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Abstract—This paper discusses the use of adaptive noise 

cancellation in magnetocardiography system within unshielded 

environment using three algorithms: Least-Mean Squared (LMS) 

algorithm; normalized LMS (nLMS) algorithm and Genetic 

Algorithms (GA). Simulation results show that for low signal-to-

noise ratio (SNR) values, the GA algorithm outperforms the other 

algorithms, displaying an improvement in SNR of 51.155 dB and 

completely suppressing the noise sources at 60Hz and at low 

frequencies. However, the convergence time of the GA algorithm 

is longer due to the high computational complexity. 

Index Terms— Telehealth; Magnetocardiography; Adaptive 

noise cancellation; Least-Mean Squared algorithms; Genetic 

algorithms.  

 

I. INTRODUCTION 

Telehealth is a health care program where the patient and 

the medical practitioner are in different geographic 

locations. Recently, Telehealth has become a part of 

research and development in social healthcare systems.  

The undeniable important application of Telehealth is 

where a continuous monitoring of specific parameters 

(health indicators) is needed, such as for chronic disease 

that can be only controlled but not cured. Telehealth 

technology is a combination of: (i) a telecommunication 

system that provides communication between distant 

locations, (ii) a user control interface which includes 

audio/video devices and (iii) specific peripheral medical 

devices for sensing the health parameters. Among 

various health parameters required to be obtained from 

medical services, such as blood pressure, the heart beat 

rate is known as an important indicator to many heart 

diseases. A typical example is  the fetal heart rate 

monitoring, which provides useful information on the 

wellbeing of a pregnancy and allowing early diagnosis of 

fetal distress and a prompt intervention in case of adverse 

events. 

The human heart is characterized by a conductive tissue 

that produces both an electric field and a magnetic field 

according to its electrical activity. The electrical field can 

be detected by placing electrodes on the surface of the 

 
 

human body while the electromagnetic field surrounding 

the body can be sensed by a magnetometer. Because this 

magnetic field is very low, about 100pT for adults and 

few picotesla for a fetus, it requires a high sensitivity 

magnetometer to be captured. Furthermore, the 

environment magnetic noise is much higher than the 

heart magnetic field, resulting in a low signal to noise 

ratio that requires improvement in by electromagnetic 

shielding or by applying noise cancellation techniques. 

Most of the conventional magnetocardiographic systems 

perform the measurements inside a magnetically shielded 

room to reduce the effect of the environment magnetic 

noise. Thus the systems cannot be portable and are not 

suitable for integrating in telehealth programs. Cardio-

magnetic systems do not support portability because they 

use Superconducting Quantum Interference Device 

(SQUID) magnetometers that have a typical sensitivity in 

the order of  ��/√��  [1] but must work at very low 

temperatures, about 4K, so they need a cryostat 

containing liquid helium for cooling. The solution to this 

problem is the use of optical magnetometry. This method 

has been demonstrated to have sensitivity comparable to 

SQUID [2] and offers the best potential for 

miniaturization [3]. 

The main problem of a magnetocardiography system is 

the high electromagnetic noise generated by the power 

supply and electronic devices, which entails the 

magnetometers to operate inside a magnetic shielded 

room.  This problem could be solved by measuring the 

magnetic field gradient, instead of the absolute magnetic 

field, through an array configuration of magnetometers 

or by using techniques for noise reduction or noise 

cancellation. The performance of a multichannel system 

based on SQUID magnetometry into an unshielded 

environment has been demonstrated to be comparable 

with measurements performed inside a shielded room 

[4]. This implies that the application of an efficient noise 

canceller system based on adaptive signal processing can 

be used to improve the measurement of 

magnetocardiographic signals in an unshielded 

environment. 

Adaptive Noise Canceller for 

Magnetocardiography 

Valentina Tiporlini1*, Nghia Nguyen1  and Kamal Alameh1*  

1
Electron Science Research Institute, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia 

Phone: +61 8 6304 5836, Fax: +61 8 6304 5302, *email: k.alameh@ecu.edu.au, v.tiporlini@ecu.edu.au 



 

This paper will discuss the use of 

cancellation in magnetocardiography

unshielded environment through the comparison of 

techniques: 

• Least-Mean Squared (LMS) algorithm

• normalized LMS (nLMS) algorithm

• Genetic Algorithms (GA). 

LMS and GA have been largely used for noise removal 

in electrocardiographic signals [5-6]. The aim of this 

paper is to demonstrate that these techniques can be 

applied also in magnetocardiography where the noise is 

at least 100 times higher than the noise in 

electrocardiography (ECG). 

 

II. ADAPTIVE NOISE CANCE

A noise canceller based on adaptive filtering requires 

very little or no prior knowledge of the signal of interest. 

Noise cancellation technique uses a reference input 

derived from one or more sensors placed

is higher than the signal to cancel noise from the primary 

input.  Fig. 1 shows a block diagram of an adaptive noise 

canceller. The primary input to the canceller, denoted 

d(k), is formed by the signal of interest 

n(k) uncorrelated with it. The reference input of the 

system is the signal x(k)=n1(k) that is 

s(k) but correlated in some unknown way with 

n(k). The noise n1(k) is adaptively filtered to produce a 

replica of the noise n(k) that can be subtracted from the 

primary input to produce the system output 

objective of the noise canceller is to minimize the mean

squared error between the system output and the desired 

signal [7]. 

 

Fig. 1: Adaptive Noise Canceller block diagram
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a) LMS based algorithms 

The LMS algorithm is based on 

algorithm that aims to minimize the mean

The steepest descend algorithm 

parameters based on the 

error ε, calculated from the transfer function of the filter

governed by: 
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where µ is the adaption rate. 

The steepest descend algorithm assumes the complete 

knowledge of the gradient, but

always possible. The LMS algorithm replaces it with a

estimation given by the punctual derivative of the 

squared error: 
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M (Fig. 2), then (1) becomes:
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The updating procedure is applied on coefficients 

following the above rule [8
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From (3) we can see that the mean-squared error is 

n(k)=y(k) and consequently the output 

is equal to the desired signal s(k).    
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M, the LMS algorithm has 

computational complexity of O(M). 



 

Fig. 2: LMS FIR filter coefficients updating

 

The LMS algorithm can have high convergence time 

especially if the noise to be removed is much larger

the signal. To increase the convergence speed, a variable 

adaption rate can be used. This is a variant of the LMS 

algorithm called normalized LMS. Equ

be written [8]: 
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The normalization of the LMS step size by 

reduce the convergence time. 

 

b) Genetic Algorithms 

The GA is a technique for solving optimization problems 

based on heuristic search that emulate

evolution process. The optimal solution is 

the minimization of a defined function, called the fitness 

functions. For our problem of noise cancellation, the 

objective of the optimization process is minimizing 

Mean-Squared Error (MSE), which is known as a GA’s 

fitness function. Fig. 3 shows a flow diagram of the 

Genetic Algorithm.  

The initialization process produces the initial population. 

This stage is significant because it strongly affects the 

convergence time and the success in finding the optimal 

solution. For each individual belonging to the population, 

the fitness function is evaluated to find its fitness value. 

If for a pre-established number of generations, the 

change of the lowest fitness value is lower than a de

threshold, it is considered as the optimum value and the 

iteration will be terminated. A few predefined end 

conditions are evaluated to avoid an infinite loop in case 

the optimum value cannot be found. If none predefined 

end conditions is verified, the algorithm proceeds with 

the reproduction. The individuals that better performed 

are chosen as parents to produce children either by 

mutation as making random changes to a single parent, 

or crossover by combining the vector entries of pair of 
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GA allows a parallel search 

fall in local minima than 

usually increases the computational complexity and the 

convergence time.  

 

III. RESULTS 

a) Data set 

The cardiac signal used was

Arrhythmia Database [9]. The recording

is digitized at 360 samples per second per chan

11 bit resolution. This record

captured by electrodes placed on the surface of 

patient chest. According to classic physics, the magnetic 

field and the electric field generated b

similar waveforms but one 

with respect to the other 

signals were considered as MCG signals.

ECG signal, the intensity 

corresponding cardiomagnetic

shows the cardiac signal and its spectrum

mainly spread over low frequencies. 

Fig. 4: (a) Original cardiac signal 234.dat

e current population is then replaced with the 

new generation and the iteration continues.  

 
Genetic Algorithm diagram flow 

a parallel search that has less probability to 

than LMS family algorithm, but 

increases the computational complexity and the 

 AND DISCUSSION 

was taken from the MIT-BIH 

. The recording is the 234.dat; it 

digitized at 360 samples per second per channel with 

11 bit resolution. This record contains ECG signals 

captured by electrodes placed on the surface of the 

patient chest. According to classic physics, the magnetic 

field and the electric field generated by human heart have 

but one is phase-shifted by 90 degrees 

 [10]; then the recorded ECG 

considered as MCG signals. For the selected 

intensity was easily scaled to a 

cardiomagnetic signal intensity. Fig. 4 

shows the cardiac signal and its spectrum, which is 

low frequencies.  

 

signal 234.dat and (b) cardiac signal spectrum. 



 

The noise signal was simulated as the sum of two 

components, namely, a sinusoid of 60Hz frequency, 

which accounts for the power line interference, and a 

random noise with a standard uniform distribution, 

which account for white noise attributed to the noise 

generated by electronic devices and other wireless-

related noise sources. This noise was linearly filtered to 

produce a correlated noise which was used as the 

reference signal input to the noise canceller. 

The three techniques, namely, LMS and nLMS and GA, 

were investigated and compared to one another on the 

basis of: 

• Signal to Noise Ratio (SNR) improvement; 

• 60Hz noise cancellation; 

• Convergence speed; 

• Ability to detect peaks. 

For SNR improvement three SNR values were 

considered: (i) -9.2913dB, which is the typical value 

used in ECG noise cancellation, (ii) -29.291 and (iii) -

49.291, which are SNR values compatible with MCG 

applications.  

 

b) Simulation Results 

In our simulations we used 4000 samples to represent the 

cardiac signal and the noise. The order of the FIR filter 

used was 7; the step size was 0.001 for LMS and 1 for 

nLMS. 

The performances of the algorithms were firstly 

compared on the basis of SNR. The difference between 

the SNR calculated before the noise canceller and the 

SNR calculated after noise cancellation was considered 

as the improvement factor that results from the noise 

canceller. This improvement factor varied depending on 

the techniques used for filter coefficients adaption. 

 

Table 1: Improvements in SNR for each algorithm 

SNR  

before 

NC 
-9.2913 dB -29.291 dB -49.291 dB 

 
SNR[dB] 

after NC 

Impr 

[dB] 

SNR[dB] 

after NC 

Impr 

[dB] 

SNR[dB] 

after NC 

Impr 

[dB] 

LMS 26.808 36.099 6.7933 36.084 -13.209 36.081 

nLMS 26.336 35.627 6.7342 36.025 -13.267 36.023 

GA 10.905 20.196 10.586 39.877 1.8645 51.155 

 

Table 1 shows the SNR after filtering for each algorithm 

calculated for three different input SNR values. For a 

starting input SNR of -9.29 dB, LMS and nLMS 

achieved improvement factors of 36.099dB and 35.627 

respectively, whereas the GA resulted in an improvement 

factor of 20.196dB. As the noise increased the 

improvement factors of the LMS and nLMS algorithms 

dropped, while the GA algorithm attained better 

improvement factor. For a starting SNR value of -49.291 

dB, the LMS and nLMS algorithms provided negative 

SNR values after filtering however, the improvement 

factor was around 36dB for both algorithms, whereas the 

GA exhibited an improvement factor of 51.155dB with 

the SNR of 1.8645dB after filtering. 

Fig. 5-(a) shows the spectrum of the cardiac signal 

corrupted with noise with a SNR of -49.291 dB; the 

added noise component at 60Hz is clearly visible. Fig. 5-

(b), (c) and (d) show the spectra of signals after noise 

cancellation using the LMS, nLMS and GA techniques 

respectively. Comparing these signal spectra with the 

signal spectrum in Fig. 4-(b) we see that the component 

at 60Hz was not completely suppressed by either the 

LMS algorithm or nLMS algorithm but it was suppressed 

by the GA algorithm, which provided the best 

performance for removing the noise sources at 60Hz and 

at low frequencies.  

 

 

 
Fig. 5: Spectrum of corrupted signal before filtering (a), spectra of signals after 

filtering based on LMS (b), nLMS (c) and GA (d). 



 

Fig. 6 shows the learning curves that represent the rate of 

change in the MSE versus the number of   iterations 

used.  

The MSE for the nLMS algorithm started from a lower 

level in comparison to the MSE for the LMS algorithm, 

and converged quickly to a mimimum value. For the 

LMS algorithm a large number of iterations was needed 

before convergence to a minimum value. Generally, this 

convergence time increases when the SNR deteriorates. 

 

 
Fig. 6: Predicted learning curve of LMS (a) and nLMS (b) algorithms. 

 

Fig. 7 shows the learning curve for the GA algorithm, i.e. 

the change in MSE versus the number of generations. 

Each iteraction corresponds to the creation of a new 

generation and does not depends on the number of 

samples. The blue dots represent the average MSE of the 

population while the black dots represent the minimum 

MSE for each population. It is clear that for the GA 

algorithm, the convergence speed is low because a high 

number of generations are needed to attain the mimimum 

MSE.  

 
Fig. 7: Learning curve for GA 

 

Fig. 8 shows the signals recovered using the noise 

canceller for all adaptive techniques. It is obviuos that 

the LMS algorithm is not suitable for peak detection, 

whereas both the nLMS and GA algorithms can recover 

the signal peaks, and hence they can perform peak 

detection which allows accurate calculation of the heart 

rate. 

 

 
Fig. 8: De-noised signals by LMS (a), nLMS (b) and GA (c). 

 

IV. CONCLUSION 

In this paper, techniques of adaptive noise canceller 

based on the Least-Mean Squared, normalized Least-

Mean Squared and genetic algorithms have been 

investigated to demonstrate their applicability to 

magnetocardiography. Simulation results have shown 

that for low SNR values, the GA technique outperforms 

the other techniques in noise cancellation; however, its 

convergence time is longer. Techniques that are based on 

optimal search have the potential for noise cancellation 

in applications where the signal to noise ratio is much 

lower than unity.  
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