epidermis (Blake & Ziman, 2005). 

From embryonic day 14.5, melanoblasts that express stem cell receptor (c-Kit) are 

incorporated into the developing hair follicle. Around embryonic day 15, melanocyte 

differentiation occurs and pigmentation of the first hairs is induced two days later 

(Hirobe, 1984; Jordan & Jackson, 2000; Peters et al., 2002). At this stage, a 

subpopulation of c-Kit negative and Pax3 positive melanoblasts colonise the hair 

follicle stem cell niche where they persist into adulthood as resident melanocytic stem 

cells (Peters et al., 2002; Blake & Ziman, 2005; Mak et al., 2006; Medic and Ziman, 

2010). While most mouse epidermal melanoblasts undergo apoptosis after birth (Hirobe, 

1984) , human epidermal melanoblasts terminally differentiate in postnatal skin and are 

active in pigment production throughout life; in these cells, PAX3 is not constitutively 

expressed (Scholl et al., 2001).  

 

1.7 Pax3 orchestrates the proliferation of adult melanocytic stem cells and inhibits 

the differentiation of their progeny 

Melanocytic stem cells of the adult hair follicle display an exquisite example of the 

regulatory function of PAX3/Pax3 in stem and progenitor cell survival. Both the 

epidermis and the hair follicle are highly regenerative structures which contain a broad 

range of epithelial stem cell populations and most have the capacity to differentiate into 

all epidermal cell lineages (Wilson et al., 1994; Taylor et al., 2000; Oshima et al., 2001; 

Ghazizadeh & Tacichman 2001; Nishimura et al., 2002; Owens & Watt, 2003; Osawa et 

al., 2005; Levy et al., 2005, 2007; Li et al., 2010). In both the human and mouse hair 
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follicle, stem cells reside in a distinct anatomical compartment called the bulge, which 

extends from the sebaceous gland duct to the insertion of the arector pili muscle 

(Nishimura et al., 2002). There are an estimated five million hair follicles per person 

(Tobin, 2008), and therefore an abundance of this pluripotent stem cell niche. During 

postnatal life, the hair follicle continuously undergoes regeneration through cycles of 

resting, or telogen, (about 3 months in human scalp), followed by active growth, or 

anagen, (about 3 years in human scalp) and then regression, or catagen (about 2 weeks 

in human scalp) (Tobin et al., 1999). In response to postnatal hair growth or loss, the 

hair follicle stem cell niche generates the cell types required for epidermal, hair follicle 

and sebaceous gland regrowth where the niche is characterised as a specialised 

microenvironment that supports production and segregation of progeny cells from 

resident stem cells (Taylor et al., 2000; Oshima et al., 2001; Nishimura et al. 2002; 

Nishimura et al., 2005; Ohyama et al., 2006). Using the model of hair regeneration, the 

complex functions of Pax3/Pax3 have been elucidated and are definitively linked to the 

survival and maintenance of melanocytic stem and progenitor cells.  

  

Melanocytic stem cells comprise a subset of cells of the hair follicle stem cell niche that 

express Dct and are responsible for postnatal hair pigmentation (Nishimura et al., 2002; 

Nishimura et al., 2005). The pigmented hair shaft is produced solely during anagen by 

programmed changes in the microanatomy and gene expression in the hair follicle. 

Once activated in anagen, melanocytic stem cells proliferate to give rise to melanoblast 

progenitors that differentiate to produce pigment for the hair before undergoing 

apoptosis during catagen (Tobin et al., 1999). The extended anagen growth phase of the 

hair follicle produces melanocytic cells across a spectrum of differentiation both 

temporally and spatially. For example, in the transition from telogen to early anagen, the 

mitotically quiescent melanocytic stem cell is located in the bulge (niche) region. 
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Following hair growth activation and germitive proliferation, progeny melanoblasts that 

are amelanotic (or exhibit little melanogenesis) become located in the outer root sheath 

and proximal hair bulb. In the late stages of anagen the differentiated, melanin 

producing cells are located in the distal hair bulb, basal layer of the sebaceous gland and 

infundibulum (Botchkareva et al., 2001). Over the stages of anagen hair growth, 

melanocytic cells express phenotypic variations linked to anatomical and functional 

status. Despite species specific differences between human and mouse hair follicle stem 

cells, it is possible to relate the PAX3/Pax3 functions of each subpopulation of 

melanocytic stem cells and progeny melanoblasts during hair follicle growth (Lang et 

al. 2005; Osawa et al., 2005, Medic & Ziman, 2010).  

 

Firstly, quiescence of stem cells requires that they be accompanied by lower metabolic 

and transcription rates, remain in the G0/G1 phase of the cell cycle, yet have the 

capacity for intense proliferation once activated. In melanocytic stem cells, the 

quiescent state is established via direct Pax3 repression of Dct  (Lang et al, 2005), and  a 

lack of Sox10 expression which abrogates Mitf upregulation and ensures 'stemness' of 

the cells (Watanabe et al., 1998; Bondurand et al., 2000; Lang et al., 2005; Osawa et al, 

2005). Once activated by anagen, progeny of melanocytic stem cells are activated for 

rapid proliferation and melanocyte differentiation by a complex orchestration of the co-

factors Sox10, Pax3, beta-catenin and Mitf. In progenitor melanoblasts, de novo Sox10 

acts synergistically with Pax3 to activate transcription of Mitf which in turn, acts as 

regulator of proliferation and survival of melanoblasts (Lang et al., 2005). Upregulated 

Mitf also competes with Pax3 for the Dct enhancer region such that when Pax3 is 

displaced from the enhancer by beta-catenin signalling, melanoblasts are directed into 

the melanogenic program via Mitf upregulation of Dct. When Mitf is initially 

competitively inhibited from binding Dct by Pax3, intracellular Mitf levels increase; 
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however, once Pax3 mediated repression of Dct is removed by beta-catenin/Mitf 

binding, the melanoblast undergoes rapid terminal differentiation and Pax3 is 

downregulated (Lang et al., 2005). In this way, the role of Pax3 in regenerative postnatal 

melanoblasts of the hair follicle is analogous to the role of Pax3 in skeletal muscle 

satellite cells; in particular, precocious differentiation of cells is prevented via Pax3 

repression of downstream target genes and lifted via cell-mediated signalling.  

 

While much is known about the regeneration of hair follicle melanocytes, the origin of 

melanocyte replacement cells for the adult human epidermis is poorly understood. The 

turnover of interfollicular melanocytes is minimal as they rarely undergo mitosis 

(Jimbow et al., 1975; Pawelek, 1976) and it is acknowledged that normal human 

epidermal melanocytes have increased longevity with resistance to apoptosis 

(Plettenberg et al., 1995). The decades of longevity of the melanocyte in the epidermis 

predisposes it to DNA mutations that can lead to malignant transformation despite 

cellular processes that focus on cell cycle arrest for DNA excision repair and anti-

apoptotic mechanisms (Abdel-Malek et al., 2010). Severely damaged melanocytes, 

however, do apoptose and are discharged from the epidermis after acute sun exposure 

before naevi or melanoma formation (Pharis & Zitelli, 2003;  Petronic-Rosic et al., 

2004). The role of PAX3 in the apoptosis of sun-damaged melanocytes is unfolding; 

however, the mechanisms of replacement of lost human epidermal melanocytes 

following trauma or disease remain largely unknown.  

 

The little that is known about epidermal melanocyte replacement has been gleaned 

through the study of the skin disorder vitiligo, where the loss of epidermal melanocytes 

results in localised, depigmented patches of skin. Following skin therapy, 

repigmentation begins perifollicularly and spreads circumferentially outwards in such a 
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way that the origin of the replacement melanocytes appears to be the hair follicle stem 

cell niche which is spared in the disease (Grichnik, 2008). Intriguingly, the therapeutic 

response of hairless skin to vitiligous treatment has a similar concentric repigmentation 

pattern (Davids et al., 2009) (Fig. 5) where a stem cell population in the interfollicular 

epidermis is theorised to be responsible for melanocyte replacement (Toma et al., 2001; 

Yu, 2002; Fernandes et al., 2004; Li et al., 2010).  

 

Figure 5. Vitiligous repigmentation. The photo shows the therapeutic repigmentation 
of hairless vitiligous skin where the repigmentation pattern spreads circumferentially. 
Photo courtesy of Davids et al., 2009. 

 

It has been found that a population of stem cells in the interfollicular dermis, called 

multipotent skin precursor cells, express Pax3 (Fernandes et al., 2004). These particular 

neural crest-derived cells are said to persist into adulthood as an antigenically distinct 

subset of stem cells located in the dermis and analysis of their phenotype reveals that 

they co-express early embryonic genes such as slug, snail and twist (Fernandes et al., 

2004). Whether these stem cells contribute to melanocyte replacement, however is 

undetermined. A final, alternative theory for the origin of replacement melanocytes in 

human adult skin is that “stem cells persist after birth in the superficial nerve sheath and 

give rise to ... dermal migratory melanocytes when replacements for epidermal 
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melanocytes are needed in postnatal skin” (Cramer, 2009). As embryonic melanoblasts 

are seen in the ventral, neurogenic migratory pathway, this theory may be valid; 

however, to date, no conclusive evidence exists. The theory is particularly noteworthy, 

however, in light of the hypotheses proposed in this thesis. 

 

1.8 Aberrant PAX3/Pax3 expression in melanoblasts  

As with developmental skeletal myogenesis, PAX3/Pax3 is expressed in a spatially and 

temporally restricted manner during developmental melanogenesis. The importance of 

its regulation of melanocyte development is highlighted by the findings that mutations 

in PAX3 cause Waardenburg syndrome in humans (Foy, 1990; Hoth et al., 1993; 

Tassabehji et al., 1993) and the Splotch phenotype in mice (Franz, 1990; Epstein, 1991). 

As detailed above, homozygous Pax3 mutant Splotch mice die in utero around 

embryonic day 13.5 with deficiencies in neural crest-derived structures such as absence 

(or severely reduced numbers) of melanocytes. While it has been demonstrated that 

elimination of Pax3 in Splotch embryos alters the ability of neural crest cells to migrate, 

it has been determined that Pax3 is not required for neural crest cell proliferation 

(Epstein et al., 2000). Splotch-delayed is the least severely affected of the known 

Splotch alleles that results from a transversion at nucleotide 421 of the Pax3 transcript 

which produces a glycine to arginine substitution in the paired domain of Pax3 such that 

DNA binding is largely inhibited (Vogan et al., 1993). Full-length transcripts of Pax3 

mRNA are also produced in Splotch-delayed mutants, although the amount is 5-fold less 

than that found in wild-type mice (Goulding et al., 1993). Splotch-delayed homozygous 

embryos survive until embryonic day 18.5 (Moase & Trasler, 1990) at which stage, 

significant neural crest cell death is observed within the neuroepithelium both prior to 

emigration and after the migratory cells reach target tissues. These findings are 

interpreted to suggest that cell death, linked to pertubation of Pax3, plays a role in the 
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Splotch neural crest deficits (O'Shea & Liu, 1987). 

 

In humans, aberrant PAX3 gene dosage is seen in Waardenburg Syndrome Types I and 

III. The autosomal dominant conditions are caused by point mutations in PAX3 which 

lead to abnormal neural crest development and pathogenesis of melanocytes of the skin, 

hair and stria vascularis of the cochlea (Epstein et al., 1991; Tassabehji et al., 1992). 

Heterogenous PAX3 mutations cause a spectrum of pigmentary symptoms amongst 

affected individuals, ranging from interruption of melanocyte metabolism to piebaldism 

(a congenital white forelock, scattered hyperpigmented epidermal macules and a 

triangular shaped depigmented epidermal patch on the forehead) (Fig. 6). Congenital  

 

Figure 6. Children affected by Waardenburg Syndrome I with piebaldism. The 
white forelock is a pigmentation defect in the hair follicles due to the absence of 
functional melanocytes.  
Photo courtesy of http://emedicine.medscape.com/article/950277-overview 
 

piebaldism results from either a defect in the migration of melanoblasts from the neural 

crest or a failure of melanoblasts to survive or differentiate into melanocytes once 

localised to the ventral aspect of the skin (Bolognia & Pawelek, 1988). Only one 

example of a patient with Waardenburg Syndrome containing a homozygous defect in 

PAX3 has been reported to survive into postnatal life and this individual had a complete 

absence of pigmentation of the skin, hair and eyes (Zlotogora et al., 1995).  

 

While the pathology of Waardenburg Syndromes I and III is clearly indicative of the 
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critical role of PAX3/PAX3 in embryonic melanocyte development, aberrant PAX3 gene 

dosage also has a detrimental effect on maintenance of the adult hair follicle stem cell 

niche and is evidenced by the fact that 44% of persons with Waardenburg Syndrome I 

have premature hair greying (Da Silva, 1991). Normally, the stem cell niche of the hair 

follicle produces fifteen melanocyte generations over an average forty year grey-free 

lifespan (Tobin, 2008). In Waardenburg Syndrome I, the melanocyte stem cell reservoir 

is depleted after fewer hair cycles. Either damaged melanocytes or defective 

melanosomes cause hair bulb melanocytes to continuously undergo apoptosis until 

replacement by stem cells is exhausted (Sato et al., 1973). This indicates a principle role 

for PAX3 in the survival of adult follicular melanocytic stem cells.  

 

In many ways analogous to the transformation of the adult skeletal myoblast by 

perturbed PAX3 expression, overexpression of PAX3 in adult melanocytes is linked to 

cutaneous malignant melanoma. It is theorised that PAX3 expression in terminally 

differentiated melanocytes is linked to oncogenesis and metastasis (Scholl et al., 2001; 

Muratovska et al., 2003; Parker et al., 2004; He et al., 2005; Plummer et al., 2008; 

Medic and Ziman, 2011). Moreover, the PAX3d transcript is seen overexpressed in 

transformed melanocytes (Barr et al., 1999, Barber et al., 1999; Blake & Ziman, 2005) 

where production of the alternate transactivation domain (compared to the constitutive 

PAX3c encoded protein) (Fig. 1) is thought to have significance in the transformation of 

the melanocyte. Specifically, in vitro analyses have demonstrated that PAX3d transfected 

melanocytes grow significantly faster with a higher proportion of cells in S phase 

compared to control cells (Wang et al., 2006). Normally, melanocytes undergo mitosis 

infrequently, however recent findings report that a small proportion of melanocytes of 

extremely sun-exposed skin re-express PAX3 and are proliferative (Medic & Ziman, 

2010). Additionally, PAX3d transfected melanocytes show a significant inhibition of 
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apoptosis (Wang et al., 2006). In vitro results also report that a high proportion of PAX3 

expressant melanocytes of extremely sun-exposed adult skin co-express the PAX3 target 

anti-apoptotic factor BCL2L1 (Margue et al., 2000; Medic et al., 2011). Thus, mutated 

melanocytes of extremely sun-exposed skin may be proliferative and resistant to 

apoptosis through PAX3 overexpression.  

 

To summarise, Pax3 has an early role in direction of neural crest cells toward a 

melanoblast fate in the neural crest staging area. As migration of specified neural crest 

precursors occurs within the developing embryo, Pax3 has an indirect role in the 

survival of these cells linked to upregulation of Mitf, the master regulator of the survival 

of migratory melanoblasts. Germline mutations of PAX3 that occur in melanoblasts 

affect upregulation of MITF such that melanoblast migration is perturbed; this results in 

characteristic pigmentary disorders such as those seen in persons affected with 

Waardenburg Syndromes I and III. In order for developmental melanoblasts to advance 

into the melanogenic-specific transcriptional program, Pax3 inhibition of Dct must be 

lifted for subsequent upregulation of downstream melanogenic genes and thus, terminal 

differentiation of melanocytes. Finally, comparable to skeletal muscle tissue, a 

persistent population of PAX3 expressant melanoblasts remains in adult skin as 

melanocyte progenitor cells. Once activated by epidermal injury or growth of the hair 

follicle, PAX3 functions as a molecular switch within melanocyte progenitor cells both 

to activate proliferation and to inhibit precocious differentiation while it primes the cell 

for differentiation.  

 

1.9 How does Pax3 govern the development of embryonic peripheral glioblasts? 

In development of the peripheral nervous system, Pax3 is known to be expressed in a 

characteristic, temporal pattern in peripheral glioblasts, or Schwann cells (Kioussi et al, 
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1995). While expression patterns of Pax3 in embryonic and adult Schwann cells are 

reminiscent of myo- and melanogenetic expression patterns, little is known about Pax3 

function in both embryonic and adult gliogenesis. Thus, the impetus for this 

experimental work, namely, to identify and characterise cells that express Pax3 in adult 

mouse peripheral nerve, was fueled by the scarcity of literature related to the function of 

Pax3 in Schwann cells. 

 

Schwann cells, one of the many cells types to arise from the neural crest (Le Douarin, 

1986), are the supporting glia of peripheral nerve fibres. Gliogenesis begins with a wave 

of neural crest cell migration that proceeds ventrally, adjacent to the neural tube and 

within the anterior portion of the somite, where formation of the peripheral spinal 

ganglia and nerves occurs. In 10-12 day old mouse embryos, expression of Pax3 

delineates the bipotent glial/melanocyte precursor cells seen in the developing spinal 

ganglia (Goulding et al., 1991; Kioussi et al., 1995; Jessen & Mirsky, 1999). While the 

function of Pax3 in these cells is unknown, an absence of the spinal ganglia is observed 

in the homozygous Splotch mice and indicates a role for Pax3 in the early generation 

and/or survival of the cells that form these structures. Similar to that seen in the Pax3 

regulation of somite patterning during early embryogenesis, where the loss of Pax3 

expression in skeletal myoblasts results in the malformation of the somite, so the loss of 

Pax3 in neural crest cells results in the malformation of the developing spinal ganglia.  

 

From embryonic day 11, specification of the bipotent (glial/melanocyte) neural crest 

cell in the ventral pathway is controlled by cellular contact with either nerve (followed 

by interactions with neuregulin/ErbB3 signals for adoption of glial fate) or contact with 

mesenchme (followed by insulin-like growth factor 1 and platelet-derived growth factor 

signals for melanocyte specification) (Thomas & Erickson, 2008; Adameyko et al., 
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2009). Concurrent with glial specification, rapidly dividing precursor Schwann cells 

migrate along established ß-neuregulin-1 secreting axon tracts mediated by activation of 

tyrosine receptor kinase C signalling and low-affinity nerve growth factor receptor 

(p75NGFR) activity (Anton et al., 1994; Bhattacharyya et al., 1994; Mirsky et al, 1996; 

Bentley & Lee, 2000; Yamauchi et al., 2004; Yamauchi et al., 2005). At this stage, 

maintenance of the mitotic and chemotactic glial cell is regulated by transcription factor 

Sry-box 2 (Sox2) and Sox10 (Kuhlbrodt et al, 1998; Peirano et al, 2000; Wegner, 2000; 

Britsch et al, 2001; Wakamatsu et al, 2004; Le et al, 2005). Pax3 is also expressed in 

precursor Schwann cells at this stage (Blanchard et al., 1996) and based on knowledge 

of its function in migratory embryonic melanoblasts, it can be speculated that Pax3 

cooperates with Sox10 to maintain the precursor Schwann cell via regulation of 

downstream target genes necessary for survival and/or migration. Support for this lies in 

the fact that when homozygous Splotch mice die at embryonic day 13.5, precursor 

Schwann cells cannot be detected (Franz, 1990). In homozygotes with the Splotch-

delayed allele (which survive until embryonic day 18.5), a small number of glial-

specified cells can be detected along peripheral nerve at embryonic day 13.5 although 

two days later, these cells cannot be detected (Moase & Trasler, 1990).  

 

Transition from Schwann precursor to immature Schwann cell occurs between 

embryonic days 12 and 16 in the mouse, accompanied by a morphological change and 

the establishment of an autocrine survival circuit (Jessen & Mirsky, 1992; Jessen & 

Mirsky, 1994; Dong et al., 1995; Grinspan et al., 1996; Syroid et al., 1996; Murphy et 

al., 1996; Dong et al., 1999; Meier et al., 1999). In this independent state, immature 

Schwann cells undergo radial axonal sorting (Yu et al., 2005), a process by which they 

penetrate between axons to segregate them. Radial sorting is coupled to extensive 

Schwann cell mitotic and apoptotic activity so that the ratio of Schwann cells to axons 
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within the developing peripheral nerve trunk is specific (Friede and Samorajski, 1968; 

Stewart et al., 1993; Grinspan et al., 1996; Topilko et al. 1996; Nakao et al., 1997; 

Syroid et al., 1996; Carroll et al., 1997; Garratt et al. 2000). During this stage of 

Schwann cell development, Pax3 is not expressed, thus, its marked downregulation 

from embryonic day 13.5-18.5 (Kioussi et al., 1995) indicates that it does not function 

to regulate cellular proliferation, survival or apoptosis during radial sorting by glioblasts 

(Fig. 7). 

 

While survival of immature Schwann cells at this stage is not regulated by axonal 

factors, the signals for specification into myelinating or nonmyelinating cells are linked 

to dose dependent axonally secreted factors (Grinspan et al., 1996; Topilko et al. 1996; 

Carroll et al., 1997; Garratt et al. 2000). An undefined axonal-Schwann cell interaction 

signals for larger calibre axons to be ensheathed at a 1:1 axon-Schwann ratio 

(eventually to be myelinated) and the smaller calibre axons to be ensheathed at a 5-20:1 

ratio (to remain nonmyelinated). From embryonic day 18.5 to postnatal day 5 there is a 

window of increased Pax3 expression seen in immature Schwann cells where it is 

suggested to function for transcriptional repression of the myelination program (Kioussi 

et al., 1995). Around birth, Schwann cells determined to myelinate exit from the cell 

cycle and downregulate apoptotic factors (Zorick & Lemke, 1996; Jessen & Mirsky, 

2002). Exit from the cell cycle leads to elevation of intracellular cyclic AMP levels, 

repression of immature Schwann genes Pax3, L1 cell adhesion molecule (L1CAM), glial 

fibrillary acidic protein (GFAP) and p75NGFR prior to upregulation of the genes 

required for construction of the myelin sheath (Kioussi et al, 1995; Zorick et al, 1999; 

Niemann et al, 2000; Parkinson et al, 2004; Le et al, 2005) (Fig. 5). Similar to other cell 

lineages, Pax3 expression is downregulated as myelinating Schwann cells terminally 

differentiate. 
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Figure 7. Schwann cell development. The diagram indicates the primary stages of 
Schwann cell development during embryogenesis and the divergence between 
nonmyelinating and myelinating Schwann cells that occur after birth. Diagram adapted 
from Jessen, 2004. 

 

1.10 Why do nonmyelinating Schwann cells of adult peripheral nerve continue to 

express Pax3?  

In the adult peripheral nervous system, C-fibre neurons are nonmyelinated and associate 

with nonmyelinating Schwann cells (NMSCs). Type C-fibres are subclassified into 

postganglionic sympathetics and dorsal root afferents which innervate viscera for 

homeostatic maintenance or conduction of peripheral afferent signals, respectively. 

Unmyelinated C-fibres are organised into a bundle in which many nerve fibres are 

ensheathed by one NMSC (Fig. 8); these bundles were originally described by Robert 

Remak (1838), hence postnatal NMSCs are often referred to as Remak Schwann cells 

and nonmyelinated bundles are referred to as Remak bundles. NMSCs have a 

characteristic morphology consisting of extraordinarily long branching networks of  
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Figure 8. Remak Schwann cells. The micrograph shows a cross section through a 
peripheral nerve trunk. The areas indicated by the boxes are Remak bundles where the 
NMSC nuclei are associated with several unmyelinated C-fibres. 
http://neuromedia.neurobio.ucla.edu/campbell/nervous/wp_images/182_TS_HP.gif 
 

cytoplasmic processes which form discontinuous syncytium and coalesce in a plexiform 

manner with adjacent Remak bundles (Carlsen & Behse, 1980; Murinson et al., 2005a) 

(Fig. 9). NMSCs are phenotypically contrasted to myelinating Schwann cells in that 

they continue to express immature Schwann genes such as L1, GFAP, p75NGFR 

(Kioussi et al, 1995). Kioussi and colleagues (1995) also report that Pax3 RNA is 

associated with NMSCs of 30 day old mice sciatic nerve and suggest that Pax3 

functions to maintain a nonmyelinating cell state through direct repression of 

myelination genes. Although it is unknown whether Pax3 RNA is translated into protein 

and whether such protein is transcriptionally active in adult cells, the report indicates 

continued Pax3 expression in an adult cell of neural crest origin, in a cell other than  a 

stem or progenitor cell of adult tissue. It is interesting to note that exit from the cell 
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cycle in postnatal NMSCs does not cause repression of immature Schwann cell genes as 

it does in myelinating Schwann cells; moreover, postnatal NMSCs are maintained in a 

characteristically immature Schwann  

 

Figure 9. The Organisation of Remak Schwann Cells in Peripheral Nerve Trunk. 
The diagram shows axon-Schwann cell relations at different levels for two neighbouring 
subunits of a Remak bundle. At level 0 μm the subunit contains axons 56-57, embraced 
by the profile of the same Schwann cell N. At 40 μm the Schwann cell N is divided into 
two branches N' and N', each belonging to a different subunit. In addition, a profile from 
the contiguous Schwann cell 0 has entered and embraces axon 57. At 100 μm, axon 56 
is embraced by a different contiguous Schwann cell R and Schwann cell N is only 
represented by a small profile. From 120 to 200 μm, the axons 57 and 58 are embraced 
by Schwann cell 0. Diagram from Carlsen & Behse, 1980. 
 

phenotype. Thus, curiousity about the adult NMSC phenotype and expression of Pax3 

in adult nerve was the major driving force behind the development of the research 

methods to identify, visualise and characterise Pax3 expression in adult mouse 

peripheral nerve. 
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1.11 What is the role of Pax3 in regenerative glioblasts of adult peripheral nerve? 

Unlike other Pax3 regulated tissue lineages, little is known about the Pax3 expression 

observed in regenerative Schwann progenitor cells of adult peripheral nerve. In adult 

nerve regeneration, cells that express Pax3 are said to arise from myelinated cells that 

regress to an immature state (Kioussi et al., 1995; Harrisingh et al, 2004) rather than 

arise from a resident stem cell population such as in skeletal muscle and skin. While the 

function(s) of Pax3 in progenitor Schwann cells of adult nerve remains unknown, that 

Pax3 is upregulated after injury/disease may allude to its role in the maintenance of the 

progenitor cell state (Kioussi et al., 1995; Harrisingh et al, 2004).  

 

Peripheral nerve injuries are varied but can be classified as those which produce 

localised conduction block (neuropraxia), interruption of axoplasm flow without 

severance of the nerve (axonotmesis) and those in which the nerve trunk is severed 

(neurotmesis). Conditions existing at the site of these various types of nerve injuries are 

different. For ease of understanding, Pax3 expression in relation to Schwann cell 

responses to neurotmesis is discussed. Normally, the neuronal perikaryon maintains the 

axon through axoplasmic flow such that transection results in a series of biological 

alterations that lead to complete structural disintegration and chemical degradation of 

the segregated distal axon. The inflammatory response and effects of axonal separation 

from the nucleus are named Wallerian degeneration. A fundamental characteristic of 

Wallerian degeneration is the reported plasticity of adult myelinating Schwann cells that 

revert from the myelinogenic transcriptional program (or differentiated state) into the 

cell cycle and back (Salzer & Bunge, 1980). Typically, the phenotypic regression of a 

terminally differentiated mammalian cell is prevented in order to ensure cell-type 

specification, function and stability. During Wallerian degeneration, myelinating 

Schwann cell nuclei enter the DNA synthesis phase during which the myelin is 



 

 30 

relatively intact (Stoll et al., 1989). Re-entry into the cell cycle, however, represents a 

commitment to demyelination (Griffin & Thompson, 2008). In the distal stump of the 

transected nerve, changes commence within cells as they discard degraded myelin into 

cytoplasmic ovoids and initialise autophagocytosis of myelin proteins and lipids (Perry 

& Brown, 1992; Fernandez-Valle et al., 1995). In terms of gene expression, the 

molecular mechanisms for the reversion of the quiescent myelinated Schwann cell to a 

proliferative state are linked to sustained signalling by the extracellular signal-regulated 

kinase-1 transduction pathway (Harrisingh et al, 2004) and Pax3 expression remains 

silent (Kioussi et al., 1995).   

 

Haematogenous macrophage infiltration of the degenerating distal trunk corresponds 

with maximal myelin degradation (Weinberg et al., 1978; Perry & Brown, 1992; 

Fernandez-Valle et al., 1995; Stoll & Muller, 1999) and concomitant inhibition of genes 

encoding for myelin structural proteins occurs within denervated demyelinating 

Schwann cells (Gupta et al, 1990; LeBlanc & Poduslo, 1990; Spreyer et al., 1990; 

Scherer et al, 1995). Pax3 is upregulated at this stage followed by induction of the 

characteristic immature Schwann cell markers such as GFAP, L1 and p75NGFR 

(Kioussi et al., 1995). Once the demyelinated phenotype is established, mitogens 

promote Schwann cell proliferation within the persisting distal Schwann cell basal 

lamina (Pellegrino et al., 1986; Baichwal et al., 1989) where internally multiplying 

Schwann cells form a longitudinal column, or Bungner band, which provides a pathway 

that proximally regenerating axons use to reach the original target tissue (Weinberg & 

Spencer, 1978; Ide, 1983; Salonen et al., 1987; Tona et al., 1993; Ara et al., 2005). As 

Schwann cells begin to produce and store myelin for remyelination of regenerating 

axons, Pax3 levels temporally peak; in contrast, as myelination nears completion, Pax3 

is re-silenced (Kioussi et al., 1995). While theories for the function of Pax3 in 
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myelinated nerve regeneration include prevention of premature myelogenesis and/or 

orchestration of Schwann progeny migration, development of efficacious methods for 

identification and visualisation of Pax3 expressant cells in adult peripheral nerve (a 

primary aim of this thesis) would facilitate future studies of the role of Pax3 in 

peripheral nerve regeneration. 

 

In summary, Pax3 is expressed in dorsal regions of the neural fold from which neural 

crest cells originate. Development of the Schwann cell progresses from the neural crest 

cell to the bipotent precursor as early tissue patterning occurs during the formation of 

the spinal ganglia, during which time Pax3 remains expressed. Precursor Schwann cells 

are specified through association with developing nerve and are dependent upon nerve-

secreted mitogens and survival factors. They are highly motile and proliferative during 

peripheral growth and extension of the nerves and it is theorised that Pax3 has a role in 

the survival and/or migration of these glioblasts. Radial sorting commences as the 

embryo grows rapidly; at this stage, immature Schwann cells survive by autocrine 

secreted factors and proliferate extensively while Pax3 expression is silent. Nerve fibre 

associations are re-established with immature Schwann cells in a ratio-specific manner 

and terminal differentiation into the myelinating or nonmyelinating phenotype is 

initiated around birth. At this time, a brief window of Pax3 re-expression is thought to 

prevent precocious myelination of cells via repression of target myelination genes 

(Kioussi et al., 1995). After birth, terminal differentiation of Schwann cells commences 

where downregulation of Pax3 occurs in myelinating cells and expression is said to 

continue in nonmyelinating cells. In cases of peripheral nerve trauma or disease, 

myelinating Schwann cells re-express Pax3 at a time when genes coding for myelin 

structural proteins are inhibited within denervated, demyelinating Schwann cells. A 

spike of Pax3 expression occurs following successful reinnervation; during 
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reconstruction of the myelin sheath, Pax3 expression is re-silenced. It should be 

mentioned that there is a paucity of studies that discuss the regeneration of 

nonmyelinated fibres and associative NMSCs. 

 

1.12 Conclusion  

PAX3/Pax3 has numerous integral functions in embryonic tissue morphogenesis and 

knowledge of its complex expression and function in cells of adult tissues continues to 

unfold. The roles of PAX3/Pax3 are well defined across a variety of adult tissue 

lineages. From these studies, it can be concluded that the overarching purpose for 

continued expression of PAX3/Pax3 in adult cells is primarily for maintenance of the 

progenitor cell state. In adult progenitor cells it is said that PAX3/Pax3 protects the 

'stemness' of the cell through regulation of downstream target genes involved in 

survival, apoptosis, migration and/or differentiation. This characteristic regulatory role 

is reminiscent of its embryonic function and appears conserved across an entire 

spectrum of cell and tissue types. 
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HYPOTHESES 

The supposition that peripheral nerves harbour progenitor cells forms the basis for this 

research. The supposition is based on the fact that 30 day old mouse peripheral nerves 

express Pax3 and that the function of Pax3 in most adult tissues is for the maintenance 

of a progenitor cell population. Furthermore, a small body of literature has shown that, 

in the regenerative adult nerve trunk, NMSCs (that are reported to express Pax3) are 

proliferative, chemotactic and apoptotic in response to many forms of disease and 

injury, notably, those associated with loss of myelinated nerves. For example, in persons 

with Charcot-Marie Tooth disease type 1A, a disease linked to genetic pertubation of a 

gene that encodes a constitutive myelin protein, 'unaffected' NMSCs proliferate in the 

diseased nerve in response to lost myelinating cells affected by the mutation (Koike et 

al., 2007). Likewise, Murinson et al. (2005b) induced degeneration of distal myelinated 

fibres with a lesion of the ventral root and showed that normal, innervated NMSCs of 

the adjacent dorsal root ganglion enter the cell cycle while unaffected myelinating 

Schwann cells do not. Similarly, in specifically induced degeneration of myelinated 

fibres, intact NMSCs of adjacent Remak bundles extend cytoplasmic processes to 

temporarily ensheathe naked portions of neighbouring demyelinated fibres. 

Subsequently, a population of proliferative, NMSCs migrate through the endoneurium 

to overlie areas of demyelination. While the origin of the “supernumary” NMSCs 

remains unknown, it is suggested that they arise from adjacent Remak bundles (Griffin 

et al., 1987).   

 

In addition, Neurofibromatosis Type 1 (NF1) affects 1 in 3500 newborns worldwide and 

is characterised by loss of the NF1gene that encodes neurofibromin (Gutmann, 2001; Le 

& Parada, 2007; Theos & Korf, 2006). Persons affected with NF1 are predisposed to 

develop benign peripheral nerve sheath tumours (or neurofibromas), myeloid leukemia, 
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hyperpigmentation of the skin and learning disabilities (Cichowski & Jacks, 2001; 

Riccardi, 2000; Zhu et al., 2002). Moreover, persons with a loss of heterozygosity of 

NF1 alleles develop malignant peripheral nerve sheath tumours (Serra et al., 2000). 

Neurofibromas consist primarily of NMSCs (Rutkowski et al., 2000; Serra et al., 2000; 

Sheela et al., 1990) where malignant transformation is linked to loss of neurofibromin 

resulting in NMSC hyperproliferation and detrimental effects on adjacent cells (Zheng 

et al., 2008). Importantly, in neurofibroma, it has been found that tumours have a 

significant population of stem cells (Pongpudpunth et al., 2010) and although the origin 

of the stem cells remains unknown, Pongpudpunth et al (2010) proposed that “formation 

of neurofibromas may be linked to alterations in the self-renewal program of peripheral 

nerve progenitor cells”.  

 

Based on the above evidence and knowledge of the roles of PAX3/Pax3 in stem and 

progenitor cell maintenance, it was hypothesised that a subset of adult NMSCs, reported 

to express Pax3, are early immature Schwann glioblasts that are retained along C-fibre 

tracts following birth and remain resident in the unmyelinated Remak bundles. In the 

research described in this thesis, the aims were to identify these cells in vivo, by the use 

of Pax3 (and other molecular markers) and to describe their morphology and location. 

Furthermore, it was hypothesised that cells that express Pax3 in adult mouse peripheral 

nerve would co-express early immature Schwann cell markers.  
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AIMS 

1. It was a primary objective to develop foundational methods of labelling NMSC in the 

mouse species such that the studies could be compared and contrasted with future 

investigations undertaken using mutant mouse strains, in particular, Pax3 mutant 

animals. Therefore, each of the aims was directed toward investigations using adult 

mice. 

 

2. It was queried which transcripts of Pax3 are expressed in the peripheral nerves of 

adult mice and queried whether knowledge of the Pax3 transcriptome would give more 

understanding, based on the knowledge of functional differences of alternate Pax3 

transcripts, of its continued expression into adulthood in peripheral nerves.  The first 

research aim thus became to determine the transcript profile of Pax3 in normal adult 

mouse sciatic nerve.  

 

3. Hundreds of studies have revealed the mechanisms of myelinated nerve regeneration 

and the role of the associated myelinated Schwann cells in peripheral nerve 

regeneration; however, few studies have investigated non-myelinated nerve regeneration 

and the role of associated NMSCs. It was thought important to develop methods with 

which to identify and visualise NMSCs in vivo using immunofluorescence; therefore, an 

important aim of the research became to develop immunofluorescent methods to label 

cell membrane bound low-affinty nerve growth factor receptor (p75Ngfr) on Remak 

bundles in normal adult mouse sciatic nerve and to assess the use of Pax3 as a marker of 

nonmyelinating Schwann cell nuclei in normal adult mouse sciatic nerve. 

 

4. Finally, it was hypothesised that the Pax3 expressing NMSCs may represent a 

population of Schwann glioblasts that are retained from embryogenesis; therefore, the 

final aim of the research became to develop immunofluorescent methods to double-label 

Pax3 and (early immature Schwann cell marker) Sox2 in normal adult mouse sciatic 

nerve in order to discern whether cells that express Pax3 retain a Schwann glioblast 

phenotype.  
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2.1 Animals 

Experimental procedures were carried out in accordance with the provisions of the 

National Health and Medical Research Council Australian Code for Responsible 

Conduct of Research (2007), the Australian code of practice for the care and use of 

animals for scientific purposes (2004) and the Animal Welfare Act (2002). 

Experimentation was approved by the Edith Cowan University Animal Ethics 

Committee (project code 06-A7 ZIMAN). Experiments were conducted using Mus 

musculus tissue. The age of the animals was chosen to reflect the cellular makeup of 

adult or mature tissue. All the investigations described were undertaken using 60 day 

old male mice that were provided by the Animal Resources Centre (Canning Vale, 

Western Australia), bar the C22 mice mentioned below.  

 

Charcot-Marie-Tooth disease is a hereditary peripheral neuropathy classified as 

demyelinating (CMT1) or axonal (CMT2) forms. Subtype CMT1A is inherited as an 

autosomal dominant trait where partial duplication of the gene encoding peripheral 

myelin protein-22 leads to chronic demyelination and Schwann cell hyperplasia which 

results in progressive muscle weakness and hand and/or foot deformations (Chance & 

Fischbeck, 1994). Adult transgenic mice were generated by Huxley et al. (1996) by 

pronuclear injection of a yeast artificial chromosome containing the CMT1A 

duplication of peripheral myelin protein-22; the mutant mouse strain (C22) has 

phenotypic traits in common with persons affected with CMT1A (Huxley et al., 1996). 

C22 sciatic nerves were prepared and generously donated by the Genomé Humain et 

Développment, Faculté de Médecine de la Timone, France. 

 

2.2 Isolation of RNA from sciatic nerve specimens  

Mice were sacrificed by CO2 narcosis at 20%/minute v/v and the sciatic nerves were 
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rapidly excised in an aseptic field. Nerves were dissected and ligated under a Leica 

Zoom 2000 dissecting microscope, with care taken to remove connective fascia from 

the epineurium. Freshly removed nerve tissue was immediately frozen by immersion in 

liquid nitrogen and stored at -80°C until further use. Total RNA was isolated from one 

individual sciatic nerve using TriReagent (Molecular Research Center, Inc.). Isolated 

tissues were homogenised using a glass-col mortar and pestle and incubated in 

TriReagent for 5 minutes at 25°C. Samples were shaken vigorously for 15 seconds and 

further incubated for 15 minutes. Samples were centrifuged at 12,000g for 15 minutes at 

4°C before transfer of the aqueous phase to a fresh tube. 250 µl of isopropanol and 250 

µl of 0.8 M sodium citrate/1.2 M Na Cl were added prior to incubation for 10 minutes at 

25°C. Samples were centrifuged at 12,000g for 8 minutes at 4°C and supernatant was 

removed. The RNA pellet was washed with 1 ml of 75% v/v ethanol and vortexed prior 

to centrifugation at 12,000g for 8 minutes at 4°C. Ethanol was removed with a fine tube 

pipette without disruption of the RNA pellet. The RNA pellet was air-dried for 5 

minutes prior to resuspension in 100 µl RNAse free water. Resuspended RNA was 

incubated at 60°C for 3 minutes to ensure complete dissolution of the RNA pellet. For 

each extraction, RNA purity and concentration were assessed using a Bioanalyzer 

(Agilent).  

 

2.3 RT-PCR amplification of Pax3 from whole nerve specimens 

First strand cDNA was synthesised from 2 µg of isolated RNA using an OmniScript 

system (Qiagen) and an oligo(dT)18 primer (10 µM) (Qiagen). Reverse transcription was 

carried out at 37°C for 1 hour in a total volume of 20 µl. Negative controls included 

reactions without Omniscript reverse transcriptase. PCR amplifications were performed 

using a TaqDNA Polymerase Kit (Qiagen). All solutions were kept on ice after complete 

thawing and vortexed prior to use. The PCR mix was prepared using the reagents shown 
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in Table 1 and a negative control (without template DNA) was included in every 

experiment. 

Table 1. PCR Reaction Composition. 

Component Volume/reaction Final concentration 

10x PCR Buffer 2.0 μl  

dNTP mix  0.4 μl 10 mM each  

Forward Primer 0.8 μl 0.5 μM 

Reverse Primer 0.8 μl 0.5 μM 

Taq DNA Polymerase 0.1 μl  

Q solution 4.0 μl  

Distilled water 9.9 μl  

Template DNA 2.0 μl ≤1 μg/reaction 

Total volume 20 μl  

 

The PCR mix was kept on ice before being placed in the Eppendorf Mastercycler 

gradient thermal cycler. The PCR reaction was conducted with the following 

oligonucleotides, designed using OligoAnalyser 3.1 (Integrated DNA Technologies) and 

Primer-BLAST (NCBI): 

Pax3c: (F) 5'-ACCAGGCATGGATTTTCAAG;  

            (R) 5'-AACGTCCAAGGCTTACTTTG 

Pax3d: (F) 5'-CCTCAGGTAATGGGACTTCT;  

              (R) 5'-AATGAAAGGCACTTTGTCCA 

Pax3^8: (F) 5'-CTGTGTCAGATCCCAGCA; 

              (R) 5'-GAGATAATGAAAGGCACCTGAG 

Pax3f: (F) 5'-CAGATGAAGGCTCCGATATTGAC; 

           (R) 5'-CTGGCTTGAGATAATGAAAGGC 

Internal controls for cDNA were performed using PCR amplification of mouse 

housekeeping gene Gapdh and the primers used were as follows:  
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Gapdh: (F) 5'-GTGAAGGTCGGTGTGAACG;  

             (R) 5'-ATTTGATGTTAGTGGGGTCTCG 

Positive controls for primers were performed using total RNA isolated from embryonic 

day 11 mice and PCR negative controls eliminated cDNA as primer template from each 

PCR reaction. Thermocycling parameters are shown in Table 2.   

Table 2. Thermal Cycler Conditions. 

Initial denaturation 3 min 95°C 

3-step cycling   

Denaturation 30 sec 94°C 

Annealing 1 min 50°C Gapdh 

48 °C Pax3c 

48 °C Pax3d 

50 °C Pax3^8 

50 °C Pax3f 

Extension 1 min 72°C  

Number of cycles 39  

Final extension 10 min 72°C 

 

PCR amplifications were performed using a thermocycler. PCR products were resolved 

on 1.5% w/v agarose gels and visualised under UV light using a Geldoc system.  PCR 

products were sequenced using an ABI PRISM BigDye Terminator Cycle Sequencing 

Ready Reaction Kit (PE Biosystems) and an ABI Prism 3730 48 capillary sequencer. 

Sequences were aligned with known sequences in GenBank using the multiAlign tool in 

Angis, available on GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

2.4 Preparation of frozen nerve sections 

Wild-type and C22 frozen sections were fixed and prepared using an identical 

procedure; C22 nerves were harvested and fixed in the laboratory at Genomé Humain et 
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Développment, Faculté de Médecine de la Timone, France prior to overnight shipping 

on dry ice. To prepare fresh frozen sections of sciatic nerve, animals were sacrificed by 

cervical dislocation. The sciatic nerves were surgically excised, immersed in Tissue Tek 

O.C.T. (Sakura Finetek Europe) and frozen in liquid nitrogen cooled N-methyl butane 

(Sigma). Tissue blocks containing the entire length of a sciatic nerve were cryosectioned 

using a Thermos Shandon Cryotome E at 9 µm onto SuperFrost slides (Menzel-Gläser), 

dried and fixed in 4% w/v paraformaldehyde in 0.1 M phosphate buffer (PFA) for 30 

minutes. Sections were washed in phosphate buffered saline (PBS) 3 times for 5 

minutes prior to subsequent processing or storage at -80°C. To prepare pre-fixed frozen 

sections, animals were anaesthetised with Nembutal (Abbott) and transcardially 

perfused through the left ventricle; a constant flow (10 ml/min) of PBS (10ml) followed 

by ice cold PFA in 0.1M phosphate buffer at pH 7.4 (50ml) was established using a 

peristaltic pump. Sciatic nerves were surgically excised, post-fixed in PFA for 6 hours 

before immersion in 30% w/v sucrose for 48 hours. Individual sciatic nerves were 

rinsed in PBS, immersed in Tissue Tek O.C.T. and frozen in liquid nitrogen cooled N-

methyl butane prior to cryosectioning of the entire length of nerve at 9 µm onto 

SuperFrost slides (Menzel-Gläser). Slides were dried prior to processing or storage at -

80°C. 

 

2.5 Preparation of teased nerve specimens  

To prepare pre-fixed teased nerves, animals were anaesthetised with Nembutal (Abbott) 

75 μg/g and perfused as described above. Sciatic nerves were surgically excised, 

separated into individual fascicles and cut into 2 mm segments. Subsets of these 

segments of nerve were post-fixed for either 2, 6 or 18 hours in PFA at 4°C prior to 

rinsing in PBS. All specimens were prepared onto Polysine slides (Menzel-Gläser) and 

individual nerve fibres along the 2 mm length were teased apart by 0.2 mm entomology 
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pins. Preparations were dried overnight before immunohistochemical processing or 

storage at -80°C. To prepare post-fixed teased nerves, animals were sacrificed by 

cervical dislocation. Sciatic nerves were immediately excised, separated into individual 

fascicles and cut into 2 mm segments. Subsets of these segments of nerve were 

postfixed in 4% w/v PFA for 2, 6 or 18 hours at 4°C or a fixative consisting of 35% v/v 

methanol, 5% v/v acetic acid, 25% v/v ddH2O and 35% v/v acetone was used for 2 

hours at 4°C (Blanchard et al., 1996). Nerves segments were rinsed in PBS and prepared 

onto Polysine slides (Menzel-Gläser) where individual nerve fibres were teased apart 

the entire 2 mm length by 0.2 mm entomology pins. Preparations were dried for 18 

hours before immunohistochemical processing or storage at -80°C.  

  

2.6 Preparation of whole mount nerve fascicle specimens  

Whole mount preparations were prepared using freshly excised nerves which were 

obtained from animals sacrificed using CO2 narcosis. Sciatic nerves were excised, 

placed on a glass slide (kept on ice) and kept moist with PBS at 4°C. These were teased 

into fascicles and cut into 2mm segments and mounted directly onto chilled Polysine 

slides. Slides were dried overnight, post-fixed in acetone for 10 minutes at -20°C and 

rinsed in PBS at pH 7.4, before immunohistochemical processing or storage at -80°C.  

 

2.7 Antibodies used for immunohistochemistry and immunofluorescence   

Primary antibodies used were mouse monoclonal IgG2a anti-quail Pax3 (1:10 v/v; 

Developmental Studies Hybridoma Bank); rabbit monoclonal anti-mouse Pax3 (1:250 

v/v; Invitrogen); rabbit polyclonal anti-mouse Krox24 (1:250 v/v; Aviva Systems 

Biology); rabbit polyclonal anti-mouse Sox2 (1:200 v/v; Sapphire Bioscience) and 

rabbit polyclonal anti-mouse p75 nerve growth factor receptor (1:500 v/v; Chemicon). 

Species specific secondary antibodies used were AlexaFluor488-conjugated to goat anti-
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mouse IgG2a (1:500 v/v; Molecular Probes); AlexaFluor546-conjugated to goat anti-

rabbit IgG (1:500 v/v; Molecular Probes) and biotinylated goat anti-rabbit/mouse IgG 

(1:500; Dako). Tertiary antibody used was streptavidin-linked AlexaFluor 546 (1:500 

v/v; Molecular Probes).  

 

2.8 Procedure for immunofluorescent staining of frozen sections 

Frozen sections were rehydrated in PBS and incubated in blocking buffer composed of 

0.2% v/v Triton-X100 (TX100) (Sigma), 5% v/v normal goat serum (NGS) (Vector) in 

PBS at 25oC for 2 hours. Primary antibodies with 3% v/v NGS and 0.2% v/v TX100 

were incubated for 18 hours at 4oC. Sections were washed in PBS 3 times for 5 minutes 

each. Secondary antibody incubation was performed at 25oC for 2 hours using the 

appropriate fluorescent-conjugated goat anti-IgG in a solution containing 3% v/v NGS 

and 0.2% v/v TX100. Sections were washed in PBS 3 times for 5 minutes each where 

the last wash contained Hoechst DNA dye 33342 (1 ng/ml) (Thermo Fisher Scientific). 

Coverslips were mounted with FluorSave medium (Calbiochem). Negative controls 

were processed at the same time but were either not incubated with primary or 

secondary antibody.  

 

2.9 Procedure for enzyme-linked immunohistochemical staining of frozen sections  

Slides were rehydrated in PBS and 0.2% v/v TX100 for 10 min. Sections were then 

incubated in PBS containing 3% v/v H2O2 for 10 min, rinsed and blocked in buffer that 

contained 0.2% v/v TX100 and 5% v/v NGS in PBS at 25oC for 2 hours. Samples were 

incubated with primary antibodies diluted in PBS containing 3% v/v NGS and 0.2% v/v 

TX100 for 18 hours at 4oC. Sections were washed in PBS 3 times for 5 minutes each 

and incubated with biotinylated IgG that contained 3% v/v NGS and 0.2% v/v TX100 

for 2 hours at 25oC. Sections were then washed in PBS 3 times for 5 minutes each prior 
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to application of horseradish peroxidase-linked streptavidin for 10 min at 25oC. 

Following a wash in PBS, immunohistochemical staining was visualised using 3, 3-

diaminobenzidine (Sigma) as chromogen, and mounted in DePeX (BDH Laboratory 

Supplies). Negative controls were processed at the same time but were either not 

incubated with primary or secondary antibody.  

 

2.10 Procedure for immunofluorescent staining of teased nerve fibres  

Teased nerve preparations were rehydrated in PBS prior to permeabilisation for 5, 10 or 

20 minutes with either 0.2% v/v TX100 in PBS, 0.5% v/v Tween20 (Tw20) (Sigma-

Aldrich) in PBS, acetone (Prolab), methanol (Prolab) or 10% w/v dimethyl sulphoxide 

(Sigma) in PBS (Table 3). Teased fibres were incubated in blocking buffer composed of 

0.2% v/v TX100, 5% v/v NGS in PBS at 25oC for 2 hours. Primary antibodies diluted in 

PBS containing 3% v/v NGS and 0.2% v/v TX100, were incubated for 18 hours at 4oC. 

Slides were washed in 0.05% v/v Tris buffered saline (TBS)/Tw20, 6 times for 15 

minutes each. Secondary antibody incubation was performed at 25oC for 20 minutes. 

Slides were washed in TBS/Tw20 6 times for 15 minutes each where the last wash 

contained Hoechst DNA dye (1 ng/ml). Coverslips were mounted with FluorSave 

medium. Negative controls were processed at the same time but were not incubated with 

primary antibody. Tissue integrity, intensity of nuclear labelling and non-specific 

staining were visually determined under a fluorescence microscope (see Microscopy 

Section) in order to evaluate each permeabilisation method according to the criteria in 

Table 4.  

 

2.11 Procedure for double immunofluorescent staining of whole mount nerve  

Slides were rehydrated in TBS and permeabilised in 0.01% v/v TX100 for 45 minutes at 

25oC. Slides were washed in TBS 3 times for 10 minutes each prior to incubation in 
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10% v/v NGS for 6 hours at 25oC. Primary antibodies were individually or 

simultaneously incubated with 0.2% v/v TX100 for 18 hours at 4oC. Specimens were 

washed in 0.05% v/v TBS/Tw20, 6 times for 30 minutes each, using gentle agitation. 

Secondary antibody incubation was done thereafter at 25oC for 20 minutes. Specimens 

were washed in TBS/Tween 20, 6 times for 30 minutes using gentle agitation where the 

last wash contained Hoechst DNA dye (1 ng/ml). Coverslips were mounted with 

FluorSave medium. Negative controls were processed at the same time but were either 

not incubated with primary antibody or secondary antibody.  

 

2.12 Microscopy 

Fluorescently labelled tissues were viewed with an Olympus BX51 microscope 

connected to an Olympus DP71 digital camera and digital images were collected in the 

Olympus analySIS FIVE program and transferred to the IrfanView program for 

montage construction. The contrast and brightness of these images were adjusted for 

optimal print quality, but the images were otherwise unaltered. Whole mount specimens 

were imaged with a BioRad MRC 1000/1024 UV laser scanning confocal microscope 

on a Nikon Diaphot 300 with either a 40X objective (with zoom) or 60X immersion 

objective (without zoom) using a 351- and 488-nanometer argon laser and a 543-

nanometer helium/neon laser. Gain and black level adjustments were performed to 

improve analogue to digital signal conversion and background noise was eliminated 

using a KALMAN filter. Z-stacks were collected using various step-sizes and 

KALMAN averaging was performed manually for each step. Digital images were 

collected and compiled in greyscale and subsequently pseudocoloured with hues 

approximate to the fluorescence emission spectra of the respective fluorophores using 

the Confocal AssistantTM (4.02) program. Images were transferred to Adobe Photoshop 

and IrfanView programs for montage construction. The images were unaltered.  
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3.1 Pax3c and Pax3d transcripts are expressed in 60 day old mouse sciatic nerve 

At the onset of the literature review, it was noted that there were conflicting reports 

about the expression of PAX3/Pax3 in Schwann cells of adult peripheral nerve. Kioussi 

et al., (1995) originally reported Pax3 expression in 30 day old mouse sciatic nerve 

using in situ hybridisation with cDNA-binding probes (sequence data unavailable). In 

1999 however, Padilla et al. reported that they were unable to label adult mouse 

peripheral nerve with a complete Pax3 cDNA probe. Similarly, Gershon et al. (2005) 

reported that two widely used antibodies against PAX3, one developed by Grosveld's 

group at St. Jude’s Children’s Hospital in Memphis and one by Frederick's group at the 

Wistar Institute in Philadelphia, did not label glial cells of adult human peripheral nerve 

specimens. These antibodies target the paired/homeodomain of all Pax3 isoforms and 

the transactivation domain of the Pax3c and Pax3d isoforms, respectively. The initial 

aim of the research, therefore, was to investigate and report on the full spectrum of Pax3 

transcripts in normal mouse sciatic nerve. To identify all possible Mus musculus mRNA 

transcripts, the mouse genome sequence available on the NCBI was interrogated for all 

possible splice sites. Three mouse transcripts have been sequenced to date; Pax3c and 

Pax3d are expressed in embryonic cells of the myogenic and melanogenic lineages 

(Barber et al., 1999) and Pax3^8, which encodes a transcriptionally inactive isoform, is 

expressed in embryonic myogenic precursors (Pritchard et al., 2003). Barber et al. 

(1999) have reported a Pax3f transcript, expressed in the embryonic day 9.5 mouse and 

although exact sequence data is unavailable, it is thought that the transcript is generated 

by slicing exon 5 directly to exon 9 using the known splice donor and acceptor 

sequences  (personal communication).  

 

To delineate whether the production of additional mouse transcripts of Pax3 is possible, 

a comparison of human and mouse nucleotide sequences was undertaken using the 
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NCBI BLAST database to search for mouse consensus donor and acceptor splice 

sequences contained within the Pax3 locus. PAX3a (NCBI Reference Sequence: 

NM_000438.5) consists of four exons and  include an alternate 400 base pair segment in 

the coding region of exon four which causes a frameshift in the encoded sequence and 

truncation before exon five (Tsukamoto et al., 1994). The resultant PAX3a isoform 

consists of 215 amino acids, lacks the homeodomain region and has a shorter and 

distinct C-terminus. PAX3b (NCBI Reference Sequence: NM_013942.4) consists of 

four exons and also encodes a transcript that causes truncation of the encoded protein 

before exon five (Tsukamoto et al., 1994). A comparison of the sequences of PAX3a 

and PAX3b indicates that they share 717 base-pair nucleotides and 196 amino acids 

(residues 1-196) at the NH2 end. The amino acid sequence in the common region shows 

100% homology with the amino acids encoded by exons 1-4 (residues 1-196) of the 

mouse Pax3 gene and intron-exon junctions of exons 1-3 are also conserved between 

the mouse and human genes (Goulding et al., 1991). The amino acid sequences from 

197-215 of human PAX3a or 197-206 of PAX3b are not homologous to those of mouse 

Pax3 and there is no record of an alternate splice form of Mus musculus Pax3 that 

encodes alternate transcripts Pax3a and Pax3b. Further analysis of the mouse Pax3 gene 

shows a lack of consensus splice site elements required for production of homologous 

Pax3e, Pax3g and Pax3h transcripts such as are produced in humans; moreover, the 

mouse Pax3 genomic sequence diverges from the human gene in the 3’ region from 

which these transcripts are produced and shows less than 70% homology to the human 

sequence (Murine clone RP24-529B23 Chromosome 1).   

 

Specific primers were designed therefore to amplify the mRNA of mouse Pax3c, Pax3d, 

Pax3f and Pax3^8 transcripts with particular attention paid to the primer sets used to 

distinguish the Pax3c and Pax3d transcripts as these vary by 30 nucleotides in the 3’ 
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region (Fig. 10). RT-PCR results confirmed that 2 alternate Pax3 mRNA transcripts 

were expressed in 60 day old mouse sciatic nerve (n=6). Pax3c or Pax3d transcripts 

were detectable in 4/6 individual nerves, however co-expression of both transcripts was 

never observed in nerve samples utilised here. In 2/6 nerves analysed, Pax3 mRNA was 

undetectable. In all nerves tested, PCR amplification of Pax3^8 and Pax3f mRNA 

products were undetectable (Fig. 11).  

 

AGGTAATGGG ACTCCTGACC AACCACGGTG GGGTACCTCA TCAGCCCCAG ACTGATTACG 

CGCTCTCCCC TCTCACCGGG GGTCTGGAAC CTACCACCAC GGTGTCGGCC AGCTGCAGTC 

AGAGACTAGA CCATATGAAG AGCTTGGACA GTCTGCCAAC ATCTCAGTCC TACTGTCCAC 

CCACCTATAG CACCACAGGC TACAGTATGG ACCCTGTCAC AGGCTACCAA TATGGGCAGT 

ATGGACAAAg taagccttgg actttttagg gggcaatttc tcctggaagg gagataaact 

caactcttcc ttaagaaagg tgaattagag gcaagattaa gccacacatg ccggtatcaa 

tttttttttt tgcaaagcca gctgactgtt ccagcagggg cttccttgtg taattatttt 

cttaactgat gtcaacaaca tcttgcggtt attaattgtt gagacgtgaa acctgattgc 

cactaggtaa aacacaaggg ttggccaaaa tgaaataatc cctgacatta gaaacacatg 

ttcttaatga ggtcagctcc aggatcatat gggggataat cccagggaca caaagttgtg 

tcaaacttgt ctcaggaata aaaatattag tctcaagcct ttgatagcac ggtattaaat 

atgacattgt cagcctgtag ctgatcttgc ccctgactgt gaattgtccc agcatgacct 

aaaaagctgc gtgtgtttcc ttacagGTGC CTTTCATTAT CTCAAGCCAG  ATATCGCGTA 

AGTGAACTGT CCACTTGGAG CTAAAACTGG CCCTGTTTCT GGTCTTCGCA GCCTAGATAT 

GAAGAATCTG CTCTGAAAAC AAAAAAAAAT TACCCTTTTG TTGGGGGGGG TGGGGCAGTG 

GTCCCAATAG GAGACAAAGG AGAGTGATTG ATTTTCTTCC TCCAATAGTT GGTTTCAAAT 

CCTTTTGAAC ACGTTCGACA AAAGCAGTGG AGAAGAGGAA GACCTGGAGC AATAAA 

Figure 10. Generation of the Pax3c and Pax3d transcripts. Shown here is the 
genomic sequence of Pax3, from exon 8. Exons 8 and 9 are denoted by UPPER case 
letters while the intronic region is denoted by lower case. In generation of the Pax3c 
pre-mRNA, splicing machinery recognises a signal for cleavage and adenylation located 
within the intronic region (indicated in red). In generation of the Pax3d pre-mRNA 
transcript, splicing machinery ignores the first signal for cleavage and polyadenylation 
used for Pax3c (in red) and continues transcription until the signal for cleavage and 
adenylation at the sequences indicated by pink lettering. This longer pre-mRNA will 
then be spliced at 5' and 3' consensus donor/acceptor sites (indicated in blue) utilising 
the branchpoint sequence and polypyrimidine tract indicated by green and orange 
lettering, respectively.  
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Figure 11. RT-PCR results. Gel electrophoresis of PCR amplification products of Pax3 
isoforms from normal mouse sciatic nerves. a-g) lane one shows pUC DNA ladder in all 
gels. Pax3c (117 bp) was expressed in 3/6 nerves tested (lane 2 in a, b, e) while Pax3d 
(97 bp) was expressed in 1/6 nerves tested (lane 3 in c). Pax3 products were not 
amplified in 2/6 nerves tested (data not shown). Positive (+ve) controls for relative 
amounts of Gapdh product amplified from the total RNA of the six nerve lysates are 
shown in lanes 2, 3, 4 of d, lane 2 of f and lanes 2, 3 of g. Negative controls that 
eliminated template DNA are shown in lane 3 of a, b, e and lane 2 of c. Images are 
unretouched. 
 

3.2 The morphology of adult mouse NMSCs of sciatic nerve  

The complexity of human NMSCs was revealed by Remak in 1838. To date, however, 

mouse NMSCs that make up Remak bundles have not been morphologically 

characterised. To observe these complex cells required the development of a variety of 

methods that preserve their morphological features. Preservation of overall nerve tissue 

morphology was superior in the whole mount nerve preparations post-fixed with 

acetone, so much so that the organisation of the cellular and endoneurial components 

bp 
 

242 
 

111, 110 
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were readily visualised using fluorescence microscopy (Fig. 12).  

 

Figure 12. Whole mount nerve morphology. A paraformaldehyde perfused and post-
fixed whole mount preparation of an eighth cervical posterior root that consists 
primarily of nonmyelinating Schwann cells is shown. The nuclei of the specimen are 
stained with Hoechst dye to show the characteristic spindle shape of NMSC nuclei.  
 

Whole mount tissues post-fixed with acetone were not able to be teased into individual 

Schwann cells and associative axon(s) as cells were strongly adherent to one another 

and to the entomology pins used for teasing; nerves that had been fixed with 

paraformaldehyde, however, were efficiently teased into individual Remak bundles 

comprised of end-to-end NMSCs and associative axons. Analysis of the morphology of 

NMSCs in the teased fibre specimens showed that mouse NMSCs are 2-4 µm in 

diameter across the cytoplasmic extensions whereas the cells are 4-5 µm in diameter 

across the nuclear region  (Figs. 13a & 13b, Fig 14). The length of the  
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Figure 13. Mouse nonmyelinating Schwann cell morphology. Preparations were 
processed with Hoechst DNA dye to reveal the cell nuclei of the specimens. a) Tissues 
perfused and post-fixed for 2 hours in 4% paraformaldehyde retain superior morphology 
as evidenced by the retention of the wavelike organisation of the nerve trunk. The arrow 
indicates a small nonmyelinating Schwann cell juxtaposed to a large myelinating 
Schwann cell. b) Tissues solely post-fixed in 4% paraformaldehyde for 2 hours were 
difficult to tease, however cell morphology was retained as evidenced by the two small 
Schwann cells imaged (arrows). Scale identical to 13a and 13c. c) Two adjacent 
nonmyelinating Schwann cell nuclei are imaged (arrows) where the characteristic long 
cytoplasmic processes coalesce without an internode.  
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Figure 14. Morphological characteristics of the nonmyelinating Schwann cell 
nucleus. a) Nonmyelinating Schwann cell nuclei are centrally located within the 
cytoplasm (white arrows). a, b) Myelinating Schwann cell nuclei are situated on the 
periphery of the cell (black arrows). Note that the nonmyelinating Schwann cell nuclei 
are spindle shaped while the myelinating Schwann cell nuclei are oval or cupped around 
the fibre they myelinate. Images are phase contrast merged with fluorescence. Scale bar 
is the same for both images 
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cell is between 80 and 200 μm (Fig. 13c) and the nucleus is between 12 and 20 μm in 

length (Fig. 13). The nuclei of the NMSCs are centrally located (as opposed to the 

peripheral location of the nuclei of myelinating Schwann cells) (Fig. 14) and the 

unmyelinated C-fibres that traverse longitudinally across the NMSC nucleus form it into 

a characteristic spindle shape (Figs. 13b & 14a) such as has been described for rat 

NMSCs (Curtis et al., 1992).  

 

3.3 p75Ngfr unveils the structural complexity of adult NMSCs in vivo 

To distinguish a Remak bundle from the myelinating Schwann cells that associate with 

small caliber (δ) A fibres, a specific Remak bundle marker was required.  Cytoplasmic 

proteins (e.g. GFAP) have been used in the past to label human NMSCs (Kwa et al, 

2003); however, it was thought that a weak Pax3 nuclear label would be difficult to 

detect adjacent to a strong cytoplasmic signal in a double fluorescent labelling 

procedure on mouse tissue. There are two subsets of small caliber C-fibres present in 

adult peripheral nerve. Those which express the p75Ngfr are dependent upon nerve 

growth factor and synthesise peptidergic neurotransmitters (Averill et al.,1995; Bennett 

et al., 1996); those that are dependent on glial-derived neurotrophic factor synthesise 

nonpeptidergic neurotransmitters (Silverman & Kruger, 1988; Mulliver et al., 1997; 

Bradbury et al., 1998). It has been demonstrated that adult NMSCs simultaneously 

support both C-fibre types within the same Remak bundle (Murinson et al., 2005a).  It is 

also known that p75Ngfr is expressed on the NMSC plasmalemma adjacent to the 

p75Ngfr dependent C-fibres it ensheathes (Guenard et al., 1996); therefore, the p75Ngfr 

was chosen to label Remak bundles and the subset of p75Ngfr expressant C-fibres 

within the bundle.  
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Endogenous peripheral nerve tissue autofluorescence (Reynolds et al., 1994) and 

autofluorescence arising as a result of certain fixation and permeabilisation procedures 

(Fig. 15), were minimised by the use of specific rinsing protocols (see Methods). 

Partially teased nerve specimens retained p75Ngfr cell membrane signals throughout the 

length of the cytoplasmic extensions (Fig. 16). The whole mount nerve fascicle 

specimens analysed using scanning laser confocal microscopy had superior retention of 

NMSC membrane integrity and intense p75Ngfr immunolabelling and the plexiform 

nature of Remak bundles, so aptly described by Carlsen & Behse (1980) in human and 

Murinson et al. (2005a) in rat, was seen for the first time in 60 day old mouse (Fig. 17). 

 

Figure 15. Immunohistochemical methods affect tissue autofluorescence. a) Nerves 
fixed with paraformaldehyde and permeabilised with methanol were difficult to tease 
and displayed autofluorescence emitted from the collagen of the endoneurium. b) 
Nerves fixed with a fixative that included acetic acid were strongly fluorescent in the 
488nm emission range. c) Nerves fixed with paraformaldehyde and permeabilised with 
DMSO retained morphology however, myelin was highly fluorescent. d) Nerves 
perfused with paraformaldehyde and permeabilised with TritonX100 had a low level of 
autofluorescence, however cell morphology was degraded. e) Nerves simultaneously 
fixed and permeabilised with acetone had little autofluorescence but were unable to be 
efficiently teased. Specific rinsing methods were adapted to inhibit autofluorescence. 
Left panel of images are phase contrast; right panels are fluorescent images. 
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Figure 16. p75Ngfr is a reliable marker for Remak bundles. a) Antibodies targeted 
at the cell membrane receptor (p75) label Remak bundles (red). b) Counter-labelled 
with Hoechst DNA dye, it is evident that the indicated nonmyelinating Schwann cell 
nucleus (arrow) is associated with a Remak bundle that ensheathes several C-fibres. 
Scale bar is the same for both images 

 

 



 

 57 

 

 

 

Figure 17. The complex structure and distribution of Remak bundles in normal 
adult mouse peripheral nerve. a-c left panel) Greyscale micrographs of whole mount 
nerve preparations labelled with anti-p75Ngfr (p75) reveal the plexiform comingling 
and exchange of p75Ngfr expressant C-fibres between adjacent Remak bundles.  a-c 
right panel) Whole mount nerve preparations co-labelled with anti-p75Ngfr and 
Hoechst DNA dye reveal the in vivo distribution of p75Ngfr positive mouse Remak 
NMSCs (arrows). Note the centralised nuclei of the cells indicated. Images were 
acquired using scanning laser confocal microscopy. Pinhole aperture= 3.0. Optical 
plane = 1.5 μm. Scale bar represents 20 μm. 
 

3.4 The use of Pax3 as a marker of NMSCs in adult mouse sciatic nerve  

One of the principle aims of the work was to develop methods with which to describe 

the expression pattern of Pax3 protein in adult mouse peripheral nerve with the specific 
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aim of identifying cells with Pax3 expression. Knowing that Pax3 has the ability to 

temporally produce alternatively spliced gene products, it was necessary to determine 

which Pax3 transcripts are produced in adult mouse nerve, as the commercially 

available Pax3 antibodies target epitopes of different domains of the variable protein 

isoforms.  

 

RT-PCR results verified that Pax3c and Pax3d transcripts were present in 60 day old 

mouse sciatic nerve (Fig. 11), thus, it remained to confirm the presence of the proteins 

encoded by these transcripts in the mouse tissue. Multiple Pax3 antibodies are available; 

of these, a mouse monoclonal IgG2a isotype-specific antibody directed at amino acids 

that form the transactivation domain of the quail Pax3 protein (Venters et al., 2004) was 

employed. Although the quail Pax3 protein has more homology with the human protein 

than it does with the mouse, the specific amino acids to which the antibody is directed 

are also present in the mouse Pax3c and Pax3d isoforms. A rabbit monoclonal antibody 

directed at the paired and homeodomain of human PAX3 was also used; the amino acids 

to which the antibody is directed are present in all mouse isoforms. When the mouse 

monoclonal Pax3 antibody was used with the isotype-specific anti-mouse IgG2a 

secondary antibody, optimal results were obtained and non-specific background staining 

of endogenous mouse tissue IgGs and other components was minimised. 

 

Pax3 labelling was initially performed using frozen sections of nerve. Antibody-

concentration titration experiments were performed and monitored using an indirect 

immunofluorescent staining procedure. In tangental sections, a nuclear Pax3 label was 

undetectable (Fig. 18); moreover, longitudinal sections had an indiscriminate labelling 

(Fig. 19), where specificity of the label was questionable due to the peri-nuclear 

localisation of the signal. As indicated by the RT-PCR results, Pax3 expression levels 
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were expected to be relatively low in the sciatic nerves tested. Therefore, a tertiary 

(avidin/biotin) indirect immunofluorescence procedure was also performed in an  

 

Figure 18. Pax3 is undetectable in frozen cross sections. A single indirect 
immunohistochemical protocol processed on transverse frozen sections using an anti-
Pax3 immunoglobulin did not reveal Pax3 positivity (green) in any cells throughout the 
length of the nerve trunk.   
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Figure 19. The Pax3 immunolabel of frozen longitudinal sections.  a) Nuclear Pax3 
expression (red) as indicated by the arrows is negligible in longitudinal frozen sections. 
b) When nuclei of the specimen are counterstained with Hoechst DNA dye c) co-
localisation is difficult to detect (arrows). 
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attempt to amplify the Pax3 signal which could otherwise be below the level of 

detection. When this method was analysed, levels of non-specific background staining 

were high and a nuclear Pax3 label continued to be undetectable regardless of the 

primary antibody used (data not shown).   

 

It remained necessary to determine whether  cells of adult sciatic nerve that express 

Pax3 could be immunohistochemically labelled using the chosen Pax3 antibodies. It 

was reasoned that Pax3 protein levels would be increased in transgenic mouse C22 

sciatic nerves, where the phenotype results in increased numbers of Pax3 expressant 

NMSCs (Huxley et al., 1996); therefore, frozen sections of sciatic nerves of 60 day old 

C22 mutant mice were obtained and used for Pax3 labelling. In these experiments, 

mutant and normal nerves were fixed, prepared and immunohistochemically processed 

using an identical enzyme-linked procedure to eliminate the fluorescence-based 

difficulties associated with fluorophore photobleaching and quenching during attempts 

to detect very low levels of fluorescent labelling at a high magnification. The C22 

frozen sections were consistently immunolabelled using both the Pax3 antibodies. 

Moreover, the specificity of the Pax3 label to the nuclei of the cells was apparent (Fig. 

20a, 20b, 20c). Repeatedly, Pax3 expression was not detected in cells of the wild-type 

frozen nerve sections processed in the same experiment (Fig. 20d). The significance of 

the Pax3 expression seen in C22 tissue will be discussed later in light of other results 

(see Discussion, pg. 78). 

 

At this stage, it was not understood whether the lack of detection of a Pax3 label in 

wild-type nerve was linked to expression levels or  the immunohistochemical procedure 

on the frozen sections. Therefore, individually teased Schwann cells were next 

employed in an attempt to label Pax3 in the nuclei of these cell preparations. Penetration  
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Figure 20. Pax3 expression in transgenic C22 sciatic nerve. a) The mouse 
monoclonal anti-Pax3 immunoglobulin, directed at the C-terminus of the Pax3 protein, 
labelled clusters of expressant cells throughout the trunk of transgenic nerves affected 
with the C22 mutation (arrows). b) Magnification of section a. c) The rabbit monoclonal 
anti-Pax3 immunoglobulin, directed at the paired-box region of the Pax3 protein also 
labelled clusters of expressant cells in an adjacent, distal section of the same nerve. d) 
The frozen sections of wild-type sciatic nerve processed at the same time with an 
identical procedure did not reveal Pax3 protein expression. 
 

of the antibodies through the paraformaldehyde fixed endoneurial collagen surrounding 

the individual NMSCs was thought problematic (Fig.21); therefore, various 

permeabilisation techniques were used to assess their effects on cellular and 

extracellular integrity, nonspecific staining and intensity of nuclear label (Tables 3 and 

4). In these experiments, cells post-fixed by paraformaldehyde and permeabilised with 

Tw20 did have a nuclear Pax3 label; these specimens, however, retained little other 

cellular morphology (Fig. 22c). Cells fixed similarly but with a permeabilisation with 

TX100 had a Pax3 label of low intensity (Fig. 22b). Tissues perfused with 

paraformaldehyde and permeabilised with methanol had a Pax3 label, however, cell  
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Figure 21. Endoneurial collagen. The image shows an individual Schwann cell that 
was taken through a 20 minute permeabilisation procedure with TX100 before being 
counterstained with Hoechst DNA dye. The highly autofluorescent endoneurial collagen 
(green) is seen to be disassociated from the cell. 
 

structure was again severely degraded (Fig. 22a). Few individual cell specimens were 

able to be prepared using the fascicles post-fixed in acetone; as stated previously, this 

tissue was difficult to tease into individual cells. Of those acetone post-fixed specimens 

able to be teased into individual cells, a nuclear Pax3 signal and good quality cell 

morphology were observed (Fig. 22d).  

 

Consistent among all the teased cell preparations analysed was the demonstration that 

relatively 2% of cell nuclei were immunolabelled with Pax3. Therefore, a further panel 

of  individual Schwann cells was processed using the various permeabilisation methods 

and an alternate primary antibody against Krox24, a transcription factor reported 

expressed in Schwann cells of adult peripheral nerve (Topilko et al., 1997; Kury et al., 

2002) was used to confirm the efficacy and consistency of the techniques. The  
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Figure 22. Optimisation of the Pax3 immunofluorescent histochemistry. a) Normal 
tissues fixed by perfusion with 4% paraformaldehyde followed by a permeabilisation 
step in methanol showed Pax3 positivity (green) in cells as indicated by the arrow, 
however, fibre integrity was severely degraded in the teasing process. b) Tissues 
processed with a 2 hour post-fixation in 4% paraformaldehyde followed by a 
permeabilisation step in TX100 revealed nuclei with Pax3 positivity (arrow). c) Tissues 
post-fixed with 4% paraformaldehyde followed by a permeabilisation step in Tw20 
showed Pax3 positivity in cells (arrow), however fibre integrity was destroyed as seen 
in the phase-contrast image (Phase/UV panel). d) Tissues simultaneously fixed and 
permeabilised with acetone demonstrated Pax3 positivity in cell nuclei (arrow) with the 
advantage of superior tissue morphology as seen in the phase-contrast image. 
 

experiments ncorporated identical reagents and procedures as those employed in the 

Pax3 permeabilisation trials described above. In these trials, the loss of cellular structure 

due to the various reagents was similar to that described in the Pax3 trials. Here, the 
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nuclei that expressed Krox24 were clearly distinguishable and although relatively 2% in 

number, were strongly immunofluorescent. Moreover, the Krox24 labelled cells 

appeared, by morphology, to be myelinating Schwann cells (Fig. 23). It was therefore 

concluded that the paraformaldehyde fixation method, rather than the permeabilisation 

process, was linked to the difficulties associated with the Pax3 immunofluorescent 

labelling procedure experienced during this study. 

 

Figure 23. Verification of nuclear immunofluorescent histochemistry. a) Tissues 
post-fixed for 2 hours in 4% paraformaldehyde were labelled with an antibody targeted 
at the Krox24 transcription factor protein. In this preparation, a myelinating Schwann 
cell nucleus shows Krox24 positivity. b) Tissue fixed by 4% paraformaldehyde 
perfusion with a permeabilisation step using TX100 shows a Krox24 expressant nucleus 
(arrow) that is associated with a large myelinated fibre. 
 

3.5 The expression of Pax3 protein in normal adult mouse sciatic nerve 

Nerves post-fixed in acetone retained superior morphology and Pax3 antigenicity, thus, 

a procedure for immunofluorescent labelling of Pax3 was next developed using the 

whole mount preparations that had been post-fixed in acetone. The adult mouse sciatic 

nerve has many fascicles, each with a variant diameter, therefore, the smallest fascicles 

were used to optimise penetration of the Pax3 antibodies through the tissue. The optimal 

procedure was similar to that used for the p75Ngfr labelling of whole mount tissue and 

included tissue permeabilisation with a dilute concentration (0.2% TX100) of detergent 
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in the primary antibody solution together with stringent, lengthy rinsing steps following 

all antibody incubations (see Methods-section 2.11). The immunofluorescently labelled 

specimens were then imaged using scanning laser confocal microscopy. Results showed 

that strong Pax3 immunoreactivity was identified in cell nuclei randomly distributed 

along the length of the 60 day old nerve trunk. In all the whole mount specimens 

analysed, relatively 2% of the cell nuclei were positive for Pax3 when compared to the 

total number of Hoechst stained nuclei visible along the length of the nerve. Moreover, 

results showed that Pax3 expressing nuclei did not have the characteristic spindle shape 

of the Remak NMSCs, rather, they were distinctly oval or round (Fig. 24b & 24c). 

Relatively 5% of the Pax3 positive cells displayed perinuclear Pax3 expression (Fig. 

24a & 24c) which may be indicative of a post-translational modification of the 

transcription factor (Topilko et al., 1997).  

 

3.6 Characterisation of cells that express Pax3 in normal adult mouse sciatic nerve 

The development of methods for co-localisation of p75Ngfr and Pax3 in the nerve 

revealed that relatively 98% of Schwann cells that make up the Remak bundles of 

normal adult sciatic nerve did not express Pax3 and were distinct from the Pax3 labelled 

cells. All of the Pax3 positive cells were closely adjacent to p75Ngfr labelled Remak 

bundles (Figs. 25-27), had a round nucleus, a lack of p75Ngfr positive cell membrane 

extensions (Figs. 25c, 26 & 27) and a nuclear and perinuclear p75Ngfr expression 

pattern (Figure 27).  
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Figure 24. The distribution of Pax3 protein in adult mouse sciatic nerve. Whole 
mount tissue reveals Pax3 labelled cells randomly distributed throughout the trunk of 
the nerve (arrows); images were acquired using scanning laser confocal microscopy. a) 
In this optical plane of view, the Pax3 protein appears to have a perinuclear locale 
(arrow). Pinhole aperture= 3.5. Optical plane= 1.0 μm. Scale bar represents 50 μm. b) 
In this optical plane, the nucleus that is strongly immunolabelled with anti-Pax3 is 
notably rounded. Pinhole aperture= 3.5. Optical plane= 1.0 μm. Scale bar represents 
20 μm. c) The cell indicated by the arrow has a distinctly perinuclear localisation of 
Pax3 protein. Pinhole aperture= 3.5. Optical plane= 1.0 μm. Scale bar represents 20 
μm. 
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Figure 25. A Pax3 expressant cell in situ. a) Whole mount tissue reveals the p75Ngfr 
labelled Remak bundles (arrow). b) A Pax3 expressing cell is indicated by the arrow. c) 
Co-localisation analysis of p75Ngfr and Pax3 demonstrates that the Pax3 expressant cell 
is in close proximity to the Remak bundle indicated (arrow) but does not appear 
associated with it. Images were acquired using scanning laser confocal microscopy. 
Pinhole aperture= 3.5. Optical plane= 1.5 μm. Scale bar represents 20 μm. 
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Figure 26. p75Ngfr and Pax3 co-Localisation in adult nerve. Whole mount 
preparations were co-immunolabelled for p75Ngfr and nuclear Pax3. (a-f) Consecutive 
scanning laser confocal images through the nerve trunk are shown where each optical 
plane is 1 μm. Greyscale images reveal p75Ngfr or Pax3 signals, respectively, as 
indicated. Co-localisation of p75Ngfr (red) and Pax3 (green) reveals that Pax3 
expressing cells are closely associated with Remak bundles (arrows). Pinhole aperture= 
3.5. Scale bar represents 20 μm. 
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Figure 27. Pax3 is expressed in a subset of nonmyelinating Schwann cells of adult 
nerve. a-c) Whole mount tissues co-immunolabelled with anti-p75Ngfr, anti-Pax3 and 
Hoechst DNA dye reveal that Pax3 expressing cells are distinct from the majority of 
Remak bundles. a) The arrows indicate nuclear and perinuclear p75Ngfr expression 
seen on Pax3 expressant cells indicated in panel b. b) The Pax3 positive cells are 
indicated by the arrows. c) The merged images demonstrate co-localisaton of p75Ngfr 
and Pax3 expression. Images were acquired using scanning laser confocal microscopy. 
Pinhole aperture= 3.5, Optical Plane= 1.5 μm. Scale bar represents 20 μm. 
 

It was hypothesised that cells of adult nerve that express Pax3 would co-express other 

early immature Schwann cell markers. The final aim of the project, therefore, was to 

perform immunofluorescent co-localisation studies using antibodies against Pax3 and a 

marker of early neural crest cells, Sox2. These studies were undertaken using labelling 

of whole mount nerve preparations and analyses by scanning laser confocal microscopy. 

While Sox2 expression has been demonstrated in Schwann cells of embryonic 17 day 

old mice (Le et al, 2005), it was shown here for the first time detected in mouse sciatic 
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nerve of 60 day old animals. In all of the Pax3 and Sox2 co-labelled whole mount 

specimens examined, nuclear Pax3 expression co-localised with that of Sox2 in a 

distinct subset of cells within the nerve (Fig. 28). 

 

Figure 28. Transcription factors Pax3 and Sox2 co-localise in cells of adult nerve. 
Whole mount tissues co-immunolabelled with anti-Pax3, anti-Sox2 and Hoechst DNA 
dye reveal that all Pax3 expressant cells co-express with stem cell marker Sox2 
(indicated by the arrows). Images were acquired using scanning laser confocal 
microscopy. Pinhole aperture= 3.5, Optical Plane= 1.5 μm. Scale bar represents 20 μm. 
 

3.7 Summary of the results 

Methods were developed that allowed characterisation of NMSCs of normal 60 day old 

mouse peripheral nerve. To date, neurological studies of this kind have been performed 

on larger animals such as frog, rat, cat and dog. The intricate and complex 

morphological characteristics of mouse NMSCs are described here for the first time and 

novel images of the cell in vivo within the mouse sciatic nerve trunk are demonstrated. 

A novel finding was that NMSCs associated with p75Ngfr positive (with bipolar 

cytoplasmic extensions) labelling did not express Pax3 and were distinct from the small 

population of cells that expressed Pax3. Cells that expressed Pax3 were closely adjacent 
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to the labelled Remak bundles. Importantly, the findings that p75Ngfr is expressed on 

the abaxonal cell membrane of Pax3 positive cells and that expression coincided with 

stem cell marker Sox2 provides compelling evidence for the existence of a progenitor 

cell population in adult mouse sciatic nerve.  
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4.1 A distinct population of Pax3 expressing cells in adult mouse peripheral nerve 

Based on the evidence and knowledge of the role of Pax3 in other adult tissue stem and 

progenitor cells, and taken together with evidence that a population of cells exist in 

adult peripheral nerve that express Pax3 (Kioussi et al., 1995), it was hypothesised that 

the population of cells that express Pax3 in adult peripheral nerve are Schwann 

glioblasts. Therefore, the aims of the research focused on identification, visualisation 

and initial characterisation of the cells of adult nerve that express Pax3. The most 

significant finding of these investigations is that a subset of stem/progenitor cells that 

express transcription factors Pax3 and Sox2 have been identified in adult mouse 

peripheral nerve. These transcription factors are commonly expressed in multipotent 

cells in a variety of tissues and while the role of Pax3 in Schwann cells remains largely 

undetermined, its overarching role in other tissues is maintenance of progenitor cells 

across the life span. In Schwann cells, Sox2 has been shown conclusively to increase 

responsiveness to proliferative stimuli, prevent myelin gene expression and inhibit 

differentiation (Wakamatsu et al., 2004; Le et al., 2005). SOX2 is one of the four 

Yamanaka factors, or genes whose expression is artificially forced to induce non-

pluripotent adult somatic cells into pluripotent stem cells (iPSCs) in vitro. In the 

progress toward clinical application of iPSCs, both SOX2 and PAX3 have key roles in 

the generation, identification and maintenance of patient-specific iPSCs in vitro 

(Takahashi &Yamanaka, 2006; Masui et al., 2007; Ohta et al., 2011). Therefore, the 

identification of cells in these investigations that co-express the putative stem cell 

markers Pax3 and Sox2 is initial, sound evidence of the existence of Schwann 

progenitor cells in adult mouse peripheral nerve trunk. It should be stated here that 

investigation of a progenitor Schwann cell population in adult peripheral nerve has not 

been performed in any other animal, to date. 
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A principle aim of this research was to assess the distribution of Pax3 protein in adult 

mouse peripheral nerve. At the start of the investigations, it was conceived that the Pax3 

expression pattern would be similar to that seen in adult skeletal muscle where Pax3/7 

expressing progenitor cells account for 1-4% of the total myonuclei (Bischoff & 

Franzini-Armstrong, 2004). That Pax3 transcripts were below the level of detection in 

some of the nerves tested here by RT-PCR, was confirmed by the fact that only a  

minute population of cells within the nerve trunk express Pax3 mRNA at age 60 days. 

These findings are in agreement with other studies which failed to label Pax3/Pax3 in 

adult peripheral nerve. The low levels of these cells in adult nerves may be linked to a 

limited physiological need for progenitor Schwann cells in normal peripheral nerve, as 

compared to the need for progenitor myoblasts in normal skeletal muscle. Regrettably, 

confirmation of the limited number of cells that expressed Pax3 at this age in mouse 

nerve quelled cell sorting methodologies for a more in-depth characterisation of their 

phenotype in this research. With the development of rare cell sorters, future experiments 

are now possible. 

 

4.2 The characterisation of Pax3 expressing cells and Remak NMSCs 

Another primary aim of the research was to develop methods of imaging NMSCs in 

vivo, as little is known about mouse NMSCs. Here, development of the Pax3/p75Ngfr 

and Pax3/Sox2 double immunohistochemical labelling procedures allowed several 

morphological and phenotypic distinctions to be made between Pax3 expressing cells 

and other Remak bundle NMSCs. Firstly, it was seen that the Pax3 positive cells were 

not bipolar and had a p75Ngfr nuclear and perinuclear expression pattern which is 

indicative of a progenitor cell (Wong et al., 2006) and is similar to denervated Schwann 

cells in vitro. When Schwann cells are released from axonal contact in vitro they 

express p75Ngfr on the cell surface, secrete nerve growth factor for autocrine survival 
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(Sobue, 1990), do not exit the cell cycle and retain an early immature Schwann 

phenotype (Salzer & Bunge, 1980).  

 

Not only have distinct morphologic characteristics of the two diverse subsets of adult 

NMSCs been described, but also, distinct phenotypic differences lend credence to the 

theory that early immature Schwann cells are retained in peripheral nerve after birth. It 

is important to remember that transition from the embryonic Schwann precursor to the 

‘committed’, or immature Schwann phenotype, progresses at embryonic day 12, at 

which time changes are associated with the establishment of an autocrine survival 

circuit. Where precursor Schwann cells undergo apoptosis in the absence of axonal 

trophic support, immature Schwann cells survive via autocrine secretion of growth 

factors such as neurotrophin-3, a ligand of p75NGFR (Jessen & Mirsky, 1992; Jessen & 

Mirsky, 1994; Dong et al., 1995; Grinspan et al., 1996; Syroid et al., 1996; Murphy et 

al., 1996; Dong et al., 1999; Meier et al., 1999). At this stage, the early, fated Schwann 

cells express Pax3, p75Ngfr and Sox2 and are capable of self-survival. This author 

suggests that a population of these cells are retained into adulthood and are the 

Pax3/Sox2/p75Ngfr positive cells seen in this study (Fig. 30).  
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Figure 29. The proposed retention of peripheral nerve progenitor cells from 
embryogenesis. NMSCs that form the Remak bundles of adult peripheral nerve down-
regulate Pax3 after P30 but continue to express p75Ngfr and Gfap. A subset of Schwann 
cells juxtaposed to Remak bundles have been identified that express Pax3, Sox2 and 
p75Ngfr; it is proposed that these cells represent progenitor cells that persist from 
embryogenesis into adulthood (indicated by arrows) and continue to express the late 
precursor/early immature Schwann phenotype. 
 

After birth, the subset of Schwann cells that associate with C-fibres differentiate toward 

a nonmyelinating phenotype, re-establish dependency on p75NGFR signalling for 

survival (Chen et al., 2003) and form the peripheral Remak bundles. Of note is the 

finding that 60 day old NMSCs that form the Remak bundles did not express Pax3, 

which indicates that expression is down-regulated from postnatal day 30 when Kioussi 

et al. (1995) last report its expression. Thus, Pax3 appears to have a temporal postnatal 

role in the suppression of myelination genes in NMSCs much the same as it does in 

myelinating Schwann cells. Therefore, terminally differentiated NMSCs of Remak 

bundles such as those seen in these investigations have a phenotype characterised by 

p75Ngf and Gfap expression and a lack of Pax3 and Sox2 expression (Fig. 29).  
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4.3 Pax3 expression in C22 adult mouse peripheral nerve 

Given the relatively small amount of Pax3 transcripts amplified in these investigations, 

it is interesting to note that the Pax3d transcript was found expressed in adult sciatic 

nerve as functional analyses have demonstrated that, in melanocytes, Pax3d promotes 

cell proliferation and migration. Throughout the investigations, it was critically queried 

whether the observed Pax3 positive cells could represent NMSCs undergoing a normal 

cell turnover, despite the fact that studies in rat and mouse have shown that normal adult 

Schwann cells have a low cell turnover and are mitotically quiescent (Lubinska, 1961; 

Martin and Webster, 1973; Muller et al, 1996; Murinson et al, 2005b). When the rare 

NMSC turnover has been observed in adult nerve, there is evidence that mitosis occurs 

while the cell maintains the unmyelinated cytoplasmic processes that wrap around 

axons even after the nuclear membrane has dissolved (Murinson et al., 2005b). Above 

dispute is the fact that, although the number of Pax3 positive cells seen in these 

investigations was low, the number seen in one area of tissue, should they be construed 

as mitotic, far exceeds that which the literature states are present in normal adult nerve 

(Griffin et al., 1987, 1990). Griffin et al. (1987) showed that mitosis of adult rat 

Schwann cells is so rare that less than one Schwann cell per 15000 fibres can be labelled 

with mitotic marker [3H] thymidine.  

 

Rather, the present findings suggest that the cells labelled with Pax3, Sox2 and p75Ngfr 

may represent peripheral nerve progenitor cells that were 'poised' for proliferation and 

migration, similar to Pax3 positive melanoblast progenitors of skin described by Lang et 

al (2005). Other studies have described how, in demyelinating injury or disease, normal 

unaffected NMSCs proliferate asymmetrically (Griffin et al., 1987, 1990, 2008; 

Rambukkana et al, 2002; Murinson et al., 2005b; Koike et al., 2007) and are suggested 

to migrate to areas of demyelination (Griffin et al., 1987). The “supernumary” Schwann 
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cells visualised and described by Griffin et al (1987) had the same morphology as the 

Pax3 positive cells seen in these investigations in that they were round, had little 

cytoplasm and did not ensheathe nerve fibres. This denervated, progenitor morphology 

was also seen in the experiments here that employed the C22 mouse sciatic nerve where 

Pax3 expressing cells were sporadically clustered in groups along the length of the 

diseased nerve trunk (Fig. 20); these Pax3 positive cells were smaller than the average 

NMSC and had a round nucleus. Undoubtedly, future studies need to be undertaken to 

isolate and confirm properties of self-renewal in the proposed Schwann progenitor cells; 

use of the immunohistochemical labelling techniques developed in this research and the 

tissues of Pax3 mutant animals could prove efficacious for investigations of the role of 

Pax3 in Schwann cell responses to neuropathy.  

 

4.4 Immunohistochemical hurdles 

Paraformaldehyde is a common fixative employed in peripheral neurology and various 

methods of paraformaldehyde fixation were assessed here for preservation of the nerve 

tissue, individual cell morphology and antigenicity of the target proteins. While a 

p75Ngfr cell membrane antigen was retained in most of the paraformaldehyde fixed 

preparations, a reliable nuclear Pax3 antigen was not. Initially, it was reasoned that the 

number of Pax3 expressing cells in normal nerve was extremely low (as supported by 

RT-PCR results) such that they may be unidentifiable along the length of the nerve trunk 

(the proverbial needle in a haystack). Therefore, C22 transgenic nerves were acquired 

and used for Pax3 labelling investigations as C22 nerves are reported to have, by virtue 

of regeneration, an increased number of NMSCs that were conceptualised to strongly 

express Pax3. Interestingly, C22 tissues that were fixed with a paraformaldehyde 

perfusion did reveal Pax3 positive cells, whereas, wild-type tissues 

immunohistochemically processed in the same experiment did not.  
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It was reasoned that DNA and/or protein binding may mask targeted Pax3 epitopes in 

normal NMSCs, whereas Pax3 epitopes were accessible to antibodies in the C22 tissue 

due to an altered state of DNA/protein binding in those cells. To investigate the 

possibility, a fixative that included acetic acid was trialled on teased individual Schwann 

cells as this agent is commonly used for in situ hybridisation studies to break 

DNA/protein bonds; the acetic acid fixative was employed according to a published 

protocol for the labelling of transcription factors in mouse sciatic nerve (Blanchard et 

al., 1996). The nerves fixed in this way were not only difficult to tease but also highly 

autofluorescent across a wide spectrum of emissions that clashed with both the 

secondary fluorophores employed. Moreover, the highly soluble myelin proteins were 

extracted by the fixative to the detriment of the tissue. Thus; there were no optimal 

results for Pax3 detection using this procedure.  

 

After close inspection of individual, teased Schwann cells under high magnification, it 

was thought that the immunohistochemical antibodies were not reaching the nucleus 

due to the paraformaldehyde cross-linking of the nuclear envelope, surrounding 

cytoplasmic and endoneurial structures. A checkerboard approach to experimentation 

was therefore employed where combinations of paraformaldehyde fixation times and 

various permeabilisation methods were tested on individual teased cell preparations in a 

further attempt to detect a Pax3 nuclear label in these specimens. In identical 

procedures, primary antibodies targeting the Krox24 transcription factor clearly labelled 

the nuclei of the Schwann cells while the anti-Pax3 label continued to be undetectable. 

It was concluded after this panel of experiments that the antibodies were able to 

penetrate the extra- and intracellular structures into the nuclei of the teased cells and 

although the morphology of the individually teased Schwann cells prepared by fixation 
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with paraformaldehyde were exquisite, the specimens were not conducive to anti-Pax3 

immunolabelling.  

 

An alternate method, consisting of a short post-fixation of dried whole mount sciatic 

nerve fascicles with 4ºC acetone was found to preserve both tissue morphology and 

Pax3 antigenicity. As specimens postfixed with acetone were not able to be efficiently 

teased, methods were developed using preserved whole mounted nerve fascicles. The 

next hurdle to contend with was development of a double-labelling immunofluorescent 

procedure that combined the optimal components of the plasmalemma labelling with the 

optimal labelling of the nucleus. The acetone-fixed whole fascicles did not require much 

permeabilisation for an optimal nuclear label; therefore, TX100 and Tw20 detergents 

were able to be used conservatively as preservation of p75Ngfr membrane bound 

antigens was contingent upon gentle detergent permeabilisation and rinsing methods. 

The ability of the acetone to solely extract the non-polar lipids of the myelin 

undoubtedly contributed to adequate penetration of the antibodies into the cell nuclei 

and subsequent, intense Pax3 signals. Repeatedly, the double-labelling procedure 

described above preserved the intimate comingling of myelinated and unmyelinated 

fibres and optimally labelled both nuclear Pax3 and p75Ngfr membrane proteins within 

well preserved Remak bundles. The indirect double labelling procedure was also 

optimal for the co-localisation of Pax3 and Sox2, which eventuated in the 

characterisation of the proposed peripheral nerve Schwann progenitor cells.  

 

4.5 The significance of the research findings 

NF1 is a heritable genetic disorder affecting 1 in 3,500 individuals worldwide. Patients 

develop numerous neurofibromas (benign peripheral nerve sheath tumors), café-au-lait 

spots (due to defects in pigmentation) and benign lesions of the iris. They are also 
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predisposed to development of malignant peripheral nerve sheath tumors (Kleihues, 

1994). The devastating effects that neurofibromatosis and malignant peripheral nerve 

sheath tumors have on persons affected by NF1 have been an impetus for the 

establishment of the cell of origin of these tumors. During neurofibroma formation, cell-

cell interactions are disrupted, leading to loss of the normal nerve structure. The most 

abundant cell type in neurofibromas is NMSCs, which comprise 60-80% of the cell 

population (Peltonen et al., 1988) and are found without apparent contact with axons 

(Waggener, 1966; Poirier et al., 1968; Stefansson et al., 1982; Cichowski & Jacks, 

2001). Neurofibroma formation correlates with a disruption of normal axon-glial 

interactions in Remak bundles, the development of hypertrophy throughout peripheral 

nerves and an enhancement of mast cell recruitment into these nerves. The 

hypertrophied peripheral nerves and neurofibromas contain large numbers of cells 

similar to immature Schwann cells (Wu et al., 2008) and it has been further suggested 

that the neurofibroma progenitor cell corresponds to cells at the boundary between 

Schwann cell precursors and immature Schwann cells (Wu et al, 2008). As stated 

previously, it has also been found that tumours have a significant population of nestin 

expressant stem cells (Pongpudpunth et al., 2010). Up until now, progenitor cells have 

not been identified in normal adult peripheral nerves (Bixby et al., 2002). Thus, it has 

been previously hypothesised that the possible mechanism underlying neurofibroma 

formation was that NF1 deficiency inhibits differentiation of neural crest/ precursor 

Schwann cells in the embryo which leads to the persistence of undifferentiated cells into 

adult nerves and the formation of tumors at later stages. Zheng et al. (2008) 

demonstrated however, that Nf1-deficient fetal stem/progenitor cells differentiate 

according to a normal time course into NMSCs.  

 

An interesting clue into the cell of origin of neurofibromatosis may lie in the 
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demonstration that transformed Schwann/neural crest cells in neurofibroma and 

malignant peripheral nerve sheath tumours have pigmented melanosomes in the 

cytoplasm as well as fully differentiated melanocytes within peripheral nerve trunk and 

dorsal root ganglion (Anderson et al, 1979; Kanno et al, 1987; Hess et al, 1988; Kuhnen 

et al, 2002; Motoi et al, 2005). This finding alludes to a process of dedifferentiation of 

Schwann cells into a bipotent ‘melanocyte/Schwann cell progenitor’ during clonal 

propogation (Real et al, 2005), such as was first proposed by Nichols and Weston in 

1977 and demonstrated in vitro in avian cultures (Sherman et al, 1993; Nataf et al, 

2000). Of note then, is that the early immature Pax3 expressing Schwann cells described 

herein are poised phenotypically one step from the bipotent melanocyte/Schwann cell 

precursor seen in the ventral neurogenic pathway of embryogenesis at around E12.  

Should further studies confirm the existence of these Pax3 expressing cells as adult 

peripheral nerve progenitor cells, it could be theorised that the chronic neurofibrotic 

milieu of the nerve trunk may be a possible mechanism of the transformation of 

peripheral nerve progenitor cells and the ensuing development of neurofibromatosis.  

 
Finally, millions of people suffer from peripheral nerve degeneration due to 

chemotherapy, infection, diabetes, congenital and chronic demyelinating disorders. In 

the regeneration of damaged peripheral nerve, Pax3 expression in regenerative Schwann 

cells is constitutive. The capacity to manipulate the proliferation of endogenous Pax3 

expressing replacement cells would greatly enhance the development of cell 

replacement therapies for disease treatment. Here, the development of a procedure to 

label and image Pax3 positive cells of peripheral nerve in vivo, may be used for future 

investigations study mechanisms of Remak bundle regeneration with an objective to 

advance therapies that alleviate the clinical symptoms of C-fibre degeneration.  
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4.6 Research conclusion 

In 2008, the prominent neuroscientists Griffin and Thompson stated that “the possibility 

of a population of Schwann cell precursors in adult nerves is largely unexplored” 

(Griffin & Thompson, 2008). The current investigations were intended to build on the 

previous work of others who showed that Pax3, a classic progenitor cell marker, is 

detected in adult peripheral nerve trunk. In accord with the hypotheses and aims 

proposed at the onset of this research, successful co-localisation of progenitor cell 

markers Pax3, Sox2, and p75Ngfr in the nerve specimens investigated, provides initial 

evidence for the existence of peripheral nerve Schwann progenitor cells in adult mouse 

nerves. Furthermore, the novel phenotypic subclassification of Pax3 expressing cells as 

separate from those of the terminally differentiated Remak NMSC, similarly supports 

the long held tenet that developmental progenitor Schwann cells are retained in adult 

nerve much the same as other adult tissue progenitor cells, and Pax3 plays a principle 

role in maintenance of these cells.   
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Table 3. Assessment of fixation and permeabilisation procedures. 

 Permeabilisation 

method 

None Methanol   0.5% 
Tw20 
in 
PBS 

  0.2% 
TX100 
in PBS 

  10% 
DMSO 
in PBS 

  

 Permeabilisation 
time (min) 

 5 10 20 5 10 20 5 10 20 5 10 20 

Fixation 
method 

              

4% PFA 
perfusion 

 ++ +++ + + ++ + + ++ ++ ++ ++ ++ ++ 

4% PFA 
perfusion 
& post-fix 
(2 hrs) 

 ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ 

4% PFA 
post-fix (2 
hrs) 

 ++ + + + +++ ++ ++ ++ ++ +++ ++ ++ ++ 

Methanol, 
acetic acid, 
DDH20, 
acetone 

 ++ + + + ++ ++ ++ ++ ++ ++ ++ ++ ++ 

Acetone  ++++ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 4. Assessment Criteria Used To Assess Immunohistochemical Methods.  

Score Assessment criteria 

+ Loss of tissue/cellular integrity 

++ Good morphology, minimal non-specific background fluorescence  

+++ Nuclei specific label, minimal non-specific background fluorescence  

++++ Good morphology, nuclei specific label, minimal non-specific  background 
fluorescence   
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