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Abstract 
 

This thesis proposes and demonstrates experimentally two novel linear-cavity tunable 

fibre lasers employing an erbium-doped fibre (EDF) in conjunction with an Opto-

VLSI processor and a MEMS-based device for wavelength selection. The Opto-VLSI 

processor and the MEMS-based device along with an optical collimator, a Bragg 

grating plate and an optical lens, enable the realisation of an optical filter for 

continuous tuning of wavelengths over the amplified spontaneous emission (ASE) 

range of the EDF. 

 

We also propose the use of a section of un-pumped EDF as a saturable absorber (SA), 

which suppresses noise spikes caused by the high optical pumping power. 

Experimental results show that by optimising a length of the SA a single wavelength, 

high power laser signal can be achieved.  

 

In addition, we experimentally demonstrate that the performance of the proposed 

linear-cavity tunable fibre lasers is better than that of ring-cavity tunable laser 

counterparts. Specifically, we show that linear-cavity based tunable fibre lasers can 

achieve higher output power, a larger side mode rejection ratio (SMRR) and narrower 

laser linewidth than ring-cavity tunable fibre lasers. 
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Chapter 1 

Lasers and Laser Types 
1.1 Introduction 

In this chapter, the concept of lasers and the different types of lasers is presented by 

describing their main characteristics. The most widely used laser types include semiconductor 

lasers, gas lasers and fibre lasers. Two novel tunable fibre lasers using a linear-cavity 

structure with an Opto-VLSI processor and a MEMS-based device are proposed. The concept 

of user generated holograms is described as the main mechanism for the Opto-VLSI 

processor and the MEMS-based device to enable wavelength selection. These tunable fibre 

laser structures are the main research topic investigated experimentally, where Opto-VLSI 

processor and the MEMS-based device are electronically re-configured to select specific 

wavelengths for lasing. 

 

 

1.2 The Concept of Lasers 

The word laser stands for the acronym Light Amplification of Stimulated Emission by 

Radiation. Stimulated emission in a two-level laser system, which is illustrated in Fig. 1, is 

the phenomenon that leads to optical amplification, whereby the interaction of a photon with 

an electron that is already in an excited state that matches the energy gap between the excited 

and ground states of that electron, stimulates the emission of an additional photon that is in 

phase with the stimulating photon, thus leading to photon amplification. Therefore, by 

exciting electrons from the ground state to the excited state an optical gain medium can be 

established. The essential components required to realise a laser are: 

 

1. An optical gain medium, which may be solid crystals, e.g. ruby or Nd:YAG, liquid 

dyes, gases like CO2 or Helium/Neon, semiconductors such as GaAs or rare-earth-

doped optical fibres such as erbium-doped optical fibres. Optical gain media contain 

atoms whose electrons may be excited to a meta-stable energy level by an energy 

source.  
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2. An excitation mechanism, where external pump energy is applied into the optical gain 

medium by basic methods: optical, electrical or chemical.  

3. A high reflectance mirror, which ideally reflects 100% of the laser light.  

4. A partially transmissive mirror, which reflects less than 100% of the laser light and 

transmits the remainder.  

 

 
Figure 1. Diagram illustrating the stimulated emission which creates additional photons when an electron in an 

excited energy state interacts with a photon which matches the energy gap that the electron experiences from the 

excited state to the ground state. 

 

The first reported laser in the literature was created by Theodore Maiman in 1960 and a 

representation diagram is shown in Fig. 2. This laser in particular was able to create pulses of 

light from a cylindrical shaped ruby crystal with two mirror surfaces on either side, where a 

high intensity light source was coiled around the ruby crystal. When the high power light 

source discharged its energy onto the ruby crystal, the photons from the light source 

interacted with the ruby crystal electrons, raising their potential energy. As the ruby crystal 

electrons fell back to a lower energy level, photons of light were emitted by the electrons 

leading to an amplification effect inside of the ruby crystal. Once enough photons were 

produced, some escaped the ruby crystal and emitted pulses of light with wavelengths in the 

visible red region. 
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Figure 2. Diagram representing a ruby laser where a ruby rod externally pumped by flash tube and two silver 

mirrors create a resonator cavity to produce a laser beam. 

 

The idea that atoms were capable of emitting light resulted from the experimental evidence 

that molecules could emit microwave radiation. Certain number of experiments from 

Columbia University in New York and from Lebedev Institute in Moscow showed that 

microwave amplified by stimulated emission of radiation (MASER) was possible, resulting in 

the Noble Prize for science contribution in 1964 to be awarded to Dr. Townes, Dr. Basov and 

Dr. Prochorov. 

 

Laser light tends to travel spatially in a narrow beam as an electro-magnetic (EM) wave that 

propagates with small change of its phase characteristics. Amplification occurs due to the 

light wave being reflected inside of a resonant or amplifying cavity created by using two 

highly reflecting surfaces as illustrated in Fig. 3. This is done by using highly reflective 

mirrors which allow the light to propagate inside the cavity multiple times. As the light 

energy begins to build up in the cavity, some of the light energy or photons escape through 

one of the reflective cavity ends, which is slightly less reflective than the mirror at the 

opposite side of the cavity. 
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Figure 3. Diagram illustrating an optical cavity with highly reflective mirrors as cavity ends where photons of 

light build up inside the optical cavity. 

 

The atomic energy levels for erbium atoms is shown in Fig 4, where photons in either the 

1480 nm or 980 nm ranges are used as optical energy pumps which can be absorbed by the 

erbium atoms, raising electrons to a higher and sometimes unstable energy level. These 

electrons spontaneously decay to a lower energy meta-stable state. A population inversion is 

achieved when the majority of erbium electrons are energised into a meta-stable state. Laser 

action then occurs when an electron spontaneously returns to its ground state, resulting in a 

photon of light. When the energy from this photon is of a precise wavelength matching the 

energy level of another excited electron, the photon stimulates the production of another 

photon of the same wavelength and phase, resulting in a cascading effect. The highly-

reflective and partially reflective mirrors continue the reaction by directing photons back 

through the gain medium along the horizontal axis of the laser cavity. The partially reflective 

mirror allows a small amount of coherent radiation to exit the laser cavity which is observed 

as a laser beam. Laser radiation continues as long as the pump energy is applied to the optical 

gain medium to produce amplified spontaneous emission (ASE) of photons with a 

wavelength in the 1550 nm range. 
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Figure 4. Atomic energy levels for an erbium atom where photons in either the 1480 nm or 980 nm ranges used 

as optical energy pumps are absorbed by the erbium atom to produce ASE of photons with wavelengths in the 

1550 nm range. 

 

Other important aspects of laser beams are spatial and temporal coherence, which relate to 

the characteristics of the EM wave over time and space, as illustrated in Fig. 5. Usually laser 

beams have a high degree of spatial coherence which relates to the electric field values at 

different distances along the beam of laser light. When a beam has a well defined relationship 

between the electric field at different points in space, it is called spatially coherent. 

Furthermore, when the electric field at a constant point in space can be described by a 

sinusoidal wave, then a laser beam is said to have high temporal coherence. 
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Image removed due to copyright licensing. 

Image title: Electromagnetic Waves from http://lcogt.net/book/export/html/3666 

 

 

Figure 5. Diagram of the orthogonal phase characteristics of an EM wave illustrating the spatial and temporal 

coherence and the visual representation of one wavelength. Las Cumbres Observatory Global Telescope 

Network. (2012) 

 

The term that is used to characterise the spectral shape of a laser signal is called linewidth. 

The linewidth describes the width of a lasing wavelength at its full width at half maximum 

(FWHM) or commonly referred as the 3 dB point from the maximum amplitude as shown in 

Fig. 6. There are numerous applications which require the use of narrow linewidth lasers such 

as spectroscopy, fibre sensors and for scientific measurement control. 
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Figure 6. Diagram illustrating the linewidth of a Lorentzian beam measured at the FWHM or 3 dB point. 

 

 

Several methods are used to determine the linewidth of a laser, depending on the size of the 

linewidth to be measured. If the expected linewidth is more than 10 GHz, optical spectrum 

analysis based on using diffraction gratings can be used efficiently. Otherwise, self-

heterodyne techniques must be utilised if the laser linewidth to be measured is in the kHz 

range.  

 

The self-heterodyne technique involves the splitting of a laser signal into two parts. One of 

these is made to travel along a longer length of fibre than the other beam. The two beams are 

later combined and detected by a single photo-detector. The beam that travels the shortest 

path is made to pass through a phase shifting device such as an acousto-optic modulator. The 

purpose of the elongated length of the fibre is to introduce a time delay between the two split 

signals. When both laser signals are recombined and detected by the photo-detector, they will 

produce an electrical signal with a beat which can be used to measure the linewidth of the 

original laser beam. This process is necessary because optical signal frequencies are too large 

to be measured by current electronic technologies. 
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1.2.1 Semiconductor Lasers 

Semiconductor lasers are generally manufactured with inorganic materials like gallium 

arsenide, indium phosphide, or gallium nitride to name a few. These lasers are based on 

electrically pumping electrons from the valance band up to the conduction band, and when 

the electron from the conduction band recombines with the hole created in the valance band, 

a photon of light is released. This photon of light has the same energy value corresponding to 

difference in the electron’s energy state from the conduction band down to the valance band. 

It is also possible to force an electron to jump to the conduction band by the use of a photon 

whose energy is slightly higher than the band gap, which is the energy measured from the 

valance band up to the conduction band. Figure 7 illustrates the layered structure of a 

forward-biased semiconductor laser diode where the active region behaves as a resonant 

cavity and the laser light beam exits the device on the edge of the laser diode. 

 

 

Figure 7. Diagram showing the structure of a laser diode composed of two metal layers, a p- and n-type regions 

and the active layer where the surface edge of the laser diode is the output of laser light. 

 

The great majority of semiconductor lasers are known as laser diodes. To force a laser diode 

to create a beam of light, the p-doped and n-doped regions are electrically pumped, causing 

electrons to move to higher energy states, as mentioned earlier. There are different types of 

laser diodes, namely edge-emitting, external cavity, and surface emitting lasers - also known 

as vertical cavity surface emitting lasers (VCSELs). Some common applications for edge-

emitting lasers include optical storage, laser pointers or in fibre optic communications. These 

lasers tend to output high quality laser beams with average powers of a few milliwatts.  

 



 9 

External cavity laser diodes are used in a cavity which is longer than the device itself. This is 

achieved by coating one end of the laser diode with a highly reflective surface which creates 

a mirror and the opposite end acts as the output for the laser diode. The output from the laser 

diode is then collimated using a lens and a diffraction grating can be used to make the laser 

diode tunable over a range of wavelengths. The diffraction grating becomes the other 

reflective cavity end needed to create a laser resonator cavity. Due to their inherited small 

laser linewidth, these external cavity laser diodes tend to be used in spectroscopy for 

characterisation of gases.  

 

VCSELs are one of the most recent types of laser diodes and an illustration is shown in     

Fig. 8. These lasers have a manufacturing advantage over other types of laser diodes since a 

single device can be comprised of many individual laser diodes. VCSELs have become 

predominant in the communications field especially in the 850 nm range where transmission 

between devices within a distance of 50 m is required. Other areas of interest include the use 

of VCSELs with plastic optical fibres (POFs) and also through free space in wireless optical 

networks. 

 

 
Figure 8. Diagram showing the structure of a VCSEL composed of two metal layers, a p- and n-type regions and 

the active layer where the output of laser light is emitted through a gap (area in dark grey)from the top layer. 
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1.2.2 Gas Lasers 

The gain media used in gas lasers is normally a mixture of elements in their gaseous state 

such as helium (He) and neon (Ne). For gas lasers to create a beam of laser light, a resonator 

cavity is needed where an external energy source, pumping source, is used to excite the gas 

inside of the resonator cavity to create a population inversion of the gas element in question. 

The resonator cavity tends to be created by the use of highly reflective mirrors and once there 

is enough energy build up inside of the cavity, a portion of this energy escapes through one of 

the two mirrors as a laser beam. In Fig. 9, a schematic diagram of a carbon dioxide (CO2) 

laser is presented, which illustrates the main components required to create a gas laser, 

namely an external pumping source, a resonator cavity and a gain medium. 

 

 

Figure 9. Schematic representation of a CO2 laser where the red arrow represents a laser beam of light and the 

blue section is water cooling for the gas inside of the resonator cavity (space between the two glass windows). 

An electrical potential difference is created between each end of the cavity mirrors by an external voltage 

source, (see top part of figure), creating an electrical discharge inside of the cavity. Paschotta, R. (2011) 
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Gas lasers have several attractive properties, namely (i) they provide laser beams with high 

beam qualities due to weak distortions in their optical properties, (ii) they enable the 

realisation of laser sources with an output wavelength not readily achievable like that 

produced by CO2 lasers, (iii) they have the ability to produce laser beams with high output 

powers, sometimes measured in the kilowatt range, and (iv) they are also able to deal with 

heat management better than other laser sources such as laser diodes. Some of the most 

common wavelengths produced by gas lasers are 632 nm for visible red coloured He-Ne 

lasers, 514 nm visible green coloured Argon lasers, and longer infra-red wavelengths of 10.6 

µm for CO2 lasers. 

 

1.2.3 Fibre Lasers 

The invention of a low power loss optical fibre by Corning Inc, paved the way for fibre optic 

communications to reach several kilometres before any need of signal regeneration. At first, 

semiconductor lasers were used as the light source but an important problem occurs when 

trying to couple the light into an optical fibre since much of the light is lost due to the small 

core diametre of optical fibres. On the other hand, fibre lasers do not have any loss due to 

coupling since the light is generated inside of the optical fibre itself as illustrated in Fig. 10.  

 

 

Figure 10. Illustration of a fibre laser employing a linear-cavity where the laser beam exits via a cleaved optical 

fibre. 

 

Other benefits of fibre lasers include (i) easy manufacture without the need of clean rooms 

and expensive device packaging; (ii) compatibility with fibre-optic communication systems, 

mechanical flexibility and the ability to withstand bending; (iii) broadband gain spectrum and 

high energy efficiency; high laser beam quality, ensuring their wide potential applications in 

material processing, printing, marking, cutting and drilling; (iv) robustness, because all 
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optical signals are guided within optical fibres, thus eliminating the need for optical 

alignment; and (v) narrow linewidth, due to their long cavity lengths, which is essential for 

many applications and hard to achieve for their current semiconductor laser counterparts. 

 

Fibre lasers are created by adding or doping into the fibre core rare earth elements such as 

erbium or ytterbium. When the optical fibre with these elements is optically energised or 

pumped it produces ASE, which in the case of EDFs, results in an ASE with a range of 

wavelengths from 1530-1560 nm. The section of optical fibre that contains a doping element 

is known as the optical gain medium, and this becomes the source of the laser light 

amplification. In fibre lasers, the gain medium can be used in conjunction with either a ring-

cavity resonator or a linear-cavity resonator shape. 

 

 

1.3 Tunable Fibre Lasers 

The term tunable fibre lasers refers to the ability of a fibre laser source to change or select a 

specific wavelength of light being emitted from the resonator cavity as illustrated in Fig. 11. 

Normally tunable fibre lasers select a wavelength for lasing from the broadband ASE 

produced when the gain media is optically pumped, and when one of these wavelengths is 

selected, the output changes accordingly. The wavelength selection is achieved by changing 

the length of the resonator cavity or by filtering unwanted wavelengths, which then allows a 

different wavelength to experience gain and amplification. There a number of techniques 

used to realise tunable fibre lasers such as using acousto-optic filters, spatial light modulators, 

etalon based filters such as Fabry-Pérot filters, etc. 
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Figure 11. Diagram illustrating a tunable fibre laser which employs a ring-cavity geometry. Wavelength 

tunability is realised by the use of a tunable filter were a portion of the ASE is used for amplification to produce 

lasing for the required wavelength. 

 

Tunable fibre lasers have many application areas, including spectroscopy, optical device 

characterisation, optical sensing, and optical fibre communications. Spectroscopy is the 

science of being able to detect the spectral characteristics of atoms or molecules. This is 

performed by analysing the transmission or absorption spectra of the element under analysis. 

Since different elements have diverse spectral characteristics, a laser source with the ability to 

output different wavelengths is required to accurately sense or characterise the substance 

under investigation.  

 

Optical components must be characterised over a wide spectral range before they are 

integrated into an optical system, and this characterisation requires high-resolution tunable 

lasers to accurately characterise the integrated optical system. In optical communications 

especially where fibre optics are used, the wavelength division multiplexing technique 

(WDM) allows for multiple wavelengths to share one optical fibre. This requires a tunable 

laser source capable of synthesising arbitrary wavelength channels, each is used for carrying 

data along the optical fibre. 
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1.3.1 Linear-Cavity Based Fibre Laser Structure 

Fibres lasers based on the use of a linear-cavity structure require two cavity ends to create a 

laser resonator. Some techniques to achieve this are by using highly reflective fibre ends or 

by using fibre loop mirrors. In Fig. 12, a fibre laser developed with a linear-cavity is shown 

were the resonator cavity is achieved by using a fibre mirror and an optical filter, each 

creating a reflecting cavity end. One of the main benefits which a linear-cavity has over a 

ring-cavity fibre laser is that the lasing wavelength will pass through the gain media twice per 

cycle. This makes the gain medium reach deep saturation, whereby the spectral shape of the 

output power over the whole ASE range becomes flat, meaning that the output power differs 

by very small values. Linear-cavity fibre lasers also have the advantage over ring-cavity fibre 

lasers of achieving higher output power levels [1]. Furthermore, ring-cavity fibre lasers tend 

to be more complex in structure due to the need of additional components inside of the 

resonator cavity [2]. 

 

 

Figure 12. Fibre laser developed with a linear-cavity structure composed of an optical filter, an output coupler, 

an amplifying gain medium and a WDM coupler to enable optical pumping of the gain medium. 

 

Fibre lasers with linear-cavities experience a phenomenon called spatial hole burning (SHB). 

This is due to the interference caused by two energy waves travelling in opposite directions 

inside of the linear resonator cavity. These two waves interfere constructively with each 

other, causing a change in the gain characteristics of the erbium-doped fibre amplifier 

(EDFA) gain medium. This results in rapid mode hopping that causes the fibre laser output 

wavelength to fluctuate [3]. The wavelength instability can be minimised by incorporating 

into the linear-cavity fibre laser a section of un-pumped EDF which to act as a saturable 

absorber, reducing the fluctuations from the fibre laser output. 
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1.3.2 Ring-Cavity Based Fibre Laser Structure 

Fibre lasers developed with a ring-cavity allow only one direction of travel for the lasing 

wavelength. Figure 13 illustrates a fibre laser with a ring-cavity structure with an optical filter 

for wavelength selection. The benefit of this is to eliminate the SHB effect which affects the 

EDFA characteristics. The realisation of a single travelling wave direction is accomplished 

by incorporating an optical circulator or isolator into the ring-cavity structure. Since ring-

cavity fibre lasers also have long cavity lengths, unstable laser operation is often encountered, 

were the output wavelength mode hopes over the many available densely spaced wavelength 

modes [4]. The optical filter used for laser tuning must be able to discriminate successfully 

between the numerous longitudinal modes [5]. Narrow-band Fabry-Pérot filters can solve this 

issue, however, they require non-conventional tuning mechanisms and thus they are relatively 

expensive. 

 

 

Figure 13. Fibre laser developed with a ring-cavity structure composed of an optical isolator, an optical filter, an 

output coupler, amplifying gain medium and a WDM coupler for optical pumping. 
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1.4 Proposed Tunable Fibre Laser Employing a Linear-Cavity Structure 

This thesis primarily focuses on linear-cavity-based fibre lasers because of two key 

advantages, namely, (i) simple system architecture, and (ii) the ability to use the EDFA gain 

media to operate in deep saturation mode. The developed tunable linear-cavity fibre laser 

comprises a number of components and devices, as shown in Fig. 14. The wavelength 

tunability of the laser is achieved by choosing specific optical components which enable an 

Opto-VLSI processor or a MEMS device to select an appropriate wavelength from the 

available broadband ASE and re-injecting the selected wavelength into the linear cavity to 

realise lasing. Three optical components which include a fibre collimator, a lens and a Bragg 

plate in conjunction with an Opto-VLSI processor, or a MEMS device, realises as the optical 

filter used in the proposed tunable fibre lasers.  

 

 

Figure 14. Fibre laser structure developed with a linear-cavity. System tunability is realised by the use of the 

novel optical filtering stage (dashed orange line). 
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The gain medium selected for this system has been an erbium doped fibre (EDF) whose 

optical spectrum emission corresponds to the C-band of optical telecommunications with a 

wavelength range between 1530-1560 nm. The ASE matches the nearly transparent window 

of optical fibres, thus enabling an optical signal within the C-band to travel through optical 

fibres with minimum attenuation of approximately 0.2 dB/ km [6]. 

 

In order to create ASE from the gain medium, two laser diode pumps were utilised which 

produced optical energy in the 980 nm wavelength region. The energy from these two optical 

pumps was coupled into the resonator cavity by using two WDMs. ASE produced by the 

excitation of the EDF by the optical pumps’ energy travelled in a forward and backward 

direction. The two ASE waves reflected off a fibre mirror and the Opto-VLSI processor or 

the MEMS device to create a linear-cavity structure. 

 

For the tunable fibre systems to accomplish wavelength selection, user-generated holograms 

were created on a PC and uploaded to the MEMS device or an Opto-VLSI processor’s active 

window. The role of the hologram is to select a portion of ASE energy that is incident upon 

the Opto-VLSI processor back into the gain medium for further amplification. The Opto-

VLSI processor is dynamically reconfigurable to select any wavelength within the bandwidth 

of the ASE. An example of a hologram used in a MEMS device for wavelength selection is 

shown in Fig. 15. 

 

 
Figure 15. Representation of a hologram depicted on MEMS device, where the section in orange, is a group of 

micromirrors used for re-injection of wavelength into the fibre cavity for lasing. 
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1.5 Conclusions 

In this chapter, a description of the concept of lasers has been presented by describing their 

main characteristics. The most commonly used types of lasers have also been discussed, 

namely semiconductor lasers, gas lasers and fibre lasers. Tunable fibre lasers have been 

described by showing the two types of optical resonator gain shapes used which was a ring- 

or linear-cavity structure. The architectures of the proposed tunable fibre lasers using a linear-

cavity structure in conjunction with either a MEMS-based device or an Opto-VLSI processor 

have been presented. The concept of user-generated holograms was presented as the main 

method that the MEMS device and the Opto-VLSI processor employ for selecting a portion 

of the ASE of an EDFA for lasing through multiple optical amplifications. 
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Chapter 2 

Key Laser Components  
2.1 Introduction 

In chapter 1, the most commonly used lasers were presented by describing their main 

characteristics. The overall system architecture of the proposed tunable fibre lasers using a 

linear-cavity structure were shown and described. In this chapter, the system block structure 

of the proposed tunable fibre laser is presented, and its main optical components are 

described in detail. 

 

2.1.1 System Overview of Proposed Tunable Fibre Laser using a Linear-Cavity 

Structure 

This thesis experimentally demonstrates the increase in performance characteristics of using a 

linear-cavity structure over ring-cavity geometry to realise a tunable fibre laser. The main 

system components used in the experimental procedures are shown in Fig. 16. The linear-

cavity is created by the use of two reflective components, a fibre mirror and an optical filter, 

which enable a resonant cavity with an optical gain medium to be realised. The amplification 

of the lasing signal takes place in the gain medium and an optical pump is therefore required 

to continuously supply energy to the gain medium for the increase in energy of the chosen 

wavelength for lasing by using a wavelength division multiplexer (WDM) coupler. An 

optical coupler is used to tap into the resonator cavity for signal monitoring by an optical 

spectrum analyser (OSA). In order to connect all of the optical components together, single 

mode optical fibre patch cables are utilised. 
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Figure 16. Illustration of the main coponents proposed in the tunable fibre laser using a linear-cavity structure. 

 

 

2.2 Optical Fibre 

2.2.1 Main Benefits 

Light has the ability to transmit more data and allows for a larger bandwidth than electricity 

since the bandwidth of a system is directly proportional to its frequency spectrum. The 

frequency of light waves for an optical system tend to be measured in the 10
14

 Hz range while 

for an electrical system are measured in the 10
9
 Hz range for gigabit networks. This 

difference equals many orders of magnitude more which correspond to higher capacity for 

data transfer [7]. 

 

Another important advantage optical systems have over electronic is the immunity from 

electromagnetic interference or radio frequency interference, due to the fact that an optical 

fibre is a wave guide. Even if multiple fibres carrying a single wavelength are bundled 

together, no cross talk can occur. When adding the fact that optical fibres can have very low 

attenuation losses, the reduction of the number of repeaters or amplifiers needed for 

successful transmission enables the cost of the system and maintenance to decrease 

significantly [8]. 
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2.2.2 Optical Fibre Structure 

An optical fibre is made of several layers which are illustrated in Fig. 17. The inner layer is 

named the core and consists of pure silica with the addition of impurities or dopants such as 

zinc sulphide. Surrounding the core is another layer called cladding and is also made out of 

silica but also contains other compounds or dopants. The refractive index of the fibre can be 

controlled by varying the amount of dopants present in either the core or the cladding. In 

order to protect the brittle core and cladding layers, another layer covers these which is called 

buffer. The buffer is created to help the optical fibre to absorb mechanical stress and to add 

flexibility to the optical fibre. Normally the final layer that protects all of the previous layers 

is called the jacket and is made out of plastic. 

 

 

Figure 17. Diagram representing the physical differences between single-mode and multi-mode optical fibres. 

 

2.2.3 Transmission Modes of an Optical Fibre 

In terms of optical communications, data is sent over optical fibres by launching laser light 

into one of the ends of the optical fibre. The light then travels along the fibre as shown in   

Fig. 18, by the use of either single- or multi-mode optical fibres. The difference between 

these two types of fibres is related to the internal structure of the optical fibre which 

determines the allowed transmission modes for the light to propagate along the fibre. For 

single mode fibres, the size of the core is normally measured to be around 9 µm and allows 

only one electro-magnetic (EM) mode to travel through the core of the fibre. However, the 

size of the core in multi-mode fibres is in the range of 50 - 62.5 µm which allows multiple 

EM modes to propagate along the fibre, hence enabling more data to be sent on a single fibre, 

however only over short transmission distances, mainly because of their high attenuation. 
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Figure 18. Transmission modes in single- and multi-mode fibres where the main physical difference is the 

diametre size of the core. 

 

 

2.3 Opto-VLSI Processor 

2.3.1 Opto-VLSI Processor 

An Opto-VLSI processor is an electronic reconfigurable device capable of generating phase 

holograms that cause a beam of light to experience beam steering. Beam steering is 

performed by creating a ramp phase grating which corresponds to a periodic ramp phase 

pattern produced by driving the pixels of the Opto-VLSI processor with different voltage 

levels. Once a phase hologram is designed in software, it is then uploaded onto the Opto-

VLSI processor resulting in beam steering. Since Opto-VLSI processors have no moving 

parts, any possible vibrations experienced by the device will not affect its operation. 

 

The principle behind beam steering is illustrated in Fig. 19, through a prism, which steers an 

incident light beam by an angle that depends on the value of the prism’s angle. By increasing 

the physical size of a prism’s angle, a light beam which travels through the prism will 

experience a larger steering angle due to the phase change of the light beam as it exits the 

prism, since portion B of the light beam travels much less time through the prism than portion 

A, as shown in Fig. 19 (b). 
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Figure 19 (a). A light beam travelling through a prism experiences a small steering angle corresponding to the 

size of the prism’s angle. (b). An increase in the steering angle is experienced by a light beam when the size of 

the prism’s angle is larger. 

 

As mentioned earlier, the phase hologram resembles a grey scale ramp which is also periodic 

in nature. All phase holograms utilised during the experimental procedures have been 

generated using an algorithm especially developed with the aid of the Lab-View software 

package. This program is able to interface with the Opto-VLSI processor to individually 

reconfigure each of the pixel's state, thus realising a phase grating that enables the cross-

section of the incoming light beam to experience the appropriate phase shift necessary to 

steer it along arbitrary directions as shown in Fig.20. The phase hologram can be uploaded 

onto the Opto-VLSI processor via an electronic driver linking the Opto-VLSI processor to the 

computer running the software interface. 
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Figure 20. Illustration of an incident light beam interacting with an Opto-VLSI processor with a phase hologram 

which is created with a software program developed with the Lab-View package. The software is designed to 

upload a phase hologram to the Opto-VLSI processor. The hologram is periodic and realises a blaze grating 

where an incident light beam experiences a change in its reflected angle, also known as beam steering. 

 

As stated earlier, the hologram generation is performed via the aid of a user interface program 

developed using the Lab View software package. This program has the ability to control all 

262,144 pixels of the Opto-VLSI processor utilised in the experiments, and change the 256 

brightness levels of any pixel to create high-resolution phase holograms. Figure 21 shows a 

screen capture of the software interface for the Opto-VLSI processor. A number of sections 

are available for the user to interact with. Starting from the top of Fig. 21, the 1
st
 button 

creates the hologram image on the PC, the 2
nd

 button sends the image from PC to the PCI 

control board, the 3
rd

 button sends the hologram image to the front window of the Opto-VLSI 

processor, and the 4
th

 button is used to disconnect the connection between the PC and the 

Opto-VLSI processor. The remaining sections are to change the pixel phase level and 

location, the preview window is for the location of the phase hologram on the front window 

of the Opto-VLSI processor and the main paths used by the user interface to store the 

hologram into the PC. 
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Figure 21. A PC screen capture of the user interface program which allows user generated holograms to be 

created, generated, previewed and uploaded to the Opto-VLSI processor. 

 

When the periodicity of a phase grating profile is changed, the beam steering angle also 

changes accordingly. For example, an increase of the phase grating periodicity, shown in    

Fig. 22 (a), results in an increase of the beam steering angle experienced by a light beam 

which is represented by the two points A and B as illustrated in Fig. 22 (a). In Fig. 22 (b), an 

incident light beam experiences beam steering when a phase hologram is uploaded onto the 

Opto-VLSI processor. Depending on the profile characteristics of the phase hologram, the 

beam steering experienced by the light beam can be changed. 
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Figure 22 (a). Different phase grating periods correspond to different beam steering angle. (b). An incident light 

beam experiences a spatial phase change when a phase hologram is uploaded onto the Opto-VLSI processor. 

 

The periodicity of the phase hologram and the beam steering angle are related by the fact that 

as the period of the phase hologram is increased the beam steering angle experienced by an 

incoming light beam also increases. For a small incidence angle, the maximum steering angle 

of the Opto-VLSI processor is given by: 

dM ⋅
=

λ
θmax

          (1) 

In Eq. 1, M is the number of phase levels, d is the pixel size, and λ is the wavelength. For 

example, a 4-phase Opto-VLSI processor having a pixel size of 5 microns can steer a 1550 

nm laser beam by a maximum angle of around ±4°. The maximum diffraction efficiency of 

an Opto-VLSI processor depends on the number of discrete phase levels and it is given by 

[9]: 

2sinc
n

M

π
η

 
=  

           (2) 

 

(a) 

(b) 
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In Eq. 2, n = gM + 1 is the diffraction order (n = 1 is the desired order), and g is an integer. 

For an Opto-VLSI processor with binary phase levels (M = 2) it can have a maximum 

diffraction efficiency of 40.5%, while a 4-phase-level Opto-VLSI processor can attain an 

efficiency of up to 81%. The higher diffraction orders (which correspond to the cases g ≠ 0) 

are typically unwanted crosstalk signals, which can be attenuated or routed outside the output 

ports to maintain a low-noise performance. 

 

The Opto-VLSI processor can be realised to function as a wavelength selection device, when 

the individual wavelength channels of a WDM signal are separated by using a Bragg plate 

and then a lens is used to focus the light on the front window of the Opto-VLSI processor as 

illustrated in Fig. 23. Once the WDM signal is mapped onto the Opto-VLSI processor, via the 

Bragg plate, any WDM channel can either be reflected back, via beam steering, into the 

optical fibre or steered off track so that it is not coupled into the input optical fibre. By 

changing the phase hologram profile, different steering angles can be realised. The use of a 

fibre collimator, a Bragg plate, a lens and an Opto-VLSI processor produces a device which 

behaves like an optical filter. 

 

 

Figure 23. Illustration of wavelength selection using an Opto-VLSI processor in conjunction with various 

optical components to realise an optical filter. 
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It is important to note that the Opto-VLSI processor technology has several unique features 

when it is used for tuning the laser wavelength. It allows (i) independent tuning of each 

wavelength channel, (ii) arbitrary control of the power level for each wavelength channel, 

(iii) the generation of wavelength channels over various operation ranges, (iv) sufficient 

maximum continuous wave power output per channel (> +10 dBm), (v) adequate laser 

linewidth (i.e. comparable to performance by Agilent of less than ±0.001 nm at 1550 nm), 

and (vi) low power fluctuations (< 0.01 dB over 10 hours). These features are far superior to 

all tuning mechanisms reported in the literature to date. 

 

2.3.2 Layout of Opto-VLSI Processor 

An Opto-VLSI processor is an electronic reconfigurable device comprising an array of liquid 

crystal (LC) cells driven by a Very-Large-Scale-Integrated (VLSI) circuit that generates 

digital holographic diffraction gratings to steer and/ or shape optical beams. Each pixel is 

assigned a few digital memory elements, and a multiplexer that selects one of the input 

voltages and applies it to an aluminium mirror electrode. The Opto-VLSI processor is 

electronically controlled, configured via software, polarisation independent and cost 

effectively produced through mass fabrication. It is also very reliable since beam steering is 

achieved with no mechanically moving parts. Figure 25 shows a typical layout and a cell 

design of an N-phase Opto-VLSI processor. An Indium-Tin Oxide (ITO) film is used as the 

transparent electrode, while evaporated aluminium is used as the reflective electrode. The 

ITO layer is generally grounded and a voltage is applied at the reflective electrode through 

the VLSI circuit below the LC layer.  
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Figure 25. Diagram illustrating a typical N-phase Opto-VLSI processor and the LC cell 

structure design. 

 

Adaptive optical beam steering can be achieved by reconfiguring the phase hologram 

uploaded onto the Opto-VLSI processor. Recent advances in low-voltage nematic LC 

materials and layer thickness control have enabled the incorporation of a thin quarter-wave-

plate (QWP) layer between the LC and the aluminium mirror to accomplish polarisation-

insensitive Opto-VLSI processors [10], as shown in Fig. 25. In addition, with current 90 nm 

VLSI fabrication processes, VLSI chips featuring 24 mm × 24 mm active area, maximum 

switching voltage below 3.0 volts, and pixel size as small as 5 microns, can be realised.  

 

Various algorithms have been reported for the optimization of Opto-VLSI phase holograms 

to achieve arbitrary beam steering, including simulated annealing and projection methods. In 

this project, simulated annealing was employed for generating phase holograms for accurate 

beam steering with low crosstalk. An electronics driver is used to drive the Opto-VLSI 

processor circuitry thus enabling individual addressing of all the pixels. For the Opto-VLSI 

processor used in the experiments, each pixel had a total of 262,144 pixels (512 × 512), and 

256 different phase levels (8 bits) with the pixel pitch (distance between two adjacent pixels) 

measuring 15 µm. 
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The first step in creating a phase hologram is to use the user interface to drive each pixel to 

the necessary state. Once the phase hologram has been created, it is then uploaded to the 

Opto-VLSI processor via a peripheral component interconnect (PCI) card which connects 

directly from a personal computer (PC) to the electronic driver, as shown in Fig. 26. 

Connecting the Opto-VLSI processor via the PCI interface allows the transfer of 8 bit, 512 × 

512 pixel images from the PC in approximately 6.6 ms [11]. The refresh rates can be 

programmed with a range from 1 Hz up to 1 kHz, although frequencies below 1 kHz are best 

suited for the current application for the Opto-VLSI processor. 

 

 

Figure 26. Schematic diagram showing how the Opto-VLSI processor is connected to the electronic driver and 

to the PC for uploading user generated phase holograms. 

 

2.3.3 Applications of Opto-VLSI Processors 

Opto-VLSI processors have a number of application areas that can benefit from their unique 

features, including optical filters, adaptive optics, laser scanning, WDM equalisers, photonic 

RF signal processing, tunable lasers and reconfigurable optical add-drop multiplexers 

(ROADMs). Xiao, F., et al., [12], successfully demonstrated the ability of an Opto-VLSI 

processor to realise, in conjunction with other photonic and opto-electronic components, a 

microwave photonic transversal filter with positive and negative coefficients. A further 

application area where an Opto-VLSI processor was utilised is in tunable fibre lasers [13], 

where the Opto-VLSI processor was used as an optical filter for wavelength selection and re-

injection into a fibre ring-cavity, leading to laser signal generation over the available 
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amplified spontaneous emission (ASE) produced by an erbium-doped fibre (EDF). A further 

example that demonstrates the capability of Opto-VLSI processors is the ROADM reported 

in [14], where the Opto-VLSI processor was used in conjunction with off-the-shelf optical 

components to dynamically add or drop WDM channels as well as equalise their power levels 

over the entire C-band of optical communications. 

 

 

2.4 Micro-Electro-Mechanical System (MEMS) Device 

2.4.1 Micro-Electro-Mechanical System (MEMS) Device 

In this thesis, a MEMS device was also used as one of the optical filter components due to its 

unique feature of being able to individually and precisely control the tilt angle of 

micromirrors. The MEMS device enables WDM wavebands within the ASE of an erbium-

doped fibre amplifier (EDFA) to be selected and re-injected into the EDFA cavity for lasing. 

MEMS devices have typically a small micromirror pitch (distance between two adjacent 

micromirrors) thus allowing fine tuning resolution to be realised [15].  

 

The MEMS device used in the experiments was made by Texas Instruments and it is supplied 

as part of the DLP Discovery 4100 Development kit, which comprises a Digital Micromirror 

Device (DMD), a digital controller, a DMD power and reset driver. A typical layout of the 

MEMS device is illustrated in Fig. 27, which comprises vias, micromirrors, hinges, yokes, 

landing tips, electrodes and a CMOS VLSI circuit. The CMOS VLSI circuit where the 

memory cells are located is created on a silicon substrate. Each micromirror can have three 

different states, or tilt angles, corresponding to 0°, and ±12°, which can be selected via binary 

coding of the VLSI circuitry.  
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Figure 27. Layout of a MEMS device comprising micromirrors, vias, hinges, yokes, landing tips, and electrodes, 

all built on a CMOS VLSI circuit. 

 

The CMOS VLSI circuit is comprised of memory cells as shown in Fig. 28. The tilt angle of 

a micromirror is controlled by loading the appropriate logic value into the memory location 

corresponding to that micromirror. As mentioned earlier, to change the tilt angle of the 

micromirror a reset command must be activated after the logic value has been loaded onto the 

corresponding memory location. 

 

 
Figure 28. Illustration of the CMOS VLSI circuit structure which controls the tilt direction of each micromirror. 

 

The active window of the MEMS array is 11.1 × 8.3 mm, which consists of 1024 × 768 

micromirror elements. The size of each individual micromirror element is 10.8 × 10.8 µm, 

and was especially selected because of its small micromirror physical size and excellent 

reflectivity (~ 97 %) in the near infra-red (NIR) spectrum. 
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The micromirrors allow the individual control of each micromirror via software and a digital 

CMOS VLSI circuit, which steers and holds the individual micromirror elements along 

predefined directions. Each micromirror is attached through one via to the yoke underneath 

the micromirror. A hinge is used to allow the yoke to pivot in a diagonal axis once the 

appropriate signal has been applied to the MEMS device coming to a rest on the landing tip. 

The steering or tilting of the micromirrors is controlled with an electro-static force between 

the yoke and the electrode and the direction of tilt is determined by the state of the 1-bit 

memory cell under each micromirror. The voltage of the SRAM cell determines whether the 

micromirror stays at its current position or changes its tilt angle. However, the voltage state 

of the memory cell does not change the tilt angle of the micromirror automatically. A reset 

command is sent to the MEMS device where the micromirrors are allowed to detach from 

their landing tips, in which they return to a floating state when the electro-static force has 

been removed. If the logic memory cell voltage is changed from the previous logic state, 

from 1 to 0 or 0 to 1, an electro-static force switches the micromirror tilt angle to the opposite 

state. Otherwise, if the logic voltage value of the memory cell remains constant, the 

micromirror re-tilts to its original tilt angle before the application of the reset command.  

 

It is important to note that holographic data storage based on MEMS devices have the 

potential to save data in an optical medium with storage densities greater than the current 

storage densities of magnetic and existing optical discs. In order to resolve digital holograms, 

the MEMS device must be able to attain good light throughput characteristics and appropriate 

diffraction efficiencies. MEMS devices are excellent candidates for applications requiring 

high contrast, broad spectral bandwidth and high diffraction efficiencies [16]. 

 

 

2.5 Conclusions 

In this chapter, the generic architecture for the proposed linear-cavity tunable fibre laser 

systems has been presented. The main components used in the tunable fibre laser have been 

described in detail, especially the main characteristics of optical fibres, and the key 

reconfigurable components, namely the Opto-VLSI processor and the MEMS device.  
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Chapter 3 

Tunable Fibre Lasers – Literature Review 

3.1 Introduction 

In Chapter 2, the proposed linear-cavity tunable fibre laser system architecture was 

introduced and the main components utilised were described including an overview on the 

main characteristics of optical fibres, the Opto-VLSI processor and the MEMS-based device. 

In this chapter, a review of the scientific literature is presented, describing the reported 

techniques used to achieve tunable fibre lasers employing ring- or linear-cavity structures.  

 

3.1.1 Benefits of Using Lasers 

Lasers have been used in many applications and industries including information and 

communications technology (ICT), health, agriculture, security, defence and environment. 

Some examples of laser applications include optical transmitters, DVD players, printers, 

surgeries, heat treatment, spectroscopy, surveying, laser pointers, welding and nuclear fusion. 

In particular, lasers have revolutionised the optical telecommunications through the 

development of cost effective high-speed fibre-optic communication links, enabling through 

the use of wave division multiplexing (WDM), faster data transmission and high data 

throughputs in the order of Tb/s (10
12

 bits/sec) per optical fibre.  

 

Cost-effective information transmission would not have been possible without lasers, and 

particularly, tunable lasers. In particular, tunable fibre lasers, which employ optical fibre 

cavities and a gain medium, have recently attracted great interest owing to many unique 

advantages over traditional semiconductor lasers, including, (i) easy fabrication without the 

need of clean-rooms and expensive device packaging, (ii) mechanical flexibility and the 

ability to withstand bending, (iii) broadband gain spectrum and high output power capability, 

(iv) high laser beam quality, (v) robustness, as the optical signal is well guided within the 

optical fibre, thus eliminating the need for optical alignment and (vi) narrow linewidth. 

Benefiting greatly from recent developments in fibre communications, fiber lasers can offer a 

low-cost alternative to traditional semiconductor laser counterparts. In this thesis, we 

demonstrate a new viable tunable laser source featuring both reduced cost and hardware 
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complexity in addition to delivering equivalent or improved performance in comparison to 

commercially-available tunable laser counterparts.  

 

 

3.2 Tunable Fibre Lasers Employing Linear-Cavities 

So far tunable fibre lasers employing erbium-doped fibres (EDFs) are based on the use of 

either ring- or linear-cavities, wherein the gain medium is embedded. Fibre lasers employing 

a linear-cavity can be understood as a length of optical fibre acting as the gain medium, 

having been doped with rare earth elements, with two highly reflective surfaces on either side 

of the optical fibre, thus creating a resonant cavity as illustrated in Fig. 29. For a fibre laser to 

become tunable, additional optical components are required to be introduced into the linear-

cavity resonator for wavelength filtering or selection. 

 

 

Figure 29. Typical structure of a tunable fibre laser employing a linear-cavity geometry. 

 

In terms of the number of publications, ring-cavity based tunable fibre lasers outnumber 

linear-cavity based tunable fibre lasers [17]. The most common tunable optical filters 

reported in the literature for tunable fibre lasers with linear-cavities are fibre Bragg gratings 

(FGBs) [18-20], etalon based filters or Fabry-Pérot cavities [21-22] and acousto-optic based 

tunable filters [23]. These tunable optical filters are necessary since the longer the laser cavity 

the more difficult it is to control multi-mode laser oscillation, which results in multiple lasing 

wavelengths very closely spaced from each other, thus decreasing the linewidth of the laser’s 

output [24]. Since FBGs are susceptible to environmental conditions, a change in temperature 

causes the stability of an FBG-based tunable laser to degrade. As a result, higher costs are 

involved in the manufacturing process of tunable fibre lasers in order to improve their 

stability. In addition tunable etalon based filters require complex manufacturing processes to 
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become compatible with fibre-optic components, and this increases their cost and makes 

them impractical [24]. 

 

The previously mentioned optical filters have also been employed in conjunction with other 

optical components in order to further improve the tuning capability and performance of 

tunable fibre lasers. For example, the use of a 20 nm band-pass optical filter in conjunction 

with a tunable fibre Fabry-Pérot (FFP) filter has been reported for wavelength filtering and 

tuning [25], shown in Fig. 30. While utilising two wavelength filtering devices produced 

arbitrary wavelength tuning over a 20 nm bandwidth, further extending the tuning range was 

difficult since the tuning range of the FFP filter was 28 nm. 

 

 

Figure 30. Diagram illustrating a linear-cavity based tunable fibre laser employing a band-pass filter for 

bandwidth selection and a tunable FFP filter for wavelength selection [25]. 

 

Another example where a combination of optical components was reported to create a 

tunable fibre laser with a linear-cavity is reported in [23], and a schematic diagram of such a 

tunable fibre laser is illustrated in Fig. 31. For this tunable laser, an acousto-optic filter was 

used in conjunction with a saturable absorber (SA) which acted as a narrow band Bragg filter 

for stable single wavelength lasing. The acousto-optic filter was operated by shifting the 

optical wave frequency to stop the formation of a standing wave patter inside of the gain 

medium. Figure 31 shows that the optical frequency was shifted down at the acousto-optic 

tunable filter 1 (AOTF 1) and shifted up at the acousto-optic tunable filter 2 (AOTF 2) by a 

particular frequency (fA). Furthermore, a saturable absorber was utilised to suppress the 

mode-hopping effect which prevented single longitudinal mode operation. 
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Figure 31. Illustration of a linear-cavity based tunable fibre laser employing acousto-optic filters in conjunction 

with a SA. The tunability of the fibre laser is accomplished by modifying the modulation frequency of the 

acousto-optic filters (by using AOTF1 and AOTF2) and a SA to realise single longitudinal mode wavelength 

lasing [23]. 

 

 

3.3 Tunable Fibre Lasers Based on Ring-Cavities 

Numerous ring-cavity based tunable fibre laser structures have been reported [26-28], 

however, an interesting structure is that reported in [26] where the combination of a 

stretchable FBG and a SA resulted in a tunable fibre laser structure shown in Fig. 32, with a 

tuning range exceeding 40 nm. By stretching the FBG, a specific wavelength is reflected back 

into the laser cavity for lasing. Also, the SA acted as a very narrow band optical filter that 

suppressed mode hoping and allowed single mode operation. 

 

 

Figure 32. Tunable ring-cavity based fibre laser structure using the combination of an FBG and a saturable 

absorber as the wavelength selection mechanism [26]. 
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The tunable ring-cavity based fibre laser structure, shown in Fig. 33, which employs a liquid 

crystal filter (LCF) as the wavelength discrimination device, has been reported and 

experimentally demonstrated [27]. The LCF was driven by an alternating current (AC) which 

caused the liquid crystal molecules to change their positions and orientations, hence changing 

the effective refractive index of the LCF and inducing a phase shift to the incoming light. The 

LCF acted as a tunable narrow band optical filter of 0.4 nm bandwidth, and the tunable fibre 

laser attained a total tuning range of 60 nm. 

 

 

Figure 33. Tunable ring-cavity based fibre laser structure using a LCF as the wavelength selection mechanism 

[27]. 

 

Another tunable ring-cavity based fibre laser structure which experimentally demonstrated 

laser mode filtering was reported in [28]. This tunable fibre laser comprises two ring-cavities, 

a main ring and a sub-ring as shown in Fig. 34. Since both rings have different free spectral 

ranges (FSRs), due to different physical lengths, namely 16 m for the main ring and 2.1 m for 

the sub-ring, better mode filtering was achieved. As well, a fibre Fabry-Pérot tunable filter 

(FFP-TF) was employed for mode selection and an external tunable laser source was 

incorporated for stabilising the wavelength selected for lasing. 
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Figure 34. Tunable dual ring-cavity based fibre laser structure [28]. A FFP-TF was used for fine wavelength 

tuning and an external tunable laser source (TLS) was employed to increase the intensity of the lasing 

wavelength over the other longitudinal modes. 

 

 

3.4 Conclusion 

In this chapter, a literature review has been presented which described the two reported 

tunable fibre laser architectures based on the use of linear- and ring-cavities. The key 

parameters and specifications as well as the advantages and disadvantages of various reported 

tunable fibre laser structures have been discussed to illustrate the different methods that can 

be used to realise wavelength tunability. 
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Chapter 4 

A Linear-Cavity Tunable Fibre Laser 

with a Saturable Absorber 
4.1 Introduction 

In Chapter 3, a review of the scientific literature was presented showing the reported methods 

to accomplish wavelength tunability in tunable fibre lasers using ring- or linear-cavities. The 

most common techniques reported for wavelength selection were fibre Bragg gratings 

(FBGs), acousto-optic filters and Fabry-Pérot filters. In this chapter, we propose and 

demonstrate a simple and cost-effective solution based on the use of a linear-cavity (acting as 

a resonant cavity) in conjunction with a saturable absorber (SA), for suppressing noise 

fluctuations generated in the gain medium, which create mode competition in fibre lasers, and 

lead to unstable laser output. Experimental results show that by optimising the length of an 

un-pumped erbium-doped fibre (which acts like a SA) inserted within the lasing cavity, mode 

competition can significantly be suppressed, thus resulting in a single lasing wavelength 

being amplified by the gain medium. 

 

4.1.1 Saturable Absorber Optimisation 

Various experimental procedures have been carried out to investigate how noise fluctuations 

that originate from high optical pumping power can be removed from a fibre laser's output. 

While the use of high pump power increases the laser output power, the noise fluctuations 

induced by mode competition degrades the stability of the lasing wavelength, leading to poor 

laser performance. This mainly occurs while utilising double optical pumping scheme when a 

standing wave pattern along the gain media is created by the two high-power signal waves 

travelling in opposite directions. This standing wave is the cause of spatial hole burning 

(SHB), which alters the gain spectrum of the optical gain medium. Once SHB is present in 

the gain media, different wavelengths do not experience the same amount of optical gain, 

leading to mode competition since the amount of energy available for the amplification of the 

different wavelengths is no longer constant, in comparison with the case when the gain 

medium is not optically pumped. 
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One of the methods that can help to control the noise fluctuations is the use of a section of 

un-pumped erbium-doped fibre (EDF), which acts as a SA when inserted into the linear 

resonator cavity. The aim of the SA was to behave like a narrow band filter rejecting 

unwanted wavelengths from amplification in the resonator cavity. This was achieved by 

forming constructive interference along the length of the SA, leading to a change in its 

refractive index, and hence creating a Bragg grating that acts as a narrow band filter with a 

centre wavelength equal to the lasing wavelength (as other wavelengths have lower power 

and experienced higher absorption than the lasing wavelength). It is important to optimise the 

properties of the SA in order to successfully suppress the noise fluctuations [29]. 

 

The typical location of the SA in the fibre laser system is outside the gain cavity as shown in 

Figure 35. This particular location of the SA is also chosen to be outside the optical pumping 

zone in order to form a standing wave pattern that filters the laser signal only. 

 

 

Figure 35. A double-pumped linear-cavity fibre laser with an un-pumped EDF used as a SA. The red arrow 

illustrates the location for the SA that suppresses noise spikes created by the high optical pumping power. 
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In the layout of the double-pumped linear-cavity fibre laser shown in Fig. 35, which was 

experimentally set up, two optical pump sources were used, namely a 980 nm laser diode and 

a 1480 nm laser diode, each had a maximum output optical power of 160 mW. The optical 

pump signal power levels were, 150 mW for the 980 nm pump and 90 mW for the 1480 nm 

pump. The light from both pump diodes was launched via a 1550/ 980 nm and a 1550/ 1480 

nm WDM multiplexers to ensure that both pump signals were coupled into the EDFA which 

had a length of 15 m, and the 1550 nm ports of the WDM multiplexers were connected to a 

1538.1 nm FBG and a fibre mirror, respectively, thus creating a laser system whose lasing 

wavelength equals to the Bragg wavelength of the FGB. A SA was connected between the 

1550/ 1480 nm WDM multiplexer and the fibre mirror to induce constructive interference 

between two light waves travelling in opposite directions along the fibre mirror port, thus 

creating a standing wave within the SA, and inducing a periodic refractive change, which 

acted as a narrow band Bragg filter whose centre wavelength coincides with that of the FBG 

[30], as illustrated in Fig. 36.  

 

 

Figure 36 (a) Illustration of the standing wave pattern induced inside a SA, creating a narrow band optical filter 

through periodic refractive index perturbations. (b) Standing wave pattern and corresponding superposed grating 

due to multi-mode operation. 
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Controlling the bandwidth of the SA is achieved depending upon the concentration value of 

erbium atoms present in the doped fibre, as well as the length of the un-pumped fibre. To 

create a small bandwidth filter, a high doped fibre was used resulting in substantial refractive 

index change. The measured absorption of the saturable absorber was 6.75 dB/ m at 1532 nm. 

 

A 5:95 fibre coupler was used to couple 95% of the lasing signal power to the FBG, which 

acted as one of the lasing cavity ends, while the remaining 5%, which is the laser output, was 

routed to an optical spectrum analyser (OSA) for laser performance monitoring.  

 

 

4.2 Experimental Results 

The experiments intended to demonstrate the simple yet efficient capabilities of the fibre 

laser to produce a stable laser output by the incorporation of a SA. By optimising the length 

of the un-pumped EDF, mode competition was completely eliminated and stable laser output 

was achieved which will be discussed later. 

 

In a first experiment, we removed the SA and drove the pump sources until lasing took place. 

Figure 37 shows a snap shot generated by the OSA of the output laser spectrum. It is noticed 

that while an output signal at 1538.1 nm was generated, different competing longitudinal 

modes were also present (two of these modes are seen in the snap shot captured), resulting in 

an unstable output power at 1538.1 nm. The side modes resulted from the high pump power 

launched into the erbium-doped fibre amplifier (EDFA) and are shown in Fig. 38, which 

displays the measured output spectrum of the EDFA used in our experiments. 
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Figure 37. Measured output spectrum of the fibre laser when no SA was used. The snap shot demonstrates the 

presence of competing longitudinal lasing modes within the optical cavity making the output power of the fibre 

laser unstable. 

 

 

Figure 38. Illustration of measured amplified spontaneous emission (ASE) with sharp noise spikes caused by the 

high optical pumping power. The high pumping power is necessary in order to create an output beam with high 

optical power and quality shape. 
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In a second experiment, a 2 m long SA was used as illustrated in Fig. 35. Figure 39 shows the 

output spectrum of the laser system when a SA of length 2 m was used. This length was less 

than the optimum length, producing substantial mode competition that significantly affected 

the stability of the laser output. This instability in output laser power is attributed to the fact 

that by using the un-pumped EDF, more optical loss was introduced into the lasing cavity, 

thus reducing the optical power being generated at 1538.1 nm and allowing more modes to 

compete within the cavity. Furthermore, the several standing waves at the competing mode 

wavelengths are generated, thus creating a superposed grating that filters the various present 

modes. However, the short length of the SA results in a small refractive index contrast, and 

hence, week optical filtering effects that are not enough to fully suppress the competing 

modes. This is shown in Fig. 40, where L is the total length of the saturable absorber and ∆n 

is the difference between the maximum and minimum changes in the refractive index of the 

saturable absorber. 

 

 

Figure 39. Measured output spectrum of the fibre laser when a 2 m long SA was used. The snap shot confirms 

the presence of mode competing longitudinal lasing modes within the optical cavity making the output power of 

the laser unstable for this length of the SA. 
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Figure 40. Refractive index differences inside the SA when no dominant mode is present, which creates a 

narrow Bragg grating. Since there is no periodic change in the refractive index, the resulting grating pattern 

allows side modes to compete within the optical cavity. 

 

Figure 41 shows the output spectrum of the laser when the length of the SA was increased to 

approximately 4 m. This length was the optimum length for the SA, resulting in the 

superposition of several gratings with the dominant one being the grating that corresponds to 

the dominant mode at 1538.1 nm. All other gratings have weaker rejection effects that they 

do not enable other modes to lase point within the cavity. The measured full width at half 

maximum (FWHM) linewidth of the dominant mode was less than 0.1 nm (which is the 

resolution of the OSA), the side mode rejection ratio (SMRR) was more than 30 dB, and the 

maximum output power was around +5 dBm. 

 

 

Figure 41. Laser output when the SA length was approximately 4 m which is the optimised length that 

minimised mode competition. 
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In a fourth experiment, the length of the SA was increased to 8 m. Figure 42 shows the 

corresponding measured output spectrum of the laser. As it can be observed, this long length 

of the SA not only introduced mode competition but also lowered the optimum output power 

by more than 3 dB. This is due to the fact that for a longer SA length the cavity loss increases 

thus reducing the dominant mode power as well as the power levels of the various lasing 

modes. This results in a standing wave pattern that corresponds to a single Bragg grating at 

1538.1nm but with a weaker rejection (or broader bandwidth), thus enabling modes closer to 

1538.1nm to lase, as evident from Fig. 42. 

 

 

Figure 42. The output of the laser system when the length of the SA was 8 m which corresponds to more than 

the optimum SA length. 

 

Note that different SA lengths within the 1-8 m range were investigated. All of them 

exhibited longitudinal mode generation and competition, except for the 4 m long SA. All of 

the results were performed at a room temperature of 23º C. 
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Figure 43 shows the output laser power versus the length of the SA. It is important to notice 

that while high output laser power is attained for a small SA length, multi-mode operation 

was observed, which degrades the laser performance. For an optimum SA length of around 4 

m, single longitudinal mode was attained with an output laser power of around +4.5 dBm. 

For this SA length the noise spikes were suppressed and the output laser signal was stable for 

more than 10 hours. 

 

 

Figure 43. Relationship between the output power and the length of the SA. Optimum length of SA corresponds 

to highest output power at which single mode operation was attained. 

 

 

4.3 Conclusions 

In this chapter, experimental results have been presented, which demonstrate the capability of 

an un-pumped EDF to act as a SA that suppresses laser modes in a linear-cavity fibre laser. 

The optimum length of the SA has experimentally been evaluated, by maximising the output 

laser power while ensuring stable single longitudinal mode operation with suppressed noise 

spikes. For a dual pumping scheme employing a 150 mW 980 nm pump, a 50 mW 1480 nm 

pump and an EDFA length of 15 m, an optimum SA length of around 4 m has been 
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demonstrated to suppress noise spikes thus operating the laser in a single mode regime. The 

laser system has produced an optical power output of 4.5 mW with a SMRR of more than 30 

dB and it has been shown that all other lengths within the tested range that do not match the 

optimised length of approximately 4 m for the SA result in a poor quality laser output due to 

the competition of various laser modes. 



 50 

 

Chapter 5 

Tunable Fibre Lasers Using a Linear-

Cavity Structure 
5.1 Introduction 

In chapter 4, we demonstrated experimentally that incorporating a section of un-pumped 

erbium-doped fibre (EDF) into a linear laser cavity, stable laser output was achieved by 

suppressing the mode competition that is usually present when high pump power levels are 

used to generate high optical output laser power levels. An optimum length of the saturable 

absorber (SA) of around 4 m produced a single mode lasing wavelength of 4.5 mW with a 

side mode rejection ration (SMRR) of more than 30 dB and that all other lengths not 

matching the optimised length of approximately 4 m for the SA resulted in a poor quality 

laser output due to the competition of various laser modes. In this chapter, we propose and 

demonstrate the concept of two novel linear-cavity based tunable fibre laser structures 

employing (i) a Micro-Electro-Mechanical-System (MEMS) device and (ii) an Opto-VLSI 

processor, for wavelength selection, in conjunction with an erbium-doped fibre amplifier 

(EDFA), a fibre collimator, a Bragg grating plate and an optical lens. Experimental results 

demonstrate continuous tuning over the 30 nm amplified spontaneous emission (ASE) 

spectrum range of the EDFA, and confirm the ability of both proposed fibre laser systems to 

lase at any arbitrary wavelength within the available optical gain spectrum of the EDF. 

 

5.1.1 MEMS-based Tunable Fibre Laser Employing a Linear-Cavity Structure 

Figure 44 shows the layout of the proposed MEMS-based linear-cavity tunable fibre laser, 

which is illustrated through an experimental set up. The section of EDF acting as the gain 

medium had a length of 20 m and a peak core absorption of 6.5 dB/ m measured at 1530 nm. 

Two laser diode pumps, a 980 nm and a 1480 nm, were used for optically pumping the EDF. 

Each pump laser was operated at its maximum output optical power of 160 mW. The light 

from both pump diodes was launched via 1550/ 980 nm and 1550/ 1480 nm wave division 

multiplexer (WDM) couplers, respectively. A silver-coated optical fibre was used as a mirror 
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to create one of the cavity ends. It had an insertion loss below 0.8 dB. The laser output was 

extracted from the 5% port of a 5:95 fibre coupler, which was connected to the optical 

spectrum analyser (OSA) for wavelength and output laser power monitoring. The remaining 

95% was sent to the MEMS device, which was the other reflecting end of the linear lasing 

cavity. A fibre based polarisation controller was used to maintain the polarisation state of the 

laser signal between roundtrips.  

 

 

Figure 44. Experimental setup diagram for the linear-cavity tunable fibre laser structure employing a MEMS 

device as wavelength selection mechanism. 

 

To achieve wavelength selection, the ASE of the EDFA was collimated at 0.5 mm diameter 

and mapped over the entire active window of the MEMS device, using a grating plate having 

1200 lines/ mm and a blazed angle of 70° at a wavelength of 1530 nm, in conjunction with a 

lens of focal length 10 cm, which was placed between the grating plate and the MEMS device 

as shown in Fig. 45. The operating voltage of the MEMS-based device was 3.3 volts provided 

by the development kit’s power supply. 
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Figure 45. Illustration of the components which realise wavelength selection in the linear-cavity tunable fibre 

laser. 

 

To synthesise a laser signal at a specific wavelength, λi, the set of micromirrors illuminated 

by λi were appropriately switched so that the incident waveband at λi reflected back along the 

same optical path and injected back into the optical cavity thus triggering laser action. This is 

illustrated in Fig. 46 where the selection and switching of a set of 15 micromirrors to reflect a 

portion of the ASE noise of the EDFA, λi, back into the linear-cavity to initiate laser action. 

The remaining energy of the ASE incident on the MEMS device was switched off-track, and 

hence, uncoupled back out of the fibre laser cavity. A LabView algorithm was especially 

developed and optimised to generate laser actions at arbitrary wavelengths, thus 

demonstrating a linear-cavity tunable fibre laser. The algorithm also enabled each 

micromirror to be treated as individual pixels.  
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Figure 46. Illustration of the selection and switching of a set of micromirrors (orange shaded micromirrors)so 

that a small portion of the ASE noise of the EDFA, λi, was re-injected into the linear-cavity to initiate laser 

action. 

 

Figure 47 shows typical laser signals generated over the complete tunable range. The 

measured tuning range of the laser exceeded 30 nm, which was chosen to cover the C-band 

telecommunications window 1530-1560 nm. The tuning resolution was 0.05 nm, which 

improves linearly with decreasing the micromirror size of the MEMS device. It is important 

to notice that the MEMS device’s active window was large enough to accommodate a larger 

bandwidth. However, the measured range was limited because the ASE produced by the 

EDFA covered only the C-band. By using an optical gain medium with a broader gain 

spectrum EDFA a wider wavelength tuning range can be attained. 
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Figure 47. Typical laser signals at different wavelengths generated over a tuning range of 30 nm, using the 

linear-cavity tunable fibre laser demonstrator shown in Fig. 44. 

 

Figure 47 also shows that the measured SMRR of the tunable fibre laser exceeds 30 dB 

throughout the entire C-Band. This makes the tunable fibre laser attractive for 

telecommunication applications. 
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5.2 OPTO-VLSI processor based Tunable Fibre Laser Employing a Linear-Cavity 
Structure 

This section proposes and demonstrates a novel linear-cavity continuously tunable fibre laser 

employing an Opto-VLSI processor as the wavelength selection mechanism. The advantages 

of this system include (i) no mechanically moving parts, (ii) the ability to realise multiple 

tunable lasers using a single Opto-VLSI processor, and (iii) the ability to select any 

wavelength from the whole available spectrum provided from an EDF. 

 

 

Figure 48. Architecture of the proposed fibre laser employing an Opto-VLSI processor for wavelength selection. 

 

Figure 48 shows the layout of the proposed fibre laser, which is illustrated through the 

experiment that was set up. The characteristics of the EDF used in the fibre laser system were 

a maximum absorption value of 16 dB/ m (measured at 1530 nm), an average erbium 

concentration of 820 parts per million (ppm) and the length was measured to be 5 m. The 

ASE produced by the EDF was created by using two optical pumps which operated at 980 nm 

with a total maximum optical power of 160 mW each. The ASE generation was required so 

that the Opto-VLSI processor could select a specific wavelength for re-injection into the laser 

cavity for lasing. The pump light remained between two WDMs to maximise the gain 

media’s excitation for high optical output power. 
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Once the selected wavelength by the Opto-VLSI processor was amplified, some of the lasing 

wavelength’s energy was allowed to escape the resonator cavity via an optical coupler. The 

splitting ratio chosen for the optical coupler was 90/ 10, which relates to the amount of 

energy which stayed in the resonator cavity, 90%, and the remaining 10% was used as the 

output of the laser source. The optical coupler was used since it provided a method to tap into 

the resonator cavity, while minimising the resonator cavity losses, which was important in 

order to create a stable fibre laser output. 

 

For the Opto-VLSI processor to accurately select the appropriate wavelength for lasing, the 

wavelengths in the ASE light were separated to cover the active or front window of the Opto-

VLSI processor by using a Bragg reflector as illustrated in Fig. 49. Bragg reflectors are 

normally manufactured by creating a periodic structure on a metallic surface so that an 

incident broadband light beam can be reflected at different angles or orders [31]. The Bragg 

reflector used in the experiments had 1200 lines/ mm and high optical power for the first-

order diffraction efficiency. 

 

 

Figure 49. Broadband light beam (ASE) is separated into its individual wavelengths due to the periodic structure 

of the Bragg reflector. The different wavelengths then cover the front window of the Opto-VLSI processor to 

realise wavelength selection. 
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When combining the Opto-VLSI processor with a fibre collimator, grating plate and a lens, as 

shown in Fig. 50, an optical filter was created which enabled the selection of wavelengths 

within the ASE spectrum. Wavelengths within the ASE spectrum were selected without the 

need of scanning through the whole tunable range. This was achieved by changing the 

location of the user generated digital phase hologram via the software interface developed 

with LabView. Digital phase holograms were created through periodic voltage profiles of 10 

× 512 pixels in size and with a total of 256 voltage levels. 

 

 

Figure 50. Illustration of wavelength selection using an Opto-VLSI processor in conjunction with various 

optical components to realise wavelength selection. 

 

Patch cables were used to connect fibre components together or to extend the length of 

optical fibres. The specifications for a typical patch cable were (i) single mode optical fibre, 

(ii) angled physical contact (APC) or with straight physical contact (PC) connectors, (iii) a 

core diametre of 9 µm, (iv) a cladding diametre of 125 µm, (v) input loss of 0.23 dB, (vi) 

return loss of 52.6 dB and (vii) average length of around 1.5 m. 
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The polarisation controller was also an important device, which aided in controlling the 

polarisation state of the light inside the optical fibre. Due to the imperfections in the 

manufacturing process of optical fibres, the level of birefringence changes along the length of 

an optical fibre due to either mechanical stress or thermal effects generated by the 

surrounding environment where the optical fibre was being utilised. Figure 50 illustrates the 

polarisation controller that was employed which had three wave paddles, two 1/4 wave and a 

1/2 wave, which were freely able to rotate in any direction along the optical fibre axis. The 

first 1/4 wave paddle changed any polarisation state into linear polarisation which then 

allowed the 1/2 wave paddle to change the angle of the polarisation so that the final 1/4 

paddle could convert the linear polarisation to a different state of polarisation such as 

elliptical [32]. 

 

 

Figure 50. Fibre based polarisation controller with two 1/4 wave paddles and one 1/2 wave paddle which enable 

to change the state of polarisation of the light inside of an optical fibre. 
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5.3 Opto-VLSI processor based Tunable Fibre Laser - System Tunability 

The fibre laser system was able to continuously tune wavelengths along the C-band, which 

corresponds to the emission spectrum of the optically-pumped EDF. The Opto-VLSI 

processor used a 10 × 512 pixel hologram which corresponded to the smallest hologram 

width that allowed lasing to occur. Figure 51 shows a selection of wavelengths recorded with 

an OSA which the fibre laser system was able to select by changing the location of the 

hologram on the Opto-VLSI processor. The total tuning range was measured to be more than 

30 nm, from approximately 1530 nm to 1560 nm, and any wavelength within this range could 

be selected for lasing. It is obvious from Fig. 51 that the optical signal power decreased 

slightly as the wavelength was tuned far from the centre of the C-Band, however, the ASE 

noise around that channel also dropped, thus maintaining the SMRR around 30 dB. By 

increasing the pump power, a higher signal level and a higher SMRR (> 30 dB) were 

observed, as illustrated in Fig. 52. 

 

 

Figure 51. Range of wavelengths which the fibre laser system can select from. The different lasing wavelengths 

were individually generated, but they were combined onto a single diagram for simplification. 
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Figure 52. Data captured from the OSA of a typical lasing wavelength with a SMRR of more than 30 dB when 

the optical pumping power is increased producing a lasing wavelength with higher optical power than in Fig. 51. 

 

 

5.4 Conclusions 

In this chapter, we have experimental demonstrated the principles of two tunable fibre lasers 

using linear-cavities in conjunction with a MEMS device and an Opto-VLSI processor. We 

have shown that by electronically reconfiguring the MEMS device continuous laser 

wavelength tuning can be achieved over the optical amplifier gain spectrum. Experimental 

results have shown that the tunable fibre laser can be tuned over the entire C-band and 

realising a SMRR of more than 30 dB. Also, the Opto-VLSI processor has been reconfigured 

electronically to allow the fibre laser system to continuously tune through the available ASE 

spectrum of 30 nm and to select the desired wavelength for further amplification. For low 

optical pump powers (or gains), the Opto-VLSI processor has been able to select and re-inject 

wavelengths for amplification into the lasing linear-cavity, while maintaining a high SMRR 

exceeding 30 dB. 
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Chapter 6 

Tunable Fibre Laser Using a Ring-

Cavity Structure 
6.1 Introduction 

In Chapter 5, the concept of two novel linear-cavity based tunable fibre laser structures was 

proposed and demonstrated which employed (i) a Micro-Electro-Mechanical-System 

(MEMS) device and (ii) an Opto-VLSI processor, for wavelength selection, in conjunction 

with an erbium-doped fibre amplifier (EDFA), a fibre collimator, a Bragg grating plate and 

an optical lens. Experimental results demonstrated continuous tuning of 30 nm and proved 

the ability of both proposed fibre laser systems to lase any arbitrary wavelength within the 

available optical gain spectrum of the erbium-doped fibre (EDF). In this chapter, a MEMS-

based tunable fibre laser using a ring-cavity is experimentally set up to compare its 

performance with that of the MEMS device tunable fibre laser employing a linear-cavity, 

which was reported in Chapter 5. Experimental results confirm that the linear-cavity fibre 

laser exhibits higher gain efficiency, higher laser optical output power and narrower 

linewidth than a ring-cavity tunable fibre laser. 

 

6.1.1 MEMS-based Tunable Fibre Laser Using a Ring-Cavity Structure 

A tunable fibre laser employing a ring-cavity structure which is illustrated in Fig. 53 was 

especially developed to compare the performance of the proposed linear-cavity based tunable 

fibre laser with that based on a ring-cavity structure. The key difference between the ring-

cavity and the linear-cavity structures was that the fibre mirror used in the linear-cavity 

resonator was replaced by a single-mode patch cable optical fibre which was connected to an 

optical circulator. These components were placed between the optical coupler and the fibre 

collimator, to ensure uni-directional propagation of the selected wavelength for amplification 

in the EDF gain media. An EDF with the following properties was used as the gain medium 

which had 15 m in length and its peak core absorption measured at 1530 nm was 6.5 dB/ m. 

The optical pumping of the gain media was produced by using two pump sources, a 980 nm 

and a 1480 nm, each with a maximum optical power of 160 mW. In order to control the 

polarisation of the ASE, a polarisation controller was inserted in between two wave division 
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multiplexers (WDMs) which restricted the pump energy from leaving the gain media. To 

accurately map all of the ASE onto the MEMS device, a collimator, a Bragg plate and a lens 

were utilised. The collimator had a collimated beam diametre of 0.5 mm, the Bragg plate was 

selected due to its 1200 lines/ mm with a blaze angle of 70° measured at 1530 nm and the 

focal length of the lens was 10 cm. During the experiment, an optical fibre coupler was used 

which allowed 95% of light to reach the MEMS device for wavelength selection. The 

remaining 5% of light was sent to an OSA for wavelength quality monitoring. 

 

 

Figure 53. Experimental setup diagram for the tunable fibre laser using a ring-cavity structure and employing a 

MEMS device for wavelength selection. 

 

Figure 54 shows typical laser signals generated over a wavelength range of 30 nm by the 

ring-cavity tunable fibre laser. The tunable range corresponds to the number of different 

wavelengths which a tunable laser can select for lasing. The optical pump power was 160 

mW for each pump source. The side mode rejection ratio (SMRR) for the ring-cavity over the 

whole of the tunable range was between 15–22 dB. Also, the measured overall power 

differences between lasing wavelengths were around 6 dBm. The tuning range during the 

experiments was measured to be greater than 30 nm which corresponded to the C-band. 
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Figure 54. Typical laser signals at different wavelengths generated using the ring-cavity tunable fibre laser 

demonstrator shown in Fig. 53. The measured tuning range was 30 nm which covered the entire C-band. 

 

Another characteristic of the tunable fibre laser was investigated, namely the linewidth of a 

typical lasing wavelength, to find out its quality. The result of a typical laser signal generated 

by the tunable fibre laser employing a ring-cavity structure is shown in Fig. 55. The linewidth 

of the ring-cavity was measured with an optical spectrum analyser (OSA) to be 0.07 nm for a 

lasing wavelength corresponding to 1543 nm. This wavelength of 1543 nm was found to be 

equal to the highest output power from the tunable fibre laser using a ring-cavity structure 

and was selected since it would guarantee the smallest linewidth. A comparison between the 

typical lasing linewidths between the ring- and the linear-cavity will be presented in the next 

section which will demonstrate the increased performance qualities of the linear-cavity over 

the ring-cavity structure. 
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Figure 55. A typical laser signal generated by the ring-cavity fibre laser corresponding to a wavelength of 1543 

nm. Expanded plot (inset) demonstrates a measured full width at half maximum (FWHM) linewidth of 0.07 nm. 

 

 

6.2 Comparison Between the Linear-Cavity Tunable Fibre Laser and a Ring-Cavity 
Tunable Fibre Laser  

This section will compare the different characteristics between ring- and linear-cavity 

resonant geometries for the proposed tunable fibre laser structures. As mentioned in previous 

chapters, the tunable fibre laser employing a linear-cavity architecture is capable of using the 

gain medium more efficiently, resulting in a higher quality lasing wavelength, meaning a 

lasing wavelength with narrower linewidth and more optical power than by using a ring-

cavity structure. 
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The optical power between the ring- and linear-cavities will be analysed first and then the 

linewidth measurements will be discussed later. Figure 56 shows the maximum optical power 

for a typical lasing wavelength employing the linear-cavity structure which was measured to 

be around -9 dBm. Also, the overall power difference throughout all the tunable range was 

measured to be less than 3 dBm, with a SMRR of more than 30 dB. 

 

 

Figure 56. Typical lasing wavelengths from the tunable fibre laser using the linear-cavity structure. The 

maximum optical power was recorded to be -9 dBm with a SMRR of more than 30 dB. 

 

Figure 57 shows typical lasing wavelengths from the tunable fibre laser employing a ring-

cavity structure. The maximum optical power was measured to be -18 dBm, with an overall 

power difference of approximately 6 dBm and a SMRR of more than 20 dB. These results 

with the results from the linear-cavity of a maximum output power of -9 dB, an overall power 

difference of less than 3 dB and a SMRR of more than 30 dB, demonstrate the superior 

characteristics of the tunable fibre laser employing the linear-cavity structure over a ring-

cavity shape. 
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Figure 57. Typical lasing wavelengths from the tunable fibre laser using a ring-cavity structure. Maximum 

optical power was recorded to be -18 dBm with a SMRR of more than 20 dB. 

 

The tunable fibre laser using a liner-cavity structure creates a self-filtering effect, enabling 

the lasing wavelength to experience narrower linewidths than when using a ring-cavity 

architecture. The linewidth for a typical lasing wavelength from the tunable fibre laser 

employing a linear-cavity structure is shown in Fig. 58. The linewidth was measured to be 

0.06 nm corresponding to the lasing wavelength of 1541 nm. This wavelength matched the 

highest optical power which ensured the narrowest linewidth realisable by the tunable fibre 

laser employing a linear-cavity structure. Also, the linewidth of the linear-cavity equalled to 

that of the resolution bandwidth of the OSA used in the experiments. The resolution 

bandwidth is defined as the smallest possible frequency which a device can successfully 

evaluate. So, we believe that the actual linewidth of the linear-cavity tunable fibre laser is 

much smaller due to the self-filtering effect caused by the double-pass of the laser signal 

through the EDFA optical gain medium. 
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Figure 58. A typical laser signal generated by the tunable fibre laser employing a linear-cavity for measuring the 

laser linewidth. Expanded plot (inset) demonstrates a measured FWHM linewidth of 0.06 nm. 

 

Figure 59 shows the typical linewidth produced by the tunable fibre laser using a ring-cavity 

structure. The measured linewidth, as shown in the expanded plot, was measured to be 0.07 

nm. Hence, the tunable fibre laser employing a linear-cavity structure outperforms a ring-

cavity architecture by allowing more efficient use of the gain media, a higher optical output 

power and a narrower linewidth for a typical lasing wavelength. 
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Figure 59. A typical laser signal generated by the tunable fibre laser employing a ring-cavity for measuring the 

laser linewidth. Expanded plot (inset) demonstrates a measured FWHM linewidth of 0.07 nm. 

 

 

6.3 Conclusions 

In this chapter, a ring-cavity tunable fibre laser structure has been experimentally investigated 

and its performance has been compared to that of the proposed linear-cavity tunable fibre 

laser. Experimental results have shown that while both laser structures are capable of tuning 

throughout the entire C-band, the linear-cavity tunable fibre laser has a linewidth below 0.06 

nm, an SMRR of 30 dB and is able to generate a higher maximum output power level of -9 

dBm. On the other hand, the ring-cavity tunable fibre laser has a wider measured linewidth of 

0.07 nm, a lower maximum optical power of -18 dBm and a lower SMRR of around 20 dB, 

resulting in a laser output of inferior performance quality than the linear-cavity tunable fibre 

laser. 
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Chapter 7 

Conclusion 
In this thesis, tunable fibre lasers employing a linear-cavity structure and incorporating either 

an Opto-VLSI processor or a MEMS-based device have been proposed and demonstrated 

experimentally. In addition, a tunable fibre laser employing a ring-cavity structure has 

especially been implemented in order to compare its performance with that of the linear-

cavity tunable fibre lasers. Experimental results have demonstrated that the use of a linear-

cavity, rather than a ring-cavity can realise a laser with superior performance, namely higher 

optical output power, a higher side mode suppression ratio (SMRR) and a narrower 

linewidth. 

 

In Chapter 1, the concept of lasers was presented as well as the description of the most widely 

used laser types, namely semiconductor lasers, gas lasers and fibre lasers. Tunable fibre lasers 

were presented by describing the two employed optical gain structures which are either a 

ring- or linear-cavity geometry. The overall system architecture for the realisation of the 

proposed tunable fibre laser employing a linear-cavity structure and using either an Opto-

VLSI processor or a MEMS device was shown, along with a description of user generated 

holograms which was the main technique used to realise wavelength selection. 

 

In Chapter 2, the main system architecture of the tunable fibre laser using a linear-cavity was 

presented, along with descriptions on the main benefits of using optical fibres, their physical 

structure and transmission modes, as well as the description of the main characteristics of the 

Opto-VLSI processor and the MEMS-based device used in this thesis. A list of application 

areas where Opto-VLSI processors and MEMS devices can be used were presented which 

included the telecommunications industry, spectroscopy and also as part of fibre laser sensor 

based devices.  
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In Chapter 3, a review was presented which showed the different tunable fibre laser systems 

that have been reported in the scientific literature. This review included ring- and linear-

cavity based optical gain structures, along with the various techniques used for realising 

wavelength tunability. The most commonly used methods to achieve wavelength selection 

were stretchable fibre Bragg gratings (FBGs), acousto-optic filters and etalon based filters 

such as Fabry-Pérot cavities. 

 

In Chapter 4, experimental results demonstrated the ability to suppress noise spikes produced 

by high optical pumping power when a section of un-pumped erbium-doped fibre (EDF) was 

introduced into a linear-cavity fibre laser to act as a saturable absorber (SA). When the SA 

had a length of approximately 4 m (corresponding to the optimised length), experimental 

results demonstrated that this length successfully suppressed the noise spikes resulting in a 

more stable laser output which did not suffer from multi-mode competition. The experimental 

results were performed by using an erbium-doped fibre amplifier (EDFA) length of 15 m and 

optically pumped using a double pump scheme, with a 980 and 1480 nm optical pumps, 

operating at 150 mW and 50 mW respectively. The fibre laser optical output power was 

measured to be 4.5 mW which corresponded to a lasing wavelength of 1538.1 nm. All of the 

other remaining tested SA lengths which did not correspond to the optimised length produced 

mode competition in the fibre laser output, resulting in a lasing wavelength with low quality 

performance. 

 

In Chapter 5, two novel tunable fibre laser structures were presented which used a linear-

cavity optical gain structure with the aid of an Opto-VLSI processor and a MEMS-based 

device to achieve wavelength tunability. The experimental results shown demonstrated the 

ability of the Opto-VLSI processor and the MEMS-device to be electronically reconfigured, 

enabling the fibre laser to continuously tune through a 30 nm range. The MEMS-based 

device was able to maintain a SMRR of more than 30 dB with overall optical power 

differences between lasing wavelengths measuring less than 3 dB. The experimental results 

also showed that the Opto-VLSI processor was able to select and re-inject wavelengths into 

the optical cavity for lasing even when the optical pumping power was reduced while 

maintaining a SMRR measured to be more than 30 dB throughout the entire tunable range of 

30 nm. 
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In Chapter 6, a tunable fibre laser employing a ring-cavity structure was presented, which 

used a MEMS-based device for wavelength selection for comparison with the proposed 

linear-cavity tunable fibre laser to demonstrate the higher performance characteristics of the 

linear-cavity laser. The experimental results showed that the ring-cavity laser produces a 

similar tuning range of 30 nm to the linear-cavity. However, the maximum measured output 

optical power of the ring-cavity was -18 dBm, while the linear-cavity achieved a higher 

output optical power of -9 dBm. Also, the SMRR of the ring-cavity laser was measured to be 

more than 20 dB while the measured SMRR of the linear-cavity was more than 30 dB. 

Finally, the measured linewidth of the ring-cavity laser was 0.07 nm while the linear-cavity 

laser had a lower linewidth measured of 0.06 nm, demonstrating a superior performance over 

the ring-cavity counterpart.  

 

 

7.1 Future Work 

The following is a list of areas where further research has the potential to benefit the 

proposed and demonstrated linear-cavity tunable fibre lasers. These recommendations are 

after the result of numerous experiments carried out on the proposed novel linear-cavity 

tunable fibre lasers. 

 

7.1.1 Gain Medium 

The optical gain medium used in this project was an EDFA, which has a limited gain 

bandwidth product. By using an erbium-ytterbium (Er-Yr) co-doped EDFA, the gain 

bandwidth product of the resulting tunable laser can significantly be improved. This is also 

beneficial since a higher optical gain results in a narrower laser linewidth. 
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7.1.2 Opto-VLSI processor – Active Window 

The current size of the Opto-VLSI processor’s active window restricted the proposed tunable 

fibre laser to select wavelengths for lasing to a range matching approximately 30 nm. 

However, the use of a larger active window aperture will enable the proposed tunable fibre 

laser to select from a larger range of wavelengths, when a wideband optical amplifier is used. 

An Opto-VLSI processor of a larger active window enables a broader wavelength spectrum 

to cover the active window of the Opto-VLSI processor thus realising a wider range tunable 

fibre laser.  

 

7.1.3 Multi-wavelength Generation 

The generation of multiple lasing wavelengths with the aid of an Opto-VLSI processor [33] 

and a MEMS-based device [34] have been reported. However, all of these tunable fibre laser 

structures employed ring-cavities. Investigating the use of a linear-cavity tunable fibre laser 

to realise multi-wavelength lasing is worthwhile, as this will broaden the application areas of 

the proposed tunable fibre laser. 
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