
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications 2011

1-1-2011

Reinforcement learning of competitive and cooperative skills in Reinforcement learning of competitive and cooperative skills in

soccer agents soccer agents

Jinsong Leng
Edith Cowan University

Chee Lim

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2011

 Part of the Computer Sciences Commons

10.1016/j.asoc.2010.04.007
This is an Author's Accepted Manuscript of: Leng, J. , & Lim, C. (2011). Reinforcement learning of competitive and
cooperative skills in soccer agents. Applied Soft Computing , 11(1), 1353-1362. Available here
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworks2011/535

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2011
https://ro.ecu.edu.au/ecuworks2011?utm_source=ro.ecu.edu.au%2Fecuworks2011%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks2011%2F535&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.asoc.2010.04.007
http://dx.doi.org/10.1016/j.asoc.2010.04.007

 Elsevier Editorial System(tm) for Applied Soft Computing
 Manuscript Draft

Manuscript Number: ASOC-D-08-00557R1

Title: Reinforcement Learning of Competitive and Cooperative Skills in Soccer Agents

Article Type: Full Length Article

Keywords: Reinforcement Learning, Temporal Difference Learning, On-policy and off-policy, Eligibility
Traces, Performance, Convergence

Corresponding Author: Dr. Jinsong Leng, PhD

Corresponding Author's Institution: Edith Cowan University

First Author: Jinsong Leng, PhD

Order of Authors: Jinsong Leng, PhD; Chee Peng Lim, PhD

Abstract: The main aim of this paper is to provide a comprehensive numerical analysis on the
efficiency of various Reinforcement Learning (RL) techniques in an agent-based soccer game. The
SoccerBots is employed as a simulation testbed to analyze the effectiveness of RL techniques under
various scenarios. A hybrid agent teaming framework for investigating agent team architecture,
learning abilities, and other specific behaviours is presented. Novel RL algorithms to verify the
competitive and cooperative learning abilities of goal-oriented agents for decision-making are
developed. In particular, the tile coding (TC) technique, a function approximation approach, is used to
prevent the state space from growing exponentially, hence avoiding the curse of dimensionality. The
underlying mechanism of eligibility traces is evaluated in terms of on-policy and off-policy procedures,
as well as accumulating traces and replacing traces. The results obtained are analyzed, and
implications of the results towards agent teaming and learning are discussed.

Response to Reviewer Comments

I. RESPONSE TO THE QUERIES OF REVIEWERS

1) As properly suggested by the reviewer, we reconstructed the Section 2 by

deleting some parts in Section 2.1, and merging the previous Section 2.3 and Section

2.4. Please see the Section 2 for details.

2) As per the suggestion of the reviewer, we revised the Section 3 and deleted the

previous Section 3.1. Please see Section 3 for revision.

3) As properly suggested by the reviewer, we merged the previous two algorithms

in Fig. 5 and Fig. 11. Particularly, we added the pseudo-code to the algorithms in Fig.

5 and Fig.8. Please see details in Fig.5 and Fig. 8. In addition, two additional

paragraphs were added to explain the two algorithms in Section 5 and Section 6,

respectively.

4) As properly suggested by the reviewer, we deleted some contents in Section 4.1

and made some revision in Section 4, 5, 6, 7. Please see details in Section 4-7.

II.ADDITIONAL REVISION

1) The subtle changes have been made in Abstract and Keywords.

2) Some changes of references.

Detailed Response to Reviewers

Reinforcement Learning of Competitive and Cooperative Skills in
Soccer Agents

Jinsong Lenga,∗, Chee Peng Limb

aSchool of Security and Information Science, Edith Cowan University,
2 Bradford Street, Mount Lawley, WA 6050, Australia

bSchool of Electrical and Electronic Engineering, University of Science Malaysia,
14300 Nibong Tebal, Penang, Malaysia

Abstract

The main aim of this paper is to provide a comprehensive numerical analysis on the efficiency
of various Reinforcement Learning (RL) techniques in an agent-based soccer game. The Soc-
cerBots is employed as a simulation testbed to analyze the effectiveness of RL techniques under
various scenarios. A hybrid agent teaming framework for investigating agent team architecture,
learning abilities, and other specific behaviours is presented. Novel RL algorithms to verify the
competitive and cooperative learning abilities of goal-oriented agents for decision-making are
developed. In particular, the tile coding (TC) technique, a function approximation approach, is
used to prevent the state space from growing exponentially, hence avoiding the curse of dimen-
sionality. The underlying mechanism of eligibility traces is evaluated in terms of on-policy and
off-policy procedures, as well as accumulating traces and replacing traces. The results obtained
are analyzed, and implications of the results towards agent teaming and learning are discussed.

Keywords: Reinforcement Learning, Temporal Difference Learning, On-policy and off-policy,
Eligibility Traces, Performance, Convergence.

1. Introduction

Artificial intelligence (AI) is the science of making machines to perform tasks that would
require intelligence if conducted by humans. In this aspect, intelligence may consist of many
aspects, such as perceiving, reasoning, planning, learning, and communication. The agent-based
systems normally possess much of these characteristics of intelligence, and are classified under
the category of distributed AI.

An agent is a hardware and/or software-based computerized system displaying the proper-
ties of autonomy, social adeptness, reactivity, and proactivity [29]. Agent-based systems usually
operate in real-time, stochastic, and dynamic environments. The ability to act under uncertainty
without human or other intervention (autonomy) is the key feature of an intelligent agent. Intel-
ligent agents are required to adapt and learn in uncertain environments via communication and

∗Corresponding author. Tel.: +61 8 93706332, fax: +61 8 93706100
Email address: j.leng@ecu.edu.au (Jinsong Leng), Cplim@eng.usm.my (Chee Peng Lim)

Preprint submitted to Applied Soft Computing February 1, 2010

*Manuscript
Click here to view linked References

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=1619&rev=1&fileID=37860&msid={116399F9-AB8D-433D-92D1-57C7F217BF60}

collaboration (in both competitive and cooperative situations). Owing to the inherent complex-
ity, however, it is difficult to verify the properties of the complex and dynamic environments a
priori. As such, learning without external instruction becomes one of the fundamental abilities
of intelligent agents.

Reinforcement learning (RL) has appeared as a popular learning approach that is conducted
with minimal supervision. RL maps states to actions and attempts to maximize the long-term
rewards during learning. The goal of RL is to compute a value function so as to find the optimal
or near optimal action for a given state. The learning environment consists of two elements: the
learning agent(s) and the dynamic process. An agent pursues the goals and builds up knowledge
to control the process optimally while interacting with the environment. At every time step,
the agent perceives the process state via sensors, makes a decision, and takes an action on the
environment via actuators.

Most stochastic systems have mathematical roots that can be modeled as Markov Decision
Processes (MDPs) [1, 6]. Computer simulation of stochastic game systems is useful to replicate
an environment for testing and verifying the efficiency of learning and optimization techniques.
For example, learning competitive and/or cooperative behaviors has been widely investigated in
computer games such as Soccer [32, 31] and Unreal Tournament (UT) [30]. In this domain, RL
has been used to learn both competitive and cooperative skills in the RoboCup simulation system
using different kinds of learning algorithms and state space representations [17]. The success of
RL critically depends on an effective function approximation, a facility for representing the value
function concisely, and the parameter choices used [27].

Temporal difference learning (TD) [21, 26] is a popular computational RL technique. The
TD method is a combination of Dynamic Programming technique (DP) [1, 6] and Monte Carlo
method (MC) [13]. This technique has been used to deal with prediction problems [21], as
well as to solve optimal control problems [26, 19]. The difficulty associated with TD learn-
ing is how to solve a temporal credit assignment problem, i.e., to apportion credit and blame
to each of the states and actions. Trial-and-error, delayed reward, and trade-off between explo-
ration and exploitation are the most important features in TD techniques. As with many learning
techniques, convergence analysis of TD is of paramount importance from both theoretical and
practical points of view. Unfortunately, convergence of TD has been proved only under some
strict conditions, such as tabular state representation and with a small learning rate [4, 3, 2]. It is
unclear whether a TD algorithm would converge with any approximation function. Furthermore,
the use of eligibility traces in TD adds another dimension to its convergence.

In this paper, a computer game called SoccerBots [32] is used as a simulation environment
for investigating individual and cooperative learning abilities of goal-oriented agents. SoccerBots
provides a real-time, dynamic, and uncertain environment with continuous state-action spaces.
TD(λ) is adopted to learn competitive and cooperative skills of soccer agents in the SoccerBots
environment. The focus of this paper is on the analysis of TD(λ) algorithmic problems in a
practical domain. The TD(λ) algorithm could be applied to individual agent learning as well as be
extended to multi-agent co-operative learning. An agent architecture is introduced for conducting
an empirical study of the TD technique with an approximation function. The objectives of this
work are summarized as follows:

1. To perform an investigation of agent-based games with RL. This involves

• Abstraction of a minimal team for the chosen test-suite (SoccerBots), and identifica-
tion of a minimal set of agent behaviors - run to the ball, stop the ball from crossing
the line, etc.

2

• Experiments using TD(λ) with approximation functions to obtain performance met-
rics.

• Efficiency analysis of the on-policy and off-policy RL algorithms.

2. To investigate the mechanism of eligibility traces in TD. This involves

• Investigation of the on-policy and off-policy algorithms, and comparison between
accumulating traces (AT) and replacing traces (RT).

• Analysis of the efficiency of bootstrapping, and recommendations for choosing the
‘appropriate’ value of λ.

This paper aims to provide a comprehensive numerical analysis on the efficiency of various
RL techniques. The major contributions of this paper are outlined as follows. Firstly, a hybrid
agent teaming framework is presented for investigating agent team architecture, learning abili-
ties, and other specific behaviors. Secondly, novel RL algorithms to verify the competitive and
cooperative learning abilities of goal-oriented agents for decision-making are developed. In ad-
dition, the tile coding (TC) technique, a function approximation approach, is used to prevent
the state space from growing exponentially, hence avoid the curse of dimensionality. Thirdly,
the underlying mechanism of eligibility traces is analyzed in terms of on-policy and off-policy
algorithms, accumulating traces and replacing traces.

The paper is organized as follows: Section 2 discusses the related work about RL techniques
and agent systems. Section 3 gives an overview of TD(λ) techniques. An agent architecture
and simulation environment are described in Section 4. Section 5 details an investigation of
TD(λ) performance. Analysis of on-policy and off-policy algorithms are presented in Section 6.
Section 7 examines the mechanism of eligibility traces. Finally, conclusions and suggestions for
future work are presented in Section 8.

2. Related Work

2.1. RL and Soccer Agents

The major purpose of RoboCup soccer is to provide a simulation environment for studying
research problems related to machine learning and intelligence, such as learning algorithms and
state space reduction techniques. RL has been used to learn both competitive and cooperative
skills in RoboCup simulation systems using different learning algorithms and state space repre-
sentations [17].

In particular, RL algorithms have been applied to various tasks in RoboCup soccer. Stone et
al. proposed a Team-Partitioned, Opaque-Transition RL algorithm called TPOT-RL, which was
successfully used to train soccer agents for learning some competitive and cooperative skills [18].
The learning method in [18] was based on a Monte Carlo approach, and a look-up table in
conjunction with the state space abstraction technique was used to store the Q-values. In [5, 10],
different RL algorithms were used to train different aspects of soccer skills. A ball interception
method was proposed using Q-learning and a Grid- and Memory-Based function approximator.
Another related work was proposed in [7], in which the shooting goal skill was learned via
Sarsa(λ) with tile coding techniques. However, the discussion on the algorithms and the way tile
coding used was limited in that paper.

Many approaches use RL with a linear function approximation. In [17], the application of
episodic MDP Sarsa(λ) with a tile-coding approximation function to learn higher-level decisions

3

in a keepaway subtask was introduced. The parameters were fixed without a sensitivity analy-
sis of the parameters towards performance. The experimental results were compared based on
different exploration strategies (Random, Hold, and Hand-coded).

2.2. On-policy and Off-policy Approaches

There are a few comparative studies of eligibility traces with on-policy and off-policy algo-
rithms. The most extensive comparative studies were conducted by Rummery [14]. He compared
the convergence properties in both tabular representation and approximation function to solve
robot control problems. The following algorithms are considered in that paper [14]: (1). Watkins
Q(λ) with the eligibilities zeroed whenever a non-greedy action is performed. (2). Modified
Q(λ), i.e., Sarsa(λ). (3). Peng’s Q(λ). (4). Standard Q(λ) where the eligibilities are not zeroed,
i.e., naive Q(λ).

In [14], the experimental results indicated that Modified Q(λ) showed the best performance
with the least computational overhead. Peng’s Q(λ) ranked second, while Watkins Q(λ) was the
last. Another comparative study was made by Singh and Sutton, using accumulating traces and
replacing traces [16]. The experiments in [16] provided evidence for two key points: (1). that
replace-trace methods can perform much better than conventional, accumulate-trace methods,
particularly at long trace lengths; (2). that although long traces may help substantially, the best
performance is obtained when the traces are not infinite, that is, when intermediate predictions
are used as targets rather than actual sample returns. However, they claimed that more empirical
studies are needed with trace mechanisms before a definitive conclusion can be drawn about their
relative effectiveness, particularly when function approximators are used.

2.3. Problems of Temporal Difference Learning

The major difficulty in TD learning is how to solve a temporal credit assignment problem,
i.e., to apportion credit and blame to each of the states and actions. TD(λ) was proposed by
Sutton [21] in 1988, but without providing a convergence analysis. TD(λ) for discounted prob-
lems converges with unit probability under the standard stochastic convergence constraints on the
learning rate and linear state representation such as look-up table or linear function [3, 25, 24].
However, convergence of TD(λ) has only been proved for linear networks and linearly indepen-
dent sets of input patterns. In a more general case, the algorithm may not converge even to a
locally optimal solution, let alone to the globally optimal solution [22].

There are no universal methods available for analyzing convergence, nor for finding the opti-
mal parameter values to improve the learning performance. For example, in [12] an approximate
estimator is used for choosing the parameter values to increase the convergence rate in some
numerical experiments. However, the approach in [12] was only tested on a limited number of
systems and cannot guarantee to improve convergence in different domains.

As with many learning techniques, convergence analysis is of paramount importance from
both theoretical and practical points of view. Unfortunately, convergence has been proved only
under some strict conditions, as explained earlier. It is unclear whether TD(λ) would converge
with any approximation function. Furthermore, the use of eligibility traces leads to an additional
problem. In summary, the major challenges of TD(λ) are outlined as follows:

1. Mechanism of eligibility traces: The aim of eligibility traces is to assign credit or blame
to the eligible states or actions. From a mechanistic point of view, eligibility traces can
be implemented using a memory associated with each state to record the occurrence of an

4

event, i.e., the visiting of a state or the taking of an action. However, the underlying mech-
anism of eligibility traces with an approximation function has not been well understood,
either from the theoretical or practical point of view.

2. Parametric tuning problem: The TD(λ) algorithm comes with some adjustable parame-
ters including the learning rate α, the discount rate γ, and the decay rate λ. A number
of parametric optimization techniques can be used to find the optimal parameter values.
However, the performance analysis is very expensive, because the analysis metrics are ob-
tained only by running an extensive set of experiments with different parameter values.
There is no standard benchmark on a performance measure from either the theoretical or
practical point of view.

3. Convergence and divergence: A rigorous proof is given that TD(0) converges to the op-
timal predictions for linearly independent feature vectors [21]. Convergence with unit
probability for general λ was proved too [3, 23]. Convergence has not been proved with
function approximation for 0 ≤ λ ≤ 1 [20, 28]. Such an in-depth convergence analysis
relies on empirical studies and related performance evaluations [3, 2, 12, 17, 20].

So far, there are no standard criteria for evaluating convergence either from theoretical or
practical perspectives. The performance metrics are often used to analyze convergence. How-
ever, the performance metrics can only be obtained by conducting a number of experiments. In
this aspect, a simulation system is helpful to investigate the issues such as convergence analysis,
parameter tuning, and analysis of the efficiency of bootstrapping.

3. Temporal Difference Learning

RL is about learning to map situations to actions for maximizing a numerical reward sig-
nal [20]. RL is the general name for sample-backup techniques, including Dynamic Program-
ming (DP) and Monte Carlo methods. RL problems can be solved in different forms, for instance,
the actor-critic method that is based on the predictive state representation and gradient descent
techniques. Basically, RL problems can be characterized in terms of optimal control of MDPs.
RL also adopts the same optimization technique under the formalism of MDP.

Although RL is a powerful and effective methodology with theoretical foundations, learning
in dynamic and distributed environments is a difficult task owing to large, continuous state-
action spaces. Normally, the RL approach comprises a trial-and-error search, delayed reward,
and exploration versus exploitation. RL has also to balance the trade-off between exploration
and exploitation.

3.1. Temporal Difference Learning Techniques
The prerequisite of DP is that an explicit model of transition probabilities is needed. For

most stochastic and dynamic systems, it is infeasible or impractical to obtain such a model in
advance. For Monte Carlo methods, it is required that an episode must terminate. The ideas of
DP, i.e., policy evaluation, the state value function computation, then policy improvement, can
be combined with the Monte Carlo method when an explicit model of transition probabilities is
not available. Instead of using a model-based approach, the so-called model-free RL techniques
are used to probe the environment, thereby computing the value functions. Temporal Difference
Learning (TD) methods bootstrap the state value function as with DP, and update the value func-
tion at every step in a fully incremental fashion. TD techniques, on the other hand, overcome
the drawback of the Monte Carlo method that state value is updated at the end of each episode.

5

The TD method updates the state value at every step and learns directly from experience like the
Monte Carlo approach (model-free) but employs bootstrapping like DP. In short, TD methods
overcome the disadvantages of DP and Monte Carlo methods: it is not necessary to formulate a
model of the environment and transition probabilities a priori, and not necessary to estimate the
state value function until the end of an episode. The Monte Carlo method uses sample backups,
which is based on sample experience.

State value function V(s0) in a state s0 can be estimated using Equation (1):

V(s0) = V(s0) + α
[
r(s0) + γr(s1) + γ2r(s2) + · · · − V(s0)

]
(1)

where α is the learning rate, and γ is the discount rate.
The successive TD error δt is as follows:

δt = rt+1 + γV(st+1) − V(st) (2)

Then Equation (1) can be written as follows:

V(s0) = V(s0) + α
[
δ0 + γδ1 + γ2δ2 + . . .

]
(3)

The successive TD error in a state s at time t is derived from Equation (3):

δt = max
a

[
rt+1 + γVt(st+1) − Vt(st)

]
(4)

TD techniques have become the most popular approach for solving learning problems. Trial-
and-error and discounted rewards are the two most important features in TD learning. The TD
algorithms fall into two main classes: (1). On-policy learning – action selection based on the
learned policy; (2). Off-policy learning – action selection based on a greedy policy.

Sarsa (initially known as modified Q-learning [14]) is an on-policy approach. The state-
action value function Q(st, at) at the time t is updated as follows:

Q(st, at)← Q(st, at) + αδt (5)

While Q-learning is an off-policy method in that an action selection uses a hypothetical action
and is independent of the policy being followed:

Q(st, at)← Q(st, at) + α
[
rt+1 + max

a
γQt(st+1, a) − Qt(st, at)

]
(6)

3.2. Eligibility Traces
Eligibility traces are another basic mechanism for improving the speed of TD learning. An

eligibility trace is a temporary log to record the occurrence of an event, for example, the visiting
of a state or the taking of an action. From a theoretical viewpoint, eligibility traces build a bridge
from TD to Monte Carlo methods [20].

The TD(λ) algorithm can be understood as one particular way of averaging-step backups.
This average contains all the step backups, each weighted in a proportional manner to 0 ≤ λ ≤.
A normalization factor of λ ensures that the weights sum to 1 [20]. From the forward point of
view, the resulting backup is derived from Equation (7), called the λ-return, as follows:

Vλ
π (s, t) = (1 − λ)Eπ

{ ∞∑
k=0

(γλ)kr(st+k+1)
∣∣∣st = s

}
(7)

6

The main advantage of using λ is to decay the reward according to the geometrical distribu-
tion in every episode, which can enhance convergence properties.

The related state value function in Equation (3) can be defined by:

V(s0) = V(s0) + α
[
δ0 + γλδ1 + (γλ)2δ2 + . . .

]
(8)

TD(λ) is difficult to implement from forward point of view. Instead, TD(λ) can be imple-
mented from backward point of view. The purpose of eligibility traces is to assign the credit or
blame to the eligible states or actions. Traces (et(s, a)) can be accumulated (accumulating traces)
by (et(s, a) = γλet−1(s, a) + 1) or replaced by 1 (replacing traces).

Accumulating traces can be defined as:

et(s, a) =

γλet−1(s, a), if s , st

γλet−1(s, a) + 1, if s = st
(9)

whereas replacing traces use et(s, a) = 1 for the second update.
The successive TD(λ) error in a state s at time t is derived from Equation (4):

δt = max
a

[
rt+1 + γVt(st+1) − Vt(st)

]
et(s, a) (10)

3.3. Generalization and Approximation Function

The curse of dimensionality [1] is an important practical issue; the performance depends on
the abstract or approximate method. Without abstraction or approximation techniques, RL does
not scale up well for real-time, dynamic systems. As mentioned above, convergence theorems
of DP and TD(λ) are investigated under the assumption that the state space is with a look-up
table representation or a linear approximation function. However, most RL problems have large,
dynamic and continuous state spaces. It is important to find some techniques, which can reduce
the complexity and, meanwhile, ensure acceptable performance during learning. State abstrac-
tion techniques have been used for RL problems [15, 24]. Function approximation techniques
are the most popular ways to represent the state space using fewer parameters than classification
features.

Tile coding is one of most popular function approximation methods for RL problems. The
tilings are overlapped over the state space. Each tiling has only one cell that can be activated.
The denser the tiling, the finer and more accurately the desired function can be approximated, but
the greater the computational overhead [20]. The linear approximation function with tile coding
is illustrated in Fig. 1.

The approximate function, Vt is represented as a parameterized function, thereby updating
parameters instead of entries in a table. This is represented as:

Vt =
−→
θ T

t
−→
φ s =

n∑
i=1

θt(i)φs(i) (11)

In the linear function, (
−→
θ t) is the parameter vector, and (

−→
φ s) is a corresponding column vector

of features for each state. The complexity is related to the size of feature θ rather than the size of
state space.

The tile coding method splits the state space into tilings. In tile coding, the representation is
determined by the shape of tile, and the resolution of final approximation is determined by the

7

...
... ...

...

Tilings

Feather Weight

Decision

Optimal Action

(Variables of interest)

Action 1

Action 2

Action n

Action n

Action 2

Action 1

Environment

State Feather
T1

T1

T2

Tm

T2
T1

Tm

Tm

T2

...
...

...

Figure 1: The Linear Approximation Function with Tile Coding

number of tilings [20]. The tilings partition the state space into cells. Each tiling has only one tile
that can be activated for every input state, and the active cells of a state are called features. The
receptive fields of the features are grouped into partitions (also called tiling). The value of a state
is calculated as (

∑n
i=1 θ(i)φ(i)). The performance may be sensitive to the specifics of partition and

the number of tilings.

4. Agent Architecture and Simulation Environment

4.1. Simulation System

SoccerBots is part of TeamBots(tm) software package [32], which is developed in Java. Fig. 2
shows the SoccerBots simulation system.

Figure 2: The SoccerBots Simulation System

SoccerBots consists of three core components:

1. The description file — the TBSim simulator reads in a description file to know what sorts
of objects are in the environment and their current status.

2. The simulation kernel — which runs the simulator at each step by drawing the objects.
Each object in the simulation includes two components: a drawing method and a dynamic

8

simulation method. The vision scope of the soccer players and the noise in the system can
be defined.

3. Robot control system — which controls the soccer players. This system can be modified
by adding some soccer control and learning strategies. This is the key component for
evaluating TD(λ) algorithms.

The soccer game is a real-time, noisy, adversarial domain, which has been regarded as a
suitable environment for multi-agent system simulations [18].

The competitive skills, scoring goal and intercepting ball, are illustrated in Fig. 3.

d o
d g

theta

beta

(a)

d b

theta

beta

(b)

Figure 3: (a) Shooting. (b) Intercepting.

The shooting and intercepting behaviors are the most basic individual skills in the soccer
game, as shown in Fig 3. The shooting problem is to find the optimal kicking direction toward
the goal. The intercepting problem is to compute a direction in order to intercept an approaching
ball in the shortest possible time.

4.2. Agent Architecture

In order to evaluate the most realistic performance of RL, the small-sized soccer league Soc-
cerBots, which is a collection of application of TeamBots [32], is used. Each soccer team can
have 2 to 5 players (see Fig 4). Each player can observe the behaviors of other objects such
as the ball, a teammate, an opponent, and their locations and motions via a sensor. The soccer
game players have to interact, coordinate, and cooperate with each other. The ball’s direction
is influenced by environment noise (at random). In the real-time environment, performance is a
high priority to be considered to follow the changes of motion of the ball and the players. The
action that is sent back to each player is the deliberative outcome of the whole team.

9

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���T

eam
 1

Environment

Simulation

SoccerBots

Effector(s)

Sensor(s)

T
eam

 2

(a)

SocSmall API

SoccerBots

Effector

Effector

Sensor

Sensor

Sensor
Effector

Interface

......

Agent Player 2

Agent Player 4

Agent Player 5

T
eam

 1

Effector
Sensor

Agent Player 1

......

(b)

Figure 4: The SoccerBots and Agents Team. (a) SoccerBots. (b) Agent Team Architecture

5. Learning Competitive Skills

In this study, we extend our previous work [8, 9]. The detailed Sarsa (λ) control algorithm
with replacing traces and accumulating traces in Fig. 5, where ~e and ~θ are matrices to represent
trace feature and related feature weights, and F is the feature set to trace the eligible state pro-
cess. The ε-greedy policy is the exploration strategy, i.e., the agent takes a random action with
probability ε and takes best action learned with probability (1 - ε).

In Fig. 5, the Sarsa(λ) Control Algorithm is divided three stages for every episode. At the
first stage, it is in the initial state s0 of an episode, the state-action value function and the feature
set F are updated. For each internal step of an episode, the action is chosen based on ε-greedy
policy. The state-action value function is computed in line 7, and the related trace feature from
F is obtained in line 8. Accordingly, the temporal difference δ is calculated, as shown in line 9.
The feature weights ~θ and the trace feature ~e are updated in line 10. For the action following the
policy, the related feature is updated based on either accumulating traces or replacing traces, as
shown in line 11. If the state is final state of an episode, the related feature weights ~θ is updated,
as shown in line 13.

A four-dimensional tiling approach with the continuous variables that divides the space into
8 × 8 × 10 × 10 tiles is used. All tilings are offset at random variables.

5.1. Learning for Scoring Goal
The scenario to learn shooting behavior for a player is given in Fig. 3 (a). An attacker with a

ball is placed in front of goal, and a goalie is at the goalmouth moving north or south along the
vertical axis. The shooting behavior is influenced by the position of the ball and the goalie. In
this case, four parameters are taken into account:

1. The distance from the ball to the goal.
2. The distance from the ball to the goalie.
3. The angle between the ball to the goal.
4. The angle between the ball to the goalie.

The reward function is defined as follows:

Reward(s) =

100, if the ball goes into the goal;
−1, for each step;
0, if the ball misses the goal.

(12)

10

StartEpisode (s0):
1. Initialize ~e = 0. /* Initialize the trace feature */

2. Get action aLastAction from s0 using ε-greedy policy. /* Find the action based on policy */

3. Calculate QLastAction using s0, aLastAction. /* Calculate the sate-action value */

4. For all i ∈ F (s0, aLastAction) /* Update trace feature using the feature set */

ei ← ei + 1 (For accumulating traces)
ei ← 1 (For replacing traces)

ExecuteStep(s):
5. δ = reward - QLastAction. /* Calculate the difference between the reward and state-action value*/

6. Get action aNewAction from s using ε-greedy. /* Find the action based on policy */

7. Calculate QNewAction using s, aNewAction. /* Compute the state-action value */

8. Get F (s, aNewAction) using s and aNewAction. /* Find the related feature set */

9. δ← δ + γ * QNewAction. /* Calculate the temporal difference */

10. Update all ~θ and ~e
~θ← ~θ + α * δ * ~e. /* Update the feature weights */

~e← γ * λ * ~e. /* Update the trace feature */

11. For all i ∈ F (s, aNewAction) /* Update the trace feature based on feature set */

ei ← 1 + γ * λ * ei (For accumulating traces).
ei ← 1 (For replacing traces)

StopEpisode (s’):
12. δ = reward - QLastAction. /* Calculate the difference between the reward and state-action value*/

13. ~θ← ~θ + α * δ * ~e. /* Update the feature weights */

14. End episode. /* The end of an episode */.

Figure 5: Sarsa(λ) Control Algorithm with Replace Traces and Accumulating Traces

11

The kicking direction is defined as a set of angles in degrees:

{ 27, 24, · · · , 3, 0, -3, · · · , 24, 27 }.

Fig. 6 indicates that the speed of convergence is quicker for bigger learning rate α, but
smoother for smaller learning rate α.

0 200 400 600 800 1000
25

30

35

40

45

50

55

60

65

70

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

0.05 (alpha)
0.10 (alpha)
0.15 (alpha)

Figure 6: The Diagram of Reward and Episodes α: 0.05, 0.10, 0.15

5.2. Learning Ball Interception

The scenario to learn skill for the player is given in Fig. 3 (b). The ball and the player
are placed at fixed points at the beginning of each episode, so as to verify and investigate the
performance and convergence easily. By running each episode, the player learns how to take
action in the given state. For ball interception, the ball is kicked at a certain angle and speed. The
player is away from the ball at a certain distance and angle to ball.

Four parameters are considered:

1. The distance from the ball to the player.
2. The angle from the ball to the player.
3. The velocity of the ball.
4. The angle of the ball.

The first two parameters are obtained directly from the system, and the last two parameters
are obtained by calculating the ball’s positions at certain time period.

The reward function is defined as follows:

Reward(s) =

0, if the ball is intercepted;
-0.1, for each step.

The relationship between parameters in the algorithm is analyzed. The values of α and γ
are tuned while fixing the values of the other parameters. The λ is not considered because the
performance is relatively independent of it. The data set as illustrated in Table 1 is obtained:

The results between α and γ are shown in Fig. 7 (a). The diagram illustrates the influence of
α (γ = 0.93, λ = 0.9 and ε = 0.1) in Fig. 7 (b) .

12

Table 1: The α, γ and Average Rewards

α, γ 0.001 0.003 0.005 0.007 0.01 0.013 0.015 0.02
0.99 -30.58 -39.18 -31.84 -29.17 -29.47 -32.48 -33.25 -35.64
0.97 -39.5 -30.89 -27.36 -25.47 -29.06 -28.11 -29.24 -30.49
0.95 -26.14 -25.57 -23.54 -24.82 -24.46 -24.95 -25.01 -26.15
0.93 -24.48 -25.98 -21.62 -20.53 -26.58 -22.09 -25.17 -24.3
0.91 -37.37 -23.11 -22.63 -27.27 -33.14 -25.4 -24.48 -28.89

0
0.005

0.01
0.015

0.02

0.9

0.95

1
−40

−35

−30

−25

−20

(a)

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

0.05 (alpha)
0.07 (alpha)
0.01 (alpha)

(b)

Figure 7: (a) The Relationship between α and γ. (b) α at 0.005, 0.007, 0.01

13

The optimal values of α, γ are 0.005 – 0.007, 0.92 — 0.94 respectively, as shown in Fig. 7
(a). The value of α is adjusted by setting ε = 0.1, γ = 0.93, and λ = 0.9. Fig. 7 (b) indicates that
the stability and speed of convergence are improved when α is 0.07.

6. Analysis on On-policy and Off-policy Algorithms

6.1. Details of On-policy and Off-policy Algorithms

TD learning techniques can be categorized as on-policy learning (Sarsa) and off-policy learn-
ing (Q-learning). The major difference between them is the method for updating the state func-
tion. The eligibility traces are considered as a mechanism to remember the events during a
training episode. The state values are updated at every step, and weighted by the traces-decay
parameter λ. For on-policy Sarsa(λ) learning in Fig 5, the traces are recorded according to the
action selection policy. For off-policy Q(λ) learning, however, there are several ways to utilize
the traces [20]. Since a non-greedy action selection does not follow the greedy policy being fol-
lowed, the main difference is in what kind of strategies to be taken when an exploratory action
is taken. Sutton [20] described the major Q(λ) learning algorithms include Watkins’s Q(λ) [26],
Peng’s Q(λ) [11] and naive Q(λ).

Watkins’s Q(λ) records the traces whenever a greedy action is taken; otherwise stops the
traces by setting the trace to 0. Suppose that the action a∗ (Qt(a∗) = maxaQt(a)) is the greedy
action in the state st, the accumulating traces are updated as follows:

et(s, a) =

γλet−1(s, a) + 1, if s = st, a∗ = at

0, if s = st, a∗ , at

γλet−1(s, a), otherwise
(13)

whereas replacing traces use et(s, a) = 1 for the first update.
Another Q-learning algorithm with another traces strategy was proposed by Peng [11], in

which all state values are updated like Watkins’Q(λ) except that the traces are not terminated
for exploratory actions, and the existing state value is further adjusted by calculating an addi-
tional difference of this step. Peng’s Q (λ) learning algorithm follows neither on-policy nor off-
policy [11]. The drawback of Peng’s Q (λ) learning algorithm is that it is difficult to implement,
and it does not guarantee convergence under some circumstances [20].

This paper presents three learning algorithms (Sarsa(λ), Watkins’Q(λ) and naive Q(λ)) with
different eligibility traces, so as to analyze the effects of these traces strategies. A linear ap-
proximation function known as Tile Coding is used to represent the state space. The trade-off

of exploration and exploitation is balanced. The action selection policy called ε-greedy policy is
adopted, i.e., the agent takes a random action with probability ε to explore the unknown states
and takes the best action following the learned knowledge with probability (1 - ε). For simplicity,
the traces strategy modified from Watkins’Q(λ) called naive Q (λ) [20], in which the traces is
not terminated for exploratory actions, are considered. The Watkins’Q(λ) and naive Q(λ)) are
detailed in Fig. 8.

The major differences between Sarsa(λ) in Fig. 5 and Watkins’Q(λ) (naive Q(λ)) are twofold:
The action to be taken at state s is based greedy policy, as shown in line 7 in Fig. 8; The feature
weights ~θ and the trace feature ~e in line 12 are different from Sarsa(λ).

14

StartEpisode (s0):
1. Initialize ~e = 0. /* Initialize the trace feature */

2. Get action aLastAction from s0 using ε-greedy policy. /* Find the action based on policy */

3. Calculate QLastAction using s0, aLastAction. /* Calculate the sate-action value */

4. For all i ∈ F (s0, aLastAction) /* Update trace feature using the feature set */

ei ← ei + 1. (For accumulating traces)
ei ← 1. (For replacing traces)

ExecuteStep(s):
5. δ = reward - QLastAction. /* Calculate the difference between the reward and state-action value*/

6. Get action aNewAction from s using ε-greedy. /* Find the action based on policy */

7. Get action aGreedyAction from s. /* Find the best action based on greedy policy */

8. Calculate QNewAction using s, aNewAction. /* Compute the state-action value using new action */

9. Calculate QGreegyAction using s, aGreedyAction. /* Compute the state-action value using greedy action */

10. Get F (s, aNewAction) using s and aNewAction. /* Find the feature set using new action */

11. δ← δ + γ * QGreedyAction. /* Calculate the temporal difference using greedy action*/

12. (For Watkins’Q(λ))
Update all ~θ and ~e.
~θ← ~θ + α * δ * ~e. /* Update the feature weights */

if aNewAction = aGreedyAction)
~e← γ * λ * ~e. /* Update the trace feature */

else
~e← 0. /* Set the trace feature to 0*/

(or for naive’Q(λ))
Update all ~θ and ~e.
~θ← ~θ + α * δ * ~e. /* Update the feature weights */

~e← γ * λ * ~e. /* Update the trace feature */

13. For all i ∈ F (s, aNewAction)
ei ← ei + 1. (For accumulating traces)
ei ← 1. (For replacing traces)

StopEpisode (s’):
14. δ = reward - QLastAction. /* Calculate the difference between the reward and state-action value*/

15. ~θ← ~θ + α * δ * ~e. /* Update the feature weights */

16. End episode. /* The end of an episode */

Figure 8: Watkins’Q(λ) (naive Q(λ)) Control Algorithm

15

6.2. Performance Comparison
The values of α, γ for Sarsa(λ), Watkins’s Q(λ) and naive Q(λ) are 0.007 and 0.93, 0.01 and

0.93, 0.005 and 0.93 respectively. The convergence of three algorithms is drawn in Fig. 9.

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

Sarsa
Watkins
naive

Figure 9: Comparison of Three Algorithms

In Fig. 9, the speed of convergence to optimality is compared. The empirical results indicate
that all algorithms work well and eventually converge to optimality. By analyzing the conver-
gence diagram, the following differences among Sarsa(λ), Watkins’s Q(λ) and naive Q(λ) are
noted:

• Sarsa(λ) and naive Q(λ) have almost the same performance both in speed of convergence
and in eventual convergence reward values.

• Sarsa(λ) performs almost the same as naive Q(λ), especially after 1000 episodes.

• The empirical results have also shown naive Q(λ) performs better than Watkins’s Q(λ).

Sarsa(λ) performs more smoothly than Watkins’s Q(λ) and naive Q(λ) because it selects the
action using the fixed ε-greedy policy. The different eligibility traces strategies are the reason
that naive Q(λ) performs better than Watkins’s Q(λ). As argued by Sutton [20], cutting off traces
every time an exploratory action is taken loses much of the advantage of using eligibility. In
addition, Rummery and Peng [11, 14] argued that zeroing the effect of subsequent reward prior
to a non-greedy action is likely to be more of a hindrance than a help in converging to optimal
policies since maxaQ(s, a) may not provide the best estimate of value of states.

7. Analysis on Eligibility Traces

7.1. Details of Sarsa(λ) Algorithms with Different Eligibility Traces Strategies
The aim of eligibility traces is to assign credit or blame to the eligible states or actions. From

a mechanistic point of view, eligibility traces can be implemented using a memory associated
with each state et(s) to record the occurrence of an event, i.e., the visiting of a state or the taking
of an action. There are several ways for evaluating the traces, particularly accumulating traces

16

and replacing traces. In a conventional accumulating trace, the trace augments each time the
state is entered. In a replacing trace, on the other hand, each time the state is visited, its trace is
reset to 1 regardless of the value of the prior trace [16].

Accumulating traces can be defined as:

et(s, a) =

γλet−1(s, a), if s , st

γλet−1(s, a) + 1, if s = st
(14)

Replacing traces use et(s, a) = 1 for the second update in (14), such that:

et(s, a) =

γλet−1(s, a), if s , st

1, if s = st
(15)

If λ is 0,

et(s, a) =

0, if s , st

1, if s = st
(16)

The mechanism of eligibility traces is illustrated in Fig 10.

times of state visits

accumulating traces

replacing traces

Figure 10: Accumulating and Replacing Traces (taken from [20])

Importantly, no theoretical analysis is available on how the eligibility traces affect the rate of
convergence, and on what kind of traces are the best in large, non-deterministic, and dynamic
environments.

Sarsa(λ) is an on-policy control algorithm, and the increment is updated synchronously. The
Sarsa(λ) algorithm with different eligibility traces is detailed in Fig. 5. The ε-greedy policy is the
exploration strategy, i.e. the agent takes a random action with probability ε and takes the current
best action with probability (1 - ε).

7.2. Comparison and Discussion
The optimal values of α, γ in Sarsa(λ) for non-traces, replacing traces, and accumulating

traces are 0.005 and 0.93, 0.007 and 0.93, 0.007, and 0.91, respectively. Convergence (the speed
of convergence and final convergence to optimality) of three cases, as shown in Fig. 11, is com-
pared.

By analyzing the convergence diagram in Fig. 11, the following findings are observed:
17

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

Non−Traces
Replacing Traces
Accumulating Traces

Figure 11: Comparison of Three Algorithms

• Sarsa(λ) can converge in all cases.

• The use of eligibility traces can cause significant improvement in the rate of convergence.

• The empirical results have also shown the performance with accumulating traces performs
better than that with replacing traces.

The experimental results are different from those of Singh and Sutton [16, 20]. Singh and
Sutton provide evidence that replacing-trace methods can perform much better than conventional,
accumulating-trace methods, particularly at long trace lengths [16, 20]. The reason is that their
case study was based on an MDP, which meant that the same state is re-visited frequently, and
this drives the accumulating traces to be greater than 1. So, the accumulating traces are likely
to be more of a hindrance than a help in finding the best estimate of value. However, in this
work, the test environment is modeled as a SMDP, meaning that the system does not jump back
to the same state. So the use of replacing traces or accumulating traces depends on the stochastic
mature of the application domains.

8. Conclusions and Future Work

This paper demonstrates the use of RL in learning competitive and cooperative skills in Soc-
cerBots agents. This research addresses the agent teaming architecture and some algorithmic
problems of approximate TD(λ). The empirical results have validated some findings related to
RL, i.e.,:

1. A novel RL algorithm is implemented and integrated with a stochastic and dynamic envi-
ronment, so as to investigate agent teaming architecture, learning abilities, and other spe-
cific behaviors. The SoccerBots game is utilized as the simulation environment to verify
goal-oriented agents’ competitive and cooperative learning abilities for decision making.
To deal with a large and continuous state space, the approximation function technique
known as tile coding is applied to avoid the state space from growing exponentially with
the number of dimensions.

18

2. The on-policy and off-policy algorithms with different strategies of eligibility traces have
been investigated. In addition, the mechanism of utilizing eligibility traces are analyzed
and investigated. The efficiency of accumulating traces and replacing traces has also been
examined. The major findings of this paper include that the use of accumulating traces
and replacing traces depends on the nature of stochastic processes, and without cutting off

traces for off-policy algorithms can significantly improve the performance.

The analysis on convergence of TD(λ) and sensitivity between parameters is of paramount
importance. This paper investigates the learning of individual agent skills and the related perfor-
mance metrics are obtained via the process of learning competitive and cooperative skills. The
future work includes the issues on agent architecture for agent teaming and cooperative learning,
and adaptive selection of parameter values.

References

[1] R. Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6, 1957.
[2] J. A. Boyan. Technical Update: Least-Squares Temporal Difference Learning. Machine Learning, 49(2-3):233–

246, 2002.
[3] Peter Dayan and Terrence J. Sejnowski. TD(λ) Converges with Probability 1. Machine Learning, 14(1):295–301,

1994.
[4] Peter Dayan. The Convergence of TD(λ) for General λ. Machine Learning, 8:341–362, 1992.
[5] Thomas Gabel and Martin A. Riedmiller. Learning a Partial Behavior for a Competitive Robotic Soccer Agent. KI,

20(2):18–23, 2006.
[6] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960.
[7] A. Kleiner, M. Dietl, and B. Nebel. Towards a Life-Long Learning Soccer Agent. In Proc. Int. RoboCup Symposium

02, pages 119–127, Fukuoka, Japan, 2002.
[8] Jinsong Leng, Colin Fyfe, and Lakhmi Jain. Teamwork and Simulation in Hybrid Cognitive Architecture. In

Proceeding in 10th Knowledge-Based Intelligent Information and Engineering Systems, volume 4252 of LNCS,
pages 472–478. Springer-Verlag Berlin Heidelberg, 2006.

[9] Jinsong Leng, Colin Fyfe, and Lakhmi Jain. Reinforcement Learning of Competitive Skills with Soccer Agents.
In Proceeding in 11th Knowledge-Based Intelligent Information and Engineering Systems, volume 4692 of LNAI,
pages 572–579. Springer-Verlag Berlin Heidelberg.

[10] A. Merke and M. Riedmiller. Karlsruhe Brainstormers – A Reinforcement Learning Approach to Robotic Soccer.
In RoboCup 2001, volume 2377 of LNAI, pages 435–440. Springer Berlin / Heidelberg, 2002.

[11] J. Peng and R. Williams. Incremental Multi-Step Q-learning. Machine Learning, 22:283–290, 1996.
[12] A. Potapov and M. K. Ali. Convergence of Reinforcement Learning Algorithms and Acceleration of Learning.

Physical Review E, 67, Issue 2, 2003.
[13] Reuven Y. Rubinstein. Simulation and the Monte Carlo method. New York : Wiley, 1981.
[14] G. A. Rummery. Problem Solving with Reinforcement Learning. PhD thesis, Cambridge University, 1995.
[15] S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement Learning with Soft State Aggregation. In Advances in

Neural Information Processing Systems: Proceedings of the 1994 Conference, pages 359–368. Cambridge, MA.
MIT Press, 1995.

[16] S. P. Singh and R. S. Sutton. Reinforcement Learning with Replacing Eligibility Traces. Machine Learning,
22(1–3):123–158, 1996.

[17] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement Learning for RoboCup-Soccer Keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[18] Peter Stone and Manuela Veloso. Team-Partitioned, Opaque-Transition Reinforcement Learning. In RoboCup-98:
Robot Soccer World Cup II, volume 1604 of LNCS, pages 261–272, Berlin, 1999. Springer Verlag.

[19] R.S. Sutton, A.G. Barto, and R.J Williams. Reinforcement Learning is Direct Adaptive Optimal Control. Control
Systems Magazine, IEEE, 12:19–22, 1992.

[20] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
[21] R. S. Sutton. Learning to Predict by the Method of Temporal Differences. Machine Learning, 3:9–44, 1988.
[22] G. Tesauro. Practical Issues in Temporal Difference Learning. Machine Learning, 8(3-4):257–277, 1992.
[23] John N. Tsitsiklis. Asynchronous Stochastic Approximation and Q-learning. Machine Learning, 16(3):185–202,

1994.

19

[24] J. N. Tsitsiklis and B. Van Roy. An Analysis of Temporal-Difference Learning with Function Approximation. IEEE
Transactions on Automatic Control, 42(5):674–690, 1997.

[25] J. N. Tsitsiklis. Asynchronous Stochastic Approximation and Q-learning. Machine Learning, 16(1):185–202,
1994.

[26] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, Cambridge, England,
1989.

[27] Shimon Whiteson and Peter Stone. Evolutionary Function Approximation for Reinforcement Learning. Journal of
Machine Learning Research, 7:877–917, 2006.

[28] Marco A. Wiering. Convergence and Divergence in Standard and Averaging Reinforcement Learning. In Proceed-
ings of the 15th European Conference on Machine Learning (ECML’04), volume 3201 of LNCS, pages 477–488.
Springer-Verlag Berlin Heidelberg, 2004.

[29] Michael Wooldridge and Nick Jennings. Intelligent Agents: Theory and Practice. Knowledge Engineering Review,
10(2):115–152, 1995.

[30] InfoGrames Epic Games and Digital Entertainment. Technical report, Unreal Tournament Manual, 2000.
[31] Humanoid Kid and Medium Size League, Rules and Setup for Osaka 2005. Technical report, Robocup, 2005.
[32] TeamBotsT M Domain: SoccerBots.

http://www-2.cs.cmu.edu/~trb/TeamBots/Domains/SoccerBots/.

20

Figure

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

Sarsa
Watkins
naive

Figure

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

Non−Traces
Replacing Traces
Accumulating Traces

Figure

...
... ...

...

Tilings

Feather Weight

Decision

Optimal Action

(Variables of interest)

Action 1

Action 2

Action n

Action n

Action 2

Action 1

Environment

State Feather
T1

T1

T2

Tm

T2
T1

Tm

Tm

T2

...
...

...

Figure

times of state visits

accumulating traces

replacing traces

Figure

d o
d g

theta

beta

Figure

0
0.005

0.01
0.015

0.02

0.9

0.95

1
−40

−35

−30

−25

−20

Figure

0 200 400 600 800 1000
25

30

35

40

45

50

55

60

65

70

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

0.05 (alpha)
0.10 (alpha)
0.15 (alpha)

Figure

d b

theta

beta

Figure

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

Episodes

A
ve

ra
ge

 R
ew

ar
d

P
er

 E
pi

so
de

0.05 (alpha)
0.07 (alpha)
0.01 (alpha)

Figure

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

T
eam

 1

Environment

Simulation

SoccerBots

Effector(s)

Sensor(s)

T
eam

 2

Figure

SocSmall API

SoccerBots

Effector

Effector

Sensor

Sensor

Sensor
Effector

Interface

......

Agent Player 2

Agent Player 4

Agent Player 5

T
eam

 1

Effector
Sensor

Agent Player 1

......

Figure

	Reinforcement learning of competitive and cooperative skills in soccer agents
	tmp.1362023647.pdf.nndRe

