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ABSTRACT

Wireless Sensor Networks (WSNs) are based on innovative technologies that had revolutionized the

methods in which we interact with the environment; i.e., through sensing the physical (e.g., �re,

motion, contact) and chemical (e.g., molecular concentration) properties of the natural surround-

ings. The hardware in which utilized by WSNs is rapidly evolving into sophisticated platforms that

seamlessly integrate with di�erent vendors and protocols (plug-n-play). In this thesis, we propose

a WSN framework which provides assistance with monitoring environmental conditions; we focus

on three main applications which include: a. Air-quality monitoring, b. Gas-leak detection, and

c. Fire sensing.

The framework involves four speci�cations: 1. Over the air programming (OTAP), 2. Network

interconnections, 3. Sensors manageability, and 4. Alarm signaling. Their aim is to enhance

the internetwork relations between the WSNs and the outside-world (i.e., main users, clients, or

audience); by creating a medium in which devices e�ciently communicate, independent of location

or infrastructure (e.g., Internet), in order to exchange data among networked-objects and their

users. Therefore, we propose a WSN-over-IP architecture which provides several renowned services

of the Internet; the major functionalities include: live-data streaming (real-time), e-mailing, cloud

storage (external servers), and network technologies (e.g., LAN or WLAN).

WSNs themselves operate independently of the Internet; i.e., their operation involve unique pro-

tocols and speci�c hardware requirements which are incompatible with common network platforms

(e.g., within home network infrastructure). Hybrid technologies are those which support multi-

ple data-communication protocols within a single device; their main capabilities involve seamless

integration and interoperability of di�erent hardware vendors. We propose an overall architec-

ture based on hybrid communication technology in which data is transmitted using three types of

protocols: 802.11 (Wi-Fi), 802.15.4 and Digimesh (WSN).
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Chapter 1

INTRODUCTION

WSN is a group of interconnected node devices that sense and exchange the data gathered from the

natural environment; to help reveal and better understand the perceptual properties of the world

around us (natural or biochemical parameters). The natural principles are governed by the laws

of physics and mathematics; however, WSNs allow us to observe and monitor these parameters

upfront using electronic hardware and physical sensors. This thesis focuses on the application side

of WSNs; and to develop the frameworks that expose their true potential towards environmental

monitoring.

WSNs have many practical applications within the health-care system, such as measuring bio-

metric parameters of patients (e.g., heartbeats, breathing rates, and muscle activity) [1]; this type

of WSN is referred to as Wireless Body Area Network (WBAN) [2]. In hospital and other health-

care institutions, WBANs are used on patients to detect early signs of illnesses, and anticipate heart

attacks or tumors [3]. WSNs are also used by the agricultural industry to monitor the growth-rate

in fruits and vegetables using precision irrigation techniques [4]; also with investigating climate

impact (greenhouse gas) on their growth [5].

WSNs are used to study non-arti�cial phenomenas that occur in nature; which involve geologi-

cal, meteorological, and oceanographic phenomenas [6]. Earthquakes and volcanoes are geological

phenomenas; destructive in nature and undeterred by any means of intervention. However, early

signs can be predicted using a combination of highly sensitive sensors and WSNs [7]. Furthermore,

WSNs are used to monitor safety parameters (stress, fatigue, wear) in building-infrastructure (e.g.,

bridges, towers, buildings) in the aftermath of earthquakes or other nature disasters (tsunamis,

�oods, etc.) [8].

In the sections to follow, we outline our research motivations, aims, and major contributions

towards the WSN �eld of study.
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1.1 Motivation and Research Question

The evolution of wireless and sensor technologies serve as promising signs surrounding the future

of WSNs. Environmentally friendly, low-power utilization, and high-e�ciency are some reasons be-

hind the extensive research behind this technology. However, the practical con�guration of WSNs

is a �eld which has not received enough attention by researchers, many of whom have chosen

theoretical investigations over actual applications. Our motivation is to take an in-depth, highly

pragmatic approach, which demonstrates how to lay the foundations for developing WSN applica-

tions using o�-the-shelve devices. We adopt a systematic approach for addressing communication,

networking, and management of WSNs. First however, a number of challenges must be overcome,

as outlined below:

1. Communications: Large data transfer is simply not feasible in WSNs, which unlike other

wireless hardware (laptop NICs, home-routers, etc.), WSN communication protocols are

designed to meet low-power speci�cations. This is partially due to the fact that sensor nodes

do not have access to a constant source of electricity (to recharge batteries), therefore the

transmission bandwidth must be one that is e�cient and yet supports relaxed data-rates.

2. Networking: WSNs which consist of large number of nodes often lead to unpredictable

results and frequent topological changes. These dynamic alterations cause an unbalance of

energy consumption, channel contention, and higher collision rates among sensor devices.

Multi-hopping techniques have been known to reduce the number of simultaneous one-to-one

connections between sensor nodes and base-stations, however, these techniques alone are not

enough to guarantee data integrity and protection against loss of information.

3. Management: WSNs require adept management techniques in order to expose their true

potential in terms of usability, suitability and functionality in real applications. Firstly,

power management is very important given that sensor nodes have limited access to energy

resources such as batteries. Secondly, node failure management must be addressed appro-

priately given that WSNs are prone to hardware failures caused by noise interference, node

device failures, and buggy software. Finally, the management of components and subsystems

such as communication modules, sensors, and periphery units, must be addressed carefully

given that improper use can lead to irregular node behavior and an increase of data loss.

To date, research has not been able to address these challenges collectively, but we believe that

developing a general architecture which is not based solely on WSN protocols, instead it incor-

porates a mixture of various technologies can help overcome these challenges. Our core research

is developing an architectural model for o�-the-shelve devices based on practical virtues and real

hardware implementation. Our aim is enhancing the services and functionality of hardware used

in environmental and safety monitoring applications.
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1.2 Research Aims

Our research opens up three important questions: a. What types of communications are to be

used, and how will they be implemented? b. Which methods are used to connect the hardware

devices, and how are they applied? And c. Which methods are used to manage the WSN?

1.2.1 Communications

WSNs adhere with the 802.15.4 speci�cations for the Physical (PHY) and Medium Access Con-

trol layers. The upper layers in the communication stack which include the Network (NWK)

and Application (APP) layers remain either proprietary or speci�ed by exclusive alliances such

as DigiMesh or Zigbee. These protocols however, are not open source and also not supported by

all sensor devices, so this causes interoperability issues between di�erent hardware vendors. An

alternate solution is using IP to connect WSNs together. The Internet layer consists of a num-

ber of protocols which are responsible for the transport of packets from the originating host to

a speci�ed destination solely based on the address. Ofcourse, TCP/IP is the leading protocol in

global communications; most online activities involve TCP/IP protocols including web browsing

(Hypertext Transfer Protocol-HTTP), email transmission (SMTP-Simple Mail Transmission Pro-

tocol), transferring �les (FTP-File Transfer Protocol), and remote access (Telnet). Our work aims

towards integrating TCP/IP with WSNs to enable access to online services on the Internet, and

that includes e-mailing, long distance remote capabilities, live streaming of data, and Over The

Air Programming (OTAP) on sensor nodes.

1.2.2 Networking

Data transmission is a dual process which involves a transmitter for outgoing data and a receiver

for incoming data. In wireless networks, radio frequency (RF) is the communication medium used

to connect network devices together in order to exchange information. Similarly, wired networks

use technologies such as Ethernet over twisted pair which provides the means of communicating

between networked systems. WSNs consist of a large number of sensor nodes, connected together

by low power radio modules which unlike the traditional wireless devices used in our PCs, they

spend majority of the time in a state of sleep, or inactivity. Our work aims towards implementing

a Wireless Mesh Sensor Network (WMSN). This type of network sustains the uniformity of long

distance communications by breaking connection links into a series of smaller hops, thus interme-

diate nodes cooperatively make forwarding decisions based on the structure of the network. We

also aim to integrate the WMSN with an IP network in order to improve application capabilities

in terms of access to live sensor data, web server support, Secure Shell (SSH) connections, and

cloud based storage.
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1.2.3 Management

Our work focuses on two management techniques: a) Node management, and b) Network manage-

ment.

1.2.3.1 Node management

We aim to implement management strategies which improve performance, reliability and stability

of sensor nodes. These strategies include:

1. Low-Power alarm utilization: This �rst technique in general is used to monitor the battery

levels in the sensor nodes, but we aim to implement the notion of dynamic threshold recon-

�gurability, which means that tasks will only be executed while battery levels are above a

certain threshold. We use this technique to increase task independency from one another, in

which prevents nodes from getting stuck in endless loops when tasks fail to execute due to

insu�cient available energy.

2. Sleep modes: These modes include normal, deep, and hibernate. The di�erence between

them is the amount of power that is consumed while being in active state. Deep sleep and

hibernation modes have higher power e�ciency than the regular sleep because in those two

states node components are completely detached from the power source. We aim to use these

modes to improve battery e�ciency and to extend the life duration of each node.

3. Integration of algorithms: We aim to implement algorithms to support the execution with

di�erent tasks and functions in the application. We plan to develop algorithms that will

support the generation of alarm signals in emergency events, enable radio communication

during OTAP operations, and also to control the sensing architecture demanded by the

application.

4. Event priority management: We aim to implement a task management system based on

priority and importance levels. This technique will enable the nodes to react more e�ciently

to the events which happen in their surroundings. For example, if a node detects �re the

same time it needs to access the SD module; then it needs to distinguish which event is more

important a) sending an alarm, or b) save data. We need to instruct the node that when �re

is detected, it needs to prioritize sending the alarm message prior to saving data into the SD

card. Furthermore, we aim to apply event management techniques upon all aspects related

to node functions and tasks administration.

1.2.3.2 Network management

We aim to provide a modern approach on WSN management by using various techniques for:

a) accessing/storing sensor data, b) using secure transmission between networked devices, and c)

synchronization of tasks in real time. The methods we use for implementing these techniques are:
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1. Cloud storage: We aim to implement data storage in a cloud based network in which consists

of various host workstations acting together centrally to store information from numerous

WSNs.

2. Encrypted data transmission: Unsecured transmission of data causes unpredictable and un-

reliable operations in a WSN. Attacks on the WSN can be in many forms such as: a) ma-

nipulation of data in order to trick the network into doing something else (e.g-false alarms),

b) overwhelming the network by �ooding it with packets in which leads to network failure,

or c) stealing data and using it for personal gains. These issues can be minimized by in-

troducing security measures which enable networks to distinguish between real and foreign

nodes. We aim to implement application and link level features in order to improve the

security in WSNs. Application level entails to the communication between nodes inside the

application not the network, whereas link security refers to the encryption of data-payload

prior to transmission, and the only way a networked device can make sense of the data is by

previous knowledge of the encryption key.

3. Real-time system: In a real-system, every networked device including all node components,

sensors, and radio transmission are synchronised in real-time. This implies that WSNs re-

spond to each command exclusively without interfering with normal network operations.

These commands may include: a) retrieving sensor data, b) changing operating channels, c)

uploading data to web-server, or d) performing device maintenance. We aim to implement

a system which is capable of many real-time functions including alarm generation, over the

air programming, database and webserver support, e-mail messaging, and online publishing

(twitter, word-press, etc.).
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1.3 Research Contributions

Figure 1.1: Conceptual model for research contributions.

In this research, we investigated frameworks using o�-the-shelve WSN hardware to study the

physical nature of the environment and monitor the safety of the surroundings. Figure 1.1 presents

our contributions as a model for conceptualizing frameworks based on WSNs which are used for

studying the physical nature and monitoring the safety in surrounding environments. This model

has 6 critical components:

1. Investigation of hardware: We investigated available o�-the-shelve equipment for envi-

ronmental and safety applications. We then then picked the most suitable ones and solved

the research challenges towards developing practical systems using those devices.

2. Con�guration of hardware: We con�gured the hardware according to speci�c applications

and practical virtues. This entails choosing the correct sensors, radio modules, and node

accessories for each individual device.

3. Software programming: We coded every piece of software used by our nodes using open-

source API (Application Programming Interface) and IDE (Integrated Development Envi-

ronment). The software that we developed are used in algorithms, alarm generation, events

management, and general sensing requirements.

4. Seamless integration: We have con�gured the WSNs to integrate seamlessly with IP

networks in our implementation of the Mesh-Hood (M-Hood) system. The M-Hood system

consists of numerous sensor nodes which are deployed to create a primary mesh network,

and access points (APs) which are bridged together using wireless connections to provide

real-time monitoring and Internet services.
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5. Long range communications: We have developed methods which address remote connec-

tivity in WSNs. These methods are based on WSN-over-IP which can be applied to improve

user control of WSNs, and access to data from remote locations.

6. Connectionless upgrades: We have integrated over the air programming capabilities for

local (on-site) and external (remote) WSNs. For external locations, we use IP to connect

to the main base-station (WSN gateway) and perform connectionless upgrades (no wires)

on the nodes. Furthermore, we have prepared the nodes to accept the local over the air

requests without interfering with the normal operations of the WSN unless instructed by an

administrator.

7. Development of applications: From the previous �ndings, we developed environmental

applications based on systematic architectures which deal exclusively with communication,

networking, power management, sensor integration, remote connectivity, and alarm genera-

tion. We provide a systematic approach which explains the fundamental prerequisites and

real-con�gurations for each architecture we use in our applications.

1.4 Thesis Outline

The structure of this thesis is as follows:

• In Chapter 2, we familiarize the audience with WSN background which includes relevant

information on the communication protocols, routing techniques, power consumption require-

ments, and real-time operations. We then discuss the relevant literature and works which is

relevant to this research.

• In Chapter 3, we develop the major system architecture of the WSN. More speci�cally, we

de�ne the fundamental system components used in over the air programming, networking and

communication speci�cations, sensor integrations, alarm generation, and remote connectivity.

• In Chapter 4, we develop the real systems used in environmental applications using the

knowledge and understanding of the previous chapter. Then we propose the techniques we

use for sensing the environment, generating alarms based on di�erent emergencies, and �nally

the functions for handling the risks associated with a particular event.
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Chapter 2

BACKGROUND AND

LITERATURE REVIEW

In this chapter, we discuss the background of WSNs which includes information on the commu-

nication protocols, routing techniques, power requirements in low-power applications, and the use

of real time operating systems in sensor networks. The next part of this chapter holds more

complicated discussions on various architectures, applications, and research challenges in WSNs.

2.1 Wireless Sensor Network Fundamentals

In this section, we discuss the foundation of many important concepts which helped WSNs to be

recognized as one of the most promising technologies of today and for future generations to come.

2.1.1 Communication Protocols for Wireless Sensor Networks

Traditional wireless sensor networks comply with ad-hoc speci�cations in addressing various net-

work functionalities such as routing and data transmission. The evolution in network speci�c

protocols have improved the functionalities which are needed for handling complex and demanding

networks. In the WSN domain, development of the IEEE-802.15.4 standard protocol has revo-

lutionized this technology. The main focus of this protocol is to provide low power consumption

and reliable throughput for short range communications. In addition, other proprietary protocols

such as Zigbee, and Digimesh have been developed speci�cally for WSN technology to enhance

usability and improve their services. This section will outline the main communication protocols

in reference with the OSI (Open System Interconnection) model speci�cally for the IEEE-802.15.4

and the Zigbee protocols.
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2.1.1.1 IEEE-802.15.4 protocol

WSNs commonly adhere with the 802.15.4 speci�cations for the physical and MAC layers. The

upper layers in the communication stack are not addressed in the 802.15.4 protocol. Therefore

sensor networks are not subjected to speci�c protocols in these upper layers, they remain either

proprietary owned or speci�ed by exclusive alliances such as Z-Wave and Zigbee.

Figure 2.1: The Open System Interconnection (OSI) model.

The IEEE 802.15.4 de�nes a communication speci�cations for the Physical and MAC layer

of the OSI model as illustrated by Figure 2.1. The focus of this protocol is to provide short

range wireless networking with relaxed data rates and low energy consumptions. Furthermore, the

frequencies which are de�ned in this standard are divided into 3 main bands:

• 868-868.6 MHz

• 900-928 MHz

• 2.4-2.48 GHz

The IEEE 802.15.4 standard [9] supports di�erent kinds of modulation schemes as highlighted by

Table 2.1, which includes BPSK (Binary Phase Shift Keying), O-QPSK (O�set-Quadrature Phase

Shift Keying), ASK (Amplitude Shift Keying), and DSSS (Direct Sequence Spread Spectrum).

Also these modulations allow communication bandwidths in the range of 20 Kb/s to 250 Kb/s.

Many sensor nodes use the Direct Sequence Spread Spectrum (DSSS) to modulate the infor-

mation before being sent to the physical layer. This modulation scheme is very popular because it

causes less interferences in the bands used, and improves the Signal-to-Noise ratio. Furthermore,

this modulation scheme works by splitting the transmitted signal to 4 di�erent signals where it

occupies a larger bandwidth but it uses a lower power density for each signal.
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Frequency (MHz) Modulation Bit rate (kbps)

868 BPSK 20
915 BPSK 40
868 ASK 250
915 ASK 250
868 O-QPSK 100
915 O-QPSK 250
2400 O-QPSK 250

Table 2.1: The IEEE-802.15.4 modulation schemes.

The IEEE-802.15.4 protocol speci�es the Carrier Sense Multiple Access-Collision Avoidance

(CSMA-CA) scheme to avoid all nodes from transmitting at the same time. In this method each

node will listen to the medium before transmitting and avoids sending information if the energy is

found to be higher than a speci�c level. In addition, GTS (Guarantee Time Slots) is used to give

each node a speci�c time slot to send its information, and also relies on a coordinator to synchronize

the time slots. Energy detection functions are included in the 802.15.4-PHY parameters (PLME-

ED) which are used to detect the amount of energy (activity, noise, interference) over the network.

The MAC layer in the 802.15.4 protocol de�nes two basic modes of operation: beacon mode

and non beacon mode. The beacon mode is time dependent and used for time synchronization

between the nodes. In addition, when beacon mode is set, it sends a superframe (Figure 2.2)

which de�nes the time periods for active transmission and inactive transmission. Optimizing the

beacon mode lowers the duty cycles of nodes and improve energy e�ciency. Non-beacon mode is

asynchronous in nature and time independent. When this mode is set, the nodes will periodically

poll the coordinator to see if there is any data requests.

Figure 2.2: Beacon mode superframe.

The 802.15.4 is thought to be a protocol to get point to point and energy e�cient communica-

tions. As mentioned earlier, it only speci�es the parameters for the physical and MAC layers only.

Meanwhile upper layers are de�ned by the Zigbee protocol.
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2.1.1.2 Zigbee protocol

The Zigbee protocol de�nes speci�cations for the Network and Application layers of the OSI model

illustrated by Figure 2.3. A Zigbee stack consists of many sub-modules, the application layer is

divided into 3 sub-layers: the Application Sublayer (APS), the Application Framework (AF), and

the endpoints (nodes). In essence, the APS module performs data transport services to all the end

points, also it interfaces the network layer with the upper application layers of the Zigbee stack.

Furthermore, the Application Framework (AF) layer is used to forward the packets sent by the

APS to a speci�c node from its database.

Figure 2.3: Zigbee stack.

The network layer performs a number of functions including:

• Routing of outgoing/ingoing packets.

• Device discovery.

• Association and authentication.

• Data encryption.

• Network maintenance.

Zigbee deals with the transmission process as follows, the APS sends data to the network layer via

a data request. The data request frame contains the destination address, whether or not routing

discovery is allowed, and also speci�es the maximum number of hops the frame is allowed to travel.

Zigbee frames contain two types of addresses: the 802.15.4 source/destination MAC address, and

the Zigbee network source/destination address. The MAC address is used to determine the real

next hop destination. The network layer then carries out a series of tests to determine whether

the frame is a broadcast or to a device. If it is not a broadcast frame, then it checks the neighbour

table for matching destination addresses. If a destination address is found, it would transmit the
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data in a single hop. However, if the destination address is not found in the neighbour table,

routing algorithms are used to determine the exact path for the destination. Routing tables are

checked for matching next hop and destination addresses and if that's unsuccessful route discovery

is performed. Once the route has been determined, the packets will be forwarded through multiple

nodes to reach its �nal destination.

From a receiver perspective, the radio retrieves the frame and stores it in a bu�er. The MAC

layer decodes the payload header and passes it onto the network layer. Once the frame is in the

network layer it would be processed according to the type of frame. Frames arriving in the network

layer are classi�ed as two types: data frames, and command frames. Each of one these unique

frame types are processed di�erently. Data frames are treated either as destination frames, where

the receiving node is the �nal destination address in which case it is passed onto the application

layer. Broadcast and multi-hop frames are the remaining types. The second type of frames in

the network layer are the command frames which are used to handle network maintenance, link

maintenance, and association or dissociation in the network.

Zigbee also o�ers network management services such network formation, network discovery,

and network join. A Zigbee network consists of 3 devices: coordinator, router, and end-device.

The coordinator is a router that starts the network and performs scanning functions, selecting

communication channels, and setting network ID. The router, or parent node is a device capable

of routing functions. The end device, or child node is a device that has limited resources and not

capable of performing any routing decisions. Child nodes are used to send information about the

environment to the parents nodes where processing and storing of the information can take place.

From a management view, network formation can only be performed by a coordinator device. This

function will send a request to the MAC layer to perform an energy scan on the available channel.

When the scan is completed, the network formation function will decide on the most suitable

channel for the new network and a new network ID will be set.

Network discovery services are used to discover existing networks on the same channel. It is

used mainly when devices are looking new networks to join. The function works by calling the MAC

layer's active scan function which broadcast a beacon request. Devices on the network will then

respond to this request by transmitting an 802.15.4 beacon superframe. The superframe contains

information about the MAC address and the Zigbee network parameters such network ID, amount

of routers and end devices allowed to join. The device which made the network discovery request

then decides whether to join the network or look for a new one on a di�erent channel.

2.1.1.3 DigiMesh (DM) protocol

The Digi-Mesh (DM) protocol is a proprietary owned stack which provides management and net-

working functions in the WSNs. The main feature in this protocol is it allows mesh network

con�guration and topologies. The mesh network topology is extremely useful in WSN architec-

ture as it enables longer communication distances to exist between the nodes and the base-station

through a routing technique known as Ad-hoc On-demand Distance Vector (AODV). Furthermore,
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DigiMesh incorporates additional features including [10]:

1. Self-healing: node association or dissociation does not a�ect the network performance, and

therefore does not cause a failure.

2. Peer-to-peer architecture: nodes are not subjected to obligatory relationships as in parent-

child constraints, and there is no hierarchical based network architecture which is present in

the Zigbee protocol.

3. Routing capabilities: AODV routing is used in the DM protocol to improve the distances

between nodes and base-stations.

4. Route discovery: this technique uses broadcast messages to determine the route for transmit-

ting data from the source node to the �nal destination. Therefore there is no intermediate

requirement to maintain a routing map.

5. Selective acknowledgments: only destination nodes are able to reply to route requests.

6. Reliable data delivery: the DM protocol helps overturn communication problems that exist

in di�cult terrains such as dense vegetation, building walls, etc..

7. Node synchronization: low power sleep modes and synchronised wake up are supported by

this protocol.

2.1.2 Routing Techniques

When great distances separate the nodes from the base-stations/end-devices, more powerful radio

transmissions are required. However, the more power we use, the more energy we waste, and that

is exactly what WSNs try to avoid; using more power. Therefore, the need of e�cient routing

techniques becomes imminent, and fortunately enough, there are some which are already adopted

by the Zigbee and DM protocols.

2.1.2.1 Ad-Hoc On-demand Distance Vector (AODV) routing

This form of routing is used in the DM protocol to relay data from the transmitting nodes to the

base-stations or end-devices [11]. In a mesh-network topology which have a similar arrangement as

Figure 2.4, only a single node is in communication distance with the base-station, AODV routing

is used to map the transmission path using multihop algorithms, and also maintains a list of

previously used paths in routing-tables.

Path discovery is achieved by means of �ooding the network with broadcast messages until the

�nal destination is discovered. The path is determined for the delivery of data from the source

node to the base-station where it could take an N-amount of hops before it is received. In the DM

protocol, it is possible to specify the maximum amount of hops allowed between routing nodes

until the �nal destination, and once this value is exceeded the data get dropped. In addition, DM
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Figure 2.4: AODV in mesh networks.

enables multi-route requests in order to select between various paths which are discovered; the

source node broadcasts a Route Request (RREQ) message which is received by any node within

communication range. Various paths are determined based on the routes found by each node, then

a Route Reply (RREP) gets transmitted back by the destination node which contains a list of all

the paths discovered. The source node receives the RREP and the path with the shortest Round

Trip Time (RTT) is selected to deliver the data.

The IEEE-802.15.4 protocol does not specify any routing techniques for data transmission as

this standard deals exclusively with the physical and MAC layers in communications. Ultimately,

it is up to the user to de�ne the routing algorithms used by network devices and their applications.

Both DM and Zigbee protocols provide additional upper layer support including speci�cations for

the network (NWK) and transport layers. In addition, they both address lower layers (in the MAC

and PHY) using the original 802.15.4 speci�cations standard.

2.1.3 Power Consumption in Wireless Sensor Networks

Energy is a primary concern in WSNs. Sensor nodes have limited energy to supply and hence

they must make intelligent decisions which can help conserve energy. It is found that general

knowledge on the current consumption of the di�erent elements on the sensor nodes will improve

the node lifetime by up to 52% [12]. Therefore, it is important to realize techniques that minimize

power consumption in the microprocessor, analog-to-digital converter (ADC), and radio. The

methods discussed in [13] suggest that power consumption is greatly a�ected by the ADC, micro-

controller, and radio of a sensor node. Several methods are put forward in order to optimize network

performance without the trade o� in increasing energy demand. E�ciency can be improved using

several methods which are summarized below:
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• An ADC is an electronic device that converts analogue signals into digital signals proportional

to the magnitude of the voltage or the current. Di�erent types of digital coding schemes can

be used such as binary, gray code or two compliment's binary. Furthermore, the ADC

requires constant energy supply to maintain normal operation, hence if a device su�ers from

low e�ciency setbacks then the ADC will continue to draw current from the power source to

maintain operation and eventually depletes the power source.

• E�cient programming of the microprocessor can reduce energy demand from the node com-

ponents such as the external sensors, and the radio. The energy is reduced by promptly

instructing the radio component to switch o� when data is not being sent or received. In

addition, other node components such as sensors, GPS/GPRS modules are turned o� when

they are not in use.

• The radio component is the biggest energy consumer in a wireless sensor node. In WSN

the radio operates in 4 di�erent modes: receive, transmit, idle, and sleep. Radio idle is the

biggest contributor to energy loss out of the remaining modes. Furthermore, energy loss is

also apparent when the di�erent modes are changing from one state to another. The key

to lowering power consumption in the radio component is by reducing the duty cycle. Duty

cycle is the ratio between the total on time sending and receiving data to the total time in

1 complete cycle. In order to achieve a low duty cycle the radio must sleep the majority of

the time, then wake up quickly to process information and �nally go to sleep again.

2.1.3.1 Improving energy e�ciency for WSN

The report from [13] also discusses a number of techniques which are applied to the OSI networking

protocol stack on power management solutions. The OSI model consists of a number of interrelated

protocols implemented in current architectures of modern computing systems. Furthermore these

protocols provide the basic structure of how each di�erent layer interact with one another starting

from the physical layer (PHY) all the way to the application layer. The application layer typi�es

the use of software applications in the windows operating system environment as an example, while

the physical layer de�nes the electrical and physical characteristics of the hardware. The other

functions include routing of data which occurs in the transport layer, error-detection techniques in

the data-link layer, and the transferring data from one source to its destination is in the network

layer. It is possible to improve power consumption of sensor networks through techniques applied

onto these di�erent layers. These techniques can be summarized as follows:

• Load partitioning is a technique applied on the application layer which in relation to WSN

means that power commutation and data processing are performed at the central nodes

rather than the remote nodes. This method entails that remote nodes are responsible for

sensing and transmitting data only. Later the information are requested by the central node

where it would process the data accordingly. Another method known as context information
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is based on the level of activity expected in a network. If there is no activity it would shut

all the radio components of the network.

• Techniques to try to minimize the number of retransmission of packets due to a faulty con-

nection in the wireless link are applied in the transport layer.

• Designing of intelligent routing algorithms and adaptive routing techniques are used in the

networking layer of the OSI model. In multi-hop routing, every node act as a routing device

in order to route information from the source through multiple nodes and �nally to the

�nal destination. This technique is proven to reduce energy consumption used by sensor

nodes. There are two methods used to reduce power consumption in the data link layer:

Automatic Repeat Request (ARQ) and Forward Error Correction (FEC). These methods

improve e�ciency by reducing the transmission overhead. Both ARQ and FEC reduce the

number of error packets at the receiving node consequently conserving more energy.

• Sleep scheduling is a technique applied in the MAC layer of the OSI model and the main func-

tion is to optimize the duty cycle by tweaking the on and o� time values of nodes which reduce

the e�ects of idle-listening. Synchronous sleep scheduling requires clock synchronization of

all nodes within the network. Asynchronous sleep scheduling uses continuous transmission

to wake up the receiving node when needed.

• Proper hardware design will reduce the amount of current leakage in electronic devices and

that will ensure a longer lifetime is achieved. Remote Access Switch (RAS) is technique used

in the physical layer to reduce power consumption. It does so by waking up the receiver only

when it has data destined to it.

2.1.4 Real-Time Operating Systems (RTOS)

An operating system is simply a group of programs that are connected together to provide the

user functionality of the hardware system. WSNs use di�erent types of operation systems in

comparison to desktop computer (e.g-Windows); sensor nodes generally lack the memory space

and raw processing power to use an operating system like Windows. Therefore the operating

system must be su�ciently small to �t in the memory of the sensor node whilst it handles the

tasks the same way the desktop or laptop OS does. The most popular of those operating systems

are Contiki and TinyOS.

2.1.4.1 Contiki

Contiki is an open source, highly portable, multi-tasking operating system for memory-e�cient

networked embedded systems and wireless sensor networks [14]. Contiki is implemented in the

C language and has been ported to a number of micro-controllers such as the MSP430 by Texas

Instruments. It is built around an event-driven kernel, and other features including dynamic

program loading/unloading, and pre-emptive multi-threading.
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2.1.4.2 IPv6 stack

The internet layer of the OSI model consists of a number of protocols which are responsible for

the transport of packets from the originating host to a speci�ed destination. The IP protocol in

speci�c is used for delivering packets from the source host to the destination solely based on their

addresses. Contiki's implementation of the TCP/IP protocol is the µIP which is suitable for sensor

nodes and other resource-limited devices [15]. It is designed to have only the absolute minimum of

required features for a full TCP/IP stack, and focuses on the TCP, ICMP and IP protocols. The

di�erence between IPv6 and IPv4 is the amount of address space. IPv6 has a total address space

of 2128 addresses compared to 232 in IPv4. Currently, Contiki is one of few operating systems that

support IP networks.

2.1.5 Communication Performance Measurements

We rely heavily on scienti�c instruments in order to measure, analyze, and record data concerning

communication systems. Hardware-oriented equipment such as a digital storage oscilloscope (DSO)

is heavily used in analyzing RF signals and transmission frequencies of radio modules; to verify

their operation within speci�c requirements. Moreover, network simulators are inde�nitely one of

the most important tools around; they utilize numerous communication protocols fundamental in

many network deployments [16]. The main parameters which determine the performance quality

of communication systems are outlined as follow:

2.1.5.1 Energy estimation model

Total energy use is estimated based on key parameters which include: microprocessor energy

utilization, transmission energy, sensors usage, and consumption by periphery components (e.g.,

external memory, boards, etc.).

E

V
= Im ∗ tm + Il ∗ tl + Ir ∗ tr + It ∗ tt +

∑
(Ici + tci) (2.1)

Equation 2.1 is a general energy estimation model which is utilized towards computing the

total consumption by the Contiki-OS kernel [17]; the parameters which are a�ected are as follow:

a. CPU usage, b. LPM (Low Power Mode), and c. Transmit/Receiver (Tx/Rx).

2.1.5.2 Radio Reception Throughput (RRT)

RRT desribes is a relative measurement which determines the quality of transmission in RF

transceivers. RRT does not re�ect the data rates in communication [18]; rather it is a quanti-

tative re�ection towards transmission between interconnected devices.

RRT (%) = (Rx/Tx)packets ∗ 100 (2.2)
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Equation 2.2 speci�es the RRT parameter in terms of the ratio between received packets and

total number transmitted.
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Figure 2.5: RRT demo based on WSNs.

In Figure 2.5, the RRT is measured in two separate environments; i.e., indoor and outdoor.

These measurements are based on point-to-point (p2p) communication links between the source

(Tx) and the receiver (Rx). As mentioned previously, the RRT does not re�ect the real data-rate,

however it provides a measure of quality regarding the communications in a speci�c environment.

2.1.5.3 Radio duty-cycle

Duty-cycle is a time-based parameter which applies to the process in which the radio device is

handled [19] [20]. There are two key parameters involved in the calculation of radio duty-cycle

which include: total time (ttotal) and the active duration (ttx and trx); radio receive and transmit

duty-cycles are expressed by Equations 2.3 and 2.4 respectively.

DTx = ttx/ttotal (2.3)

DRx = trx/ttotal (2.4)

Duty-cycle algorithms specify key techniques towards developing energy-smart systems; WSNs

have utilized these methods to improve e�ciency and transmission energy in the radio modules

[21]. WSNs are at their peak e�ciency (i.e., in terms of energy usage by the radio component)

while the duty-cycles are at their lowest speci�cations; by optimizing durations speci�ed in sleep

(ts) and wake (tw) parameters [22].

In the discussion to follow, we review the work of authors in the WSN �eld, which involves

architecture design, applications, and main challenges.
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2.2 Systems Architecture, Applications, and Challenges

Recent advances in sensor technology and wireless communication have inspired signi�cant research

interest in WSNs due to their promising potential to support an extensive range of applications.

A new generation of WSN technology is becoming more apparent to the community, and they are

demonstrating an excellent integration capabilities with a wider range of communication protocols

and applications services. Application oriented technology including WSNs are currently used

in many sections of the community including in environmental monitoring [23], assistance with

Activities of Daily Living (ADLs) [24], smart metering [25], and human safety applications [26].

A. V. Andras Nasa et al. [27] proposed a technique that used WSNs for pollution monitoring.

Their technique measures the concentrations of gases in the exhaust systems of mobile vehicles

(cars, buses). The data will be used to understand e�ects of pollution on the air quality in industrial

cities. Authors however, do not use techniques to deal with a large number of nodes, and in

particular the infrastructure requirements based on their methods. R. North [28] proposed another

technique to support the management of transport and air quality. His technique incorporates

IP networks with Wi-Fi, Zigbee, and mobile-3G communications to improve the interoperability

between di�erent technologies. The author however, does not specify the techniques for power

management given that devices are required to transmit data on frequent basis, also the ine�cient

nature of Wi-Fi/3G communications in terms of energy use. WSNs are also used indoors to monitor

the health in patients and provide them with assistance in ADLs [29]. L. J. Wu Zhengzhong et

al. [30] proposed a system based on low power RF transceivers and sensors for monitoring the

indoor air quality. Their techniques improve the power e�ciency in the WSN by lowering the

duty-cycle in the radio transceiver units. Authors however, do not specify which of the available

Real Time Operating Systems (RTOS) they used to implement their IP based sensor network,

and they also failed to address the communication architecture between the IP gateway and the

nodes. The technological demands poised by the industry can sometimes be challenging and

far-reaching. Nowadays applications based on WSNs require new type of technology that can

withstand tough weather conditions, o�ers dynamic resiliency to changes, and uses long/short

distance communications at very low power speci�cations. WSNs are now found in the toughest

and most brutal environments such as mines [31], underground facilities [32], and o�shore rigs. S. C.

Mohammad reza Akhondi et al. [33] explores the applications of WSNs in the oil and gas resource

industry. The author argues for the use of sensor network technology to monitor the pipeline

integrity, natural gas leaks, corrosion, equipment self-status, and prediction in reservoir levels.

WSNs o�er a very marketable prospect in the eyes of leading industries and organisations, which in

turn fueled the research into safety and environmental monitoring applications including chemical

processes [34], waste disposal management, materials and products transportation [35], and bush-

�re monitoring [36]. L. Liu [37] realizes the important roles WSNs play in the development of

environmental applications, and argues for the need of an architecture that is based on a hierarchal

structure and sub-facets functions in order to address the main objectives of WSNs including
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customized-service functionalities, power e�ciency, and adaptive to dynamic changes. The author

also argues that research into the architecture of WSNs is fundamentally weak, which is a matter

that needs to be addressed in the future. The main concerns raised by the author include �rstly

the mapping of operations between the environment, network, and application. Secondly, lack of

sustained power resource to guarantee a high quality of service and e�cient use of bandwidth.

Thirdly, the architecture of WSNs should be scalable in size, network functions, and network

performance. Lastly, the use of service-customized to meet with di�erent application needs. Let

us take this opportunity to recap on the shortfalls of WSNs; �rst and foremost, we present the

audience with the limitations of existing schemes which are used in applications involving WSN

technology [38, 39]. These shortcomings are outlined below:

1. The limited energy supply from the sensor nodes will restrict the lifetime of the WSN.

2. The transmission range between sensor nodes is limited, thus a large number of nodes would

be required to cover greater areas .

3. Many-to-one communication patterns in which multiple nodes send their data to a single sink

can cause unbalanced energy consumption, channel contention, and higher collision rates.

4. WSNs are prone to failures due to many factors such as noise interference, node device

failures, and ine�cient programming of software.

In the next few chapters, we will address several challenges based on the literature discussed earlier.

We take exceptional notice towards architecture design of applications which involve environmental

monitoring, thus we will be presenting three di�erent systems: a. Air pollution monitoring, b.

Fire monitoring in indoor and outdoor environments, and c. Gas leak detection. We target the

use of a uni�ed structure which speci�es low-power communication protocols, multi-hop routing

techniques, and integration with TCP/IP networks in order to enhance real-time utilization and

event multi-tasking. We will also make use of distinct algorithms for enabling e�cient sensing

operations, which target improving reliability of data and reducing the number of false alarms

during emergencies. Finally, we will incorporate over the air programming (OTAP) and long

distance connectivity together in order to address network errors, faults and troubleshooting from

remote locations.
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Chapter 3

APPLICATION FRAMEWORK

In this chapter, we will present the audience with a systematic framework which speci�es major

components in the communication architecture to enable real-life implementations of WSNs and

their applications. We direct our e�orts towards developing a uni�ed system based on o�-the-

shelve hardware, in which we use to address fundamentally the practical side of WSNs. Figure 3.1

represents a conceptual model which embodies the architectural design of WSNs in general form.

There are four major components of this system which include:

1. Networking architecture: Our work emphasizes on relationships between networked devices

in WSNs. We focus our attention on methods which assist with network formation, con�gu-

ration of radio modules, and functionality of hardware platforms (speci�c to WSNs).

2. Alarm architecture: The audience will acknowledge the multiple techniques we utilize for

generating alarm signals. We target online services (Twitter, word-press), mobile communi-

cations (SMS, voice calls), and wide community services including personalized web-servers,

daily e-mail updates, and live data access.

3. Power management: Our work �xates on management strategies towards energy optimization

and supportive algorithms for reducing power consumptions in sensor nodes. We utilize a

dynamic detection technique which assists with the execution of node functions based on

the available energy in the reservoir. In addition, we target the use of sleep modes (regular,

deep sleep, hibernate), and incorporate Real-Time-Clock (RTC) to provide synchronization

for the sleep and wake durations.

4. Sensing architecture: We seek to inform the audience with regards to the calibration of

sensors, implementation in the environments, and �nally the interpretation of measurements.

We will begin this chapter with an introduction on the available hardware which specializes in

applications based on WSNs, then we move towards more advanced discussion which involves

the main system architecture. Many of the sections include pieces of software codes, these were

developed to guide the audience (whom are interested) through the necessary steps to replicate

this work.
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Figure 3.1: Uni�ed framework model.

3.1 Overview of Hardware

Popular WSN sensing platforms such as the TelosB (Berkeley), MicaZ (CrossBow), and Waspmote

(Libelium) have all made their mark on the WSN community. The TelosB is one of the earliest,

and most widely used platform model around the world. The telosB and micaz nodes demand little
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power to operate in real life and they both share a simple approach in terms of their hardware

design. However, unlike the Waspmote, these nodes do not support a large variety of sensors

(by default), and that makes them less suitable in real applications. In addition, the Waspmote

supports a variety of radio communication standards and modules (802.15.4 / Zigbee / DM / WiFi

/ Bluetooth), where the TelosB or MicaZ only use an 802.15.4 radio transceiver. Since our research

is focused more towards application development, we opted with the Waspmote platform as the

main hardware.

3.1.1 Waspmote

The Waspmote [40] is an open source Zigbee and IEEE-802.15.4 sensor platform which is based

on a user-friendly modular architecture for rich application development. The classi�cation of

the external boards are as follows: gases, events, agriculture, smart metering, smart parking, and

smart cities. These boards hold various types of sensors which are mounted on the Waspmote to

give it this compact feeling and neat touch. In addition, Waspmotes support a number of proto-

cols and standards of communications such as, the IEEE-802.15.4, Zigbee, Digimesh, Bluetooth,

and RF-XSC. The ability to integrate many protocols into a single node provides capabilities for

implementations of multi-WSN architectures where independent communications can exist within

a single network. The main features of the Waspmote node include: module architecture, simple

sensor integration, support of numerous communication protocols, secured transmission using AES

(Advanced Encryption Standard), long range communication capabilities [41], low power consump-

tion MC (ATmega1281 microcontroller), and �nally support to over the air programming functions

(OTAP).

3.1.2 Meshlium

Meshlium [42] is a powerful WSN router which combines many communication technologies into

one single device. The supported technologies include: Wi-Fi (2.4 GHz and 5 GHz), Zigbee,

GPRS, Bluetooth, and GPS. It is based on a 500 MHz processor with 256 MB of RAM and runs

a Debian/Linux Operating System (OS). It is designed to withstand harsh environments using

an aluminum casing to protect it from dust and water. Furthermore, Meshlium allows a large

number of high level services to be managed such as, sending alarm SMS and e-mails, accessing

the World-Wide-Web (WWW) services, and managing MYSQL databases for data storage. The

main functions of Meshlium include:

1. Initiating of short and long distance data communication.

2. Routing data multiple communication protocols.

3. Capturing and storing of data from the sensor network

4. Local network control and link maintenance.
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3.2 Communication Networks

Figure 3.2: Communication architecture building blocks.

In this section, we propose an architecture which speci�es the networking principles towards

WSNs. Our work focuses on three major components which include network formation, topologies

and protocols. We present our model in Figure 3.2 which summarizes the elements that de�ne the

WSN architecture.

We will begin our discussion with a brief introduction on how to setup the initial environment

of the operating system. Firstly, the installation of X-CTU (XBee Con�guration and Test Utility)

is necessary in order to con�gure the radio modules for the WSN. To enable compatibility in Linux

(mint/ubuntu):
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Step 1: Install the WINE (Wine Is Not an Emulator) package to allow compatibility of Win-

dows based applications on linux distributions. In terminal, type the following and then proceed

with installation of the X-CTU:

sudo apt−get i n s t a l l wine

Step 2: Create soft-links between USB and COM ports by typing the following commands:

l s − l t /dev/ttyUSB∗

ln −s /dev/ttyUSBx ~/. wine/ dosdev i c e s /COMy

//Note : ttyUSBx where x r ep r e s en t s the USB port number

COMy: where y can be any port number to bind with the USB //

In the next series of discussions, we seek to clarify the processes involved in the formation

of WSNs, which include con�guring the network parameters (operating channel, data transmis-

sion), data security (payload encryption), and the methods of transmission (unicast, broadcast,

multicast). Then, we turn our attention towards network topologies and implementations, which

include point-to-point (P2P), ring, start, and mesh architecture. Finally, we deal with WSNs over

IP where we focus on methods of integration and real-time deployment.

3.2.1 Network Formation

Figure 3.3: The 2.4 GHz spectrum for the IEEE-802.15.4.

The shortfall of the 802.15.4 protocol is linked with its omission of network layer (NWK) spec-

i�cations that ensure homogeneity of the WSN and devices. Therefore, our main priority is to

guarantee appropriate con�guration in the setup of transceiver units prior to their use in real-life

applications. The Digimesh (DM) protocol on the other hand speci�es NWK layer functionality

which enables self-managed networking operations such as routing, transmission retries, joining

and leaving networks, selecting communication channels, etc. We target its use in mesh archi-

tecture which requires routing abilities and many-hops communication in order to maintain the

network.

Table 3.1 outlines the requirements for setting-up a WSN based solely on 802.15.4 communi-

cations. Now, we turn our attention towards addressing these conditions by con�guring the radio
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802.15.4 WSN Setup Conditions

Condition 1: All devices must operate on the exact
communication channel

Condition 2: All devices must have the same Personal Area
Network (PAN) Identi�er

Condition 3: All devices must have the same AES
encryption key

Condition 4: All transmitting devices must use API-mode2

Table 3.1: Con�guration requirements in radio transceivers.

units using the appropriate programming techniques, which include:

3.2.1.1 Communication channel selection

Algorithm 3.1 Communication channel setup for 802.15.4 radios.

void Channel_Setup ( ){
xbee802 . i n i t (XBEE_802_15_4,FREQ2_4G,NORMAL) ;
xbee802 .ON( ) ;
xbee802 . setChannel (0x0D ) ; //Channel D i s s e l e t e c t e d = 2.410−2.415 GHz

}

The XBee radio modules operate within 16 channels over the 2.4 GHz spectrum as shown in

Figure 3.3. We program the nodes to operate in the same communication channel in order to

prevent data loss during the communication process. Algorithm 3.1 enables radio communication

on channel-D only, but it is also possible to select other channels. It is important to examine each

radio device individually to avert the possibility of data loss.

3.2.1.2 Personal Area Networks (PAN)

Algorithm 3.2 Personal Area Network (PAN) con�guration.

void PAN_Setup( )
{

uint8_t PANID[2]={0 x12 , 0 x34 } ; //PAN ID=0x1234
xbee802 . setPAN(PANID) ; // Se t t i n g the PAN−ID

}

The PAN-Identi�er (ID) has a unique purpose in WSNs; it enables co-independent relationship

in which an entire network-system can be divided into individual networks each associated with a

unique PAN-ID and each has di�erent duties. We target its practical application during deploy-

ment of applications which are based on multiple network topologies. We use it to distinguish

between nodes and to control individual groups without a�ecting the entire network. Algorithm

3.2 represents the basic application on how to con�gure the PAN-ID of a radio unit.
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3.2.1.3 Data payload encryption

Algorithm 3.3 AES encryption setup.

void Encryption_Mode ( )
{

xbee802 . encryptionMode ( 1 ) ; // Enabl ing encryp t ion o f data pay load
xbee802 . setLinkKey ( "amroquandourECU1" ) ; // 16 by t e s key= amroquandourECU1

}

Node authentication and data validation are implemented with Advanced Encryption Standard

(AES), which supports 128b, 64b, or 32b encryption code (b refers to bits). We target secure trans-

mission between wireless nodes by enabling network-node authentication and payload encryption.

Algorithm 3.3 enables the security features in transmission of data.

3.2.1.4 Node identi�cation

Algorithm 3.4 Node-ID setup.

void NodeID_Custom ( )
{

xbee802 .ON( ) ;
xbee802 . s e tNod e I d en t i f i e r ( "Building1Node1" ) ; // s e t the NodeID .
int s i z e ID = s izeof ( xbee802 . nodeID ) ; // read the node ID .
for ( int i=0 ; i<s i z e ID ; i++){
XBee . p r i n t ( xbee802 . nodeID [ i ] ) ;

}
}

Node-IDs are digital signatures which allow us to distinguish node devices in WSNs. We propose

the implementation of an architecture to address the nodes using unique IDs which are based on

type (transmitter, receiver, gateway, etc), location (outdoor, indoor, etc.), and functionality (type

of sensors, routing device, etc.). Algorithm 3.4 is the method that we use to set the Node-ID in

each radio unit.
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3.2.1.5 Data Tx

Figure 3.4: API-Frame structure of the transmitted signal.

When a node transmits data to another device; the radio device encodes the data in a special

arrangement referred to as API frame. The frame depicts the data structure abstraction which

speci�es the order of bytes (data) in the RF signal as shown in Figure 3.4. We outline the interac-

tions of Tx frames in the application layer in Algorithm 3.5. There are three important functions

that we need to discuss:

1. Initializing the packet structure: In the Waspmote, it is referred to as 'packetXBee', which

initiates the API structure.

2. Preparing the packet: In this function, we setup the transmission parameters which include

the destination address, transmission methods (broadcast, unicast, multicast), number of

fragments (if the size of data exceeds the maximum length), addressing type (MAC and

network), and packet identi�er (to distinguish di�erent data such as �re, pollution, etc.).

3. Transmission of packet: Once the structure is complete; we transmit the signal, release the

pointer, and free the dynamic memory to avoid future complications.

3.2.1.6 Data Rx

The receiver captures over the air radio signal; begins extracting data from within the API frame

(Figure 3.4), and then parses them to the application layer (for users). The receiving process is

outlined in Algorithm 3.6, which demonstrates the methods we use to selectively extract data �elds

from the API frame including source MAC address, RSSI, packet-ID, and RF data.
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Algorithm 3.5 Tx data setup.

//FUNCTION 1:
void Packet_Structure ( )
{
//paq_sent = num_of_elements ∗ l en = 1 ∗ packetXBee

packetXBee∗ paq_sent=(packetXBee ∗) c a l l o c (1 , s izeof ( packetXBee ) ) ;
}

//FUNCTION 2:
void Preparing_Packet ( )
{

paq_sent−>mode=UNICAST; //Broadcast , Unicast , Mu l t i ca s t
paq_sent−>packetID=0x52 ; // Se t t i n g packe t i d e n t i f i e r
xbee802 . setOriginParams ( paq_sent , MAC_TYPE) ; //Address type=MAC
xbee802 . setDest inat ionParams ( paq_sent , <Dest .MAC>, data , MAC_TYPE,

DATA_ABSOLUTE) ; //No fragments
}

//FUNCTION 3:
void Send_To_Destination ( )
{

xbee802 . sendXBee ( paq_sent ) ; //Transmit data to<Dest .MAC>
f r e e ( paq_sent ) ; // f r e e paq_sent from memory .
paq_sent=NULL; // r e l e a s e po in t e r .

}

Algorithm 3.6 Rx data setup.

void Receiving_Parameters ( )
{

i f ( XBee . a v a i l a b l e ( ) ){
xbee802 . treatData ( ) ;
i f ( ! xbee802 . error_RX ){

while ( xbee802 . pos >0){
//Reading the Src_MSB=macSH & Src_LSB=macSL array e lements
Ut i l s . hex2st r ( xbee802 . packet_f in i shed [ xbee802 . pos−1]−>macSH,

macHigh , 4 ) ;
U t i l s . hex2st r ( xbee802 . packet_f in i shed [ xbee802 . pos−1]−>macSL ,

macLow , 4 ) ;
//Reading the Packet−ID by t e and sav ing i t in _PACKID
uint8_t _PACKID = xbee802 . packet_f in i shed [ xbee802 . pos−1]−>packetID ;
//Reading the RSSI
uint8_t RSSI_ = xbee802 . packet_f in i shed [ xbee802 . pos−1]−>RSSI ;
//Reading the a c t ua l Data
char∗ Data = xbee802 . packet_f in i shed [ xbee802 . pos−1]−>data ;

}
}

}
}

29



XBees Reserved Bytes (Hexadecimal format:0x..

Start Delimiter: 0x7E
Escape Character: 0x7D

Transmit On (XON): 0x11
Transmit O� (XOFF): 0x13

Table 3.2: XBee reserved characters.

The receiver distinguishes between two intermediate frames by reading the frame initializer

(Start delimiter) byte. If start delimiter bytes (or any reserved system bytes in Table 3.2) exist

in the make-up structure of a data frame; an escape operation to change the data format will be

required. We can illustrate this operation in the following example:

Example 3.1. 1) Tx Frame Structure :

Des t inat i on Add . ={0x00 0x13 0xA2 0x00 0x40 0x69 0xBC}

Byte to escape = 0x13 ( r e s e rved f o r so f tware f low con t r o l )

2) Tx Escape Operation :

0x13 XOR 0x20 = {0x33}

3) Rx Frame Structure a f t e r Escape :

Des t inat i on Add . = {0x00 0x7D 0x33 0xA2 0x00 0x40 0x69 0x180 0xBC}

Byte to escape = 0x33 ( i nd i c a t ed by 0x7D escape i n i t i a l i z e r )

4) Rx Escape Operation :

0x7D XOR 0x20 = {0x13} ( o r i g n a l byte p r i o r to escape )

3.2.2 Network Topology

We propose deployment of WSNs based on the topologies shown in Figure 3.2. Their con�guration

will be presented in the following order:

3.2.2.1 Point to Point

A point to point (p2p) topology is one which has single links between the sources (Tx) and the

destination (Rx). Essentially, the STAR topology consists of many p2p connections where multiple

transmitting devices share a common gateway. We implement p2p communications by using purely

the 802.15.4 protocol. Algorithm 3.5 and 3.6 provide p2p communications based on the 802.15.4

protocol.

3.2.2.2 Ring

A ring topology consists of links between intermediate nodes forming a single pathway for data

through each device. We implement the routing mechanism which handles the packets that through
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802.15.4 Routing Protocol
Function Description

Initialize radio Powers the radio module in order to accept
data

Extract data Extracts data from the RF signal and save it
in an array

Scan network Performs a network scan in the
communication channel in order to identify

the neighbouring nodes

Analyze RSSI Measures the RSSI between the neighbouring
nodes and selects the node with the best

reception

Forward data Transmit data to the selected node

Table 3.3: 802.15.4 routing functions.

the nodes in the ring network. As mentioned earlier, the 802.15.4 protocol does not specify routing

methods, hence we developed our own protocol to perform the routing tasks. The protocol is based

on the �ve functions highlighted in Table 3.3.

3.2.2.3 Mesh

A mesh topology consists of numerous nodes which communicate in two ways: a) direct links and

b) indirect links. Direct links correspond to an immediate connection (single hop) between nodes,

whereas indirect links utilize multiple hops in order to communicate. The reader should note that

we opt with Digimesh (DM) not 802.15.4 in order to deploy a mesh sensor network as the latter

does not support any self-routing protocols or a network stack. We also need to clarify that in

order to use the DM protocol; �rstly, the XBee radios must be �ashed with the DM �rmware using

X-CTU prior to use in real-life deployment. Secondly, the ability to use two separate protocols

(in our case 802.15.4 and DM) depends on the internal hardware of the radio unit (use series-1

modules).
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3.2.3 Network Architecture

Figure 3.5: IP-WSN system architecture.

In this section, we propose a structure for an IP-WSN as shown in Figure 3.5, which is based on

the following communication protocols: a) TCP/IP, b) 802.15.4/DM, and c) 802.11. The aim of

this system is twofold:

1. Facilitate remote access to the gateway (meshlium) through SSH connections and enable

users to adjust network parameters, read sensor data, and perform maintenance tasks.

2. Establish a shared resource management scheme in the Local Area Network (LAN) to provide

a simplistic mechanism for data access and alarm services.

Firstly, we will address the work in the gateway node, then we indulge ourselves with remote

communication technologies, and �nally we discuss a suitable application for this architecture.

3.2.3.1 Method for handling data in the gateway node

We refer to the meshlium node in 3.5 as the gateway of the WSN. Its main functions include: a)

stores and organizes the sensor data, b) provides internet access to clients, and c) exports data to

databases and web-servers. The process we are about to discuss involves �rstly the construction

of Tx-data frame, and then we address the methods for handling them in the gateway. The Tx

frame inherits a customized structure as highlighted in 3.6; our methods focus on dissecting the Tx

frame into individual data components, integrate them into an external database, and ultimately

produce a dynamic webserver where data is continuously updated.
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Algorithm 3.7 Data processing method in the gateway.

void parseFrame ( struct xbee_frame ∗p_frame ) {
char ∗_Temp;
char ∗_CH4;
char ∗ ps t a r t ;
int k = 0 ;
int e r r o r =0;
char key [ ] = "∗∗∗" ; // S ta r t d e l im i t e r

ps t a r t=st rpbrk ( aux , key ) ; // Locates the s t a r t d e l im i t e r .

i f ( p s t a r t == NULL) e r r o r = 1 ;
//TEMPERATURE FIELD:
i f ( ! e r r o r ){
_Temp = s t r ch r ( pstar t , '& ' ) ; // l o c a t e s the end d e l im i t e r .
i f (_Temp != NULL) {
k = _Temp − ps t a r t ; //Determines the width
s trncpy (p_frame−>Temp, p s t a r t +3 ,(k−3)) ; //Save in t o Temp
p_frame−>Temp[ k−3] = ' \0 ' ; // end o f data component

} else
e r r o r = 1 ;

}
p s t a r t=_Temp + 1 ; // Pos . o f next data component .

//METHANE FIELD:
i f ( ! e r r o r ){
_CH4=s t r ch r ( pstar t , '& ' ) ; l o c a t e s the end d e l im i t e r .
i f (_CH4 != NULL) {
k=_CH4−ps t a r t ; //Determines the width
s trncpy (p_frame−>CH4, pstar t , k ) ; //Save in t o CH4
p_frame−>CH4[ k ] = ' \0 ' ; //end o f data component

} else
e r r o r = 1 ;

}
p s t a r t=_CH4 + 1 ; // Pos . o f next data component .

Figure 3.6: Data frame structure.

Recall from Figure 3.4 the structure of the entire frame. From our point of view, we are only

interested with the contents of RF-data �eld which contains the real data measurements. There

are three important �elds in the structure from Figure 3.6 which include:

1. Start delimiter: 3 byte �eld �***� which marks the beginning of the RF-data frame.
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2. End delimiter: occupies 1 byte �&� which marks the end of each data component.

3. Data component: contains the real measured value of a sensor.

As the frame gets inspected by the gateway; �rst, it determines the initial position of the frame

(start delimiter), then it locates the end delimiter in order to calculate the length of the data

component, and �nally it copies the contents of the data component in a separate variable. We

highlight this process in Algorithm 3.7 which refers to the temperature and methane gas �elds

only.
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3.3 Over the Air Programming

Figure 3.7: Over the air (OTA) architecture.

In this section, we propose the system architecture of Over the Air Programming (OTAP) which

is shown in Figure 3.7. The OTAP concept is used extensively in WSNs to update �rmware and

patch security vulnerabilities in sensor devices. Our aim includes: a) outline the main functions

of the OTA-shell, b) address the transmission methods used in OTA, and c) integrate OTA with

WSN applications.
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3.3.1 Functions

The main functions of OTA will be presented in the following order:

3.3.1.1 OTA scan network

This function scans the communication channel and obtains the nodes which operate within it. In

return, we obtain the node's MAC address, identi�er (NI), program information, and OTA status.

The method of use and the output is demonstrated by Example-3.2.

Example 3.2. Scan Network :

. / otap −scan_nodes −−mode BROADCAST −−time 10

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Total Nodes : 2 − Time e lapsed : 15 s

0 − Node 0013 a200406918c9 − NODE1 − prog000 − READY

1 − Node 0013 a200406918bc − NODE2 − updater − READY

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.3.1.2 OTA retrieve boot-list

This OTA command retrieves the list of programs that are stored inside the node's µSD memory

card as shown by Example-3.3.

Example 3.3. Retr i eve Boot− l i s t :

/ otap −get_boot_l i s t −−mode UNICAST −−mac 0013 a200406918c9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Boo t l i s t Node 0013 a200406918c9 − l ength : 8

0 − PID : updater − Date :2011/06/21 20 :31

2 − PID : pwr l ev l − Date :2011/06/16 01 :25

4 − PID : prog001 − Date :2011/06/21 20 :31

5 − PID : prog002 − Date :2011/06/16 01 :25

6 − PID : prog000 − Date :2011/08/18 01 :43

7 − PID : prog005 − Date :2011/09/09 20 :13

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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3.3.1.3 OTA send new programs

This OTA command upgrades the software database of the node device. In addition, it can be

used to set encryption mode, modify authentication keys, and change the communication channel

of the node. In Example-3.4, we outline the syntax of the OTA scan command.

Example 3.4. Send Syntax :

. / otap −send −−d e l i v e r i e s <n> −− f i l e <name . hex>

−−mode <UNICAST|MULTICAST|UNICAST> −−new_authkey <Access_Key>

−−new_channel <00|0x00> −−new_enckey<Encryption>

−−pid <stored_name> −−send_mode <BINARY| ASCII>

3.3.1.4 OTA start new programs

This OTA command initiates a speci�c program (PID) from the node's µSD memory as shown in

Example-3.5.

Example 3.5. Star t Program Synatx :

. / otap −start_new_program −−mac<MAC_ADDRESS> −−macs_f i le < l i s t . txt>

−−mode <UNICAST|MULTICAST|BROADCAST> −−pid <program_name>

3.3.2 Transmission Methods

The OTA shell permits three types of data transmission mechanisms as shown in Figure 3.7, which

includes: a) broadcast, b) unicast, and c) multicast. First, we analyze each type, then we highlight

the conditions that match their suitability, and �nally discuss their applications.

3.3.2.1 Broadcast

In broadcast transmission, the OTA data is sent to multiple nodes at once; this applies to all nodes

within a single hop from the transmitter node. Let us assume that in a WSN there are 100 nodes;

we use broadcast transmission when each node requests the same OTA data. In addition, the

number of bit-stream (data) transmissions is equal to the amount of nodes in a WSN (100 nodes

= 100 copies of the data). Therefore, broadcast transmission is reserved to important �rmware

updates and similar application architecture (same sensors, radio transmission, etc.).
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Figure 3.8: OTA WSNs applications.

3.3.2.2 Unicast

Unicast transmission is similar to point to point architecture in which communication is apparent

between two devices at any given moment; an OTA transmitter, and the node device. It is suitable

when WSNs consist of varying node architectures; that is, when each node involves a di�erent

application.

3.3.2.3 Multicast

Multicast is de�ned as multiple unicast links; in this type however, there is only one OTA-

transmitter and multiple node devices. Unlike broadcast, we can target a speci�c group of nodes

when OTA is required. It is suitable if we have a group of nodes which share the same type of

sensors, radio modules, and applications.

3.3.3 OTAP Applications

We propose two applications using OTAP: a) local OTA node, and b) OTA over remote links.

In terms of functional abilities, their roles are identical (functions). However, their integration in

WSNs are di�erent. The main functions of these two applications are:

1. Maintain a software database in the node devices.

2. Apply �rmware upgrades towards node devices.

3. Modify the communication parameters in the radio devices including communication chan-

nels, PANs, authentication and encryption keys.
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3.3.3.1 OTA in WSNs

Our �rst application involves performing OTA in the same environment as the WSN (i.e., same

location). There are two setup requirements involved prior to the use of the OTAP shell which

include: a) OTA Tx con�guration, and b) node device con�guration. The transmitter unit's (OTA

Tx) con�gurations include:

* The API mode must be set to mode=1 (using X-CTU).

* The communication channel in which the nodes operate on.

* The authentication key between the two applications (application layer security).

* The PAN identi�er of the node devices.

* The encryption key of the radio unit (NWK layer security).

Algorithm 3.8 Node device OTA con�guration.

void Checking_for_OTA ()
{

xbee802 . checkNewProgram ( ) ;
i f ( XBee . a v a i l a b l e ( ) ) {
xbee802 . treatData ( ) ;
while ( xbee802 . programming_ON && ! xbee802 . checkOtapTimeout ( ) )

{
i f ( XBee . a v a i l a b l e ( ) ) {
xbee802 . treatData ( ) ; }

}
}

}

The second requirement regarding the con�guration of the node device is ful�lled by adding

Algorithm 3.8 into the main application code. This enables the OTA request interrupt subroutine

in order to accept the radio packets, re-build the data stream, and save it in the µSD memory.

Our second application involves long distance OTA operations as shown in Figure 3.8. In

this arrangement, we transform the network gateway (meshlium) into an OTA-Tx transmitter

unit which transmits at a much higher power than regular nodes (longer range). We access the

gateway through SSH (secure shell) from a remote workstation (i.e., outside the network) in order

to perform OTA transmission. This method however involves two requirements which include: a)

con�guration of gateway as OTA-Tx, and b) con�guration of network in order to SSH requests to

the gateway IP address. The processes which enable OTA-Tx mode in the gateway are highlighted

by Example-3.6.
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Example 3.6. Changing Tx modes in meshlium :

1) Access the SSH environment o f the gateway :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ssh <IP_ADDRESS_OF_MESHLIUM>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2) Disab le ( not power down) the XBee rad io module temporar i ly :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ e tc / i n i t . d/ZigbeeScan . sh stop

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3) Access the rad io module to change i t s mode :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

capturer S0 38400

+++ // probes the module

atap 1 // change to mode 1

atwr // wr i t e new va lue s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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3.4 Power Management

Figure 3.9: Power management architecture.

Energy is a primary concern in WSNs; sensor nodes have a limited supply of energy which has to last

over a certain length of time. In this section, we propose the power management architecture shown

in Figure 3.9 which focuses on addressing the energy requirements towards WSN applications. Our

main aim involves optimizing the rate of change in the node battery's lifetime by deploying three

low power techniques which include:

* Utilization of low-power modes: This consists of three sleep modes including normal sleep,

deepsleep, and hibernation.
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* synchronised detection rates: which applies to the number of sensor measurements per unit

time.

* Event driven execution: which utilizes a battery detection method to check the energy avail-

ability prior to processing node functions.

We begin our discussion �rst by outlining the RTC's (real time clock) role towards synchronous

communications, then we address the applications of the three low-power modes from Figure 3.9,

and �nally we develop the algorithms which monitor the node's battery levels.

3.4.1 Optimal Detection Rates

The lifetime expectancy in a node device (for WSNs) depends largely on: a) Hardware architecture,

b) programming of the device, and most important c) handling methods towards additional node

components such as GPRS, GPS, sensors, and radio modules.

Synchronous Detection Rates

Mode 1: Based on date (i.e., dd:mm:yy).

Mode 2: Based on day of the week (i.e., Mon-Sun).

Mode 3: Based on time (i.e., hh:mm:ss).

Table 3.4: RTC alarm modes.

Many of the components mentioned earlier demand exuberant amounts of power which could

deplete the battery very rapidly; therefore, we regard their management as top priority to ensure

the battery's longevity. Our work takes into considerations regulation methods towards �power-

hungry� components, this implies disconnecting the modules from the power source while they

are not being used (to save power) and optimizing the detection rate. We opt with the RTC to

synchronize the time requirements for utilizing the functions by supplementary modules and as

presented in Table 3.4. There are two steps necessary prior to administering the RTC with the

applications which include:

3.4.1.1 Con�guring the frequency required for detection

RTC programming involves two unique and independent alarms to assist us with developing the

algorithms. These alarms can be con�gured according the speci�cations of Table 3.4. In Algorithm

3.9, we initialize the RTC, set the current time and date, and �nally we active the alarm. As it

is currently con�gured, the RTC causes an interrupt to occur once every minute. We address the

contents of the interrupt subroutine next.
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Algorithm 3.9 RTC detection frequency con�guration.

void sett ing_time_parameters ( )
{

//Powers the module
RTC.ON( ) ; //Powers the module

//Writes the time & date parameteres in t o the i n t e r n a l r e g i s t e r s
RTC. setTime ( " 1 1 : 0 8 : 2 6 : 0 6 : 1 2 : 0 0 : 0 0 " ) ;

//This alarm s e t s d e t e c t i on to 1 minute i n t e r v a l s
RTC. setAlarm2 ( " 06 : 12 : 01 " , RTC_OFFSET, RTC_ALM2_MODE4) ;

}

Algorithm 3.10 RTC subroutine con�guration.

void RTC_Subroutine ( )
{

i f ( in tF lag & RTC_INT ){ //Captures the i n t e r r u p t f l a g s

// Ca l l s the SensingProgram fo r execu t i on .
SensingProgram ( ) ;

//Resets the RTC f l a g to 0
i n tF lag &= ~(RTC_INT) ;

//Clears the alarm f l a g s in order to recap ture the alarm
RTC. clearAlarmFlag ( ) ;

//The alarm i s s e t f o r another minute from t h i s moment
RTC. setAlarm2 ( " 06 : 12 : 01 " , RTC_OFFSET, RTC_ALM2_MODE4) ;

}
}

3.4.1.2 Con�guring the interrupt subroutine

The subroutine is the area of the program where the main node duties are performed such as

sensing, sending, and saving of data. Algorithm 3.10 corresponds to the subroutine which is

generated by the RTC interrupt; it consists of several commands and functions including the

sensing program (only then the sensors are activate), interrupt and alarm �ags (need to be cleared

to enable the capture of the next interrupt), and �nally we set the new time of the succeeding

interrupt.

3.4.2 Event-Driven Execution

We propose an event driven management system for handling the physical processes of the main

components (sensor boards, GPRS/GPS modules, etc.) in the node devices. The system we suggest

attends the needs towards establishing regulatory schemes in order to conduct sensing and data

transmission routines in WSNs. The main advantages of these regulations are:

* Point-A: Prevents the total collapse in the node operations.
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* Point-B: Provides alarms when the remaining power has reached dangerous levels.

Figure 3.10: Voltage detection process.

Point-A refers to the methods in which we structure the main program in order to manage

the execution of functions; these methods involve the utilization of a low battery interrupt which

activates when the voltage across the battery detector circuit falls below the minimum voltage re-

quirement speci�ed in each component (each component has di�erent current and voltage ratings).

Consequently, we prevent a total collapse in the node by systematically disconnecting modules

(components) when the battery can no longer provide them with su�cient energy to perform their

tasks as shown in Figure 3.10.

802.15.4 Routing Protocol
Functions Sensors GPRS GPS SD XBee

Last
Execution
Time

16:23 04:22 19:20 15:44 18:33

Last
Execution
Date

21.11.2011 16.10.2011 02.12.2011 19.05.2011 17.09.2011

Last Power
Reading

4.1 V 3.9 V 3.6 V 3.2 V 3.45 V

Estimated
Life Time
(days)

40 38 27 3 10

Table 3.5: Live database format.

We realize the need for a reliable technique which noti�es the WSN of a low battery event.

The challenge we face does not concern the type of alarm we intend on using; whether it SMS,

voice, e-mail is irrelevant. Our work focuses instead on the presumptions which suggest that node

devices do not have su�cient energy to even generate the alarm. We propose that we integrate a

live-database (on the internet) which includes the status of individual components as highlighted

in Table 3.5 which includes last execution time/date, last power reading, and life time estimation.
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Algorithm 3.11 Low battery interrupt con�guration.

void Battery_Sett ings {

// Conf igur ing the minimum th r e s ho l d f o r the b a t t e r y in v o l t s
PWR. setLowBatteryThreshold ( 3 . 0 ) ;

// Se t t i n g the pin f o r the b a t t e r y i n t e r r u p t
enab l e In t e r rup t s (BAT_INT) ;

}
void Battery_Sett ings {

// Conf igur ing the minimum th r e s ho l d f o r the b a t t e r y in v o l t s
PWR. setLowBatteryThreshold ( 3 . 0 ) ;

// Se t t i n g the pin f o r the b a t t e r y i n t e r r u p t
enab l e In t e r rup t s (BAT_INT) ;

}

Finally, Algorithm 3.11 describes the software implementation for con�guring the low battery

interrupt service in the sensing functions. For example, we have con�gured a threshold of 3.00V

which suggests that an interrupt will occur only after the voltage falls below the threshold limit.

In reality, we dynamically con�gure the low battery interrupt for all components in order to handle

their functional duties.
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3.5 Sensors Management

Figure 3.11: Sensors architecture.

In this section, we propose the sensing architecture shown in Figure 3.11, which focuses on the

calibration and mathematical analysis of several gas sensors we use to measure the physical envi-

ronment, including toxic sensors (e.g., nitrogen dioxide) and non-toxic sensors (e.g., temperature).

3.5.1 Calibration and Mathematical Analysis

Prior to deploying the sensors in the real world, we calibrate each one according to their general

characteristics. This process involves three important factors:

* Normal testing conditions: These are speci�ed by the manufacturer of each type of sensor

which includes environmental conditions such as temperature, calibration gas(es) (other than

the gas-sensor itself), minimum load resistances, and location (high/low altitude).
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* Normalized plots: Which represent the mathematical relationships of the sensor that we use

to compare to our results.

* Units of measurement: Each sensor is unique; some are based on resistance while others are

read in voltage, therefore it is imperial to understand the units which apply to the sensors.

Summary of Parameters in Gases Board
Sensor Sensor Resistance Ω Equation(If

applicable)
Nominal Voltage

Temperature [43] - Temp = 100 ∗ (VOUT )− 50 -
Humidity [44] - Humidity = (32 ∗ VOUT )− 26 -

Molecular Oxygen
[45]

- Oxygen = (5 ∗ VOUT )/2 0.6 V

Nitrogen Dioxide
[46]

2.828 kΩ - 0.45 V

Air
Contaminants-1

[47]

11 kΩ - 0.2 V

Air
Contaminants-2

[48]

12 kΩ - 0.2 V

Ozone [49] 10 kΩ - 1.3 V

Table 3.6: Summary of gas parameters.

In Table 3.6, we provide a general summary regarding the calibration parameters that apply

to the following sensors:
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Figure 3.12: Temperature/Humidity sensor output response.

1) Temperature and Humidity: Both temperature and humidity sensors adhere to a linear

relationships which are expressed in Table 3.6. Algorithm 3.12 outlines the con�guration of the

temperature and humidity sensors which converts the output voltage to degrees (Co) and relative

humidity (%) respectively (Figure 3.12).
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Algorithm 3.12 Temperature/Humidity sensor con�gurations.

void get_Temp(){
SensorGas . setBoardMode (SENS_ON) ;
Temp = ((100∗ SensorGas . readValue (SENS_TEMPERATURE) ) − 50 ) ; // Ca l i b r a t i on .
s p r i n t f ( Temperature , "Temperature=%d" , Temp) ;

}

void get_Humidity ( ){
SensorGas . setBoardMode (SENS_ON) ;
Humd = ((32 ∗ ( SensorGas . readValue (SENS_HUMIDITY))) −26) ; // Ca l i b r a t i on .
s p r i n t f (Humdity , "Humidity=%d" , Humd) ;

}

2) Molecular Oxygen: The oxygen sensor measures concentrations of molecular O2 in air

between (0 ∼ 30)%. Under normal conditions (i.e., breathable air), the O2 concentration varies

between (21 ∼ 30)% (depending on the geographical location); this is equivalent to the sensor's

output voltage 0.6 V , in which is noticeable at the maximum resolution maximum (i.e., signal

ampli�cation by 100). We start noticing a decrease in O2 levels when the sensor's voltage begins

to fall; this is expressed by the oxygen equation which is expressed in Table 3.6.
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Figure 3.13: Sensors output response.

Algorithm 3.13 Oxygen sensor con�guration.

void get_Oxygen ( ){
SensorGas . setBoardMode (SENS_ON) ;
SensorGas . con f i gu r eSen so r (SENS_O2, 100 ) ; //Maximum sensor r e s o l u t i o n
SensorGas . setSensorMode (SENS_ON, SENS_O2) ;
O2 = SensorGas . readValue (SENS_O2) ; // shou ld read 0.6V.
s p r i n t f (Oxygen , "Oxygen=%d" , O2 ) ;

}

In Algorithm 3.13, we demonstrate the oxygen sensor's con�guration at maximum resolution,

which implies amplifying the output signal of the sensor (i.e., gain) by 100 times.

3) Nitrogen Dioxide:

This sensor is sensitive to the presence of NO2 concentrations in air between (0.05 ∼ 5) ppm.
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Algorithm 3.14 Nitrogen Dioxide sensor con�guration.

void get_Nitrogen_Dioxide ( ){
SensorGas . setBoardMode (SENS_ON) ;
SensorGas . con f i gu r eSen so r (SENS_SOCKET2B, 1 , 2 . 8 2 8 ) ;
SensorGas . setSensorMode (SENS_ON, SENS_SOCKET2B) ;
NO2 = SensorGas . readValue (SENS_SOCKET2B) ;
s p r i n t f ( NitrogenDioxide , "Nitrogen_Dioxide=%d" , NO2) ;

}

Under normal conditions, sensor resistance (RS) is approximately 2.2 kΩ which can be calculated

from Equation 3.1.

RS =

(
VINPUT ∗RLOAD

VOUT

)
−RLOAD (3.1)

Our tests conclude the following results:

• Output voltage (VOUT) �uctuates between (0.4 ∼ 0.5) V using a load resistance (RL) of

2.2 kΩ.

• In theory, our results yield to sensor resistance (RS) of approximately 2.828 kΩ; thus agrees

with the normal testing conditions. Furthermore, this con�guration is applied in Algorithm

3.14 which outlines the setup of the NO2 sensor in the surrounding environment.
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Figure 3.14: Air contaminants sensors voltage response.

4) Air Contaminants and Ozone: There two types of air contaminants sensors highlighted in

Table 3.6 which are sensitive to presence of methane, carbon dioxide, iso-butane, ethanol, hydrogen,

ammonia, hydrogen sulphide, and toluene in air. Under normal air concentrations, sensor resistance

(RS) is approximately (10 ∼ 100) kΩ. Figure 3.14 represents the output response for both sensors

while they are subjected to normal air.

The next sensor involves the O3 (ozone) gas in which is sensitive to concentrations in air between

(10 1000) ppm. Air resistance (RS) under normal testing conditions of this sensor varies between

(3 ∼ 60) kΩ. During the calibration of this sensor; we made the following observations:
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Algorithm 3.15 Air contaminants sensor con�guration.

void get_Air_Pollution ( ){
SensorGas . setBoardMode (SENS_ON) ;
SensorGas . con f i gu r eSen so r (SENS_SOCKET2A, 1 , 1 1 ) ;
SensorGas . con f i gu r eSen so r (SENS_SOCKET4A, 1 , 1 2 ) ;
SensorGas . setSensorMode (SENS_ON, SENS_SOCKET2A) ;
SensorGas . setSensorMode (SENS_ON, SENS_SOCKET4A) ;
TGS2600 = SensorGas . readValue (SENS_SOCKET2A) ;
TGS2602 = SensorGas . readValue (SENS_SOCKET4A) ;
s p r i n t f ( A i rPo l lu t ion , "TGS2600=%d | TGS2602=%d" , TGS2600 , TGS2602 ) ;

}

• Output voltage (VOUT) reached stability at approximately 1.30 V in which took over 70

power cycles sampled every 30 seconds.

• We use a load resistance (RL) equivalent to 11 kΩ, which yields to air resistance of 10 kΩ.

Thus agreeing with the theoretical observations of the O3 sensor.

Algorithm 3.16 Ozone sensor con�guration.

void get_Ozone ( ){
SensorGas . setBoardMode (SENS_ON) ;
SensorGas . con f i gu r eSen so r (SENS_SOCKET2B, 1 , 1 0 ) ;
SensorGas . setSensorMode (SENS_ON, SENS_SOCKET2B) ;
O3 = SensorGas . readValue (SENS_SOCKET2B) ;
s p r i n t f (Ozone , "Ozone=%d" , O3 ) ;

}
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Figure 3.15: Carbon Dioxide sensor voltage response.

5) Carbon Dioxide: The carbon dioxide (CO2) sensor is an expectational case in which de-

tection of CO2 is based on changes in the electromotive forces (∆V ) of its output voltage. We

know that a well-ventilated space (outdoor) has approximately 350 ppm of CO2 in air, which is

equivalent to ∆V = (220 ∼ 490) mV according to speci�cations in [50]. The method in which we

carried the calibration of this sensor involves amplifying the output by the highest possible gain (of

3.5 times) which yields to a voltage of approximately 3.3 V (maximum). This implies the new �xed
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reference voltage which decreases by rising concentrations of CO2in air. In Figure 3.15, we plot

the variations in ∆V in air using a gain of 3.5 in order to achieve the highest possible resolution

without saturating the sensor.

3.5.2 Log-Log Plots

Figure 3.16: Log-Log plot of carbon monoxide sensor.

The log-log graphs are commonly used to express the mathematical relationships in the gas

sensors, which is usually related to gas concentrations with respect to output voltage or resistance

gain (Rs/Ro). For example, Figure 3.16 represents the log-log plot of the carbon monoxide sensor.

We apply mathematical reasoning in expressing the relationship of the CO concentrations based

on the following method:

1) De�ning the variables: To calculate the relationship of a linear equation we need two points

on the line. Similarly, when we are dealing with log-log plots; the same methods are adopted,

therefore we pick any two points from Figure 3.16:

P1 = (100, 1) P2 = (30, 4)

2) Calculating the gradient: Similar to linear equations except the gradient is calculated in

the logarithmic scale as such:

m =
(

log(Y2)−log(Y1)
log(X2)−log(X1)

)
=
(

log(4)−log(1)
log(30)−log(100)

)
= −1.1514

3) Estimating y-intercept: Again very similar method to linear equations except we use the

logarithmic scale:

b = y −mx = log(1)− (−1.1514 ∗ log(100)) = 2.3028
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4) Expressing the formula: A log-log plot adheres with the following expression:

y = xm ∗ 10b

RS/RO = x−1.1514 ∗ 102.3028

5) Apply equation: Note the output voltage of carbon monoxide sensor from Figure 3.13 which

yields to the following observations:

• Output voltage of the CO sensor initially is VOUT−CO = 0.6 V

• We calculate the sensor resistance from Equation 3.1 which yields to RS = 73.3 kΩ using

RL = 10 kΩ and VPP = 5 V .

• We calculate the resistive gain (RS/RO) from RS = 73.3 kΩ and RO = 13.3 kΩ; therefore

RS/RO = 5.5.

Therefore the concentration of carbon monoxide at RS/RO = 5.5 is Concentration(CO) = 22.75 ppm.
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3.6 Alarm System Architecture

Figure 3.17: Alarm system architecture.

In this section, we propose the alarm system architecture shown in Figure 3.17, which speci�es

four types of alarms including e-mail, SMS, voice-call, and twitter. The �rst part of this discussion

focuses on sensors; speci�cally, their formulas and threshold limits. And later, we apply the system

in real-life in order to measure its functional performance. We aim to use three types of technologies

in order to generate the alarm signals which includes: a) GPRS communications, b) TCP/IP, and

c) DM/802.15.4 protocols.

3.6.1 Sensors Threshold Con�guration

We learnt from Section 3.5 about the di�erent types of sensors including their calibration methods

and mathematical analysis. Now, we present their applications speci�cally in the lead up to the

alarm signal that is generated by the node device when sensor values exceed their limits. But �rst,

we look at the main formulas which relate to the concentrations of di�erent gases already discussed

in the previous section.
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Concentration Formulas of Gas Sensors
Gas Type RS/RO

Nitrogen Dioxide (NO2) x1.756 ∗ 102.698

Carbon Monoxide (CO) [51] x−1.151 ∗ 102.302

Ammonia (NH3) [52] x−0.602 ∗ 10−0.096

Methane (CH4) [53] x−0.431 ∗ 101.593

Ozone (O3) x0.866 ∗ 10−1.722

Table 3.7: Gas sensors concentration formulas.

Algorithm 3.17 GPRS module con�guration.

void initiate_GPRS (){
GPRS.ON( ) ; //Powers the GPRS module .
while ( !GPRS. check ( ) ) ; //Connects to the GSM network .
GPRS. setTextModeSMS ( ) ; // Se t s the t e x t mode in the GPRS module .

}

void Emergency_Alarm (){
i f (CO > threshold_CO ){
i f (GPRS. sendSMS( "Waspmote alarm . CO l e v e l s high " , "Mobile " ) ){
check_flag=1;}

GPRS.OFF( ) ; // Switch o f f the module
}

void Check_GPRS(){
i f ( check_flag != 1){
SendUsingXBee ( ) ;

}
}

In Table 3.7, we summarize the main formulas of di�erent gas sensors that are based on loga-

rithmic equation format. In a real-life deployment, we con�gure each node device to generate an

alarm the moment a threshold limit is exceeded. On-board each node, a GPRS module is �tted

which provides the alarm signals through SMS noti�cations or a voice call made to a designated

mobile recipient(s). We take into considerations the energy requirements from the GPRS unit,

therefore our aim is to minimize the number of false alarms that are initiated. There are three

important functions in Algorithm 3.17 which include:

* Initiating of the GPRS module: this process should only take place when the GPRS module

is needed; otherwise it should always be switched o�.

* Con�guring the service: Which implies the type of function we require of the GPRS module

(i.e., SMS, voice-call, upload to FTP).

* If neccessary a backup option should be provided incase the GPRS module fails to connect

to the GSM network.

The second type of the alarm system involves TCP/IP communications, in which we con�gure
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meshlium as an IP gateway in order to provide e-mail and twitter alarm messages. This is illustrated

in Example 3.7.

Example 3.7. E−mail and Twitter i n t e g r a t i o n :

void Send_E−mail ( ){

i f ( e r r o r == 0) {

int pid ; // i n i t c h i l d proces s

pid = fo rk ( ) ;

i f ( pid == 0) {

FILE ∗ f i l e ;

f i l e = fopen ( "/mnt/ user / z i gb e eS t o r e r /message . txt " , "w" ) ;

i f ( f i l e==NULL) {

f p r i n t f ( s tde r r , "Error : can ' t c r e a t e f i l e . \ n" ) ;

}

else {

f p r i n t f ( f i l e , "SENSOR VALUES" ) ;

p r i n t f ( "Message f i l e c r ea ted . \nSending mail a l e r t . \ n" ) ;

f c l o s e ( f i l e ) ;

system ( "ssmtp <e−mail_address> < / . . . / message . txt " ) ;

}

}

}

}

void Send_To_Twitter ( ) {

char order [ 2 5 5 ] ;

char ∗ user = " twi t te r_user " ;

char ∗pass = " twit ter_pass " ;

s p r i n t f ( order , " twurl /1/ s t a t u s e s /update . xml −s −u −d %s :%s

s t a tu s=\"Mote:%d Detected value %d\"" , user , pass ,

mote_id , sensor_value ) ;

system ( order ) ;

}
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Conclusion

In this chapter, we proposed an application framework for WSNs which speci�es: a) communica-

tion networks and protocols, b) Over the air programming capabilities, c) management of power

resources, d) sensor management, and d) alarm generation system. We addressed a number of

concerns which are related to o�-the-shelve WSN hardware including:

• Network formation: First, we speci�ed the main communication protocols �rst, then we

outlined their speci�c purpose with general WSN hardware, and �nally we discussed the

main functionalities towards the use of personal area networks identi�ers (PAN-IDs), data

encryption, and node identi�ers (NIs).

• Network topology: We implemented a number of network topologies which are relevant to

WSNs including mesh, p2p, and ring.

• Over the air programming: We developed OTA applications which are associated with two

types of networks; �rst is the OTA over remote links in which the application operates over

TCP/IP networks in order to perform the OTA functions, and second application is designed

for local WSNs where they can be accessed from within the same infrastructure (i.e., person

on-site).

• Optimized detecting rates and event-driven execution: Which are speci�ed by our power

management schemes that aim at lowering the power consumptions in the WSN devices.

• Calibration and mathematical analysis of gas sensors: We present the audience with the

methods in which we calibrated the gas sensors. We also provided detailed analysis on

logarithmic equations, how to interpret them, and then apply them to the sensors output

data to obtain their concentrations in air.

• Alarm system technologies: Which include GPRS communications to provide SMS and voice

call alarms, also we showed the methods for integrating WSN data into live services including

Twitter, MYSQL databases, and FTP hosts.
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Chapter 4
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Figure 4.1: Application functionality model.

In this chapter, we develop environmental applications which focus on health monitoring, air

quality safety, and �re detection WSNs. Additionally, we propose a system which integrates WSNs

and home network infrastructure in order to provide assistance with ADL (Assistance Daily Living)
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activities to home patients. We also address the technical con�gurations of hardware such as the

routing requirements in outdoor/indoor network deployment, multihop data transmission, and

optimization of power resources in the node devices. Finally, we conduct benchmark examination

which involves real-time network utilization, power consumption analysis, and packet delivery

success rates in real-world scenarios. In Figure 4.1, we di�erentiate the contrasting functionalities

between: a) application based services, and b) networks related functions; in order to assist the

audience with understanding the exact nature of our investigation.

4.1 Application Services

This section describes three important services that form the monitoring body (structure) of WSNs.

The monitoring body implies the functional medium where the base operations (of the applica-

tion) originate; here, we specify the general sensing model, feedback functions, real-time event

management, and environmental risk analysis.

4.1.1 Sensing Model

Figure 4.2: General sensing model.

We propose the general sensing model shown in Figure 4.2, which consists of three main parts:

* Environmental risk simulation: The risks are in�uenced by environmental parameters such

as temperature in surrounding space and gas concentrations in air.

* Emergency function handlers: These functions are classi�ed based on the risk involved; we

specify three types of risks which include pollution, �re, and no risk. Feedback functions

handle each risk seperately (i.e., depending on the type of event).

* Sensing algorithms: They provide the functional abstraction of the entire sensing model

including real-time sensing programs, event based interrupts management (involves alarm

�ags), and handling the alarm generation process.
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Risk Classi�cation
Type Description

High risk A high risk indicates a high probability of �re
and pollution in the surrounding

environment.

Medium risk A medium risk indicates the presence of
abnormal gases in the surrounding

environment; however, these levels are not
considered lethal.

No risk A no risk inidicates normal conditions which
does not require any special attention.

Table 4.1: Environmental risks classi�cation.

4.1.1.1 Environmental risk simulation

In Table 4.1, we specify three types of environmental risks which include high, medium, and low.

In the real world, each node device generates a unique response that corresponds with the type of

risk present in the environment; high risks are prioritized over medium and low risks, and so on.

In summary, the main aim of environmental risk simulation is twofold:

1. To better understand the environment we are dealing with.

2. To prepare us deal with environmental encounters more e�ciently; thus improving the reli-

ability of the WSN system.

4.1.1.2 Event speci�cations

3-bit Alarm Data Structure
Methane-bit Temperature-bit Oxygen-bit Risk Classi�cation

0 0 0 No risk
0 0 1 Medium risk
0 1 0 Medium risk
0 1 1 High risk
1 0 0 Medium risk
1 0 1 High risk
1 1 0 High risk
1 1 1 High risk

Table 4.2: 3-bit alarm �ag structure.

In Table 4.2, we construct a 3-bit �ag structure (lookup table) which constitutes of methane,

temperature, and oxygen bits. Here, we assume the environmental conditions are a�ected by the

presence of CH4 and O2 gas, also air temperature in the surrounding domain; therefore we base

the risk model only on these three parameters. Each bit (�ag) is triggered by the node device

when the sensors exceed or recede from a speci�c threshold level. E.g., oxygen levels reduce during

�re (due to combustion); therefore, the oxygen-bit triggers when oxygen concentrations falls under
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17% (under normal conditions 21%) in the air. A methane leak indicates a pollution risk, therefore

the methane-bit is triggered. Similarly, rising temperatures could also signal a �re, especially when

a methane leak also occurs at the same time; therefore, we trigger the temperature sensor after

it exceeds a certain threshold. Feedback functions are unique in a sense that each type of event

involves di�erent techniques and handling methods; e.g.:

• High risk: Regarded as the most important event, therefore our priority to treat it as such; in

this case, the best option is to use the GPRS module to initiate a voice-call and wait for the

call to be attended to. If the latter alarm fails, we transmit an SMS message or upload an

urgent twitter noti�cation to the web. Finally, if all options fail then we activate the radio-

unit (XBee) and transmit the alarm signal; an acknowledgment packet will be re-transmitted

by the base-station to signal the alarm has been received.

• Medium risk: This event requires its handler function to transmit an alarm using the XBee

radio unit and wait for an acknowledgment. The exclusion of GPRS functions is due to the

power consumption demands by this module.

• No risk: This event does not require any special alarm, instead its handler function is required

to treat the data by storing it in µSD memory.

4.1.1.3 Sensing Algorithm

The sensing algorithm is a software representation of the risk model and emergency handler func-

tions which we discussed previously. The algorithm consists of three parts which include: a)

mapping the alarm �ag, b) con�guring the sensor program, and c) treating the alarm signals.

1) Mapping the alarm �ag: This refers to the software representation of the 3-bit data struc-

ture from Table 4.2. This process involves two steps as highlighted in Algorithm 4.1: a) initializing

the �ag data structure, and b) de�ning the bit-�ag of each variable (e.g., METHANE, OXYGEN,

and TEMP).

Algorithm 4.1 Mapping the alarm �ag.

//Alarm f l a g d e c l a r a t i on
uint8_t f lagAlarm=0; // i n i t alarm f l a g s t r u c t u r e
#define TEMP 1 // (0 ,0 ,1)
#define OXYGEN 2 // (0 ,1 ,0)
#define METHANE 4 // (1 ,0 ,0)
// Sensors t h r e s h o l d s
#define TEMPLEVEL 40 // Ce l s i u s
#define OXYGENLEVEL 21 //Percentage % in a i r
#define METHANELEVEL 17 //Percentage % in a i r

2) Con�guring the sensor program: This involves: a) reading the sensors output voltages

(Appendix B.3), b) con�guring thresholds as illustrated in Algorithm 4.1.
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3) Bit-�ag triggers: This refers to triggering the �ag-bits of the alarm structure from Table

4.2, which also aligns with the environmental risk model we previously analyzed. Algorithm 4.2

analyzes the triggering process of the methane, oxygen, and temperature sensors.

Algorithm 4.2 Bit triggering.

void check_f lags ( ){
// Se t s the b i t s ON or OFF.
i f (CH4 > METHANELEVEL ) f lagAlarm |= METHANE; // i f ON; f lagAlarm=4
i f (O2 > OXYGENLEVEL) f lagAlarm |= OXYGEN; // i f ON; f lagAlarm=2
i f (Temp > TEMPLEVEL) f lagAlarm |= TEMP; // i f ON; f lagAlarm=1

}

4) Event handler classi�cation: This process involves three functions highlighted in Algorithm

4.3 which include: a) constructing the event �ag and b) determining the risk level based on the

alarm �ag.

Algorithm 4.3 Event handler classi�cation.

//Event f l a g d e c l a r a t i on
uint8_t f lagEvent=0; // i n i t event f l a g s t r u c t u r e
#define HIGH_RISK 0
#define MEDIUM_RISK 1
#define NO_RISK 2
#define ERROR 3

void event_handler ( ){
switch ( f lagAlarm ) //Risk c l a s s i f i c a t i o n t a b l e

{
case 0 :

f l agEvent |= NO_RISK; // s e t s no r i s k f l a g
break ;

case 1 : case : 2 case 4 :
f l agEvent |= MEDIUM_RISK; // s e t s medium r i s k f l a g
break ;

case 3 : case 5 : case 6 : case 7 :
f l agEvent |= HIGH_RISK; // s e t s h igh r i s k f l a g
break ;

default :
f l agEvent |= ERROR;
break ;

}
}
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5) Event handler functions: This process involves four main functions which include: a) low

risk function, b) medium risk function, c) high risk function, and d) error function. Algorithm 4.4

speci�es the method in which the event �ag is checked against the type of risk determined by the

alarm �ag.

Algorithm 4.4 Event handler functions.

void event_funct ions ( ){
switch ( f l agEvent ) //Risk c l a s s i f i c a t i o n t a b l e

{
case 0 : // ( i . e , no r i s k )

LowRisk ( ) ; // execu t e s low r i s k f unc t i on s .
break ;

case 1 : // ( i . e , medium r i s k )
MediumRisk ( ) ; // execu t e s medium r i s k f unc t i on s .
break ;

case 2 : // ( i . e , h igh r i s k )
HighRisk ( ) ; // execu t e s h igh r i s k f unc t i on s .
break ;

case 3 : // ( i . e , e r ror )
ErrorFunct ion ( ) ; // execu te the error f unc t i on s .

default :
ErrorFunct ion ( ) ; // execu t e s error f unc t i on s .
break ;

}
}

4.1.1.4 Alarm functions

As we have already mentioned, there are three cases which involves the types of alarm signals

which are generated by the event handler; high, medium, and low risk alarms.

1) Low risk alarm: This alarm involves storing the sensor data in the µSD memory card on-

board the node device, which is outlined in Algorithm 4.5. In low risk events, the node device

saves its energy by switching o� the main communication modules (GPRS, XBee, GPS); the data

get retained in the memory card instead of wasting energy on their transmission.

Algorithm 4.5 Writing to SD memory.

char ∗CH4; char ∗O2; char ∗Temp; char data [ 1 0 0 ] ; // dec l a r e v a r i a b l e s

void Write_To_SD( ) {
s p r i n t f ( data , "CH4:%s |O2:%s |Temp:%s \ r \n" , CH4, O2, Temp) ;
SD.ON( ) ; //Powers the SD module
SD. mkdir ( " Sensors " ) ; //Creates f o l d e r "Sensors "
SD. cd ( " Sensors " ) ; //Go to f o l d e r Sensors
SD. c r e a t e ( "Gas_Sensors . txt " ) ; //Creates the f i l e
SD. append ( "Gas_Sensors . txt " , data ) ; //Writes data in t o f i l e

}
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2) Medium risk alarm: The transmission of this type of alarm is performed using the XBee

radio module; the node device transmits the signal to a special gateway which responds (i.e.,

the gateway) by acknowledging the capture of the alarm. Therefore, this event handler function

includes a special feature which locks the node in a retransmit-mode (20s intervals) until the �nal

acknowledgment is heard by the device.

3) High risk alarm: The transmission of this alarm is based on GPRS (primary) and XBee

(secondary) communication. The primary alarms include initiating voice calls and SMS, also

through twitter's live feed capabilities, and �nally by e-mail communication. However, if our

attempts to connect the node's GPRS module with an appropriate GSM network fail to proceed,

then we utilize the back-up option which is through the XBee module (follows a similar procedure

to medium alarm signaling).

4.1.2 Real-Time Processing

Selective component

control

Total node hibernation

24-hour clock syncing

Date syncing

GPS syncing

Sync flags construction

Real-time 

process control

Functional abstraction

1) Power Mode Utilization
2) Synchronized Interrupt

Routines
3) Real-Time Algorithms

Figure 4.3: Real-time process model.

We propose the real-time processing model shown in Figure 4.3, which involves three main

functions including:

* Power modes utilization: Which consist of three techniques including hibernation, deep-sleep,

and regular sleep. Once we set the node into hibernation, its entire architecture including

the components are completely disconnected from the power source; this method preseves

most of the node's energy, therefore it is has the lowest power consumption ratio. In deep-

sleep and regular-sleep modes, we retain a level of control over the node components, which

enable us to selectively pick which components are set to be disconnected. These modes are

completely dependant on the Real-Time-Clock (RTC) for managing their sleep and wake-up

times.
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* synchronised interruption routines: We demonstrate to the audience our method which uti-

lizes the RTC in order to develop highly �exible and dynamic applications for WSNs. The

main attribute of the RTC is its usefulness in real-time processing; it enables WSNs to

synchronize their tasks according to time requirements and date constraints.

* Real-time algorithms: These algorithms provide the functional abstraction that de�nes the

application structure of the RTC, and highlight its interactions with real-time events. We

implement two types of algorithms based on the RTC: a) management algorithms which han-

dle the power modes, and b) synchronizing algorithms which control the detection frequency

in the node device.

4.1.2.1 Power modes

Internal Power Control Switches
Type Description

Sensor This component controls the I/O switches on
the sensor boards.

UART0 This data bus provides communications with
the XBee radio modules.

UART1 This data bus provides communications with
the GPRS and GPS modules.

Battery This component controls the switch to the
main battery.

RTC This component controls the switch to the
RTC module.

Table 4.3: Node components classi�cation.

Node devices are classi�ed by two major functions which control the power components (switches)

inside the internal hardware, they include:

1) Selective component control: Which applies to the list of components from Table 4.3; In

this function, we manually select the components which shutdown during the sleep period of the

node device. The RTC retains its role of synchronizing the wake-up times in devices which are in

a deep-sleep state (also regular sleep).

2) Total node shutdown: This function utilizes the hibernation mode to completely disconnect

each component from the power supply (i.e., zero consumption in power). In this mode, the RTC

maintains its syncing operations using an auxiliary battery as the main source of power.

4.1.2.2 Interrupts and subroutines

Interrupts are activated by the RTC module to signal an event (process), which consists of three

types:
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• Sensor event: Also referred to as the detection period, which is speci�ed by the RTC. When

this interrupt is active, node devices switch-on their sensor boards and take measurements

from the surrounding environment.

• Sleep event: Which refers to the duration in which nodes are asleep, deep-sleep, or in hiber-

nation. During these states, node components may still operate while others are completely

switched o�; mainly to preserve the energy in the battery source.

• Wake-up event: Which reactivates the node devices after their sleep periods lapse.
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Figure 4.4: Power modes consumption analysis.

The RTC requires time syncing prior to its utilization (i.e., for managing events). We setup

the RTC to sync its time with a GPS receiver, which is based on the NMEA standard; National

Marine Electronics Association (NMEA) is a communication protocol used to specify the electrical

requirements in GPS navigational equipment. The are two main techniques for syncing the RTC

which include:

1) User-de�ned: This method of syncing is speci�ed during the setup stage (programming) of

the node device which is highlighted in Algorithm 3.10.

2) GPS sync: This method provides time in UTC (Universal Time Coordinated) format, then

syncs the RTC as Algorithm 4.6 speci�es; the synchronised data are based on the following pa-

rameters: hours, minutes, seconds, and the date.

4.1.2.3 Real-time algorithms

The real-time algorithm speci�es four individual functions which activate during speci�c seasons

(i.e., summer, autumn, winter, spring). In some applications (e.g., �re monitoring), the need for

continuous monitoring is scaled down in winter, especially in outdoor areas where the sun is not
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Algorithm 4.6 Syncing RTC with GPS.

void Start_GPS_Module ( ){
GPS.ON( ) ; //Powers the GPS module .
while ( !GPS. check ( ) ) // wa i t ing f o r s a t e l l i t e coverage

}
void Sync_to_RTC(){
GPS. g e tPo s i t i on ( ) ; // g e t s GPS coord ina t e s
RTC. setTimeFromGPS ( ) ; // syncs to RTC

}

as powerful (compared to summer); as a result, hibernation mode is utilized (see Figure 4.4). The

structure of real-time algorithms are as follow:

1) Event �ag: This is a 4-bit �ag which refers to the weather seasons as highlighted in Algorithm

4.7.

Algorithm 4.7 Event �ag structure.

//Event f l a g d e c l a r a t i on
uint8_t eventFlag=0;
#define January 1
#define February 2
#define March 3
#define Apr i l 4
#define May 5
#define June 6
#define July 7
#define August 8
#define September 9
#define October 10
#define November 11
#define December 12

2) Flag management: The RTC is synchronised by the GPS module as highlighted in Algorithm

4.6, then its output determines the type of operation which is required in a speci�c month/season.

Algorithm 4.8 involves four main functions which include: a) summer, b) autumn, c) winter, and

d) spring; and as we mentioned earlier, each program runs during di�erent seasons.

3) Hibernation program: In this program, the node is put into hibernation during the winter

season to preserve its energy levels; the node hibernates for nearly 3 months, however it still wakes

up once a day to take measurements using its sensors, then transmits the data to a base-station.

Algorithm 4.9 outlines the use of hibernation in the winter program, in which data consist of

time/date, temperature, and battery measurements.
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Algorithm 4.8 Flag management model.

void flag_mngt ( ) {
switch (RTC.month) {
case October : case November : case December :

SummerProgram ( ) ; //run the summer program
break ;

case January : case February : case March :
AutumnProgram ( ) ; //run the autumn program
break ;

case Apr i l : case May: case June :
WinterProgram ( ) ; //run the winter program
break ;

case July : case August : case September :
SpringProgram ( ) ; //run the spr ing program
break ;

default :
ErrorProgram ( ) ; //run the error program
break ;

}
}

Algorithm 4.9 Hibernation mode con�guration.

void setup ( ){
PWR. i fH ib e rna t e ( ) ; // s e t s the h i b e rna t i on f l a g .

}

void Hibernation_Program (){
de lay ( 8000 ) ; // wa i t s f o r h i b e rna t i on proces s to f i n i s h .
i f ( in tF lag & HIB_INT){ // checks the h i b f l a g

i n tF lag &= ~(HIB_INT) ;
SensorGas . setBoardMode (SENS_ON) ; de lay ( 1000 ) ;
Temp = ((100∗ SensorGas . readValue (SENS_TEMPERATURE) ) − 50) ;
U t i l s . f l o a t 2 S t r i n g (Temp, TempS , 2) ;
U t i l s . f l o a t 2 S t r i n g (PWR. getBatte ryVo l t s ( ) , Batt , 6 ) ;

4.1.3 Data Encryption

WSNs are exposed to many types of hijack attempts for compromising the network security. Ad-

vanced Encryption Standard (AES) is a security technique which is used to encrypt the data

payload prior to transmission in a sensor network. There are two key components in the setup of

a secured sensor network which include:

* Mutual link access key: Which is a 16 bytes �eld shared among all node devices within a

sensor network; In Figure 4.5a, a compromising node is stationed to intercept the data from

unsecured WSN, where as in Figure 4.5b the same node intercepts the data without being

able to decode the message since we have encoded it with 128b encryption key.

* Application access key: In over the air programming (OTAP), we have implemented two

types of access keys which include a) Network layer, and b) Application layer. The latter

conforms with the application access code which allows access to the OTAP upgrade, while
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(a) Unencrypted transmission.

(b) Encrypted transmission.

Figure 4.5: Payload encryption in sensor network.

the network layer security refers to the AES encryption we explained previously.
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4.2 Environmental Sensor Networks

1) Environmental Systems 2) Functionality 3) Network Architecture

Air Quality Monitoring

Gas Leak Detection

Indoor/Outdoor Fire Detection

Capture WSN data

MYSQL intergration

Webserver hosting

Remote server connectivity

WSN over IP

Digimesh networking

802.15.4 networking

Figure 4.6: Environmental monitoring applications.

In this section, we propose the main environmental systems shown in Figure 4.6, which consist

of three applications:

* Air-Quality monitoring: This application is intended for use in nursing-homes and retire-

ment villages in order to monitor the air quality in the surrounding environment; It detects

many types of air contaminants including NO2, CO2, NH3, and H2, then reports their con-

centrations to a base-station where they are processed into databases. Node devices utilize

GPRS modules which generate SMS/voice-call signals to warn the residents of potential case

(contamination,pollution), then contact the authorities whom initiate the evacuation process.

* Gas-Leak detection: This monitoring system is used to detect gas-leaks in pipelines that span

across neighbourhoods into residential households or commercial buildings. This system is

based on multihop transmission to ensure this project covers larger areas (no wired commu-

nication) without deterioration in the communications (signal loss, SNR); rather it relies on

intermediate nodes to forward the data to the basestation points (quality of signal remains

unchanged).

* Fire detection: This system is intended for use in indoor and outdoor environments in order

to detect sparodic �re occurrences and reports them to suitable authorities (�re department,

FESA, post them up on community websites, etc.). As the case with the air-pollution system,

node devices utilize GPRS modules which connect to the Internet and posts real-time data

on desginated servers that continuously track the progress of the system.

The three systems use multi-radio communications architecture for enabling wireless connec-

tivity between the hardware devices which include the sensing platforms, routing nodes, and base-

stations; these communications are based on IP addressing and data-forwarding techniques in order

to initiate long-range links between numerous and independent WSNs. This type of networking is
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also referred to as �hybrid communications� as it consists of numerous other protocols including

IEEE-802.15.4, Digimesh, GPRS, and IP. In this section, we outline the functional interactions

between these di�erent communication protocols, then we concentrate on their utilization in WSN

applications.

4.2.1 Communication Performance Analysis

First, we investigate the communication performance in various environments, also under di�erent

conditions which include:

1. Nursing-home simulation: The �rst test involves measuring the communication performance

between node devices in a single-story compound which resembles that in nursing homes.

2. Multistory building simulation: The second test involves determining the number of nodes

which are required to route the data across multiple-story building in order to minimize

the number of lost packets (data); we focus on the communications between the nodes in

connecting �oors (i.e., �oor-1 to �oor-2, and so on.)

3. Outdoor forest simulation: The last test involves measuring the communication performance

for an outdoor monitoring system; here we focus on the placement of nodes in order to

achieve the highest possible radio reception ratio between the intermediate devices (forward-

ing nodes). This makes sure that each node has at least one symbolic link which routes its

data to the base-station.

The tests are performed around various environmental obstacles including concrete walls, doors,

trees, and other potentially disruptive objects. The aim of these tests is to measure the commu-

nication performances in each environment which we later use during the �nal stages of the our

deployment.
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4.2.1.1 Nursing-homes communication analysis

Figure 4.7: Nursing-home environment simulation.

In our �rst simulation, we setup a WSN to convene a similar architecture as those found in

nursing-homes as shown in Figure 4.7. A total of two forwarding nodes were deployed across the

pathways around the single-story complex in order to forward the packets from the surrounding

nodes.

Barrier Analysis
Physical Characteristic Number of Barriers
Cement walls Twalls = 16
Wooden doors Tdoors = 36

Physical Node Analysis
Node Characteristic Equivalent Value
Number of forwarding nodes Tfowarding−nodes = 3
Maximum distance to base-station Dmax(Node−BS) = 36 meters
Maximum number of hops (per node) Tmax(hop) = 7
Maximum number of network route request
(per node)

Tmax(RREQ) = 3

Maximum number of re-transmissions (per
node)

Tmax(re−transmit) = 2

Communication Performance Analysis
Communication Criteria Rating
Successful radio reception ratio RRTsuccess = 86%
Failed packet transmission ratio RRTfail = 14%

Table 4.4: Communication performance analysis in nursing-home environment.

The environment was surrounded by obstacles such as wooden doors and concrete walls to sim-

ulate a real-life deployment; sensing nodes were deployed across a range of rooms which gathered
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environmental data including temperature and air-quality parameters. The intermediate nodes

act as forwarding nodes when the distances did not allow for point-to-point (p2p) communication

between the source and the gateway (e.g., Node-D). Our tests ran for 2000 random packet trans-

missions, and recorded excellent radio reception ratios (≥ 86%) throughout the communication

system. The summary of the nursing-home simulation test is shown in Table 4.4, which includes

the environmental conditions, node parameters, and the main results of this experiment.

4.2.1.2 Multistory communication analysis

Figure 4.8: Multistory environment simulation.

In our second simulation, we investigate the di�erent behaviors which are produced by intro-

ducing mobile nodes into a WSN in a multistory complex as shown in Figure 4.8. Our aim is to

gain a better understanding of the characteristics in mobile WSNs, their routing e�ectiveness and

transmission reliability using AODV. Furthermore, this experiment is used to model the commu-

nication performance in mobile patients whom use WSN nodes to monitor their locations in an

indoor environment; deployment of forwarding nodes (stationary) are subject to two conditions:

a) random deployment, and b) deployment using RSSI. Finally, we use two types of nodes which

include stationary nodes (forwarding nodes) and mobile nodes (which are attached to the mobile

person).
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Random Localization
Node Location Packets Forwarded Random Localization RSSI Localization
Floor 1 Ttotal(forwarded) = 101 RRTtotal = 59% RRTtotal(success) = 82%
Floor 2 Ttotal(forwarded) = 42 RRTtotal = 57% RRTtotal(success) = 78%
Floor 3 Ttotal(forwarded) = 42 RRTtotal = 70% RRTtotal(success) = 85%

Node Paramteres
Node Characteristic Equivalent Value
Average packet size Averagepacket = 99 bytes

Maximum distance to base-station Dmax = 35 meters

Table 4.5: Communication performance analysis in a multistory environment.

In this experiment, we set the transmission rate to occur randomly; therefore, there are no

guarantees that during a speci�c transmission, the base-station is in coverage distance of the

mobile node. The �rst part of this experiment, we randomly dispersed the nodes across the three

�oors; the results we obtained were not suitable in terms of radio reception throughput (≤ 70%).

However, with the introduction of RSSI mapping techniques, the RRT increased across all the

forwarding nodes (≥ 78%). The summary of this experiment is shown in Table 4.5 which includes

the results of both RSSI and the random localization of nodes.

4.2.1.3 Outdoor communication analysis

Figure 4.9: Outdoor environmental simulation.

This experiment is setup to investigate the communication performance in outdoor mesh net-

works. Node devices measure concentrations of various gases and temperature and transmit data
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to a base-station every minute. The base-station receives data which consists of sensor and power

calculations, then processes them into a database (MYSQL).

Experiment Parameters
Criteria Description

Communication protocol Digimesh

Routing protocol Ad-hoc On-demand Vector Distance (AODV)

Radio frequency 2.4 GHz

Sensors CO2, CO, CH4, NO2, O2, temperature, humidity, and fuels

Coveragte area 620 m2

Communication Performance Analysis
Criteria Node-A Node-B Node-C Node-D
Distance to
BS

50 meters 27 meters 71 meters 10 meters

Distance to
nearest node

21 meters (C) 17 meters (D) 21 meters (A) 10 meters
(BS)

Packets
transmitted

61 56 60 62

Radio
Reception
Throughput

100% 98% 96% 96%

Initial voltage 4.14 V 4.11 V 4.09 V 4.12 V

Final voltage 4.03 V 4.03 V 4.01 V 4.02 V

No. of sensors 2 2 3 2

Table 4.6: Communication performance analysis in outdoor environment.

The experiment took place at a forest park located in Edith Cowan University (Appendix-C).

A total of 5 nodes including the base-station are deployed in a line-of-sight (LOS) arrangement

as shown by Figure 4.9; however, only a single node (Node D) was within a single hop from

the base-station while others were out-of-bound. The o�-limit nodes require multiple hops in

order to transmit data to the base-station; which is taken care of by the AODV routing protocol.

Furthermore, the results of this experiment are highlighted in Table 4.6 which suggest:

• Acceptable power consumptions considering the detection frequency and the size was mod-

erately large; based on minute intervals with average packet size of 78 bytes.

• Radio reception throughput (RRT) was very high which suggest that the DM protocol meets

all requirements for a real-life deployment of WSNs in dense vegetation or forest environ-

ments.
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• It is possible to cover large areas with a small number of nodes; in our experiment, we only

used 4 nodes and covered an area of 620 m2.

4.2.2 Data Routing Analysis

Figure 4.10: Stand-alone 802.15.4 routing protocol.

The IEEE-802.15.4 protocol does not specify any routing algorithms in its standard, as it

only deals with PHY and the MAC layer. Hence, the use of this protocol is limited to p2p

communications over short distance; denser p2p networks require a larger number of data-sinks in

order to account for all the data. Due to these limitations, we developed our own protocol which

enables routing in stand-alone 802.15.4 WSNs as shown in Figure 4.10. This protocol involves two

types of node devices which include:

* Routing nodes: Which forward the data through prede�ned communication paths between

source transmitters and the base-station.

* Sensing nodes: Which sense the environment, then transmit their data using ordinary p2p

communication to speci�ed routing nodes.

By referring to Figure 4.10, we notice the special arrangement of the routing nodes in the system;

this factor imposes two important conditions that come into the realization of this protocol, and

they are:

1) Routing node location: The placement of the routing nodes in the environment is abso-

lutely crucial; sensor nodes have to be within coverage distance between at least two forwarding

nodes (in case a path fails). A routing node sole responsibility is to receive data from the sensing

node, then forwards it to an intermediate node until the data reaches the base-station.
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2) Sensor node location: A group of sensor nodes form a multi-p2p topology with a single

parent (routing node). A sensor node only transmits to a single routing node, hence it is important

that communication between the two nodes are not disrupted (to prevent data loss).

Algorithm 4.10 Forwarding node setup in stand-alone 802.15.4 WSNs.

packetXBee∗ paq_sent ;
void get_packets ( ){

i f ( XBee . a v a i l a b l e ( ) ){ //Checks data_buf f er
char∗ _data = ( char ∗) c a l l o c (1 , s izeof (char ) ) ;
xbee802 . treatData ( ) ; // reads API frame
i f ( ! xbee802 . error_RX ){

while ( xbee802 . pos >0){
Extract_Data ( ) ; // execu t e s the e x t r a c t i o n program .
f r e e ( xbee802 . packet_f in i shed [ xbee802 . pos −1 ] ) ;
xbee802 . packet_f in i shed [ xbee802 . pos−1]=NULL;
xbee802 . pos−−;

}
}

}
SendToBS ( ) ;

}
// Exc t rac t ing Data Function //
void Extract_Data ( ){
for ( int f =0; f<xbee802 . packet_f in i shed [ xbee802 . pos−1]−>

data_length ; f++){
XBee . p r i n t ( xbee802 . packet_f in i shed [ xbee802 . pos−1]−>data [ f ]

,BYTE) ;
}

s t r c a t (_data , ( xbee802 . packet_f in i shed [ xbee802 . pos−1]−>data ) ) ;
}

Algorithm 4.10 highlights the software con�guration of the routing node in which data is ex-

tracted, then stored into an array, and �nally transmitted to the intermediate routing node.

4.2.2.1 Router node discovery

Figure 4.11: Node discovery in 802.15.4 routing.

Node discovery is a process which allow us to locate the intermediate routing node in a multi-

hop system. This implies to the device-ID which falls within the communication path between the

sensing node and the base-station. Figure 4.11 demonstrates the node discovery process between

the router nodes; router-node-A issues a discovery request which returns the node addresses that
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operate within a single hop from the host device (i.e., router node B). Finally, data gets extracted

from the radio bu�er and transmitted to the next destination, and so on.

4.2.2.2 AODV routing

Figure 4.12: Multi-hop data network.

A multihop network has the ability to transmit data between nodes in a non-line-of-sight (NLOS)

architecture using routing algorithms such as AODV (Ad-Hoc Distance Vector). In this routing

technique, sensor nodes transmit their data using multiple hops as illustrated by Figure 4.12. The

bene�ts associated with multihop networks include:

1. Allows long distance communication: Data packets �ow through as many hops until they

reach the base-station node, given that distance between the original node and the destination

is not direct.

2. Decreases the power consumption in the WSN: Due to the reduction in distances between

intermediate nodes which is determined by their RSSI (Received Signal Strength Indicator)

values. Therefore, data packets are forwarded to the node which has the lowest transfer time.

4.2.3 Network Architecture

The general network model is based on WSNs and IP technology as shown in Figure 4.13, which

consists of three main systems:

* IP base-station: Also referred to as Meshlium; this device integrates an FPGA board which

runs an embedded Linux kernel (Voyage-Linux) aimed at low-end x86 platforms. It sup-

ports multiple radio communication modules which includes Wi-Fi (2.4 and 5 GHz bands),

Zigbee/802.15.4/DM, and GPRS/GPS.

* WSN platforms: Which includes sensor devices and all their additional peripherals such

as sensors, radio-units, external modules (memory, SIM-card, GPS, etc.). Environmental

applications are built around these devices which act independently of the IP back-bone.
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* Network components: They include the DSL modem, dual-band Wi-Fi router (2.4 GHz and

5 GHz), and workstations (desktop comupters, laptops, PDAs, etc.).

Figure 4.13: General network model.

The network model in Figure 4.13 is also referred to as a WSN-over-IP, because it provides

additional functionalities that are generally associated only within IP networks. This hybrid ar-

chitecture o�ers a lot more services than a traditional WSN including:

• WSN communication over the Digimesh or 802.15.4 protocol which is provided by a tradi-

tional WSN setup.

• Remote access capabilities using traditional IP software such as SSH and openVPN.

• Integration with Internet services including web-servers, MYSQL database, and online blog-

ging (twitter).

The Mesh-Hood (M-Hood) system is a practical example of a WSN-over-IP which involves the

architecture highlighted by Figure 4.13. Our main contributions are primarily in: a) the conceptual

design, b) hardware con�guration of the system, and c) implementation in an indoor air-quality

monitoring application.

4.2.3.1 WSN-Over-IP (Mesh-Hood System)

The M-Hood concept applies towards all subscribed network entities including the workstations

(desktop, laptops, mobile phones, tablets, etc.), access points, node devices, and sensor data, as
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being meshed together so that access to the entire network body is independent from the host

location (any speci�c workstation) or the source gateway (router, modem,etc.).

Figure 4.14: Mesh-Hood IP backbone.

The M-Hood network con�guration is shown in Figure 4.14, which represents a real-life ar-

chitecture of a WSN-over-IP system. Moreover, the radio architecture is based on virtual access

points (VAPs); logical entities which exist within a physical access point. Each VAP is capable

of advertising distinct SSIDs and capabilities set, hence they may appear as independent stations

(to users), but the reality is they all belong to a single physical network entity (interface/card).

Furthermore, there are two VAP modes used in the M-Hood system which include:

1. Station (STA): In this mode, the meshlium node connects to the dual-band router over the

5 GHz Wi-Fi band.

2. Access point (AP): In this mode, meshlium acts as a central point for workstations and other

network devices in order to gain access to the net.
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4.2.3.2 IP testing

IP Test Tools
Tool Description

Ping test The ping test is performed to verify the
correct operations of the mesh network, and
to ensure that clients and servers are able to
communicate to one another.

Route test The traceroute operation tests the
connections between di�erent network
interfaces in order to verify the correct �ow of
data communications (including the number
of intermediate hops).

Iperf test The iperf operation is used to measure the
maximum TCP and UDP bandwidth
performance in the network.

Table 4.7: IP testing tools.

IP o�ers convenient methods in order to test the communications between all networked sys-

tems; Table 4.7 describes the most widely used tools which include: a) ping test, b) trace-route,

and c) iperf. In the case of the network depicted by Figure 4.14, communication performance

testing is determined by the following conditions:

1. Workstation communications: To con�rm that workstations can communicate between each

other, and also with IP base-stations, routers, and gateways.

2. Internet connection: To verify Internet access is available through all operational radio bands

which include 2.4 GHz and 5 GHz.

3. Network AP communications: To con�rm that access points are correctly con�gured in the

network; this applies to the method in which meshlium communicates with the router nodes

and workstations, and vice versa.

4.2.3.3 Network Storage

There are two methods in which data is stored (in the M-Hood system):

* Local database: Which is hosted on the meshlium device itself; con�gured using phpmyadmin

accessed through the local gateway interface (Meshlium Manager System).

* Dedicated network servers: Which are hosted on workstations within the same network

infrastructure of the meshlium device (i.e., dedicated machines in a LAN). In this method,

we setup an external server to store all sensor data in databases (MYSQL); using the lampp

package to con�gure the apache and MYSQL servers on each workstation.
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The type of data stored in the database system is shown in Table 4.8, which includes: type of

gas, output voltage (Vout), sensor resistance (Rs), resistive gain (Rs/Ro), and most importantly

its concentration in air (ppm).

Sample of Sensor Measurements
Type of Sensor Vout (Volts) Rs (kΩ) Rs/RO ppm

CO 0.5677 78.0681 5.8697 21.500
NO2 0.5096 7.1594 3.1373 0.0557
O3 1.3045 4.2307 0.3846 15.5672

Table 4.8: Storage of sensor measurements in databases.
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4.3 Applications

In this section, we propose the environmental applications using WSNs as shown in Figure 4.6,

which includes gas-leak detection, air quality monitoring, and �re sensing. In particular, we focus

on these three main issues:

* Operation theory: Which refers to the methods of operation in real-time environments in-

cluding the types of sensors used, and network communication models.

* Obtention of results: We analyze the practical results obtained by the sensor network from

each di�erent environment.

* Real-time responses: Which refers to the actions generated by node devices during emer-

gency events such as �re occurrences, or pollution risks. Finally, we analyze the tasks (node

operations) which are associated with a speci�c emergency and application (i.e., �re sensing,

air quality, etc.).

Figure 4.15: General application model.

The general application architecture is shown in Figure 4.15; in this model, there are three

major parts involved, which include:
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1. Data transmission: Which speci�es the method in which data is transmitted from the sensing

nodes towards the base-station.

2. Sensing elements: Which speci�es the interactions between the sensors with their surrounding

environment; i.e., the determination of the response based on the sensing model we described

in Section 4.1.1.

3. Alarm noti�cation: This implies the three alarm signals generated by each node device

including SMS, voice-call, and e-mail alarms.

In the next discussion, we analyze the three applications and highlight some of the results obtained

by each sensor network.

4.3.1 Gas-Leak Detection

The underlying operation of this system is to measure air quality levels in order to detect gas leaks

of certain gases (mainly natural gas). Node devices periodically switch-on their peripherals (sen-

sors, communication modules, etc.) and begin sensing the surrounding environment. As a result,

we obtain a comprehensive overview of the characteristics and the nature of the encompassing

environment. In Table 4.9, we provide a small sample of results that correspond with temperature,

humidity, and natural gas (CH4) concentrations for an indoor environment.

Gas-Leak Analysis (sample results)
Temperature (C0) Humidity (%)

25.8064 21.6903
21.2903 20.8645
25.8064 20.3483
24.5161 20.658
21.6128 20.2451
27.4193 20.3483

Methane-Gas Concentrations
VOUT Rs (kΩ) Rs/Ro ppm
0.1258 17.4355 25.6404 14.2891
0.1161 18.9298 27.8380 15.0461
0.1032 21.3523 31.4004 16.2276
0.0903 24.4669 35.9807 17.6756
0.0838 26.3996 38.8230 18.5397
0.0774 28.6197 42.0878 19.5037
0.0741 29.9143 43.9917 20.0529

Table 4.9: Gas-leak sample results.

Take a note regarding the variation in methane concentrations as highlighted from Table 4.9;

another property of the gas-leak system is the ability to generate an alarm at a speci�c concentra-

tion for any type of gas (e.g., CH4). A user-de�ned threshold sets the boundary limits for each gas

concentration in a polluted environment, once exceeded the node device responds with an alarm

signal using one of its external radio modules (GPRS, XBee).
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4.3.2 Air-Quality Monitoring

The underlying operation regarding the air-quality system involves monitoring the concentration

of numerous air-containment substances from surrounding environments such as hospitals, schools,

and home-care patients (ADLs). Node devices evaluate the risk of exposure to certain air pollutants

and generate an alarm accordingly (depending on the risk involved). Furthermore, an IP gateway

maintains a database which holds records of all the gas measurements as shown in Table 4.10.

Oxygen Levels in Normal Air
Vout Relative Oxygen Levels(%)
0.6193 21.772
0.6129 21.516
0.6096 21.384
0.6064 21.256

.

.

.

General Air Quality Sensors (type 1 and 2)
S1out (Rs/Ro)S1 S2out (Rs/Ro)S2

2.5000 1.0000 2.5000 1.0000
2.5000 1.0000 2.5000 1.0000
2.5000 1.0000 2.5000 1.0000

.

.

.

Ammonia Concentrations
VOUT Rs (kΩ) Rs/Ro ppm
3.2774 4.2048 0.5256 1.2451
3.2064 4.4750 0.5594 1.2947
3.1612 4.6534 0.5817 1.3269
2.8258 6.1553 0.7694 1.5816
2.6548 7.0670 0.8834 1.7249

Table 4.10: Air-quality levels sample results.

The results shown in Table 4.10 correspond with three types of sensors: a) Oxygen, b) Air-

contaminants, and c) Ammonia. First, the oxygen sensor provides its output in terms of the

relative molecular concentration in air (21% in normal conditions). Second, the air-contaminant

sensors provide a constant gain (Rs/Ro = 1) under normal air levels, hence the output voltage

is equal to 2.5 Volts. Finally, the ammonia sensor, although uncalibrated, it still indicates the

presence of ammonia gas in air from its decreasing voltage output (Vout).

The data which gets transmitted to the IP base-station can be accessed by numerous worksta-

tions which are connected through a LAN. Assuming the system is implemented throughout an

environment containing patients su�ering from certain cardiovascular illnesses, then data can be

easily integrated into medical databases that doctors use to analyze the impacts of air pollutants on

a patient's health. Similarly, home-carers can access live-data streams directly patients gateways

using either SSH/MYSQL or through a web-browser.
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4.3.3 Fire Sensing

The underlying operation of the �re sensing system is to detect breakouts of natural �res and also

be able to observe the signs which lead to their occurrences in the surrounding environment (i.e.,

preventive measures). Bush-�re releases smoke which contains carbon monoxide (CO), carbon

dioxide (CO2), nitrogen oxides (e.g., NO2), and dust particles. In our system, node devices are

equipped with gas sensors which can identify the presence of those gases just mentioned; hence,

any variations in air quality levels (i.e., rising pollution) would trigger an immediate response from

the node device, followed by an alarm which gets transmitted to the �re authorities using the

on-board GPRS modules (SMS, voice call).

Carbon Dioxide Concentrations in Normal Air
Vout 4EMF ppm Condition

0.00967 0.1903 335.6518 Normal
0.00645 0.1935 335.6914 Normal
0.07096 0.1290 334.8992 Normal

Oxygen Levels in Normal Air
Vout Relative Oxygen Levels(%) Condition
0.6193 21.772 Normal
0.6129 21.516 Normal
0.6096 21.384 Normal

Carbon Monoxide Levels in Normal Air
Vout Rs/Ro ppm Condition
0.2677 13.2914 10.5723 Normal
0.2032 17.7491 8.2240 Normal
0.1193 30.7603 5.1012 Normal

.

.

.

Table 4.11: Fire sensing sample results.

In Table 4.11, we provide measurements taken from a normal environment of by-product fumes

of �re smoke) and oxygen levels. In this type of environment (i.e., no pollution), carbon dioxide

levels are approximately 330 ppm; the CO2 sensor reads the output voltage (EMF ) which is then

subtracted from the voltage at 350 ppm (V350ppm = 220 mV ) to give us the voltage variation in the

electromotive force (∆EMF ). The concentration of the carbon dioxide gas is related to ∆EMF

by Equation 4.1.

CO2(ppm) = 10(∆EMF+158.630)/62.877 (4.1)

Similarly, the oxygen sensor reads the output in voltage, then gets converts into relative molec-

ular concentration; i.e., the percentage of O2 molecules in air. Table 4.11 contains the oxygen

concentrations from a non-polluted environment which is around 21%. Finally, the carbon monox-

ide sensor also provides voltage output, which is then converted into parts-per-million (ppm) units

using its corresponding equation from Table 3.7.
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Conclusion

In this chapter, we discussed three main applications that are based on WSNs, which include: gas

leak detection, air-quality monitoring, and �nally a �re sensing system. Each application had its

own characteristics, method of operation, and preferred working environment (indoor, outdoor).

We have analyzed the many properties of these sensor networks, and conducted major performance

tests based on the following parameters:

• Communication systems: We analyzed the communication performance in node devices based

on the radio reception throughput (RRT); which is a measure which determines the trans-

mission quality between numerous inter-connected objects (node devices, IP-basestation).

• Networking systems: We conducted tests on three deployment architectures including sta-

tionary, mobile, and outdoor sensor networks. Multi-hop data transmission was implemented

throughout these experiments which allowed us to achieve longer communication distances

and wireless coverage.

• WSN over IP architecture: We developed a network architecture of a WSN with the added

the functionalities of IP systems including remote connectivity, seamless integration with

hardware, and online services. The M-Hood system is a hybrid sensor network based on

multiple communication methods, namely using 802.15.4/Digimesh and Wi-Fi (2.4 GHz and

5 GHz). The system is used for live data streaming, database integration, and remote

connectivity throughout LANs and WANs.

• Sensor models: We developed sensor models used to measure the physical environment in

order to determine pollution risks, �re occurrences, and possible gas-leaks from its surround-

ings. Consequently, an alarm is generated according the nature of risk; whether it is a high,

medium, or a low risk, the sensing model speci�es the exact operations and transmission

methods for these di�erent situations.

• Analysis of results: Which includes the measurements generated during the course of con-

ducting numerous experiments and application procedures, such as environmental simulation

(nursing home, forests, and multistory complex units), where we investigated the routing ef-

�ciency. Finally, we analyzed the results which coincided with the gas measurements from

within the main applications including air-quality levels, �re smoke, and natural gas leaks.
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Chapter 5

CONCLUSION AND FUTURE

WORKS

WSNs technologies continue to evolve as a high-end application platforms designed to integrate

seamlessly with their surrounding environments. Their applications would extend beyond compre-

hension once our realm (world) is dominated by wireless communications. Today, we are witnessing

an evolution of WSNs towards the Internet of Things (IOT); the time when every electronic hard-

ware becomes part of the vast machine, or as we would like to call it: the �globalisation� of the

Internet. And WSNs will have a massive role into it. WSN technology is yet to peak (in terms

of availability and social-awareness), and as long as research continues to embrace it; it will only

get better, smarter, and more a�ordable for everyone. In this thesis, we showed how to e�ciently

con�gure a WSN in a simple but e�ective manner; free from all technical complications and tedious

programming. The ultimate goal is for WSNs to become plug-n-play, but the technology isn't yet

at a point to do just that. What we need is a universal standard which deals exclusively with the

application layer protocol for WSNs. Consequently, we are able to develop portable systems and

address the interoperability in WSN hardware.

The integration of the Internet Protocol (IP) into WSNs is a massive leap in terms of tech-

nological advancement. The Internet as commonly interpreted is a communication entity (global

network) which allows devices to connect with one another and exchange data. In this thesis, we

presented a WSN-over-IP architecture which uses the Internet as a communication tool utilized as

outlined below:

• Data depository: Using online facilities (e.g., MYSQL or FTP servers) to archive captured

data from WSNs (readily-available to users). We can think of the Internet as an unlimited

virtual space (memory) that we use to store data such as sensor measurements from a WSN.

• Remote connectivity: WSNs are generally designed for short range communications, therefore

one must be within proximate range to their facilities in order to establish a meaningful

connection. The internet is suitable to create virtual ad-hoc links; a link from a PC to WSN
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via an IP-gateway that provides access-routes to the WSN base-station (coordinator). This

way, we control node devices from any remote location that has adequate telecommunication

infrastructure (i.e., Internet connectivity).

• Social networking: Today, social networks play big roles in peoples lives; twitter and facebook

have both struck a chord in our societies, and now everybody is seemingly connected online.

In addition, with social networking comes awareness; the way events spread out across those

platforms are as e�ective as an ant colony network. The impact of social networking have on

WSNs lays within the safety and protection of society (e.g., �re monitoring).

Finally, we presented three environmental systems in which WSNs are principally utilized to gather

environmental data from the surroundings. These systems were: a. Gas-leak detection, b. Air-

quality monitoring, and c. Fire sensing. Strategic algorithms are instilled to govern sensing

operations and models in which environmental risks were assessed upon speci�c parameters. In

addition, the management of node components subsystems was addressed by strict protocols in

which periphery functions (e.g., writing to µSD memory, radio transmission) are utilized under

speci�c admission techniques (to increase battery e�ciency). A summary which speci�es the

major features of this thesis is outlined below as follows:

• Low-power approach: In which techniques to reduce power consumption are utilized to extend

the longevity of WSNs. Three power modes were speci�ed: sleep, deep-sleep, and hibernate;

the amount of energy consumed di�ers from one mode to another. Battery-low warnings are

managed by internal circuitry (on the node device) which detect the relative capacity (i.e.,

percentage) of energy in the reservoir; an alarm is generated to signal depleting power levels

when a user-de�ned threshold is exceeded.

• Hybrid network architecture: Data communications are speci�ed according to multiple pro-

tocols including 802.11 (Wi-Fi), 802.15.4 (Digimesh), NMEA (GPS), and mobile-2G/3G

(GPRS) that nodes use in combination to perform a variety of functions; e.g., sending SMS,

initiating voice-calls, and uploading data using FTP.

• Multi-purpose sensors utilization: Observable phenomenas (gravity, speed, growth rate, etc.)

are events that we see, observe, and comprehend; however, scienti�c instruments are required

to measure, analyze, and record data concerning them. A gas sensor is concerned with param-

eters which constitute the micro-world (atoms, molecules, and so on); we use them to obtain

equivalent quantitative parameters, ones that we are able to interpret physically (i.e., voltage,

resistance, current) in order to describe certain properties of a gas (e.g., concentrations).

• Web integration: A real time operating system is utilized in order to provide network manage-

ment functionalities which include an e-mail generating system, a data-processing MYSQL

server, and a twitter blog containing up-to-date information obtained by the WSN.
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5.1 Future Works

Some possible future extensions to the investigations made in this thesis include:

1. Additional Tests on the M-Hood System

The acquisition of a larger number of nodes would enable the real deployment of the Mesh-Hood

system. Nursing homes, or retirement villages are ideal locations of deployment, and for test-

ing/implementing the proposed system. This thesis covers the architecture of the mesh-network

which allows sharing of the Internet among numerous workstations and users. It also describes the

technologies used to store the sensor network data on the internet, which enables live-monitoring

capabilities required by many applications of WSN. Our idea was to deploy the M-Hood system

in retirement villages, because these locations are suited to short range communications, which is

typical in WSNs. Furthermore, integrating the M-Hood system provides bene�ts such as shared

network infrastructure, live monitoring capabilities, and centralized network operations.

2. Real Life Testing of the Fire Monitoring System

Our tests have con�rmed the functionality of the �re monitoring system under simulated/virtual

environment. We have successfully tested the fundamental functions of this system which includes

sensing algorithms, response to emergencies, node communications, and data transmission. The

next stage involves a real-life deployment in the environment in order to generate a more compre-

hensive analysis on its operations in real-time.

3. Calibration of Gas Sensors

The level of calibration we achieved in our gas sensors is su�cient for monitoring purposes, but

not for determining the exact concentrations of the gases in the surrounding environment. This

capability often requires a more sensitive approach towards the calibration of the sensors, and also

very important in the control and automation application domain. Therefore, we suggest that by

re-calibrating the gas sensors at very high and sensitive levels result in improved sensor readings

of the real concentrations in the environment. This would speci�cally bene�t monitoring the air

pollution levels, which rely on sensor networks for precise and accurate detection capabilities.
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Appendix A

Thesis Contributions

A.1 Research Publications

1. Amro Qandour, D.Habibi, Senior Member, IEEE, and I.Ahmad, IEEE, Member, �Appli-

cation Framework for Wireless Sensor Networks � (accepted), to appear in IEEE Conference

Proceedings on Networking, Sensing and Control (ICNSC12)

2. Amro Qandour, D.Habibi, Senior Member, IEEE, and I.Ahmad, IEEE, Member, �Ap-

plied Application of Sensor Networks in Underground Mines� (accepted), to appear in IEEE

Conference Proceedings on Networking, Sensing and Control (ICNSC12)

3. Amro Qandour, D.Habibi, Senior Member, IEEE, and I.Ahmad, IEEE, Member, �Wireless

Sensor Networks for Fire Emergency and Gas Detection � (accepted), to appear in IEEE

Conference Proceedings on Networking, Sensing and Control (ICNSC12)
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A.2 Social Media

This appendix contains live-video demonstrations on how to use various functions of the Wasp-

mote. I continuously maintain this support channel in order to provide educational videos for the

Waspmote community.

Name Description Link

Sending RTC and ACC data
to Waspmote

To demonstrate how to use
the RTC and accelerometer
modules in the Waspmote

http://www.youtube.com/

watch?v=srZOiBC1fu4

GPS Demonstration using
Waspmote

To demonstrate how to use
the GPS module in the
Waspmote to retrieve
coordinates and NMEA
sentence de�nitions

http://www.youtube.com/

watch?v=rfNVJUn29EA

Waspmote Battery
Interruption under a

simulated power source

To demonstrate how to use
the battery interrupt

function of the Waspmote

http://www.youtube.com/

watch?v=_Irk2LFUvfo

Running OTAP with
Meshlium

To demonstrate how to use
OTAP in Meshlium

http://www.youtube.com/

watch?v=oBdjKXxuy44

Waspmote OTAP in Ubuntu
11.04

To demonstrate how to use
OTAP in the Ubuntu OS

http://www.youtube.com/

watch?v=yZe9cXJXxzY

RTC Waspmote To demonstrate how to use
the RTC module of the

Waspmote

http://www.youtube.com/

watch?v=U_o2xS5tpRY

Waspmote Over the Air
Programming

To demonstrate how to use
OTAP functions in the

Waspmote-IDE

http://www.youtube.com/

watch?v=XdSMQwJAkjE

Table A.1: Video demos
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A.3 Media Coverage

�Feature article in ECU media release edition�
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�Feature article on ABC news website (also live phone interview)�

97



Imagine a summer morning in 

the near future, when you have 

decided to head for the beach. 

A few years ago, if you lived in 

an area of near-urban bushland, 

the threat of bushfires might 

have made this a risky decision. 

Today, thanks to research and 

development at ECU in 2011, 

you would have few concerns.

The technology now exists to establish 
a network of wireless-enabled 
monitors throughout fire-prone bush 
in semi-urban regions. Connected to 
the bushfire brigade and emergency 
services, the solar-powered monitors 
sample the air every 10 minutes and 
pick up any hint of bushfire smoke. 
Each monitor transmits its findings 
to a central database and, because 
they are all GPS identified, bushfire 
authorities can quickly spot and pin 
down fires before they spread.

This monitor is currently in the 
final stages of development at 
ECU’s Centre for Communications 
Engineering Research (CCER) 
under the direction of Dr Iftekhar 
Ahmad and Professor Daryoush 
Habibi, and is just one of a number 

of wireless networked environmental 
sensors that will help to protect our 
environment and also protect humans 
from environmental dangers.

“Sensors are relatively cheap 
nowadays,” Dr Ahmad says. “Most of 
the components are readily available, 
but they have to be combined in an 
optimum manner, calibrated for the 
intended use, and the communication 
protocols developed. Our intention 
is to provide society with cheap, 
reliable sensors that will monitor 
vital environmental factors in real 
time and make the information 
available wherever it’s needed.”

On the way to the beach, you might 
pass the house where your aged 
parents still live. You used to worry 
about them always forgetting to 
turn off their unflued gas heater. If 
your mother suffered from asthma, it 
could be exacerbated by exposure to 
nitrous dioxide from the heater. Or 
perhaps she had emphysema, and 
you worried that carbon monoxide 
could affect her respiration.

Now, however, they have installed a 
detector which measures both these 
gases in their home, as well as carbon 
dioxide and oxygen. The readings are 

taken every half hour, transmitted 
to the modem that also services the 
home computer and, if pre-set levels 
are exceeded, an alarm text will be sent 
automatically to your mobile phone.

This system also came out of ECU’s 
CCER. “We can monitor almost any gas 
we want,” Dr Ahmad says. “We intend 
to test our prototype in people’s homes, 
perhaps in partnership with a local 
council, to ensure it gives us the results 
that warrant commercial production.”

When you reach the beach, 
you are sensibly aware of the 
cumulative damage of ultra-violet 
light exposure and the risk of 
melanoma.  Fortunately, another 
environmental monitor developed at 
ECU provides you with the answer.

A large digital clock dial on the lifesaving 
club’s watchtower is connected to a 
real-time continuous UV monitor, so 
you know that right now, right here, the 
UV reading is still yellow and, so long 
as you wear sunglasses and sunscreen, 
you can enjoy the beach safely.

“There’s a strong psychological 
element to having a real-time reading 
right on the beach,” Dr Ahmad 
says. “As people see the UV index 
rising towards solar noon, they are 
more likely to take protective action 
than if they just checked a chart in 
the newspaper that morning. With 
Bluetooth capability the monitor 
could synch to mobiles within range, 
and beachgoers would get a warning 
even if they couldn’t see the dial.”

ECU Engineering 
fighting regional 
fires, wirelessly

10

�Feature article in COHESION magazine (January 2012 edition)�
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Appendix B

Source Code Library

B.1 Power Dissipation in Controlled Regulation

Setup Loop

void setup ( ) {

RTC.ON( ) ;

RTC. setTime ( " 0 1 : 0 1 : 0 1 : 0 1 : 0 1 : 0 0 : 0 0 " ) ;

RTC. setAlarm2 ( " 01 : 00 : 01 " , RTC_OFFSET, RTC_ALM2_MODE4) ;

}

Main Loop

void loop ( ) {

PWR. s l e e p (ALL_OFF) ;

i f ( in tF lag & RTC_INT ) {

USB. begin ( ) ;

SensorGas . setBoardMode (SENS_ON) ; de lay ( 1000 ) ;

getTemp ( ) ; de lay ( 1000 ) ;

getOxygen ( ) ; de lay ( 1000 ) ;

getCarbonD ( ) ; de lay ( 1000 ) ;

getFue l ( ) ; de lay ( 1000 ) ;

getNitrogenD ( ) ; de lay ( 1000 ) ;

getCarbon ( ) ; de lay ( 1000 ) ;

getHumidity ( ) ; de lay ( 1000 ) ;

getMethane ( ) ; de lay ( 1000 ) ;

U t i l s . f l o a t 2 S t r i n g (PWR. getBatte ryVo l t s ( ) , Batt , 6 ) ;
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s p r i n t f ( data , "%s |%s%c%c" , RTC. getTime ( ) , Batt , ' \ r ' , ' \n ' ) ;

USB. p r i n t l n ( data ) ; de lay ( 1000 ) ;

SD.ON( ) ; de lay ( 1000 ) ;

w r i t e s t a t e=SD. appendln ( "PWR. txt " , data ) ;

SD.OFF( ) ;

USB. p r i n t l n ( w r i t e s t a t e ) ;

xbee802 . i n i t (XBEE_802_15_4,FREQ2_4G,NORMAL) ;

// Powers XBee

xbee802 .ON( ) ; de lay ( 1000 ) ;

SendBS ( ) ;

xbee802 .OFF( ) ;

SensorGas . setBoardMode (SENS_OFF) ;

in tF lag &= ~(RTC_INT) ;

RTC. c learAlarmFlag ( ) ;

RTC. setAlarm2 ( " 01 : 00 : 01 " , RTC_OFFSET, RTC_ALM2_MODE4) ;

}

}

B.2 Power Dissipation in Non-Controlled Regulation

Variable Deceleration

//−−−−−−−−−−VARIABLES−−−−−−−−−−

packetXBee∗ paq_sent ;

f loat CH3 = 0 ;

f loat CO = 0 ;

f loat O2 = 0 ;

f loat CO2 = 0 ;

f loat NO2 = 0 ;

f loat Air1 = 0 ;

f loat Temp = 0 ;

f loat Hum = 0 ;

char data [ 1 0 0 ] ;

char Batt [ 5 0 ] ;

uint8_t wr i t e s t a t e =0;

char gateway_data [ 1 0 0 ] ;
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uint8_t saveSD=0;

Setup Loop

void setup ( ) {

USB. begin ( ) ;

xbee802 . i n i t (XBEE_802_15_4,FREQ2_4G,NORMAL) ;

// Powers XBee

xbee802 .ON( ) ; de lay ( 1000 ) ;

SD.ON( ) ; de lay ( 5 0 0 ) ;

SD. c r e a t e ( "PWR. txt " ) ;

USB. p r i n t l n (SD. f l ag , DEC) ;

SensorGas . setBoardMode (SENS_ON) ;

RTC.ON( ) ;

RTC. setTime ( " 0 1 : 0 1 : 0 1 : 0 1 : 0 1 : 0 0 : 0 0 " ) ;

RTC. setAlarm2 ( " 01 : 00 : 01 " , RTC_OFFSET, RTC_ALM2_MODE4) ;

}

Main Loop

void loop ( ) {

i f ( in tF lag & RTC_INT ) {

getTemp ( ) ; de lay ( 1000 ) ;

getOxygen ( ) ; de lay ( 1000 ) ;

getCarbonD ( ) ; de lay ( 1000 ) ;

getFue l ( ) ; de lay ( 1000 ) ;

getNitrogenD ( ) ; de lay ( 1000 ) ;

getCarbon ( ) ; de lay ( 1000 ) ;

getHumidity ( ) ; de lay ( 1000 ) ;

getMethane ( ) ; de lay ( 1000 ) ;

U t i l s . f l o a t 2 S t r i n g (PWR. getBatte ryVo l t s ( ) , Batt , 6 ) ;

s p r i n t f ( data , "%s |%s%c%c" , RTC. getTime ( ) , Batt , ' \ r ' , ' \n ' ) ;

USB. p r i n t l n ( data ) ; de lay ( 1000 ) ;

w r i t e s t a t e=SD. appendln ( "PWR. txt " , data ) ;

USB. p r i n t l n ( w r i t e s t a t e ) ;

SendBS ( ) ;

i n tF lag &= ~(RTC_INT) ;

RTC. c learAlarmFlag ( ) ;

RTC. setAlarm2 ( " 01 : 00 : 01 " , RTC_OFFSET, RTC_ALM2_MODE4) ;

}

}
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B.3 Gas Sensors Functions

Temperature

void getTemp ( ) {

Temp = ((100∗ SensorGas . readValue (SENS_TEMPERATURE) ) − 50 ) ;

USB. p r i n t ( "Temperature=" ) ; USB. p r i n t l n (Temp) ;

}

Oxygen Sensor

void getOxygen ( ) {

SensorGas . con f i gu r eSen so r (SENS_O2, 100 ) ;

SensorGas . setSensorMode (SENS_ON, SENS_O2) ;

de lay (10000 ) ;

O2 = SensorGas . readValue (SENS_O2) ;

USB. p r i n t ( "O2= " ) ; USB. p r i n t l n (O2 ) ;

SensorGas . setSensorMode (SENS_OFF, SENS_O2) ;

}

Carbon Monoxide Sensor

void getCarbonD ( ) {

SensorGas . con f i gu r eSen so r (SENS_CO2, 1 ) ;

SensorGas . setSensorMode (SENS_ON, SENS_CO2) ;

de lay (10000 ) ;

CO2 = SensorGas . readValue (SENS_CO2) ;

USB. p r i n t ( "CO2= " ) ; USB. p r i n t l n (CO2) ;

SensorGas . setSensorMode (SENS_OFF, SENS_CO2) ;

}

Fuel Sensor Type-1 Sensor

void getFue l ( ) {

SensorGas . con f i gu r eSen so r (SENS_SOCKET2A, 1 , 1 ) ;

SensorGas . setSensorMode (SENS_ON, SENS_SOCKET2A) ;

de lay (10000 ) ;

Air1 = SensorGas . readValue (SENS_SOCKET2A) ;

USB. p r i n t ( "Air = " ) ; USB. p r i n t l n ( Air1 ) ;

SensorGas . setSensorMode (SENS_OFF, SENS_SOCKET2A) ;

}
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Nitrogen Dioxide Sensor

void getNitrogenD ( ) {

SensorGas . con f i gu r eSen so r (SENS_SOCKET2B, 1 , 1 1 ) ;

SensorGas . setSensorMode (SENS_ON, SENS_SOCKET2B) ;

de lay (10000 ) ;

NO2 = SensorGas . readValue (SENS_SOCKET2A) ;

USB. p r i n t ( "NO2 = " ) ; USB. p r i n t l n (NO2) ;

SensorGas . setSensorMode (SENS_OFF, SENS_SOCKET2B) ;

}

Humidity Sensor

void getHumidity ( ) {

Hum=SensorGas . readValue (SENS_HUMIDITY) ;

USB. p r i n t ( "HUMIDITY = " ) ; USB. p r i n t l n (NO2) ;

}

Methane Sensor

void getMethane ( ) {

SensorGas . con f i gu r eSen so r (SENS_SOCKET4A, 1 , 5 ) ;

SensorGas . setSensorMode (SENS_ON, SENS_SOCKET4A) ;

de lay (10000 ) ;

CH3 = SensorGas . readValue (SENS_SOCKET4A) ;

USB. p r i n t ( "Methane = " ) ; USB. p r i n t l n (CH3) ;

SensorGas . setSensorMode (SENS_OFF, SENS_SOCKET4A) ;

}

Carbon Monoxide Sensor

void getCarbon ( ) {

SensorGas . con f i gu r eSen so r (SENS_SOCKET3B, 1 , 2 0 ) ;

SensorGas . setSensorMode (SENS_ON, SENS_SOCKET3B) ;

de lay (10000 ) ;

CO = SensorGas . readValue (SENS_SOCKET3B) ;

USB. p r i n t ( "CO= " ) ; USB. p r i n t l n (CO) ;

SensorGas . setSensorMode (SENS_OFF, SENS_SOCKET3B) ;

}

103



Appendix C

Hardware Devices

Figure C.1: Sensing/Routing node.

Figure C.2: The IP-basestation
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Figure C.3: Nodes with various gas sensors.

Figure C.4: Forest �oor environment.

Figure C.5: Outdoor sensing/router node
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Figure C.6: Sagemcom HiLo GPRS module.

Figure C.7: Vicnotech A1048 GPS Receiver.
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Appendix D

OTAP Troubleshooting

D.1 OTAP Setup

Sometimes using OTAP can be really frustrating. If you have problems using OTAP-shell, then

this section can help you �x some of the issues of OTAP. These are the problems that you might

encounter:

• When using the function scan_nodes and you don't receive response.

• Encountering a problem regarding the use of OTA with some functions from WASPSD.cpp

library.

• Devices don't respond to OTA commands.

I have spent sometime on the OTA in Waspmote and I found a number of bugs in its operations. I

found a number of solutions to address these problems of OTAP and it doesn't require any special

technical abilities. Here is how you need to setup your nodes to use OTAP:

1. Waspmote Gateway: Ensure API-mode:1 is enabled.

2. Waspmote Node: It must use API-mode:2.

3. 2-GB micro-SD card must have a fat16 �le-system (use gparted for windows vista plus).

Here are some common error messages and tips for troubleshooting these encounters:

1. �PROGRAM RECEIVED ERROR�:

(a) Initialize the SD card in the setup() loop of the OTA program and try again.

(b) Remove all batteries including the smaller 3V battery at the back of the node and try

again.

(c) Reformat the SD-card and try again.

2. �Device doesn't respond�:
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(a) Ensure that your Waspmote is API2 and gateway is API1

(b) Again try the steps in 1.

Generally, you should try OTA with one Waspmote at a time, and sending smaller programs.

When you are con�dent with its commands then you may start transmitting bigger programs.
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