
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications 2011

1-1-2011

Teaching software engineering project management-A novel Teaching software engineering project management-A novel

approach for software engineering programs approach for software engineering programs

Craig Caulfield
Edith Cowan University

David Veal
Edith Cowan University

Stanislaw Maj
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2011

 Part of the Education Commons, and the Software Engineering Commons

10.5539/mas.v5n5p87
This is an Author's Accepted Manuscript of: Caulfield, C. W., Veal, D. R., & Maj, S. P. (2011). Teaching software
engineering project management-A novel approach for software engineering programs. Modern Applied Science,
5(5), 87-104. Available here
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworks2011/510

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2011
https://ro.ecu.edu.au/ecuworks2011?utm_source=ro.ecu.edu.au%2Fecuworks2011%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=ro.ecu.edu.au%2Fecuworks2011%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Fecuworks2011%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.5539/mas.v5n5p87
http://dx.doi.org/10.5539/mas.v5n5p87

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 87

Teaching Software Engineering Project Management – A Novel
Approach for Software Engineering Programs

Craig Caulfield (Corresponding author)

School of Computer Science and Security Science, Edith Cowan University

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia

Tel: 61-8-9370-6295 E-mail: ccaulfie@our.ecu.edu.au

David Veal

School of Computer Science and Security Science, Edith Cowan University

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia

Tel: 61-8-9370-6295 E-mail: d.veal@ecu.edu.au

S. Paul Maj

School of Computer Science and Security Science, Edith Cowan University

2 Bradford Street, Mount Lawley, Western Australia, 6050, Australia

Tel: 61-8-9370-6277 E-mail: p.maj@ecu.edu.au

Received: July 21, 2011 Accepted: August 15, 2011 doi:10.5539/mas.v5n5p87

Abstract

In response to real and perceived short-comings in the quality and productivity of software engineering practices
and projects, professionally-endorsed graduate and post-graduate curriculum guides have been developed to
meet technical developments and evolving industry demands. Each of these curriculum guidelines identifies
better software project management skills as critical for all graduating students, but they provide little guidance
on how to achieve this. One possible way is to use a serious game — a game designed to teach and educate
players about some of the dynamic complexities of the field in a safe and inexpensive environment. This paper
presents the results of a qualitative research project that used a simple game of a software project to see if and
how games could contribute to better software project management education. Initial results suggest that
suitably-designed games are able to teach software engineering and project management concepts at higher-order
Bloom taxonomy levels.

Keywords: Software engineering, Project management education, Peopleware, System dynamics, Serious games

1. Introduction

1.1 Background and Significance

In 1968 and 1969 NATO convened conferences of computer industry representatives and academics to help
address what was seen as a growing gap between what was generally hoped for in complex software systems and
what was actually achieved (Buxton & Randell, 1970; Naur & Randell, 1969). At the time it was recognised that
the demands on software practitioners from industry, defence, and consumers would likely grow at an
exponential rate. Yet, software engineering was then more of a craft than a profession (the term software
engineering in the conference titles was considered deliberately provocative) and was already struggling to meet
quality and performance measures; a software crisis in fact.

By 1982, it was estimated that 15% of all software projects failed to deliver anything, and cost over-runs of 100%
to 200% were not uncommon (DeMarco, 1982, p. 3). In the 1990s, little had changed:

For every six new large-scale software systems that are put into operation, two others are cancelled. The average
software development project overshoots its schedule by half; larger projects generally do worse. And some three
quarters of all large systems are “operating failures” that either do not function as intended or are not used at all.

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 88

(Gibbs, 1994, p. 86)

Getting an accurate picture of the current state of the software crisis is difficult because companies are naturally
reluctant to publicise failures and they may also oversell their successes. Recent Standish Group CHAOS reports
into software project successes and failures (cited in Eveleens & Verhoef, 2010, p. 31) shows an improving trend
over the last decade (Table 1), but these reports have been criticised because the research methods and
population they are based on are obscure (Eveleens & Verhoef, 2010; Glass, 2006). In the absence of reliable
data, it may be conceded that the net societal benefit of software has been positive, but even so the long and
expensive history of software project and product failures continues to accrue new examples (see for example
Baber, 1982, pp. 26-59; Charette, 2005; Glass, 1998, 1999; Leveson, 1995; Neumann, 1995) and influences how
the industry is perceived.

There are some key indicators that the field of software engineering is trying to address these issues. A software
engineering body of knowledge (SWEBOK) has been defined to characterise the contents of the software
engineering and to provide a foundation for curriculum development (Bourque, Dupuis, Abran, Moore, & Tripp,
1999); there are now professional accreditation and certification programs by which members of the field can be
assessed (Naveda & Seidman, 2005); and professionally-endorsed curriculum recommendations have been
developed to meet technical developments and evolving industry demands. Of these latter, the following are
representative:

 Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering (SE2004) (Joint Task
Force on Computing Curriculum, 2004)

 Curriculum Guidelines for Graduate Degree Programs in Software Engineering (GSwE2009) (iSSEc Project,
2009)

 Curriculum Guidelines for Undergraduate Degree Programs in Information Systems (IS2010) (Joint IS2010
Curriculum Task Force, 2010)

Each of these curriculum guidelines mentioned above identifies better software project management skills as
critical for all graduating students, but they provide little guidance on how to achieve this. Recognising that
competent software engineering students need to supplement the abstract, theoretical side of their studies with
some form of practical experience, educational institutions have typically used practicums where the students
work in small groups to take a product idea from conception, through design, building and testing, to final
delivery. These practicums can be delivered on a number of ways:

 Capstone projects: these are projects designed to synthesise what the students have learned so far and give
them a practical way to exercise their skills. The projects themselves may be instructor-designed or proposed
by industry and usually cover the final semester of the course (Brereton et al., 2000; Cheng & Lin, 2010).

 Work placements and sandwich courses: students are placed with software companies where they participate
in real projects as paid employees. These placements may happen in the later parts of the student’s course and
may be single opportunities, or intertwined— sandwiched— over a longer period (Lay, Paku, & Swan, 2008;
Ribaud & Saliou, 2008).

 Laboratories: student teams work for extended periods on large-scale, ongoing projects within a standardized
and evolving development process, which can accommodate team members leaving and joining (Sebern,
2002).

Often, these practicums come near the end of the students' studies, where they can tie together any loose threads
by allowing the students to practice what they have learned. “However, this appears to be too little, too late.
Projects are often only a single semester in length, students do not benefit from the integration of ideas and
practice until the end of their studies, and team orientation is often undermined by scholastic competition for
grades” (Schlimmer, Fletcher, & Hermens, 1994).

While the practicums are designed to give students an opportunity to apply their knowledge in a practical way,
they often fail because the students are overloaded with many conflicting concerns and often “aren’t mature
enough to appreciate the importance of many SE topics. On one hand… pay attention to documentation, apply
configuration control, test thoroughly… On the other hand, our students have difficulty appreciating issues—
such as team organization and cost estimation— that software professionals know from the trenches” (van Vliet,
2006, p. 56).

The purpose of this paper is to explore one way of tackling some of these issues by using a serious game— a
game designed to teach and educate players about some of the dynamic complexities software development

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 89

projects in a safe and inexpensive environment.

2. Software Engineering Project Management

2.1 Software Project Management in a Social Environment

The sociology of software project management is an often under-represented component in the education and
professional development of software engineers even though factors such as team formation, role assignment,
motivation, training, hiring, and many other peopleware practices (DeMarco & Lister, 1999) have been
identified many times as at least equally important to the success of software projects as the technical
(Constantine, 1995; DeMarco, 1991; DeMarco & Lister, 1999; Weinberg, 1998; Yourdon, 1992, 1998, 2004).
The reasons for this may be two-fold: the seeming arbitrariness of the sociological factors in software
development is at odds with the formal and familiar technical aspects; and the lack of suitable tools with which
to model and understand human dynamics.

Successful project management also depends on accepting that in any social environment, such as a software
development team, sensible decisions can result in counter-intuitive, and possibly counter-productive, outcomes.
Consider, for example, Brooks’ Law from Fred Brooks Mythical Man Month (Brooks, 1995). The title refers to
that fundamental unit of measurement and scheduling, the man-month; a unit that Brooks believes is often
misunderstood:

Cost does indeed vary as the product of the number of men and the number of months. Progress does not.
Hence the man-month as a unit for measuring the size of a job is a dangerous and deceptive myth. It implies
that men and months are interchangeable. (Brooks, 1995, p. 16)

Because of this lack of interchangeability, Brooks’ informal law states that adding more developers to a late
software project in the hope of meeting a looming deadline will only make matters worse. The reason lies in the
fact that software projects often cannot be broken into isolated, independent units of work, meaning that the
developers need to coordinate their activities at a detailed level. Therein lies an unappreciated communications
overhead. For example, if a group of n developers need to coordinate their efforts with each other then the
number of communication paths can be represented by n (n – 1)/2. Time spent navigating these paths is time not
spent being directly productive.

When new developers are added to the equation, the communications overhead is amplified. The new developers
are usually not immediately productive because they need to become acquainted with the overall aims of the
project, its strategy and the general plan of work (Bradley & McGrath, 2000; Sengupta, Abdel-Hamid, & Bosley,
1999), and they possibly need to undergo some form of organisational socialisation (Schein, 1980). The best, and
often only, people able to provide this training and socialisation are the existing developers, who are in the
process diverted from their primary tasks.

The net result is that more time is lost in bringing the new developers up to speed and in additional coordination
efforts than is gained in productive time (see Caulfield, Kohli, Maj, 2004 for a worked example).

2.2 Software Project Management in the Curriculum

The IS2010 curriculum guidelines address some of these peopleware practices because, “it is impossible for IS
graduates to exhibit the required high-level IS capabilities without these foundation knowledge and skills” (Joint
IS2010 Curriculum Task Force, 2010, p. 21). The recommended educational experiences include leadership &
collaboration; communication, and negotiation. Negotiation skills are needed in order to navigate the often
competing interests of the stakeholders involved in a typical project. The recommended course, IS2010.5 IS
Project Management, is designed to teach students the processes, methods, techniques, and tools that
organizations use to manage their information systems projects. However, “the course specification intentionally
leaves discussion regarding specific methods and approaches unanswered” (Joint IS2010 Curriculum Task
Force, 2010, p. 50), which means institutions need to figure out for themselves how best to teach these aspects.

Similarly, the SE2004 curriculum guidelines, which are explicitly based on the SWEBOK, specify student
outcomes that include:

 Work as an individual and as part of a team to develop and deliver quality software artefacts.

 Reconcile conflicting project objectives, finding acceptable compromises within limitations of cost, time,
knowledge, existing systems, and organizations (Joint Task Force on Computing Curriculum, 2004, p. 15).

To achieve these outcomes, the SE2004 guidelines define nine Software Engineering Education Knowledge
(SEEK) knowledge areas and associated knowledge units that include Software Management (MGT), which

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 90

represents approximately 4% of the taught-load component. For all knowledge areas and units, Bloom (Bloom,
Masia, & Krathwohl, 1956) attributes of knowledge, comprehension or application are assigned. To recap, the
Bloom taxonomy is a classification of learning objectives consisting of three domains: cognitive, affective and
psychomotor. The cognitive domain defines six levels of taxonomy from the lowest to the highest:

 Knowledge: remember previously-learned materials by recalling specific facts, terminology, theories and
answers

 Comprehension: demonstrate an understanding of information by being able to compare, contrast, organize,
interpret, describe, and extrapolate.

 Application: use previously-learned material in new situations.

 Analysis: decompose previously-learned material into parts in order find patterns and to make inferences
and generalizations.

 Synthesis: use existing ideas in different ways to create new ideas or to propose alternative solutions.

 Evaluation: judge the validity of ideas or information with a certain context.

The SE2004 Software Management knowledge area consists of five knowledge units: Management Concepts,
Project Planning, Project Personnel and Organization, Project Control and Software Configuration and
Management (Table 2). Within this, the knowledge units Project Planning and Project Personnel and
Organization are each given the Bloom classification level of application (Tables 3, 4). SE2004 curriculum
guideline #17 encourages a variety of teaching and learning methods that include problem-based learning,
just-in-time learning, learning by failure and self-study. Specifically the Software Project Management course
(SE323) identifies sample laboratories and assignments that include:

 Use a commercial project management tool to assist with all aspects of software project management

 Make cost estimates for a small system using a variety of techniques

 Developing a project plan for a significant system

 Writing a configuration management plan

 Using change control and configuration management tools

 Evaluating a software contract or license

In a similar way to IS2010 and SE2004, the GSwE2009 defines a Core Body of Knowledge (CBOK) along with
associated Bloom classifications; the distinction between GSwE2009 and SE2004 is that the former takes more
units to a higher Bloom taxonomy level:

SE2004 recommends mastery of many topics at level 1. Every topic in GWwE2009 must be mastered at
level 2 or higher. Moreover, many more topics in GWwE2009 require mastery at level 3 than does SE2004;
e.g., in SE2004, the topic of software process is addressed only at levels 1 and 2. In GSwE2009, the same
topic is covered at levels 2 and 3. (iSSEc Project, 2009, p. 15)

But, software project management is a human-centered activity concerned with a complex and dynamic system
often characterised by conflicting demands, changing deadlines, and personality conflicts. It is suggested that
these learning outcomes are associated with Bloom taxonomy levels 4, 5 and 6.

3. Simsoft

3.1 Background

In the previous section is was shown that the various software engineering and information systems curriculums
place great emphasis on making sure graduates are cognisant of the value of sound software project management,
including peopleware, but they provide little guidance on how to achieve this. Given that software development
projects are complex socio-technical systems then arguably what is needed is an instructional method that
provides students with an opportunity to experience the dynamics of a software project in something akin to a
real-world environment. Importantly, this experience needs to demonstrate how a project can rapidly escalate out
of control, for example through Brooks’ Law, even though seemingly sensible decisions have been made.

But, experience can be expensive. There is a story of a young IBM executive whose innocent mistake caused a
$10 million loss for the company. Coming before Thomas J Watson, the formidable IBM boss, the contrite
executive said, “I’m here to tender my resignation”. Watson replied, “You must be kidding! We’ve just spent
ten million dollars training you” (Awad & Ghaziri, 2008, p. 281).

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 91

The young IBM executive was lucky to have an enlightened boss, but must things always happen this way? Must
mistakes be made in the real before we can learn from them? Perhaps not: games are a way of experiencing the
real in a controlled and inexpensive way so that software engineers and software project managers don’t repeat
the same expensive mistakes (cost and time over-runs, dissatisfied end-users, burnt out staff, unstable or
unreliable software) that bedevil modern software projects (Caulfield & Maj, 2008; Caulfield, 2002). Of course,
games aren’t the only way of achieving this, but:

 Games have been used as learning tools in many different business, military, and social environments, and
have proven to be efficacious (Gee, 2007a; Michael & Chen, 2005; Perla, 1990; Prensky, 2007; Schrage &
Peters, 1999).

 Games draw their intellectual integrity from a number of sources including educational theory (Dewey,
1938/1963; Kolb, 1984; Papert, 1980), operations research (Thomas & Deemer, 1957; Wilson, 1968, pp.
36-50), small-group behaviour research (Kennedy, 1971a, 1971b), war-gaming, decision sciences, and
systems engineering (Raser, 1969, pp. 46-55), and problem-based learning (Savin-Baden & Major, 2004).

So, games have a pedigree to be taken seriously as research and learning tools. For this research project, a game
called Simsoft (Caulfield, Veal, & Maj, 2011a) was developed to see what contribution it could make to the
education of software engineers and software project managers and thereby fill some of the pedagogical gaps in
the SE2004, IS2010, and GSwE2009 curriculum guidelines.

3.2 Description of Simsoft

Physically, Simsoft comes in two pieces:

 An A0-sized printed game board around which the players gather to discuss the current state of the project
and to consider their next move. The board shows the flow of the game while plastic counters are used to
represent the staff of the project. Poker chips represent the team’s budget, with which they can purchase
more staff, and from which certain game events may draw or reimburse amounts depending on decisions
made during the course of the game.

 A simple Java-based dashboard (Caulfield, Veal, & Maj, 2011b) through which the players can:

o See the current and historical state of the project through a series of simple reports, messages, and
other information.

o Can adjust the project’s settings, for example to recruit new staff, before advancing the game’s time
to create the state of the project.

The aim of the game is to complete the project on time and with funds (poker chips) left over.

The engine behind Simsoft is a model which embodies the fundamental causal relationships of a simple software
development project. Software development projects have been popular targets for modellers trying to
understand how and why they work the way they do (Abdel-Hamid & Madnick, 1991; Belady & Lehman, 1976;
Boehm, 1981; Collofello, 2000; McCabe, 1976; Remus & Zilles, 1979; Tvedt, 1996; Variale, Rosetta, Steffen,
Rubin, & Yourdon, 1994). For the research project described here, system dynamics has been used.

System dynamics is a modelling approach to dynamic socio-technical problems, stemming from the work of
Forrester (1961, 1969, 1971) at MIT and since developed (Senge, 2006; Sterman, 2000; Wolstenholme, 1990),
that allows a modeller to mix soft variables (morale, perceptions, motivations) with familiar hard variables (time,
cost, resources). A system dynamics model is not so much a tool for time-point prediction, but more of an
experimental device to see how certain variables might change over time under the influence of unappreciated
causal relationships, dynamic complexity, and structural delays. The end result is hopefully a more informed
mind set with which to manage the situation at hand (C. W. Caulfield & Maj, 2002).

Behind the system dynamics model is be a relational database to store the decisions entered by the players, the
parameters which define the particular project (for example, budget and time), and which will capture the state of
the model at each time slice. This will allow the game to be rolled backward or forwards, replayed, and studied.

3.3 The Simsoft Game Play

Simsoft players are formed into teams of two or three or more and they are given a scenario that describes the
requirements for a small software development project. Taking the role of project manager, the team must
manage the project from start-up to final delivery. What the players must deliver is handled by boxes on the left
side of the Simsoft game board (Figure 1).

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 92

At the start of the game there is a pool of work to do. This pool is represented on the game board with small
plastic counters in the Work To Do box. These counters can be thought of as Use Cases or items in a work
breakdown structure; whatever is most familiar to the players. Depending on the resources available to do the
work, the units of work (the counters) move from the Work To Do box to a For Review box, where the work is
reviewed before passing to the Completed Work box. Not unexpectedly, some work will fail the review and go to
the Rework box, before passing back to For Review and trying again to get to Completed Work. The team can
reduce the amount of rework by ‘buying’ more quality assurance staff.

The work-to-do, review, rework, work-completed cycle is a fundamental project work structure first discussed
and modelled by Roberts (1964). Roberts’ initial work has been expanded greatly by subsequent researchers who
have added rich details based on actual projects (see Lyneis & Ford, 2007 for a comprehensive survey of the
field), but the underlying work structure remains unchanged.

Based on the starting scenario of the game, information provided during the game, and their own real-world
experience, the players make decisions about how to proceed: whether to hire more staff, what hours should be
worked and so on. The team is given a budget for the project (poker chips), with which they ‘buy’ more staff.
But, there are trade-offs: more experienced (and therefore more productive) staff are more expensive (New
Hires are $500, Quality Assurance are $600, Mid-Rangers are $700, and Old Hands are $1000), and the staff do
not become available immediately— there are recruiting delays to be considered (Yourdon, 1998, p. 98). The
players can also see from the game board (Figure 2), that staff naturally gain experience (and therefore become
more productive) as the project proceeds— something further they need to consider before spending their
precious budget chips.

These decisions are entered through the software dashboard (Figure 3), project time is advanced by one week,
and the dashboard tells the participants which pieces to move around the board. The game is now in a new state,
which the participants must interpret and then consider their next move.

As in the real world, not everything runs smoothly in Simsoft world and the players may need to rethink their
plan. At random times, Simsoft will generate one of the following events:

 A major design flaw has been discovered. Add 5 more units of work to the Rework box.

 Your team wins lotto and three staff have resigned, effective immediately. Remove three staff from the game
board.

 The Finance department have made a mistake. Collect $500 from the bank.

Events like these are called games pulses: an event outside of normal play that the teams must take account of
when formulating their next decision set (Duke, 1980, p. 368; Schumann, Anderson, & Scott, 1996; Wolfe &
Fritzsche, 1998). How the players react to these pulses will be revealed in their subsequent decision sets.

Play continues in this manner until there is no more work to do (all the unit-of-work counters are in the
Completed Work box of the game board), or until the project deadline passes, whichever comes first. The aim of
the game is to deliver the software before the deadline and on budget (with poker chips left over).

4. Evaluation

4.1 Simsoft Game Sessions

For the research project described in this paper, a series of game sessions were conducted between May and
September 2010. Purposive sampling (Lincoln & Guba, 1984, p. 40; Patton, 2002) was used to select the
participants of the study from the following pools:

 Post-graduate project management students from two Perth, Western Australia universities.

 Software engineers, project managers, and account managers from a Perth-based software consulting
company.

Although the participants (n=59) each had an information technology or project management background, they
exhibited notable variances in experience (from recent graduates to 25-year industry veterans); skills (from those
still studying to highly-certified professionals); and cultural diversity (the participants came from Australia,
Europe, the Middle East, Asia, and South Africa).

Simsoft was used as the primary research tool, before and after which players completed a survey. The pre-game
survey was designed to assess the players’ knowledge of general software engineering and project management
concepts; and the post-game survey was designed to capture their experience of playing the games, whether they
found it useful, and how it might compare to other forms of instruction such as lectures or case studies.

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 93

Therefore, this research project had multiple data sources: the Simsoft game database, the pre- and post-game
surveys, interviews with the players, researcher memos (Maxwell, 2004, p. 12), and field notes.

4.2 Learning-Design Principles in Simsoft

In his seminal book on video games and education, What Video Games Have to Teach Us About Learning and
Literacy, Gee (2007b) discusses 36 principles of learning he believes should be designed into every good game.
Originally conceived for video games, and later condensed to 13 (Gee, 2007a) under three main categories
(empowering users, problem solving, and understanding), the principles parallel those found by other cognitive
researchers (Bereiter & Scardamalia, 1993; diSessa, 2000) and they have since been adopted for situations
involving an active learner and any game. It is instructive to see how Simsoft addresses Gee’s principles (Table
5).

In summary, Simsoft addressed Gee's learning principles this way:

 Empowering users: meets the criteria of empowering users allowing them to organize themselves, take on
different roles and have full control over their workforce, subject to budget constraints and hiring delays.

 Problem solving: the problem solving aspect of Simsoft allowed students to experience initially a well
ordered problem, in particular human resource, which required more complex decisions as the game
proceeded. Significantly game players experienced the causal loop that invariably can lead to the
counterintuitive outcomes in project cycles. As noted by one participant, ‘We have to be careful about
bringing on too many new hires. It’ll ultimately clog things up.’

 Understanding: experienced software developers indicated the game had demonstrated aspects of systems
thinking in which things fit into a larger systems in which they have meaning. This was evident by
comments that included: ‘Now I see why’ and ‘I hope that future versions will let me set up specific
scenarios and play them out. That would really help me at work’.

A simple game like Simsoft cannot hope to fully address each of the above learning principles and call itself, in
Gee’s loaded term, a good game, at least in its first iteration. Nevertheless, Simsoft comes close, if not for the
tolerable parity demonstrated in Table 5, then only for the final comment against principle 13. A student was seen
to scribble on a game board beside the Rework box, “I must remember this”. If Simsoft’s raison d'être is to allow
software professionals to fail early and often in a place where failure is safe and can be learned from, then this
comment shows that at least one person will be carrying a useful nugget of information into their next project.

The results were further analysed in the context of Bloom’s (1956) cognitive taxonomy. Of particular interest for
this research project was how Simsoft addressed the higher-order Bloom levels of analysis, synthesis and
evaluation:

 Analysis: Simsoft provided players with the opportunity to formulate and assess the evaluations of both
themselves and other team players. After the game sessions, the players were invited to stay and discuss
their results with other teams. Often these post-game gatherings lasted longer the game sessions themselves
as the players gathered around the boards and discussed strategies and experiences.

 Synthesis: Simsoft provided students with the opportunity to aggregate the elements of resourcing into a
dynamic, interactive whole. For example, one player commented: ‘I see my part in the machinery now’.

 Evaluation: Simsoft provided players with the opportunity to analyse the elements of resourcing, their
relationships and organizational principles.

On this basis, Simsoft would be a suitable pedagogical tool in curriculums from SE2004 and up to and including
IS2010 and GSwE2009.

5. Conclusions

The preliminary results of this research project suggest that Simsoft meets the criteria of the higher-order Bloom
taxonomy levels of analysis, synthesis and evaluation and as such could be used as a viable teaching approach by
the IS2010 curriculum. Furthermore, Simsoft may be used to teach the dynamic, human-centered aspects of
software project management identified in the SE2004 curriculum, for example as a useful laboratory exercise. It
is also submitted that Simsoft may be used as the basis of a graduate program such as GSwE2009 to emphasize
the topic of software project management and meet the requirement of raising the Bloom taxonomy level.

While Simsoft could be used at many points during these programs, it is at the end, where the students are
preparing for their capstone project or work placement assignments— and where the curriculum guides provide
little guidance— that it would be of most use. Students enter these final phases often with little preparation for

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 94

the realities of working in teams and delivering a real product. Admitted, they may learn by doing and learn from
their mistakes, but in doing they risk their academic grades or the time and money of their sponsor. Games such
as Simsoft can move this learning-by-doing and learning-through-failure into a safe and inexpensive
environment.

References

Abdel-Hamid, T. K., & Madnick, S. E. (1991). Software Project Dynamics: An Integrated Approach. Englewood
Cliffs: Prentice-Hall.

Awad, E. M., & Ghaziri, H. M. (2008). Knowledge Management. Delhi: Dorling Kindersley.

Baber, R. L. (1982). Software Reflected: The Socially Responsible Programming of Our Computers. Amsterdam:
North-Holland Publishing Company.

Belady, L. A., & Lehman, M. M. (1976). A Model of Large Program Development. IBM Systems Journal, 15(3),
225 – 252. doi:10.1147/sj.153.0225, http://dx.doi.org/10.1147/sj.153.0225

Bereiter, C., & Scardamalia, M. (1993). Surpassing Ourselves: An Inquiry into the Nature and Implications of
Expertise. Chicago: Open Court.

Bloom, B. S., Masia, B. B., & Krathwohl, D. R. (1956). Taxonomy of Educational Objectives: The Classification
of Educational Goals (Handbook I: Cognitive Domain ed.). London: Longman.

Boehm, B. W. (1981). Software Engineering Economics. Sydney: Prentice-Hall.

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, L. (1999). The Guide to the Software Engineering
Body of Knowledge. IEEE Software, 16(6), 35 - 44. doi:10.1109/52.805471,
http://dx.doi.org/10.1109/52.805471

Bradley, J., & McGrath, G. M. (2000). Boot Camp or Bordello: Whipping Rookies into Shape. Proceedings of
the Twenty First International Conference on Information Systems, 467 – 472

Brereton, O. P., Lees, S., Bedson, R., Boldyreff, C., Drummond, S., Layzell, P. J., et al. (2000). Student Group
Work Across Universities: A Case Study in Software Engineering. IEEE Transactions on Education, 43(4), 394
– 399

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering (20th anniversary ed.).
Sydney: Addison-Wesley.

Buxton, J. N., & Randell, B. (Eds.). (1970). Software Engineering Techniques: Report on a Conference
Sponsored by the NATO Science Committee, Rome, Italy, 27th to 31st October 1969. Brussels: Scientific Affairs
Division, NATO

Caulfield, C. W., & Maj, S. P. (2008). Come Play. In M. Iskander (Ed.), Innovative Techniques in Instruction
Technology, E-learning, E-assessment, and Education (pp. 86-91). New York: Springer Netherlands.

Caulfield, C. W. (2002). A Case for Games in Software Engineering. Proceedings of the 8th Australian and New
Zealand Systems Conference, Mooloolaba, Queensland.

Caulfield, C. W., & Maj, S. P. (2002). A Case for System Dynamics. Global Journal of Engineering Education,
6(1), 25 – 34

Caulfield, C. W., Kohli, G. and Maj, S. P. (2004). Sociology in Software Engineering. Proceedings of the 2004
American Society for Engineering Education Annual Conference & Exposition (Salt Lake City). American
Society for Engineering Education

Caulfield, C. W., Veal, D., & Maj, S. P. (2011a). Implementing System Dynamics Models in Java. International
Journal of Computer Science and Network Security 11(7), 43 – 49

Caulfield, C. W., Veal, D., & Maj, S. P. (2011b). Teaching software engineering management – issues and
perspectives. International Journal of Computer Science and Network Security, 11(7), 50 – 54

Charette, R. N. (2005). Why Software Fails. IEEE Spectrum, 42(9 (INT)), 36 – 43

Cheng, Y.-P., & Lin, J. M.-C. (2010). A Constrained and Guided Approach for Managing Software Engineering
Course Projects. IEEE Transactions on Education, 53(3), 430 – 436

Collofello, J. (2000). University/Industry Collaboration in Developing a Simulation Based Software Project
Management Training Course. Paper presented at the Proceedings of the Thirteenth Conference on Software
Engineering Education & Training, Austin, Texas.

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 95

Constantine, L. L. (1995). Constantine on Peopleware. Englewood Cliffs: Yourdon Press.

DeMarco, T. (1982). Controlling Software Projects. New York: Yourdon Press.

DeMarco, T. (1991). Non-Technological Issues in Software Engineering. Paper presented at the Proceedings of
the 13th International Conference on Software Engineering, Austin, Texas.

DeMarco, T., & Lister, T. (1999). Peopleware: Productive Projects and Teams (2nd edition ed.). New York:
Dorset House Publishing Co.

Dewey, J. (1938/1963). Experience and Education. New York: Collier Books.

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge, Massachusetts: The
MIT Press.

Duke, R. D. (1980). A Paradigm for Game Design. Simulation & Games, 11(3), 364 – 377.
doi:10.1177/104687819903000409 http://dx.doi.org/10.1177/104687819903000409

Eveleens, J. L., & Verhoef, C. (2010). The Rise and Fall of the Chaos Report Figures. IEEE Software, 27(1), 30
– 36. doi:10.1109/MS.2009.154, http://doi.ieeecomputersociety.org/10.1109/MS.2009.154

Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications.

Forrester, J. W. (1969). Urban Dynamics. Portland: Productivity Press.

Forrester, J. W. (1971). World Dynamics. Portland: Productivity Press.

Gee, J. P. (2007a). Good Video Games and Good Learning: Collected Essays on Video Games, Learning and
Literacy. New York: Peter Lang Publishing.

Gee, J. P. (2007b). What Video Games Have to Teach Us About Learning and Literacy. New York: Palgrave
MacMillan.

Gibbs, W. W. (1994). Software's Chronic Crisis. Scientific American, 271(3), 86 – 95

Glass, R. L. (1998). Software Runaways. Upper Saddle River: Prentice Hall.

Glass, R. L. (1999). Computing Calamities: Lessons Learned from Products, Projects, and Companies That
Failed. Upper Saddle River: Prentice Hall.

Glass, R. L. (2006). The Standish Report: Does It Really Describe a Software Crisis? Communications of the
ACM, 49(8), 15 – 16. doi:10.1145/1145287.1145301, http://dx.doi.org/10.1145/1145287.1145301

iSSEc Project. (2009). Graduate Software Engineering 2009 (GSwE2009): Curriculum Guideline for Graduate
Degree Programs in Software Engineering.

Joint IS2010 Curriculum Task Force. (2010). Curriculum Guideline for Undergraduate Degree Programs in
Information Systems: Association for Computing Machinery and Association for Information Systems.

Joint Task Force on Computing Curriculum. (2004). Software Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering: IEEE Computer Society/Association for Computing
Machinery.

Kennedy, J. L. (1971a). Simulation Study of Competition in an "Open World". Journal of Applied Psychology,
55(1), 42 – 45. doi:10.1037/h0030598 http://dx.doi.org/10.1037/h0030598

Kennedy, J. L. (1971b). The System Approach: A Preliminary Exploratory Study of the Relation Between Team
Composition and Financial Performance in Business Games. Journal of Applied Psychology, 55(1), 46 – 49.
doi:10.1037/h0030599 http://dx.doi.org/10.1037/h0030599

Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Englewood
Cliffs: Prentice-Hall.

Lay, M. C., Paku, L. K., & Swan, J. E. (2008). Work Placement Reports: Student Perceptions. 19th Annual
Conference of the Australasian Association for Engineering Education: To Industry and Beyond.

Leveson, N. G. (1995). Safeware: System Safety and Computers. Reading: Addison-Wesley Publishing
Company.

Lincoln, Y. S., & Guba, E. G. (1984). Naturalistic Inquiry. London: Sage Publications.

Lyneis, J. M., & Ford, D. N. (2007). System Dynamics Applied to Project Management: A Survey, Assessment,
and Directions for Future Research. System Dynamics Review, 23(2 – 3), 157 – 189. doi:10.1002/sdr.377,
http://dx.doi.org/10.1002/sdr.377

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 96

Maxwell, J. A. (2004). Qualitative Research Design: An Interactive Approach (2nd edition ed.). Thousand Oaks:
Sage Publications.

McCabe, T. J. (1976). A Software Complexity Measure. IEEE Transactions on Software Engineering, 2(4), 308
– 320. doi:10.1109/TSE.1976.233837, http://doi.ieeecomputersociety.org/10.1109/TSE.1976.233837

Michael, D., & Chen, S. (2005). Serious Games: Games That Educate, Train, and Inform. Boston: Thomson
Course Technology PTR.

Naur, P., & Randell, B. (Eds.). (1969). Software Engineering: Report on a Conference Sponsored by the NATO
Science Committee, Garmisch, Germany, 7th to 11th October 1968. Brussels: Scientific Affairs Division, NATO

Naveda, J. F., & Seidman, S. B. (2005). Professional Certification of Software Engineers: The CSDP Program.
IEEE Software, 22(5), 73 – 77. doi:10.1109/MS.2005.132,
http://doi.ieeecomputersociety.org/10.1109/MS.2005.132

Neumann, P. G. (1995). Computer-Related Risks. Reading, Massachusetts: Addison-Wesley Publishing
Company.

Papert, S. (1980). Mindstorms. Brighton, Sussex: The Harvester Press.

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd edition ed.). Thousand Oaks: Sage
Publications.

Perla, P. P. (1990). The Art of Wargaming: A Guide for Professionals and Hobbyists. Annapolis, Maryland:
Naval Institute Press.

Prensky, M. (2007). Digital Game-Based Learning. St. Paul, Minnesota: Paragon House Publishers.

Raser, J. R. (1969). Simulation and Society: An Exploration of Scientific Gaming. Boston: Allyn and Bacon Inc.

Remus, H., & Zilles, S. (1979). Prediction and Management of Program Quality. Proceedings of the 4th
International Conference on Software Engineering, Munich, Germany, 341 – 350

Ribaud, V., & Saliou, P. (2008). Evolution of an Integrated Course Towards a Sandwich Course. ACM-IFIP
IEEIII 2008 Informatics Education Europe III Conference.

Roberts, E. B. (1964). The Dynamics of Research and Development. New York: Harper & Row.

Savin-Baden, M., & Major, C. H. (2004). Foundations of Problem-Based Learning. Maidenhead: The Society
for Research into Higher Learning & Open University Press.

Schein, E. H. (1980). Organizational Psychology (3rd edition ed.). Englewood Cliffs: Prentice-Hall.

Schlimmer, J. C., Fletcher, J. B., & Hermens, L. A. (1994). Team-Oriented Software Practicum. IEEE
Transactions on Education, 37(2), 212 – 220

Schrage, M., & Peters, T. (1999). Serious Play : How the World's Best Companies Simulate to Innovate: Harvard
Business School Press.

Schumann, P. L., Anderson, P. H., & Scott, T. W. (1996). Introducing Ethical Dilemmas into Computer-Based
Simulation Exercises to Teach Business Ethics. Developments in Business Simulations and Experiential
Exercises, 23, 74 - 80

Sebern, M. J. (2002). The Software Development Laboratory: Incorporating Industrial Practice in an Academic
Environment. Proceedings of the 15th Conference on Software Engineering Education and Training, 118

Senge, P. M. (2006). The Fifth Discipline: The Art & Practice of The Learning Organization (Revised edition
ed.). London: Random House Business Books.

Sengupta, K., Abdel-Hamid, T. K., & Bosley, M. (1999). Coping with Staffing Delays in Software Project
Management: An Experimental Investigation. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 29(1), 77 – 91

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modelling for a Complex World. New York:
Irwin McGraw-Hill.

Thomas, C. J., & Deemer, W. L. (1957). The Role of Operational Gaming in Operations Research. Operations
Research, 5(1), 1 – 27

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 97

Tvedt, J. D. (1996). An Extensible Model for Evaluating the Impact of Process Improvements on Software
Development Cycle Time. Unpublished Unpublished Ph.D. dissertation, Arizona State University, Phoenix,
Arizona.

van Vliet, H. (2006). Reflections on Software Engineering Education. IEEE Software, 23(3), 55 – 61. doi:
10.1109/MS.2006.80, http://doi.ieeecomputersociety.org/10.1109/MS.2006.80

Variale, T., Rosetta, B., Steffen, M., Rubin, H., & Yourdon, E. (1994). Modeling the Maintenance Process.
American Programmer, 7(3), 29 – 37

Weinberg, G. M. (1998). The Psychology of Computer Programming (silver anniversary edition ed.). New York:
Dorset Housing Publishing.

Wilson, A. (1968). The Bomb and the Computer. London: Barrie & Rockliff, The Cresset Press.

Wolfe, J., & Fritzsche, D. J. (1998). Teaching Business Ethics with Management and Marketing Games.
Simulation & Gaming, 29(1), 44 – 59. doi:10.1177/1046878198291005
http://dx.doi.org/10.1177/1046878198291005

Wolstenholme, E. F. (1990). System Enquiry: A System Dynamics Approach. Brisbane: John Wiley & Sons.

Yourdon, E. (1992). Decline and Fall of the American Programmer. Sydney: Prentice-Hall.

Yourdon, E. (1998). Rise and Resurrection of the American Programmer. Sydney: Prentice-Hall.

Yourdon, E. (2004). Death March (2nd edition ed.). Upper Saddle River: Prentice Hall.

Table 1. Standish CHAOS report benchmarks

Year Successful (%) Challenged (%) Failed (%)

1994 16 53 31

1996 27 33 40

1998 26 46 28

2000 28 49 23

2004 29 53 18

2006 35 46 19

2009 32 44 24

Table 2. SE2004 SEEK knowledge area and units for Software Management

KA/KU Title Hours

MGT Software Management 19

MGT.con Management concepts 2

MGT.pp Project planning 6

MGT.per Project personnel and

organization

2

MGT.ctl Project control 4

MGT.cm Software configuration

management

5

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 98

Table 3. SE2004 project planning topics

KA/KU Topic Bloom’s taxonomy

MGT.pp Project planning

MGT.pp.1 Evaluation and planning Comprehension

MGT.pp.2 Work breakdown

structure

Application

MGT.pp.3 Task scheduling Application

MGT.pp.4 Effort estimation Application

MGT.pp.5 Resource allocation Comprehension

MGT.pp.6 Risk management Application

Table 4. SE2004 project personnel and organization topics

KA/KU Topic Bloom’s

taxonomy

MGT.per Project personnel and organization

MGT.per.1 Organizational structures, positions, responsibilities and

authority

Knowledge

MGT.per.2 Formal/informal communication Knowledge

MGT.per.3 Project staffing Knowledge

MGT.per.4 Personnel training, career development, and evaluation Knowledge

MGT.per.5 Meeting management Application

MGT.per.6 Building and motivating teams Application

MGT.per.7 Conflict resolution Application

Table 5. Simsoft evaluation against Gee’s learning principles

Learning Principle In Simsoft

I. Empowered Users

1. Co-design: good learning means that
players feel they are active agents
(producers) not just passive recipients
(consumers).

In good games, players feel their actions
and decisions– and not just those of the
game designer– are co-designing the game
world and the experiences they are having.
It therefore matters what the player does
because this determines a unique path
through the game.

The course of game play in Simsoft is
completely determined by the decisions the
players make. They have full control of their
workforce planning (subject to budget and
timing restraints) and can increase or reduce
hours as required.

2. Customise: different styles of learning
work better for different people. People
cannot be agents of their own learning if
they cannot make decisions about how they
learn best. At the same time, they should be
able (and encouraged) to try new styles.

Teams can organise themselves any way
they wish. Some nominated a lead decision
maker or arbiter, usually based on
experience, while others were more
collaborative and democratic. the game
sessions contained enough. the game
sessions contained enough time for the

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 99

Good games achieve this by naturally
accommodating different styles of learning
and playing or by allowing the players
customise the game play to fit their style.

players to debate their decisions.

3. Identity: deep learning requires an
extended commitment and such a
commitment is typically created when
people take on a new identity they value and
in which they become heavily invested.

Good games offer players identities in
which they can rewardingly invest time and
effort. This can be done by offering a
character so intriguing that players want to
inhabit the avatar and project onto it their
own fantasies, desires, and pleasures.
Alternatively, games may offer a relatively
empty character upon which players can
build a deep and consequential life history.

Players take on the role of a project
manager– not something so exciting,
particularly for experienced project
managers. But a Simsoft project manager is
unfettered by project politics and has
complete control over the project's budget
and workforce planning. This comment was
from a project manager:

“I wish I have [sic] this power at work”

4. Manipulation and distributed knowledge:
cognitive research suggests perception and
action are deeply interconnected. "Thus,
fine-grained action at a distance - for
example, when a person is manipulating a
robot or watering a garden via a web cam -
cause humans to feel as if their bodies and
minds have stretched into a new space.
More generally, humans feel expanded and
empowered when they can manipulate
powerful tools in intricate ways that extend
their area of expertise."

Good games almost always involve action
at a (virtual) distance. The more intricately a
player can control a character and objects in
the game world, the more the player is
willing to invest time and effort in the game.

The players had full control over their
workforce, subject to budget constraints and
hiring delays.

II. Problem Solving

5. Well-ordered problems: problems in good
games are designed so that the early
challenges a player faces allow them to
form good hypotheses they can use now and
later.

Initially players made simple decisions
about hiring more staff to ramp up the
project. By the time they were confident
with the mechanics of this process, the game
state would have changed sufficiently so
they would then have to make more
complex decisions to balance work
backlogs, the volume of rework, a looming
deadline and reduced funds.

6. Pleasantly frustrating: learning works
best when new challenges are pleasantly
frustrating, that is at the outer edge of, but
within, the player's regime of competence.
These challenges feel hard, but doable.

Simsoft demands more careful decisions as
the game progresses. For example, the usual
response to a large back log of work is to
hire more staff, but the hiring delay means
there is no immediate effect. A number of

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 100

Players also need feedback so even if they
fail, they have an idea of what must be done
next time.

teams noticed this during the game:

"We have to be careful about bringing on
too many new hires. It'll ultimately clog
things up".

For all teams, the causal loop diagram on
the back of the project briefing document
was used to point out the counterintuitive
nature of many project cycles.

7. Cycles of expertise: expertise in any field
is created by repeated cycles of practice
until the skills become nearly automatic.
New skills are gradually added to the
practice set and the cycle continues
(Bereiter & Scardamalia, 1993). In games,
we see this in the different levels a player
must move through: there are cycles of
extended practice, a test of mastery, then a
new challenge which requires further
extended practice. In this way the game
moves forward at a predictable pace and the
player senses achievement at each mastered
skill.

More complex decisions need to be made as
the game proceeds, but by this time the
players will have mastered the mechanics of
the game and the delays and
counter-intuitive behaviour that are
possible. Simsoft logs all game decisions
so these can be studied or replayed.

8. Information should be delivered on
demand and just in time: humans are not
good at using information when it has little
context and before they can practically use
it. Instead, information is best used when it
is given just in time (when it can be used
straight away) and on demand (when there
is a need to use it).

Each game session was preceded by a short
briefing from the researcher about the
mechanics of the game and then most
sessions were under way within a couple of
minutes. Each game schedule contained a
causal loop diagram representing the
underlying system dynamics model that
players could refer to as needed in light the
way pieces were moving on the board. The
game board itself also shows the major
work and personnel flows of the game.

9. Fish tanks: a fish tank can be a simple
eco-system containing just a few controlled
variables (water, light, food, fish). As such,
it can show interactions between the
variables that might otherwise be obscured
in the real world. In a similar way, games
are simplified systems that stress a few key
variables and their interactions meaning
players are not overwhelmed by the
complexity of a whole system.

Simsoft represents a simplified version of a
software project: there are no requirements
gathering, deployment, or maintenance
phases. Instead, the game concentrates on a
single, important factor– human resources–
without the noise these other phases may
have introduced

10. Sandboxes: in games, as in the real
world, sandboxes are safe, protected areas
where things cannot go too wrong, too
quickly and where any affects on the outside
environment are minimised.

In a good game, a sandbox may be a
tutorial, or the first couple of levels may be
sandboxed so that decisions made here do
not completely spoil the player's chances

Each game session was preceded by a short
briefing from the researcher about how to
make and enter game decisions. The range
of initial decisions available was small so
the players were able to see the flow of
work over a number if project weeks before
making more influential decisions were
made.

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

Published by Canadian Center of Science and Education 101

later in the game.

11. Skills as strategies: there is a paradox in
Principles 7 and 8: players need to practice
certain skills in order to master them, but
without a sufficient context, this practice
may be seen as pointless.

In good games, players learn and practice
skills in order to accomplish specific
things– they are a strategy for
accomplishing something first, and of value
as skills in themselves second.

The objective of Simsoft is the completion
of the project within budget and on time.
The skills the players are developing in the
game are directly employed to this end.

III. Understanding

12. Systems thinking: people learn new
things (skills, strategies, and ideas) best
when they see how these things fit into a
larger system in which they have meaning.

Good games help players understand how
the simplified world of the game fits into a
broader context, either of the game or of the
real world.

While Simsoft only represents a slice of a
real software development project, that slice
sends ripples through most other areas of a
typical project. This comment was from a
software developer with 2 to 5 years
experience:

“I see my part in the machinery now”

13. Meaning as action image: humans do
not usually think in abstract concepts and
according to logical principles. Rather, we
think through experiences we have had and
then create imaginative reconstructions of
that experience. To reason about, say, a
football game we think about games we
have seen and heard about rather than
generalities. For humans, words and abstract
concepts have their deepest meanings when
they are clearly tied to perception and action
in the world.

For experienced software developers and
project managers, thinking about their work
in concrete rather than abstract terms is easy
and connections can be made:

“Now I see why”

“I hope that future versions will let me set
up specific scenario and play them out. That
would really help me in my work”

For students, with less experience to draw
on, meaning as action is harder to create.
But, there are signs that experience in the
game resonates: from a note scribbled on a
game board beside the Rework box:

“I must remember this”

www.ccsenet.or

102

rg/mas

Figure 1. Le

eft-hand side o

 Modern Appli

of the Simsoft

ied Science

game board sh

 ISS

howing the wo

 Vol. 5, No.

SSN 1913-1844

ork to be done

 5; October 201

E-ISSN 1913-185

1

52

www.cc

Publish

csenet.org/mas

hed by Canadian

Figure 2. Rig

n Center of Scien

ght-hand side o

 Moder

nce and Educati

of the Simsoft

rn Applied Scien

ion

game board sh

nce

howing the hu

 Vol

uman resources

l. 5, No. 5; Octo

s of the project

ober 2011

103

t

www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 5; October 2011

 ISSN 1913-1844 E-ISSN 1913-1852 104

Figure 3. Simsoft dashboard

	Teaching software engineering project management-A novel approach for software engineering programs
	Microsoft Word - MAS201105h

