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ORIGINAL ARTICLE

Predicting Alzheimer Disease with
b-Amyloid Imaging: Results from the
Australian Imaging, Biomarkers, and

Lifestyle Study of Ageing

Christopher C. Rowe, MD,1 Pierrick Bourgeat, PhD,2 Kathryn A. Ellis, PhD,3,4

Belinda Brown, BSc,5 Yen Ying Lim, PhD,3,4 Rachel Mulligan, PhD,1

Gareth Jones, BSc,1 Paul Maruff, PhD,3 Michael Woodward, MD,6

Roger Price, PhD,7 Peter Robins, MD,7 Henri Tochon-Danguy, PhD,1

Graeme O’Keefe, PhD,1 Kerryn E. Pike, PhD,1,8 Paul Yates, MD,1

Cassandra Szoeke, MD,9 Olivier Salvado, PhD,2 S. Lance Macaulay, PhD,10

Timothy O’Meara, PhD,10 Richard Head, PhD,10 Lynne Cobiac, PhD,10

Greg Savage, PhD,11 Ralph Martins, PhD,5 Colin L. Masters, MD, PhD,3

David Ames, MD,4,9 and Victor L. Villemagne, MD1,3

Objective: Biomarkers for Alzheimer disease (AD) can detect the disease pathology in asymptomatic subjects and
individuals with mild cognitive impairment (MCI), but their cognitive prognosis remains uncertain. We aimed to
determine the prognostic value of b-amyloid imaging, alone and in combination with memory performance, hippo-
campal atrophy, and apolipoprotein E e4 status in nondemented, older individuals.
Methods: A total of 183 healthy individuals (age 5 72.0 6 7.26 years) and 87 participants with MCI (age 5 73.7 6
8.27) in the Australian Imaging, Biomarkers, and Lifestyle study of ageing were studied. Clinical reclassification was
performed after 3 years, blind to biomarker findings. b-Amyloid imaging was considered positive if the 11C-Pitts-
burgh compound B cortical to reference ratio was �1.5.
Results: Thirteen percent of healthy persons progressed (15 to MCI, 8 to dementia), and 59% of the MCI cohort pro-
gressed to probable AD. Multivariate analysis showed b-amyloid imaging as the single variable most strongly associ-
ated with progression. Of combinations, subtle memory impairment (Z score 5 20.5 to 21.5) with a positive
amyloid scan was most strongly associated with progression in healthy individuals (odds ratio [OR] 5 16, 95% confi-
dence interval [CI] 5 3.7–68; positive predictive value [PPV] 5 50%, 95% CI 5 19–81; negative predictive value [NPV]
5 94%, 95% CI 5 88–98). Almost all amnestic MCI subjects (Z score � 21.5) with a positive amyloid scan developed
AD (OR 5 1; PPV 5 86%, 95% CI 5 72–95; NPV 5 100%, 95% CI 5 80–100). Hippocampal atrophy and e4 status
did not add further predictive value.
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Interpretation: Subtle memory impairment with a positive b-amyloid scan identifies healthy individuals at high risk
for MCI or AD. Clearly amnestic patients with a positive amyloid scan have prodromal AD and a poor prognosis for
dementia within 3 years.

ANN NEUROL 2013;74:905–913

Earlier and more accurate diagnosis of Alzheimer dis-

ease (AD) will aid the development of early interven-

tion therapies and may assist clinical and social

management of the disease. The necessity for dementia in

the National Institute of Neurological and Communicative

Diseases and Stroke–Alzheimer’s Disease and Related Dis-

orders Association (NINCDS-ADRDA) and Diagnostic

and Statistical Manual of Mental Disorders 3rd edition

revised diagnostic criteria1 for probable AD confine diag-

nosis to a late stage of the illness after many years of

symptoms and may reduce the likelihood of a useful out-

come from therapeutic intervention. Even before demen-

tia, 60% loss of entorhinal neurons has been documented

in those in the mild cognitive impairment (MCI) phase of

the illness.2,3 Imaging data now show that the accumula-

tion of b-amyloid (Ab) plaques, a pathological hallmark

of AD, occurs over several decades before dementia,4,5

suggesting a wide time window for therapeutic interven-

tion. Consequently, recently published research criteria by

the International Work Group6,7 and the National Insti-

tute of Aging and Alzheimer’s Association (NIA=AA)

work group8–10 propose the diagnosis of AD prior to

dementia through the use of biomarkers for the disease

process in combination with episodic memory (EM)

assessment. These biomarkers include Ab imaging with

positron emission tomography (PET). Prospective data are

needed to validate this new approach to early diagnosis of

AD and to inform clinicians on the appropriate clinical

use of Ab imaging, relative to or in combination with

other AD biomarkers, and to ensure their appropriate

incorporation into clinical trials.

The Australian Imaging, Biomarkers, and Lifestyle

study of ageing (AIBL) commenced in 2006 and was

designed to improve the understanding of the pathogenesis

of AD by intensive and longitudinal study of a large

cohort of older persons.11 AIBL now has prospective, lon-

gitudinal data to test the validity of the criteria for preclin-

ical and prodromal AD. To that end, clinical outcome at

3-year follow-up relative to baseline cognitive measure-

ments and several AD biomarker findings are reported.

Subjects and Methods

Participants
Written informed consent was obtained from all participants.

Approval for the study was obtained from the Austin Health, St

Vincent’s Hospital Melbourne, and Edith Cowan University

Human Research Ethics Committees. Healthy control (HC)

subjects aged >60 years were recruited by advertisement.

Patients with MCI were recruited from dementia specialists in

both public and private clinics. The baseline characteristics,

methodology, and baseline findings from the AIBL imaging

cohort have been published previously.12 To strengthen the

present analysis, data obtained from 72 individuals (32 HC, 40

MCI) with 3 years of follow-up recruited prior to commence-

ment of AIBL at the AIBL imaging core laboratory (Austin

Health, Melbourne) with the same recruitment criteria and

methods as AIBL have been included. The majority of these

individuals subsequently enrolled into AIBL at their first 18-

month review, but the very first assessment of each participant

whether pre-AIBL or AIBL was used as the baseline for this

report to avoid duplication of data and bias of the cohort

toward stable clinical status. MCI subjects enrolled pre-AIBL

were younger (71.3 6 8.9 years vs 75.3 6 7.1, p 5 0.012) but

had the same rate of progression to AD (63% vs 54%, p 5

0.66). There were no other demographic differences between

the pre-AIBL and direct entry AIBL MCI or HC subjects. In

total 193 HC and 93 MCI participants entered the imaging

cohorts. After 3 years, 10 HC subjects were lost to follow-up (2

died, 1 developed terminal cancer, and 7 withdrew) and 6 of

the MCI subjects were lost to follow-up (5 died and 1 with-

drew after a severe stroke).

After each visit (at 0, 18, and 36 months), participants

were classified as HC, MCI, AD, or other dementia by consen-

sus panel review of neuropsychological test scores and func-

tional reports blind to biomarker findings. Diagnosis of AD

was made as per NINCDS-ADRDA criteria for probable AD.1

Diagnosis of MCI was made as per Petersen and Winblad crite-

ria.13,14 All HC participants performed within the published

normal range for their age group on neuropsychological tests.12

Sixteen MCI and 5 HC subjects did not attend study centers

for final follow-up. In these participants, an informant tele-

phone interview was performed by a neurologist.

Neuropsychological Evaluation
All participants underwent extensive neuropsychological testing

as described previously.11 However, in this report, only the Cal-

ifornia Verbal Learning Test-II long delayed free recall (CVLT-

II LDFR) Z score derived from published, age-matched normal

values was used to define EM performance at the baseline

assessment so that findings could be readily applied to clinical

practice.

Magnetic Resonance Imaging
All subjects underwent 3-dimensional magnetization-prepared

rapid gradient-echo (3D-MPRAGE), T2 fast spin echo and

fluid-attenuated inversion recovery (FLAIR) sequences on 1.5T

or 3T scanners. Subjects with history of stroke or a finding of a

ANNALS of Neurology
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cortical stroke based on interpretation of the T1 and FLAIR

images by a neuroradiologist were excluded.

PET
As previously described,12 a 30-minute acquisition scan was

performed with Allegro (Philips Medical Systems, Cleveland,

OH) PET cameras at Austin Health for the Melbourne

participants and the Sir Charles Gardiner Hospital for the Perth

participants, starting 40 minutes after injection of �370MBq
11C-Pittsburgh compound B (PiB).

Image Analysis
A preset in-house template of cortical regions of interest (ROIs)

was applied to the PiB scan via placement on the subject’s core-

gistered magnetic resonance imaging (MRI) by an operator

(V.L.V.) who was blind to the subject’s clinical status as previ-

ously described.4,12 Coregistration of PiB to MRI was per-

formed with SPM5.15

Ab burden was expressed as the average of the mean of

frontal, superior parietal, lateral temporal, lateral occipital, and

anterior and posterior cingulate ROI activity per voxel divided

by the cerebellar gray matter voxel activity and termed the

standardized uptake value ratio (SUVR).

Hippocampal volume (HV) was calculated from T1

MPRAGE images after tissue segmentation using an implemen-

tation of the expectation maximization segmentation algo-

rithm.16 The modified algorithm applied 9 MRI atlases with

their associated tissue priors spatially normalized to each partici-

pant to provide 9 segmentation maps. A voting scheme then

provided consensus for each voxel. As previously described, a

hippocampal template was manually delineated on the Mon-

treal Neurologic Institute single-subject template17 and then

spatially normalized to each individual study for hippocampus

measurement.18 MRI data were normalized by dividing the HV

by the total intracranial volume consisting of the sum of the

cerebrospinal fluid (CSF), gray matter, and white matter

volumes. The full pipeline is available as a plug-in of the

open-source software MILXView (http:==research.ict.csiro.au=

software=milxview).

Determination of Cutoff Values
A negatively skewed and bimodal distribution of PiB SUVR

was observed in HC subjects, and could not be normalized

with data transformations. As reported previously, baseline PiB

SUVR was classified as negative (PiB2, SUVR < 1.5) or posi-

tive (PiB1, SUVR � 1.5) based on the result of a hierarchical

cluster analysis performed on all HC participants at Austin

Health.12 This definition of PiB1 (SUVR � 1.5) was used for

the primary analyses in this report. However, 2-graph receiver

operator curve (ROC) analysis19 of the AIBL AD and HC

cohorts gave an SUVR of 1.9 as the optimal cutpoint for dis-

tinction of AD from age-matched HC subjects. This higher

SUVR cutpoint was subsequently used to define high PiB1 (ie,

AD-like) and low PiB1 (SUVR 5 1.5–1.9) to investigate

whether AD-like, highly positive PiB scans had greater predic-

tive value than mildly positive scans.

Given the normal distributions of MRI volumetrics in

the AIBL HC and AD groups, a 2-graph ROC approach was

applied to establish the optimal cutoff for HV (4.0cm3)

between them. This cutoff was then applied to the HC and

MCI subjects in this study to determine the predictive value of

hippocampal atrophy (HA).

For the HC group, subjects were classified as having

subtle EM impairment (EM1) when the CVLT-II LDFR Z

score was 20.5 to 21.5 below the published age- and gender-

adjusted normal mean. Amnestic MCI required a CVLT-II

LDFR Z score of �21.5.

Apolipoprotein E genotype was classified as e41 when 1

or 2 e4 alleles were present.

Statistical Evaluation
Data are presented as mean 6 standard deviation unless other-

wise stated. Correction for age or years of education was not

applied to contingency table data analysis. Chi-square analyses

were conducted to determine the extent to which each individ-

ual biomarker increased the risk of progression to MCI or AD.

Combination biomarker pairs (both biomarkers positive vs both

negative with exclusion of participants who had only 1 of the

pair positive) were also analyzed. Odds ratios (ORs) and their

95% confidence intervals (CIs), positive predictive value (PPV),

and negative predictive value (NPV) were calculated to provide

an estimation of the magnitude of associations. If the OR could

not be calculated due to a 100% NPV, Cox proportional haz-

ard ratio was derived for this pair of tests. Probability values

resulting from all statistics were corrected for multiple compari-

sons using false discovery rates. To determine which baseline

risk factor was the strongest predictor of progression to MCI or

AD, PiB, HV, EM, apolipoprotein E e4 status, age, and years

of education were considered simultaneously in a stepwise logis-

tic regression analysis that used the Wald forward selection

method.

Results

Healthy Elderly Cohort
Characteristics of the healthy cohort are provided in

Table 1. Participants were generally well educated, with

an average of 13.5 years of education, and only 12% had

a CVLT-II LDFR Z score below -0.5. Twenty-three

(13%) HC subjects progressed to MCI or dementia over

3 years (15 to MCI, 7 to AD, and 1 to vascular demen-

tia). Only PiB1 and EM1 were significantly associated

with progression, with ORs of 4.8 and 4.2, respectively.

The combination of PiB1 with EM1, or with HV1,

increased the risk to approximately 50% (Table 2).

For HC progression to MCI or dementia, the PPV

for PiB1 increased from 17% in those mildly PiB1 to

37% in those with a high PiB1 (AD-like) scan (Fig), but

this was not significant. There were no baseline differen-

ces in gender, age, years of education, e41 prevalence,

HV, or memory score between low PiB1 and high PiB1.
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For the 8 HC subjects who progressed to dementia,

PiB1 and HV1 were predictive, with ORs of 8.2 and

9.5, respectively, but with low PPV (11% and 13%,

respectively).

Multivariate logistic regression indicated that PiB1

was the strongest predictor of progression to MCI or

dementia 3 years after baseline (OR 5 4.81, 95% CI 5

1.84–12.58, Wald chi-square[1] 5 10.25, p 5 0.001).

Years of education also predicted progression to MCI or

dementia 3 years after baseline, although the OR was sig-

nificantly lower (OR 5 0.82, 95% CI 5 0.71–0.95,

Wald chi-square[1] 5 7.35, p 5 0.007). Age, e41, HV1,

and EM1 by themselves did not improve the prediction

of disease progression (all Wald chi-square < 1.75, all p

> 0.187). Analysis limited only to the 8 who progressed

to dementia showed that HV1 (OR 5 8.10, 95% CI 5

1.5–43.2, Wald chi-square[1] 5 5.99, p 5 0.014) and

PiB1 (OR 5 7.30, 95% CI 5 1.4–39.1, Wald chi-

square[1] 5 5.40, p 5 0.020) predicted progression to

dementia, but e41 and EM1 did not.

MCI Cohort
Characteristics of the MCI cohort are provided in Table

1. Fifty-one (59%) progressed to a clinical diagnosis of

probable AD and 3 (3.4%) to other dementias over 3

years. Of those progressing to AD, 5 had a negative base-

line PiB scan and all were e4 negative. PiB1 (OR 5

14.5), amnestic MCI (OR 5 10.6), e41 (OR 5 5.4),

and HV1 (OR 5 3.8) were all significantly associated

with progression to probable AD (Table 3).

For progression from MCI to probable AD, the

PPV increased significantly from 44% in those with a

mildly PiB1 scan to 81% in those with a high PiB1 scan

(see Fig; p 5 0.027). There were no baseline differences

in gender, age, years of education, e41 prevalence, or HV

between the low PiB1 and high PiB1 MCI subjects, but

CVLT Z scores were significantly lower in the high PiB1

group (21.83 6 0.9 vs 23.14 6 0.9, p 5 0.003).

Of the MCI subjects with both PiB1 and amnestic

MCI, the PPV was 86% for progression to probable AD

and the NPV was 100% (see Table 3). The hazard ratio

was >105 (p < 0.001). PiB1 with HV1 also showed a

very high rate of progression to probable AD (PPV 5

83%, OR 5 44). The combination of PiB1 with e41 did

not add to the predictive power of PiB1 alone. There

were insufficient PiB1 subjects with amnestic MCI with-

out reduced HV to determine whether the addition of the

HV biomarker increased predictive power.

Multivariate logistic regression indicated that PiB1

was most strongly associated with progression to proba-

ble AD 3 years after baseline (OR 5 12.71, 95% CI 5

2.89–55.90, Wald chi-square[1] 5 11.32, p < 0.001).

Amnestic MCI also predicted progression to probable

AD, although the OR for this was numerically lower

(OR 5 6.26, 95%CI 5 1.78–22.30, Wald chi-square[1]

5 8.01, p 5 0.005). With these factors accounted for,

age, years of education, e41, and HV1 did not improve

significantly the prediction of progression to probable

AD (all Wald chi-square[1] < 2.55, all p > 0.110).

TABLE 1. Characteristics of the Healthy and Mildly Cognitively Impaired Participants

Characteristic HC, n 5 183 MCI, n 5 87

Age, yr (SD) 72.0 (7.26) 73.7 (8.27)

Female,No.[%] 95 [51.9] 43 [49.4]

Education, yr (SD) 13.52 (3.73) 12.56 (4.27)

APOEe4 carrier,No.[%] 74 [40.4] 50 [57.5]

PiB positive,No.[%] 53 [29.0], 29 higha 60 [69.0], 50 higha

Memory impairment,bNo.[%] 22 [12.0] 53 [60.9]

Reduced hippocampal volume,cNo.[%] 46 [26.2] 48 [67.6]

Progressed to AD at 36 months,No.[%] 7 [3.8] 51 [58.6]

Progressed to dementia at 36 months,No.[%] 8 [4.1] 55 [63.2]
aHighPiB positive is defined as standardized uptake value ratio> 1.9.
bDefined by California Verbal Learning Test-II delayed free recall Zscore as �20.5 for HC and �21.5 for MCI.
cMagnetic resonance imaging assessments on 175 HC and 71 MCI subjects.
AD 5 Alzheimer disease; HC 5 healthy control; MCI 5 mild cognitive impairment; PiB 5 11C-Pittsburgh compound B; SD 5
standard deviation.
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Discussion

A key finding of this study was that healthy individuals

with a positive Ab scan, who also have a subtle reduction

in EM or HA, have a significant risk of progression to

MCI or AD over 3 years, sufficient risk to warrant early

intervention trials in such individuals. In this study the

risk was 50%, but the confidence interval was wide, so

more data are required to better define the magnitude of

this risk. Multivariate analysis demonstrated that the

presence of Ab plaques detectable by PET was the main

influence in these prediction pairs. This finding supports

the staging of preclinical AD proposed by the NIA=AA

workgroup,10 indicating that individuals who are bio-

marker positive for Ab and also have subtle memory

impairment or biomarker evidence of neurodegeneration

are at a more advanced stage in the development of AD

and at greater risk of disease manifestation than those

with only a positive Ab biomarker. This finding is con-

sistent with what we and others have recently shown in

regard to the relationship between Ab accumulation and

other features of AD.4,5 The accumulation of Ab occurs

over 2 to 3 decades and can be detected at low levels

with PiB PET 15 to 20 years before the typical levels

found in patients with the clinical diagnosis of probable

AD are achieved. In contrast, these studies suggest that

HA and EM impairment are not detectable in an indi-

vidual until approximately 5 years before dementia.4,5

There are few previous reports from longitudinal

studies to validate the NIA=AA criteria for preclinical

AD. The Mayo Clinic Study of Aging has reported that

after 1 year, 43% of healthy elderly who had subtle

memory impairment, a positive PiB scan, and reduced

HV progressed to MCI or dementia.20 The Knight

Alzheimer’s Disease Research Center at Washington

TABLE 2. Healthy Participants: Bivariate Correlates of Progression to MCI or Dementia over 3 Years

Characteristic

Progressed to MCI/AD Chi-
square p

OR
(95%CI)

PPV
(95%CI)

NPV
(95%CI)No Yes Odds

PiB2 121(93%) 9 (7%) 0.08

PiB1 39 (74%) 14 (26%) 0.35 13.02 0.001 4.8
(1.9–12.0)

26.4%
(15–40)

93.1%
(87–97)

Non-e4 97 (91%) 10 (9%) 0.10

e41 61 (82%) 13 (18%) 0.22 2.67 0.103 2.1
(0.9–5.0)

17.6%
(10–28)

90.7%
(84–95)

Normal HV 116(90%) 13 (10%) 0.11

Reduced HV 37 (80%) 9 (20%) 0.25 2.78 0.67 2.2
(0.9–5.5)

19.6%
(9–34)

89.9%
(83–95)

CVLT-II > 20.5 145 (90%) 16(10%) 0.11

CVLT-II � 20.5 15 (68%) 7 (32%) 0.47 8.43 0.014 4.2
(1.5–11.9)

31.8%
(14–55)

90.1%
(84–94)

PiB2, non-e4 82 (93%) 6 (7%) 0.08

PiB1, e41 24 (71%) 10(29%) 0.41 10.99 0.002 5.7
(1.9–17.3)

29.4%
(15–48)

93.2%
(86–97)

PiB2, normal HV 89 (92%) 8 (8%) 0.09

PiB1, reduced HV 9 (53%) 8 (47%) 0.89 18.06 <0.001 9.9
(3.0–32.7)

47.1%
(23–72)

91.8%
(84–96)

PiB2, CVLT-II >
20.5

111 (94%) 7 (6%) 0.06

PiB1, CVLT-II �
20.5

5 (50%) 5 (50%) 1.00 21.07 <0.001 15.9
(3.7–68.0)

50.0%
(19–81)

94.1%
(88–98)

AD 5 Alzheimer disease;CI 5 confidence interval;CVLT-II 5 California Verbal Learning Test-II;HV 5 hippocampal volu-
me;MCI 5 mild cognitive impairment;NPV 5 negative predictive value;OR 5 odds ratio;PiB 5 11C-Pittsburgh compound
B;PPV 5 positive predictive value.
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University reported that in healthy, late middle-aged and

older adults followed for an average of 3.7 years, a posi-

tive PiB scan predicted progression to early AD. The pre-

dictive validity of subtle memory impairment was not

investigated in that study.21 These findings and our study

provide substantial validation for the proposal that pre-

clinical AD can be both detected and staged from the

combination of cognitive and biomarker data.

The second key finding is that >80% of individu-

als meeting the criteria for prodromal AD, that is, clear

objective EM impairment with a positive biomarker for

AD,6 will develop dementia and meet clinical criteria for

probable AD within 3 years if the AD biomarker is Ab
imaging. In this study, although there was overlap of CIs

on bivariate analysis, Ab imaging with PiB PET appeared

to perform substantially better than MRI measures of

HA in identifying individuals with MCI who would pro-

gress to Alzheimer dementia (OR 5 14.5 vs 3.8). This

was supported by the results of multivariate analysis that

showed PiB PET to be the strongest predictor of progres-

sion to AD. Nevertheless, there was considerable gain in

positive predictive power from the presence of both

imaging biomarkers (OR 5 44, PPV 5 83%). However,

even greater predictive accuracy was obtained by combin-

ing clear objective evidence of EM impairment (ie,

amnestic MCI) with a positive PiB scan (PPV 5 86%,

NPV 5 100%), consistent with past reports that EM is

the cognitive domain most affected in early AD7,22,23

and has good predictive accuracy for AD in MCI

cohorts.24–26

The predictive value of Ab imaging for progression

from MCI to AD has been reported previously. Pooling

those studies that, like the present study, used neuropsy-

chological criteria for MCI, reveals progression to AD

occurred in 60% if PiB1 compared to 7% if PiB2 over

an average of 2 years of follow-up.27–30 We observed a

higher rate of progression to a clinical diagnosis of AD

in the PiB2 MCI patients of 19% (5 of 27). Given the

well-documented deficiencies in the clinical diagnosis of

probable AD compared to postmortem neuropathological

diagnosis,31 particularly in distinguishing AD from other

forms of dementia, the observation that 9% (5 of 58) of

the MCI cohort that progressed to probable AD were

PiB2 is consistent with the reported rate of misdiagnosis.

All 5 did not carry the apolipoprotein E e4 allele that is

present in the majority of patients with AD, further sug-

gesting that these individuals have been incorrectly

diagnosed.

Limitations
Potential limitations of this study relate to the composi-

tion of the healthy elderly cohort, that the diagnosis of

AD was not confirmed by histopathology, that EM status

relied on 1 test, and that other biomarkers for AD such

as CSF Ab1-42 and tau and 18F-fluorodeoxyglucose PET

were not available for comparison in AIBL. The healthy

elderly cohort contained a higher proportion of apolipo-

protein E e4 allele carriers than found in general popula-

tion surveys (see Table 1), thereby increasing the

proportion likely to have a positive PiB scan and the risk

for progression to AD. This could increase the predictive

power of all the investigations in the HC cohort, particu-

larly amyloid imaging. The HC participants were

recruited by advertisement, not random selection from

the community, were generally well educated, and per-

formed better on memory tasks than expected from the

published age- and gender-matched normal range. There-

fore, it may only be appropriate to apply our definition

of subtle memory impairment and its prognostic implica-

tion to similar volunteer cohorts or members of the gen-

eral population who have at least 12 years of education.

EM was classified on the results from 1 test, the

CVLT-II LDFR, and its published normal range,32 for

reasons stated below. Other tests or a combination of

EM measures could have different ability to predict clini-

cal progression.

In a recent meta-analysis,33 the combination of

CSF Ab1-42 and tau yielded an OR of 18 (95% CI 5

10–32) for progression from MCI to dementia, similar

FIGURE: Individual 11C-Pittsburgh compound B standardized
uptake value ratio (SUVR) values by baseline clinical diagno-
sis and clinical status after 3 years. Healthy control (HC;
blue) and mild cognitive impairment (MCI; green) subjects
who did not progress are shown as open circles. HC sub-
jects who progressed to MCI are shown as solid green
circles. Those HC and MCI subjects who progressed to Alz-
heimer disease (AD) are shown as solid red circles. Black
circles denote progression to dementia not due to AD. The
positive predictive values (PPVs) for progression are shown
for SUVR values of 1.5 to 1.9 and >1.9. For comparison, the
SUVRs for all subjects with AD at enrollment into the Aus-
tralian Imaging, Biomarkers, and Lifestyle study of ageing
are shown as red triangles on the right side of the figure.

ANNALS of Neurology

910 Volume 74, No. 6



to the results for PiB PET in the present study. More

recently, a study from Washington University reported

that both PiB PET and CSF tau to Ab1-42 ratio were

strongly associated with progression from HC status to

AD.20 As the AIBL study did not collect CSF at entry in

this cohort, we were not able to compare our findings

with CSF biomarkers.

Applicability to Clinical Practice
At the present time, preclinical detection of AD pathol-

ogy is for research purposes and not recommended for

clinical practice.10,34 Amyloid imaging has recently been

recommended for detection of AD-related pathology in

individuals with MCI in the appropriate clinical setting

as part of a comprehensive assessment by a dementia spe-

cialist.34 Therefore, where possible, methods that can be

applied in clinical practice were used in this analysis.

Consequently, although the AIBL study employs an

extensive battery of neuropsychological tests,11 this analy-

sis only used a well-known and widely available word list

recall task, the CVLT-II, and its published normal

range,32 to classify EM performance. Likewise, a binary

classification of the Ab scans as positive or negative was

used to be consistent with current clinical practice. The

quantitative cutpoint for a positive Ab PET scan of

SUVR 5 1.5 correlates well with the threshold for visual

detection of Ab.35–38 However, this cutpoint is well

below the mean of the AD patients in AIBL (mean

SUVR 5 2.3).12 The risk for progression in both HC

and MCI subjects was substantially higher in those with

a high positive (AD-like) PiB scan than in those with a

low positive scan (see Fig). This suggests that clinical

practice should take into account levels of Ab.

Conclusions
These prospective data from the AIBL study validate the

proposed criteria for preclinical and prodromal AD.6–8,10

A positive amyloid scan when associated with amnestic

TABLE 3. Mild Cognitive Impairment: Bivariate Correlates of Progression to AD over 3 Years

Characteristic

Progressed to AD

Odds
Chi-
square p

OR
(95% CI)

PPV
(95% CI)

NPV
(95% CI)No Yes

PiB2 22 (81%) 5 (19%) 0.23

PiB1 14 (23%) 46 (77%) 3.35 25.96 <0.001 14.46
(4.6–45.0)

76.7%
(64–87)

81.5%
(62–94)

Non-e4 21 (66%) 11 (34%) 0.52

e41 13 (26%) 37 (74%) 2.85 12.62 0.007 5.43
(2.1–14.3)

74.0%
(60–85)

65.6%
(47–81)

Normal HV 15 (65%) 8 (35%) 0.54

Reduced HV 16 (33%) 32 (67%) 2.03 6.43 0.011 3.75
(1.3–10.7)

66.7%
(52–80)

65.2%
(43–84)

CVLT-II > 21.5 25 (74%) 9 (26%) 0.35

CVLT-II � 21.5 11 (21%) 42 (79%) 3.76 23.78 0.003 10.61
(3.9–29.1)

79.3%
(66–89)

73.5%
(56–87)

PiB2, non-e4 17 (81%) 4 (19%) 0.23

PiB1,e41 10 (21%) 37 (79%) 3.76 21.59 <0.001 15.73
(4.3–57)

78.7%
(64–89)

81.0%
(58–94)

PiB2, normal HV 9 (90%) 1 (10%) 0.11

PiB1, reduced HV 6 (17%) 29 (83%) 4.88 18.58 <0.001 43.50
(4.6–411)

82.9%
(66–93)

90.0%
(56–98)

PiB2, CVLT-II >
21.5

17 (100%) 0 (0%) 0.00

PiB1, CVLT-II �
21.5

6 (14%) 37 (86%) 6.14 38.16 <0.001 1 86.1%
(72–95)

100%
(80–100)

AD 5 Alzheimer disease; CI 5 confidence interval; CVLT-II 5 California Verbal Learning Test-II; HV 5 hippocampal volume;
NPV 5 negative predictive value; OR 5 odds ratio; PiB 5 11C-Pittsburgh compound B; PPV 5 positive predictive value.
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MCI is a powerful predictor of clinical progression and

may be used in clinical practice to provide earlier diagno-

sis of AD and more accurate prognosis than can be

achieved by clinical assessment alone. Amyloid imaging

with memory assessment also identifies healthy older per-

sons at high risk for clinical progression, which may

prove useful for early intervention trials in preclinical

AD that require a defined cognitive endpoint within a 3-

year timeframe.
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