Association of plasma Aβ peptides with blood pressure in the elderly

Jean-Charles Lambert
Jean Dallongeville
Kathryn Ellis
Susanna Schraen-Maschke
James Lui

Edith Cowan University

See next page for additional authors

10.1371/journal.pone.0018536
This Journal Article is posted at Research Online.
Authors
Jean-Charles Lambert, Jean Dallongeville, Kathryn Ellis, Susanna Schraen-Maschke, James Lui, Simon Laws, Julie Dumont, Florence Richard, Dominique Cottel, Claudine Berr, David Ames, Colin Masters, Christopher Rowe, Cassandra Szoeka, Christophe Tzourio, Jean-François Dartigues, Luc Buee, Ralph Martins, and Philippe Amouyel

This journal article is available at Research Online: http://ro.ecu.edu.au/ecuworks2011/506
Association of Plasma Aß Peptides with Blood Pressure in the Elderly

Jean-Charles Lambert1,2,3, Jean Dallongeville1,2,3, Kathryn A. Ellis4,5,6, Susanna Schraen-Maschke3,7,10, James Lui8,9, Simon Laws8,9, Julie Dumont1,2,3, Florence Richard1,2,3,10, Dominique Cottel1,2,3, Claudine Berr11, David Ames4,6, Colin L. Masters5,12, Christopher C. Rowe13, Cassandra Szoeke6,14, Christophe Tzourio15, Jean-François Dartigues16, Luc Bueé3,7,10, Ralph Martins8,9, Philippe Amouyel1,2,3,10

1 INSERM U744, Lille, France, 2 Institut Pasteur de Lille, Lille, France, 3 Université Lille Nord de France, UDSL, Lille, France, 4 Department of Psychiatry, University of Melbourne, St George’s Hospital, Victoria, Australia, 5 Mental Health Research Institute, University of Melbourne, Parkville, Victoria, Australia, 6 National Ageing Research Institute, Parkville, Victoria, Australia, 7 INSERM U837, Lille, France, 8 Centre of Excellence for Alzheimer’s Disease Research and Care, Edith Cowan University, Joondalup, Western Australia, Australia, 9 Sir James McCusker Alzheimer’s Research Unit, Perth, Western Australia, Australia, 10 Centre Hospitalier Régional Universitaire, Lille, France, 11 INSERM, U888, Université de Montpellier 1, Montpellier, France, 12 Centre for Neurosciences, University of Melbourne, Parkville, Victoria, Australia, 13 Austin Health, Heidelberg, Victoria, Australia, 14 Australian Commonwealth Scientific and Research Organisation (CSIRO), Parkville, Victoria, Australia, 15 INSERM U708, Paris, France, 16 INSERM US93, Victor Segalen University, Bordeaux, France

Abstract

Background: Aß peptides are often considered as catabolic by-products of the amyloid β protein precursor (APP), with unknown physiological functions. However, several biological properties have been tentatively attributed to these peptides, including a role in vasomotion. We assess whether plasma Aß peptide levels might be associated with systolic and diastolic blood pressure values (SBP and DBP, respectively).

Methodology/Principal Findings: Plasma Aß1-40 and Aß1-42 levels were measured using an xMAP-based assay in 1,972 individuals (none of whom were taking antihypertensive drugs) from 3 independent studies: the French population-based 3C and MONA-LISA (Lille) studies (n = 627 and n = 769, respectively) and the Australian, longitudinal AIBL study (n = 576). In the combined sample, the Aß1-42/Aß1-40 ratio was significantly and inversely associated with SBP (p = 0.03) and a similar trend was observed for DBP (p = 0.06). Using the median age (69) as a cut-off, the Aß1-42/Aß1-40 ratio was strongly associated with both SBP and DBP in elderly individuals (p = 0.002 and p = 0.03, respectively). Consistently, a high Aß1-42/Aß1-40 ratio was associated with a lower risk of hypertension in both the combined whole sample (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.56-0.90) and (to an even greater extent) in the elderly subjects (OR, 0.53; 95% CI, 0.37-0.75). Lastly, all these associations appeared to be primarily driven by the level of plasma Aß1-40.

Conclusion: The plasma Aß1-42/Aß1-40 ratio is inversely associated with SBP, DBP and the risk of hypertension in elderly subjects, suggesting that Aß peptides affect blood pressure in vivo. These results may be particularly relevant in Alzheimer’s disease, in which a high Aß1-42/Aß1-40 plasma ratio is reportedly associated with a decreased risk of incident disease.

Introduction

Aß peptides are the main component of β-amyloid deposits in the brains of Alzheimer’s disease (AD) patients. Many different cell types from the brain and the peripheral tissues produce these peptides. They are catabolic by-products of the amyloid β protein precursor (APP) and do not have a known physiological function. However, several lines of evidence suggest that Aß peptides may have biological functions by acting as ligands for various receptors and other molecules [1–3]. The peptides are transported between tissues and across the blood brain barrier via complex trafficking pathways [4]. Lastly, at physiological concentrations, the peptides...
may possess neurotrophic [5], antioxidant [6], platelet aggregation modulation [7], antimicrobial [8] and/or vasoconstrictor properties [9].

With respect to vascular tone, Aβ peptides are produced by the vascular smooth muscular cells (SMCs) [10] involved in blood pressure (BP) control and are known to have vasoactive properties [11]. Indeed, in in vitro studies, Aβ peptides enhance constriction of isolated vessels via the release of endothelin 1 [12], a vasoactive peptide which produces smooth muscle contraction in vivo [11]. Taken as a whole, these observations suggest that the Aβ peptides may affect BP control. Interestingly, the Aβ peptides decrease cerebral blood flow and volume in rodents [13–15].

In the present study, we hypothesized that plasma Aβ peptide concentrations may be associated with variations in systolic and/or diastolic blood pressure values (SBP and DBP, respectively). To this end, we analysed a pooled analysis of 1972 individuals from three independent cohorts in which plasma Aβ1-40 and Aβ1-42 concentrations were available.

Methods

The three samples were selected according to the availability of (i) plasma Aβ concentration assays using the same method (the INNO-BIA plasma Aβ forms assay; this point is of particular importance, since the assay methodology can significantly influence interpretation of the data [16]), (ii) SBP and DBP measurements; (iii) information on demographic variables, smoking and medication use.

Populations

Written, informed consent was obtained from study participants. The study protocols for all populations were reviewed and approved by the appropriate independent ethics committees in each country. The institutional ethics committees of Austin Health, St Vincent's Health, Hollywood Private Hospital and Edith Cowan University granted ethics approval for the AIBL study. The institutional ethics committees of the Kremlin-Bicetre Hospital granted ethics approval for the 3C study. The institutional ethics committees of the Lille Hospital granted ethics approval for the MONA-LISA study.

The 3C Study is a population-based, prospective study of the relationship between vascular factors and dementia [17]. It has been carried out in three French cities: Bordeaux (southwest France), Montpellier (southern France) and Dijon (central eastern France). A sample of non-institutionalised, over-65 subjects was randomly selected from the electoral rolls after stratification by town index (BMI, as defined by the Quetelet equation).

To define a sample of 576 individuals from the AIBL cohort.

Amyloid beta peptide assay

Fasting plasma samples were collected in tubes containing sodium EDTA as an anticoagulant. During centrifugation, plasma samples were aliquoted into polypropylene tubes, stored at −80°C and only thawed immediately prior to Aβ quantification. The plasma Aβ peptide assay was performed using the INNO-BIA plasma Aβ forms assay (Innogenetics, Ghent, Belgium) based on the multiplex xMAP technique with a LABScan-100 system (Luminex BV, The Netherlands). The 3C and MONA-LISA (LILLE) studies were analyzed in the same centre (INSERM U837, Alzheimer & Tauopathies, Lille, France).

Blood pressure measurements and co-variables

During inclusion in the 3C study, BP was measured twice after 5 minutes in the seated position by using a standard cuff placed around the right arm and an electronic monitor (OMRON M4). In the MONA-LISA (LILLE) population, SBP and DBP were measured after the subject had been seated for at least 10 min with an automatic sphygmomanometer (OMRON 705IT) and an appropriately sized cuff, with the arm at heart level. In the AIBL study, BP for each participant was measured between 8.15 am and 9.30 am and after 10 minutes in the seated position by using the Welch Allyn “DuraShock” handheld unit (DS65). If a measurement was high (>140/90) or low, the procedure was repeated after 10 minutes.

The average of two measurements (available for 84% of the study sample) was used for analysis, whenever possible. Hypertension was defined as a SBP ≥140 mm Hg or DBP ≥90 mmHg (n = 337 in the 3C sample, n = 307 in the MONA-LISA (LILLE) sample and n = 270 in the AIBL sample).

Age, centre and gender were always used as adjusting factors. Several other co-variables were also considered as potential confounders: smoking status (current or not), plasma cholesterol (total, high-density lipoprotein), creatinine levels and body mass index (BMI, as defined by the Quetelet equation).

Statistics

The data were analysed using SAS statistical software (release 9.1, SAS Institute Inc., Cary NC, USA). In each centre, each quantitative variable was transformed into a z-score (equal to (observed value minus the sample mean), divided by the sample standard deviation). The relationships between the Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 z-scores on one hand and the SBP or DBP z-scores on the other were assessed using a general linear model (GLM) adjusted for age, centre and gender (model 1). Analyses were subsequently adjusted for other confounders, as defined.
The Aß1-40 tertile had a 2-fold lower risk of hypertension (Table 3). The Aß1-40 z-scores tertiles were defined and the lowest was used as a reference in a logistic regression model. Odds ratios were systematically adjusted for centre, age, gender, smoking status, total cholesterol, high-density lipoprotein, creatinine levels and BMI z-scores (model 2).

Importantly, the association of Aß1-42/Aß1-40 was not associated with the risk of hypertension. In fact, individuals in the upper Aß1-42/Aß1-40 tertile had a 1.4-fold lower risk of hypertension than subjects in the lower tertile (Table 3).

We next looked at whether or not Aß1-42/Aß1-40 was associated with the associations described above. We observed significant interactions with age and gender or the risk of hypertension and plasma Aß1-42/Aß1-40 (p = 0.02 and 0.03, respectively). These observations are particular relevant, since BP and plasma Aß concentrations are already known to be strongly age-dependent [18,21].

We thus stratified the combined sample using the median age (69) as a cut-off and observed more pronounced inverse associations between BP levels and Aß1-42/Aß1-40 in the elderly individuals (Table 4). Importantly, the association of Aß1-42/Aß1-40 with BP levels appeared to be primarily linked to plasma Aß1-40 levels (Table 4). Similarly, this association was even more pronounced in the elderly, where individuals in the upper Aß1-42/Aß1-40 tertile had a 2-fold lower risk of hypertension (Table 3). The plasma Aß1-42/Aß1-40 ratio’s associations with hypertension again appeared to be mainly driven by plasma Aß1-40 in the oldest subjects. Individuals in the upper Aß1-40 z-score tertile had
peptides have been described to potentially modulate the vasoactivity of the rat aorta [23]. Thus, by extension our observation of an association between an elevated Aß1-42/Aß1-40 ratio and low SBP may be related to the properties of Aß1-40 on vascular wall in the elderly. In vitro and in vivo experiments will be needed to underpin this epidemiological observation and to extend knowledge of the Aß peptides’ vasoactivity from the cerebral vasculature to the vascular system as a whole. Alternatively, we cannot rule out the possibility that the plasma Aß1-42/Aß1-40 ratio is merely a marker of other parameters involved in BP variations or that the plasma Aß1-42/Aß1-40 association with BP is a consequence of BP variations by themselves. These possibilities may help explain the stronger association of the plasma Aß1-42/Aß1-40 ratio with SBP and DBP in the elderly individuals. Age-related arterial wall stiffening may lead indirectly to subtle changes in APP metabolism in the SMCs (one of the main non-brain cell types able to produce Aß peptides). Again, only in vitro and in vivo experiments will be able to clarify this question.

Nonetheless, and notwithstanding the consistent effects that we have observed, our study suffered from a number of limitations. Firstly, quantification of Aß peptides in plasma is not fully standardized and it varied from one centre to another (Table 1). Even though centre-to-centre variations are well known for quantitative variables, we cannot rule out the possible presence of assay-related of bias. Therefore, in order to minimize between-centre variability, we transformed the data in to z-scores prior to our statistical analyses. Secondly, it is still unclear whether the assay used here does indeed quantify all the various free, bound, monomeric and oligomeric forms of plasma Aß1-40 and Aß1-42 peptides. Accordingly, we may only have a partial picture of the Aß1-40 and Aß1-42 concentrations in plasma - a picture which is

Table 3. Associations between the plasma Aß 1-42/Aß 1-40 ratio and hypertension.

<table>
<thead>
<tr>
<th>Risk of hypertension</th>
<th>Aß 1-42/Aß 1-40 z-score</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st tertile</td>
<td>2nd tertile</td>
<td>3rd tertile</td>
</tr>
<tr>
<td>Whole sample</td>
<td>1.00 (ref)</td>
<td>0.81</td>
</tr>
<tr>
<td>>69 years of age</td>
<td>1.00 (ref)</td>
<td>0.69</td>
</tr>
</tbody>
</table>

The odds ratio (95% CI) for hypertension (n = 914) was adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.

doi:10.1371/journal.pone.0018536.t003

Table 4. Associations between plasma Aß peptides and SBP & DBP values.

<table>
<thead>
<tr>
<th>≤69 years of age</th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aß1-40</td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>−0.046±0.030</td>
<td>0.12</td>
<td>−0.049±0.029</td>
<td>0.10</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>−0.025±0.031</td>
<td>0.41</td>
<td>−0.035±0.030</td>
<td>0.24</td>
</tr>
<tr>
<td>Aß1-42</td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>−0.028±0.030</td>
<td>0.34</td>
<td>−0.036±0.030</td>
<td>0.23</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>−0.008±0.031</td>
<td>0.80</td>
<td>−0.032±0.031</td>
<td>0.54</td>
</tr>
<tr>
<td>Aß1-42/Aß1-40</td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>+0.013±0.022</td>
<td>0.56</td>
<td>+0.006±0.022</td>
<td>0.78</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>−0.010±0.024</td>
<td>0.67</td>
<td>−0.013±0.022</td>
<td>0.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>>69 years of age</th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aß1-40</td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>+0.099±0.034</td>
<td>0.004</td>
<td>+0.098±0.035</td>
<td>0.005</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>+0.066±0.035</td>
<td>0.06</td>
<td>+0.066±0.035</td>
<td>0.07</td>
</tr>
<tr>
<td>Aß1-42</td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>−0.032±0.031</td>
<td>0.30</td>
<td>−0.039±0.031</td>
<td>0.21</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>−0.028±0.031</td>
<td>0.38</td>
<td>−0.032±0.031</td>
<td>0.30</td>
</tr>
<tr>
<td>Aß1-42/Aß1-40</td>
<td>β</td>
<td>p</td>
<td>β</td>
<td>p</td>
</tr>
<tr>
<td>SBP z-score</td>
<td>−0.090±0.030</td>
<td>0.003</td>
<td>−0.092±0.030</td>
<td>0.002</td>
</tr>
<tr>
<td>DBP z-score</td>
<td>−0.064±0.031</td>
<td>0.04</td>
<td>−0.067±0.031</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data are β coefficients ± 95% CI.

Model 1: Adjusted for age, gender, centre.

Model 2: Adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.

doi:10.1371/journal.pone.0018536.t004
also likely to be influenced by sample conditioning, storage and analyses. In order to minimize this problem, we analysed three independent cohorts in which the same plasma Aβ peptide assay method had been used. Interestingly, the assay performed in the present study uses xMAP technology to quantify several epitopes and thus several different Aβ species. Furthermore, we observed a strong correlation between plasma Aβ1-40 and Aβ1-42 in all the populations analysed (data not shown) - indicating that the plasma Aβ peptide concentrations are representative of the physiological processes leading to Aβ peptide production (i.e. APP metabolism). Furthermore, sensitivity analyses indicated that the observed results are homogeneous for the elderly individuals in the different studies and support the existence of a real impact of Aβ peptides on BP values and hypertension (Tables S1 and S2).

Our data may be of particular interest in the field of dementia. On the epidemiological level, an increased risk of dementia in individuals with high BP (and especially very high SBP) has been reported [24], although there is no clear consensus to indicate that raised BP in later life is a risk factor in dementia [25–27]. Furthermore, use of antihypertensive agents was suggested to reduce the risk of dementia and cognitive decline observed in clinical trials [28]. Interestingly, we and others have observed that lowered BP values and hypertension (Tables S1 and S2).

In conclusion, our data support the potential vasotoxic properties of the Aβ peptides and suggest that the latter are able to subdue modulate BP in the elderly. Furthermore, these observations may offer new opportunities for better understanding the vascular component of dementia in general and Alzheimer’s disease in particular.

Supporting Information

Table S1 Associations between plasma Aβ peptides and SBP & DBP values in the elderly participants in the 3C (n = 445), MONA-LISA (LILLE) (n = 102) and AIBL (n = 323) studies. Adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score. (DOC)

Table S2 Associations between plasma Aβ1-42/Aβ1-40 ratio and hypertension in the elderly. Odds ratio (95% CI) for hypertension in the 3C study (n = 265), in the MONA-LISA (LILLE) study (n = 50) and the AIBL study (n = 180). Adjusted for age, gender, centre (when necessary), smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score. (DOC)

Acknowledgments

We thank Amelie Labudeck for her excellent technical assistance.

Author Contributions

Analysed the data: J-CL FR. Wrote the paper: J-CL JL. Dallongeville JD. Dumont. Project management and design: J-CL. Phenotype collection, data management, 3C study: CB CT J-FD PA. MONA-LISA (Lille): J. Dallongeville DC PA. AIBL study: KAE DA CLM CCR CS RM. Performed the experiments, Ab ELISA: SS-M JL SL LB RM.

References

