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Abstract 

Red teaming (RT) is a process that assists an organization in finding vulnerabilities in a 

system whereby the organization itself takes on the role of an “attacker” to test the 

system. It is used in various domains including military operations. Traditionally, it is a 

manual process with some obvious weaknesses: it is expensive, time-consuming, and 

limited from the perspective of humans “thinking inside the box”. Automated RT is an 

approach that has the potential to overcome these weaknesses. In this approach both the 

red team (enemy forces) and blue team (friendly forces) are modelled as intelligent 

agents in a multi-agent system and the idea is to run many computer simulations, pitting 

the plan of the red team against the plan of blue team.  

 

This research project investigated techniques that can support automated red teaming by 

conducting a systematic study involving a genetic algorithm (GA), a basic 

coevolutionary algorithm and three variants of the coevolutionary algorithm. An initial 

pilot study involving the GA showed some limitations, as GAs only support the 

optimization of a single population at a time against a fixed strategy. However, in red 

teaming it is not sufficient to consider just one, or even a few, opponent‟s strategies as, 

in reality, each team needs to adjust their strategy to account for different strategies that 

competing teams may utilize at different points. Coevolutionary algorithms (CEAs) 

were identified as suitable algorithms which were capable of optimizing two teams 

simultaneously for red teaming. The subsequent investigation of CEAs examined their 

performance in addressing the characteristics of red teaming problems, such as 

intransitivity relationships and multimodality, before employing them to optimize two 

red teaming scenarios. A number of measures were used to evaluate the performance of 

CEAs and in terms of multimodality, this study introduced a novel n-peak problem and 

a new performance measure based on the Circular Earth Movers‟ Distance. 

 

Results from the investigations involving an intransitive number problem, multimodal 

problem and two red teaming scenarios showed that in terms of the performance 

measures used, there is not a single algorithm that consistently outperforms the others 

across the four test problems. Applications of CEAs on the red teaming scenarios 

showed that all four variants produced interesting evolved strategies at the end of the 



xii 

 

optimization process, as well as providing evidence of the potential of CEAs in their 

future application in red teaming. 

 

The developed techniques can potentially be used for red teaming in military operations 

or analysis for protection of critical infrastructure. The benefits include the modelling of 

more realistic interactions between the teams, the ability to anticipate and to counteract 

potentially new types of attacks as well as providing a cost effective solution. 
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1 Introduction 

1.1 Overview 

Red teaming (RT) is a risk assessment activity associated with the evaluation and 

analysis of plans and strategies of an organization. The main purpose of using RT is to 

reduce risk and create opportunities (Andrews, 2005; Department of Defence, 2003; 

Meehan, 2007). There are two categories of RT, namely human-based and computer-

based RT. The RT process involves a number of different teams, with colours being 

used to indicate the team‟s role. Typically, blue, red and green are used to represent a 

group of defenders, adversaries and neutral agents respectively (Meehan, 2007; Yang, 

Abbass, & Sarker, 2006). As RT is utilised to detect vulnerabilities of a system and may 

be used to identify different approaches to eliminate them, it has been successfully used 

in many organizations, including the military, police and manufacturing companies, for 

evaluating the performance of strategies within their enterprises (Andrews, 2005; 

Meehan, 2007; Yang, et al., 2006). 

 

According to Fontenot (2005), during the 19th century, the German military introduced 

the RT approach, where it was used in the planning of combat scenarios. In 1897, the 

US army introduced a systematic approach and rules for RT and coined the term “red 

team” for the first time. Subsequently many countries, including France and the United 

Kingdom, also used human-based RT to practice their war games. Human-based RT 

involves two teams; the red team simulating the enemy and the blue team simulating 

defenders. This can be an extremely expensive exercise, as it involves a large amount of 

manpower. It is also limited in terms of difficulty in exploring all aspects of a specific 

scenario. This traditional approach has less manpower intensive alternatives, with 

different approaches such as sand tables, game theory and mathematical models such as 

Lanchester equations (Sidran, 2004). These approaches model combat scenarios, such 

as planning attacks and defences and estimating the probabilities of winning or losing, 

without deploying real troops. However, they have difficulty addressing some existing 

problems associated with RT exercises, specifically in addressing the non-linear 

characteristic associated with combat scenarios (Yang, 2006). Attempts to address this 

have been made since 1994 with Ceranowiez (1994) first introducing the simulation 

software, modular semi-automated forces (ModSAF) for practicing war games. With 
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the increasing popularity of ModSAF, many other combat simulation software such as 

the extended Lanchester model (ELAN) and the combined arms and support task force 

evaluation model (CASTFOREM) were developed (Ilachinski, 2000; Yang, 2006). 

These attempts, however, still do not make the RT process any easier since they were 

based on top-down approaches (Ilachinski, 2003). In addition, the absence of graphic 

user interfaces (GUIs) was a barrier to be a user-friendly simulator (Ilachinski, 2003). 

Some limitations of conventional RT software were addressed by introducing agent-

based systems (ABS) and multi-agent systems (MAS). In ABS, the interactions between 

the autonomous agents themselves and with their environment produce emergent 

behaviours. The introduction of ABS applications also reduced the user‟s involvement 

in modelling combat simulation as these autonomous agents produce a global behaviour 

that is dependent upon the interactions of the local entities (autonomous agents), which 

is a bottom-up approach.  

 

Agent-based distillation (ABD) is a type of ABS where the level of detail associated 

with the modelling of individual agents is very low. The ABD concept was first 

implemented in a simulation application called irreducible semi-autonomous adaptive 

combat (ISAAC) (Ilachinski, 2000). Since then, a number of ABDs have been 

introduced, including the enhanced ISAAC neural simulation toolkit (EINSTein) 

(Ilachinski, 2003), map aware non-uniform automata (MANA) (Lauren, 1999), 

conceptual research oriented combat agent distillation (CROCADILE) (Barlow & 

Easton, 2002) and warfare intelligent system for dynamic optimization of missions 

(WISDOM) (Yang, 2006). 

 

1.2 Statement of the Problem 

“If you know your enemies and know yourself, you will not be imperilled in a hundred 

battles.” 

The above quote was made by Sun Tzu (Giles, 2005) and highlights the importance of 

RT in military organizations. The effectiveness of RT exercises in modern warfare has 

been proven by the introduction of various war games including „kriegspiel‟ and „the 

American kriegspiel‟ (Fontenot, 2005).  However, RT is not an easy process. Manual 

RT involves massive human participation which makes it expensive and time-
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consuming. The entire process relies upon the specific individual as a planner directing 

every step in executing the combat scenario. The effectiveness of such practice games is 

limited from the perspective of humans “thinking inside the box”. Thus, there is a high 

possibility of a whole range of differences as to what may occur in the predicted versus 

the actual sequence of events. 

 

The introduction of computerized simulators such as EINSTein and MANA enhances 

the RT process (Ilanchiski, 2003). However, it is very hard to explore all possible 

outcomes of highly non-linear military operations using simulators. Therefore, 

researchers including Upton and McDonald (2003) and Choo, Chua and Tay (2007) 

introduced search optimization methods that automate the vulnerability discovery 

process using a combination of search algorithms and agent-based simulations. The 

purpose of these optimization methods was to identify vulnerabilities and also to detect 

optimal strategies that best addressed specific scenarios. However, most of these 

existing optimization models use a variety of artificial intelligence techniques such as 

single objective genetic algorithms (GAs). Using these optimization models, the analyst 

has to run the simulation many times to find vulnerabilities in their planning. In 

addition, most of them find an optimal solution in response to a fixed opponent‟s 

strategy, whereas opponents may use more than one attack or defence strategy in 

reality. This limitation may be a barrier to existing optimization methods in identifying 

realistic strategies. In a realistic scenario, both sides can change their strategies in 

response to the opponent‟s strategy. 

 

In order to address the limitations of the existing optimization models, this thesis aims 

to investigate suitable search methods that can be effectively used in RT and other 

similar applications. The purpose of this study is described in the following section. 

 

1.3 Purpose of the Study 

The aim of this research is to carry out a systematic study incorporating evolutionary 

algorithms (EAs) for finding good solution sets for RT scenarios and other similar 

applications. For this, a commonly used technique as suggested by Upton and 

McDonald (2003), Hingston (2011) and Choo et al. (2007) is used, in which simulations 
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of scenarios are combined with search algorithms for finding good solutions. In this 

thesis, MANA is used as a military RT simulator and Genetic Algorithms (GAs) and 

Coevolutionary Algorithms (CEAs), are the search algorithms. CEAs have many 

advantages over the GAs. In particular, they can be used even when there is no 

objective measure to determine the individual‟s fitness. In addition, CEAs can also 

evolve multiple populations simultaneously. These two properties of CEAs are 

particularly relevant in RT applications where two teams are evolved concurrently and 

objective fitness functions are not easily defined. Despite the many advantages 

associated with CEAs, there are some limitations that compromise the effectiveness of 

their performance and these are commonly known as the CEA pathologies (Ficici, 

2004; Wiegand, 2003). These pathologies can be problematic, as RT applications 

possess characteristics that are associated with the manifestation of certain CEA 

pathologies and thus pose a challenge in terms of the ability of CEAs in finding good 

solutions.  

 

Therefore, the applications of CEAs for optimization of RT scenarios is investigated 

through a series of test problems designed to isolate various properties of RT scenarios, 

such as intransitivity and multimodality. A problem domain is intransitive when a 

simple ranking of solution strength cannot be performed. For example, intransitivity 

occurs if a solution A is better than solution B, and B is better than solution C, yet C is 

better than A, as in the example of the rock-paper-scissors game. With regard to RT, a 

strategy that is considered ineffective in one scenario may turn out to be a winning 

strategy in another (Sidran, 2004). This indicates that even in RT, a simple ranking of 

good strategies is not possible, which may demonstrate some elements of intransitivity. 

Another characteristic is multimodality, where a number of different „good‟ solutions 

exist. In RT applications, there may be more than one effective strategy to defeat an 

opponent‟s plan. Thus, the assumption is that RT applications demonstrate the 

properties of multimodality. Eiben and Smith (2003) also suggested that multimodality 

may occur in most domains. When this issue was investigated in the RT domain as part 

of a pilot study in this thesis, the study also demonstrated some evidence of 

multimodality (see Chapter 3). This study investigates suitable techniques that can be 

incorporated into a basic CEA to address these CEA pathologies in RT and other similar 

domains.  
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In summary, the purpose of the study can be listed as below: 

 Investigate approaches incorporating EAs, specifically GAs and CEAs, for finding 

good solution sets for RT scenarios and other similar applications. 

 Identify suitable techniques that enhance CEAs. Incorporate the identified variants 

in CEAs for investigating the issues of intransitivity and multimodality in RT 

scenarios and other similar domains. 

 Investigate suitable measures to evaluate CEAs‟ performance in various problems, 

including RT. 

 

With the above mentioned purpose, this study makes a number of contributions in 

relation to the use of CEAs for the optimization of RT and similar domains. The 

detailed contributions are outlined in the following section. 

 

1.4 Contributions of this study 

This thesis makes contributions in the area of optimization for RT and other associated 

applications using CEAs. In the process of examining this subject, the work also makes 

contributions of more general applicability to competitive CEAs. The detailed 

contributions of this research are listed in the following points. 

 

 Extending knowledge of the factors affecting the performance of 

coevolutionary algorithms (CEAs) by conducting a systematic study of 

CEAs with and without common enhancements, in the context of RT and 

other similar applications. 

Many researchers including Lauren & Stephen (2002), Upton and McDonald 

(2003) and Choo, Chua and Tay (2007) have investigated EAs to optimize RT 

scenarios. One of the limitations of EAs when employed in RT applications is 

that the population evolves in response to just one or a few opponent strategies. 

In reality, opponents may have a very large number of unpredictable strategy 

options. In order to address this issue, researchers such as Choo, Chua, Low and 

Ong (2009) and Hingston and Preuss (2011) introduced CEAs in developing 

optimization techniques for RT. The incorporation of CEAs for RT is still in its 
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infancy and existing studies that used only CEAs which do not address (1) the 

pathologies associated with CEAs and (2) RT characteristics such as 

intransitivity and multimodality. This thesis presents a more complete and 

systematic study of these issues in the following way.  

 

Firstly, this thesis carried out a systematic study of variants of CEAs on a 

number of artificial test problems with different characteristics: intransitivity and 

multimodality. Subsequently, two RT scenarios with different objectives were 

analysed. Secondly, different performance measures were used to evaluate the 

performance of the variants of CEAs when they are applied to each of a set of 

four domains (an intransitive number, multimodal and two RT scenarios). For 

this, the study explored CEAs with or without archives and diversity 

maintenance techniques to enhance the algorithms‟ performance in finding a 

good solution set for RT and other similar applications. As an archive, a memory 

mechanism called Hall of Fame (HOF) (Rosin & Belew, 1997) was used. For 

the purpose of maintaining diversity, implicit and explicit techniques suggested 

by Chong, Tino and Yao (2008) were used. For explicit diversity maintenance, 

mutation rate is varied; whereas a technique called fitness sharing (FS) is used 

for implicit diversity maintenance. In addition, the combination of diversity 

maintenance techniques and archives is also evaluated. 

 

This study also presents a multimodal test-problem and various performance 

measures for CEAs. Generalisation Performance, which was introduced by 

Chong et al. (2008) for single population CEAs, are implemented in this study 

for multi-population CEAs. In addition, Circular Earth Movers‟ Distance, Peak 

Ratio and Success Ratio are incorporated to measure the algorithms‟ 

performance in dealing with a specific domain characteristic, multimodality. 

 

 A novel scalable multimodal problem is introduced to test the ability of CEAs 

to identify multiple global optima.   

Researchers including Deb and Goldberg (1989), Zitzler, Deb and Thiele (2000) 

Hansen and Kern (2004) and Singh and Deb (2006) have introduced various 

multimodal problems. Multimodality refers to the existence of more than one 
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good solution in the search space. However, the previously introduced test 

problems are suitable only to evaluate the performances of GAs and multi-

objective evolutionary algorithms (MOEAs). Since CEAs are different from other 

EAs, the existing test problems are not suitable for evaluating CEAs. One main 

difference relates to the fitness evaluation: GAs and MOEAs are dependent upon 

objective fitness function(s) whereas in CEAs fitness is calculated on the basis of 

the interaction between individuals in CEAs. To the best knowledge of this 

author, multimodal problems that are suitable for evaluating competitive 

coevolution are not found in the existing literature.  

 

The interest in evaluating the performance of competitive CEAs in addressing 

multimodality is due to the common belief that multimodality is a characteristic 

associated with RT applications. As one of the aims of this study involved 

employing competitive CEAs in RT applications, this research introduces a test 

multimodal „n-peak‟ problem (Ranjeet, Hingston, Lam, & Masek, 2012) to 

facilitate a systematic study involving multi-population CEAs. The test problem is 

designed to be scalable, supporting the capability to be multi-dimensional and can 

be composed of a variable number of peaks which can be defined by the user. 

This study employed a one dimensional version of this test problem and the 

performance of CEAs is judged according to how effectively they identify the 

peaks. 

 

 Introduction of the Circular Earth Movers’ Distance as a novel metric for 

measuring the ability of EAs in finding multiple global optima.  

A technique called Circular Earth Mover‟s Distance (CEMD), for comparing two 

histograms, has been widely used in image processing related research including 

image retrieval (Rubner, Tomasi, & Guibas, 2000), measurement of texture and 

colour similarities (Levina & Bickel, 2001), image matching (Ling & Okada, 

2006) and image comparison (Rabin, Delon, & Gousseau, 2008). However, no 

existing work has been found where the CEMD technique has been utilized as a 

performance measure for any kind of search algorithm. 
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In order to test the ability of CEAs in detecting multiple peaks, this study 

employed the „n-peak‟ test problem. For the purpose of measuring the 

performance of CEAs in detecting multiple optima in the test problem, this thesis 

introduced the use of CEMD as a performance measure of CEAs. In the „n-peak‟ 

test problem, the exact locations of the peaks are known. On the basis of these 

known peaks, an ideal histogram can be created in which all buckets with a peak 

contain equal number of solutions and the remainder of the buckets are empty. 

Likewise, an actual histogram can be created for each evolving population which 

can then be compared with the ideal histogram. A smaller variation between these 

two histograms implies better performance of the algorithms in finding the known 

peaks. 

 

 Introduction of Peak and Success Ratio as novel metrics for measuring the 

ability of CEAs in detecting multiple peaks. 

Researchers including Beasley, Bull and Martin (1993) and Thomsen (2004) have 

measured GAs and differential evolution (DE) algorithms respectively using Peak 

Ratio and Success Ratio to identify the capabilities of the algorithms in detecting 

multiple optima. Subsequently, Epitropakis, Plagianakos, Vrahatis (2011) and 

Otani, Suzuki and Arita (2011) also used the same techniques to measure the 

capabilities of DEs for multimodal optimization. 

 

This study introduces the use of the Peak and Success Ratio as performance 

measures of CEAs for multimodal optimization. The Peak Ratio is the number of 

peaks identified out of the specified number of defined peaks in the multimodal 

problem. The Success Ratio is a percentage of how many times all peaks have 

been successfully identified. 

 

 Exploring and evaluating the combination of diversity maintenance and 

archives to enhance the performance of CEAs. 

Researchers have introduced various techniques to enhance CEAs‟ capabilities to 

address associated pathologies. Axelrod (1987), Hillis (1990) and Rosin and 

Belew (1997) have used diversity maintenance techniques to address CEAs‟ 

cycling pathology. Likewise, Rosin and Belew (1997), Ficici and Pollack (2003) 
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and Avery, Michalewicz and Schmidt (2008) used an archive as a memory 

mechanism to address CEAs‟ forgetting pathology.  

 

Diversity maintenance techniques such as fitness sharing disperse the population 

by encouraging solutions different to existing ones, which helps to locate the best 

solution in the search space. The memory mechanism approach stores a number of 

the highest ranked solutions from each generation, which helps to remember the 

good strategies that occurred in past generations. Researchers discovered that both 

these techniques are useful on an individual basis in enhancing the performance of 

CEAs. However, there is limited existing work that integrates these two 

approaches, and as far as to the knowledge of the author, none that specifically 

involve red teaming. This thesis investigates and provides insights in terms of the 

application of the combination of these two techniques with CEAs for the test 

problems and RT scenarios.  

 

 Adaptation of Chong et al.’s Generalisation Performance measures to multi-

population CEAs. 

In EAs, the performance of the algorithms is often measured based on fitness 

values, because individuals are evaluated according to the objective fitness 

function used. Specifically in RT applications, researchers including Chua et al. 

(2008) and Xu, Low and Choo (2009) examine only objective fitness as a 

performance measure of EAs. Two recent studies have involved the use of CEAs 

in RT applications. The first study was presented by Choo, Chua, Low and Ong 

(2009) and the second by Hingston and Preuss (2011). In the first study, the 

performance measure of the CEAs was not disclosed, whereas in the second 

study, the winning ratio of the team is considered as a performance measure of the 

algorithm.  

 

However, objectively evaluating the performance of an individual solution in a 

CEA is problematic, due to the lack of an objective fitness function especially 

when the population it competes against, also evolves. Thus, Chong, Tino and 

Yao (2008) introduced Generalisation Performance (GP), a performance measure 

for CEAs. The authors have used GP to measure the capability of CEAs in solving 
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a problem called Iterated Prisoner‟s dilemma (IPD). The IPD is a single 

population game, in which players receive “reward” or “punishment” on the basis 

of the cooperation and defection they make with the other players. 

 

Unlike Chong et al. (2008; Chong, Tino, & Yao, 2009)‟s work, this study extends 

the definition of GP (details are given in section 3.3.1), making it suitable to use 

as a performance measure for multi-population CEAs. This performance measure 

is used as a generic tool for measuring performance of CEAs (with or without 

variants) in finding good solution sets in the various test problems incorporated in 

this thesis.  

 

 Examination of the relationship between genotypic and phenotypic diversity, 

and the relationship between diversity and quality in the context of RT. 

With respect to the use of CEAs in RT applications, researchers including Choo, 

Chua, Low and Ong (2009) and Hingston and Preuss (2011) have presented 

analyses of the fitness value and measure of effectiveness. No literature has been 

found that investigates the relationship between diversity and quality of solutions 

for algorithms in RT applications as the application of CEAs in this area is still in 

its infancy.  

 

In this study, the basic CEA is used with or without variants to enhance the 

capacity of CEAs in finding a good solution set. In terms of CEA variants, 

implicit and explicit diversity maintenance and a HOF archive and their 

combinations are used. Diversity of the population is then measured on the basis 

of genotypic and phenotypic variation. This study investigates the relationship 

between genotypic diversity and phenotypic diversity. Additionally, the 

relationship between the diversity and quality of the evolved population is also 

investigated in order to analyse whether a diverse population enhances the CEAs‟ 

performance (in terms of generalisation performance and evolving towards a 

theoretical optimum if one is known).  
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 Examination of multimodality characteristics in RT scenarios. 

Although Eiben and Smith (2003) stated that most domains demonstrate multiple 

good solutions, no literature has been found that studied multimodality for RT 

scenarios. In this thesis, a systematic study was conducted to demonstrate that 

multiple good strategies can be used in RT scenarios. 

 

In summary, this thesis contributes towards a better understanding of factors affecting 

the performance of CEAs in RT domains, as well as making useful contributions 

concerning CEAs in general, especially with regard to performance of CEAs in the 

presence of intransitivity and multimodality. 

 

1.5 Organization of the Thesis 

This chapter described the background information, purpose and the contributions of the 

study. The following chapters are arranged as follows: 

 

Chapter 2 is a literature review. This chapter is divided into two major sections: the 

applications of RT and algorithms that can be used to develop solutions for RT. In the 

applications section, descriptions of RT, overviews of agent-based systems, existing RT 

optimization methods and their limitations are presented. In the second section; EAs, 

specifically GAs and CEAs are discussed. 

 

Chapter 3 describes a pilot study in which a RT scenario was optimized using GAs. The 

chapter demonstrates the performance and limitations of the algorithm in optimizing RT 

applications when a single population is optimized at a time. This chapter serves as 

motivation for exploring coevolution as the empirical study revealed that the GAs is 

unsuitable to deal with realistic RT problems.  

 

Chapter 4 presents problem domains, algorithms and performance measures which are 

employed in this thesis. The first section presents descriptions of a variety of problem 

domains that are used to test the algorithms. The second section details the algorithms 

used in this thesis - GAs and CEAs along with the techniques of diversity maintenance 
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and archive that are integrated into the CEA. The third section describes various 

performance measures used to evaluate the algorithms. 

 

Chapter 5 describes an empirical study to test the effectiveness of a CEA on an 

intransitive number problem. The CEA was used with and without variants to evaluate 

the effect of archives and diversity maintenance in addressing the problem of 

intransitivity. A series of experiments were conducted by varying parameters that affect 

the search process and the relationship between the diversity and quality of the evolved 

population are also discussed in this chapter.  

 

Chapter 6 involves an empirical study that was used to identify the multiple optima in a 

multimodal domain. As in chapter 5, a CEA was used with and without variants to 

evaluate whether the archive only, diversity maintenance only or the combination of 

both these two techniques can better address the multimodal problem. A new 

multimodal problem, known as the n-peaks problem is introduced in this chapter. 

 

Chapter 7 details the investigation for finding optimal strategies for the red and blue 

teams in RT using CEA techniques that have been evaluated in chapter 5 and 6. The 

relationship between diversity and quality in various algorithms tested are also shown in 

this chapter. In addition, the emerged tactics in both scenarios are demonstrated and 

analysed. 

 

Chapter 8 summarizes the main findings from this thesis. This chapter discusses how 

the CEA with commonly used variants behaves differently in different domains studied 

in this thesis. It also exposes how diversities of a population influences quality in the 

various domains studied. This chapter also includes a discussion of possible future 

research directions. 
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1.6 Conclusion 

This chapter provided an overview of RT, purpose of the study, and contribution of the 

study as well as detailing the structure of this thesis. In the next chapter, the literature 

review, the studies of the existing techniques, algorithms and applications that are 

associated with this thesis are detailed. 
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2 Literature Review 

Chapter 1 described the aims and contributions of the study. This chapter reviews 

literature relevant to this thesis. There are three major sections reviewed in this chapter. 

They are: RT applications, EAs as search algorithms, and optimization techniques. The 

first section details a review of manual and automated RT approaches with ABS 

characteristics. The second section presents a review of EA techniques used in this 

thesis, specifically focusing on GAs and CEAs. The last section presents a review of 

existing RT optimization techniques. 

 

2.1  Red Teaming 

RT is a process in which a system‟s plans and strategies are analysed to detect 

vulnerabilities, challenge assumptions and propose a number of alternative visions 

(Andrews, 2005; Meehan, 2007; Yang, et al., 2006). Fontenot (2005) defined manual 

RT as a structured and iterative process, practised by experts with a capacity of 

assessing systems. RT approaches involve understanding the culture, technology, needs, 

laws, market research, risk factors, available resources and ideological frameworks 

associated with a system. Furthermore, it focuses on how the enemy thinks (Andrews, 

2005; Fontenot, 2005). Likewise the Homeland Security Exercise and Evaluation 

Program (HSEEP) (2007) defined RT as: 

… a group of subject matter experts (SMEs) of various appropriate disciplinary 

backgrounds who provide an independent peer review of plans and processes; 

act as the adversary‟s advocate; and knowledgeably role-play the adversary, 

using a controlled, realistic, interactive process during operations planning, 

training, and exercising. (HSEEP, 2007) 

 

Consequently, manual RT is a process that involves a group of experts who play the 

roles of outsiders or adversaries. The team members work on behalf of enterprises to 

find weaknesses in systems and ultimately demonstrate a better plan of operations 

(Meehan, 2007; Yang, et al., 2006). According to Abbas, Bender, Gaidow and 

Whitbread (2011), RT was introduced to improve the performance of enterprises‟ plans, 

progress, assumptions and strategies. The purpose behind its use is to reduce risk and 



16 

 

create opportunities (Andrews, 2005; Department of Defence, 2003). Both government 

and commercial enterprises, such as military, police, and manufacturing companies 

have successfully used it as a vital tool for successful systems management (Department 

of Defence, 2003; Meehan, 2007). Within an enterprise, it can be implemented at 

different levels such as strategic, operational and tactical. Each of these level addresses 

different aspects such as challenging estimations and visions; testing plans and training 

for development (Department of Defence, 2003). 

 

According to the Department of Defence (2003), the success of the red team depends on 

several factors such as management support, its objectives, available information and 

the relationship with the blue team. The strengths of RT recognized by the Department 

of Defence (DOD) are listed below:  

 Since it expands the problem‟s definitions, spotting vulnerabilities is easier.  

 It can view the problem as an adversary or competitor, thus playing a vital role in 

enhancing decision making by specifying the adversary‟s preferences and strategies.  

 As it deals with risk assessment, there is strong potential for creating new 

opportunities for development. 

 RT is a goal-oriented process. Thus, there is always a level of independence and 

accountability.  

 The red team members have access to overall system information which may be 

utilized to direct a variety of alternative approaches to solving existing system 

problems. 

 Besides eliminating vulnerability, it may propose a new way to deal with various 

factors such as motivation, connections and risks (Department of Defence, 2003). 

 

Undoubtedly, there are advantages in using RT to find vulnerabilities in enterprises and 

provide better security. However, it is not completely free from problems. The DOD 

(2003) discovered some challenges of RT: 

 RT is labour intensive; it is heavily dependent on the expertise of the team members 

and their responsibilities. However, the process may fail if they are not motivated or 

lack sufficient skills, training or resources. 
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 The success of RT usually relies on co-operation with management and the blue 

team but if members do not limit their inter-team interaction, information leakage 

may negatively affect the entire process. 

 If the red team is given limited or incorrect information, it may not be able to 

achieve its objectives. 

 Usually, team members focus within the system, whereas experience has shown that 

external factors such as the cultural, religious and geographical issues may also 

influence the success of the process.  

 Despite its numerous advantages, RT is still a costly process and may need to be 

considered on a cost-benefit basis. 

 

According to Fontenot (2005), the history of RT in combat began during the 19th 

century when the German military developed the war game, „kriegspiel‟, as a training 

tool to make team members confident about the training they had received. The war 

game evaluates leadership, concepts and plans. In 1897, U.S. army captain, W.R. 

Livermore introduced systematic approaches and rules for a war game called „The 

American kriegspiel‟ that included a team specifically denoted as the Red Team. 

Subsequently, many countries used different RT approaches to understand the 

opponents‟ strategies. After World War I, the Germans and the British used RT to 

review the conduct of the war. The United States (US) also successfully implemented 

RT during World War II against the Germans. The major reasons behind the U.S. 

success were the effective analysis of German intentions and the ability to break 

through the German deception plans (Fontenot, 2005). Traditionally, RT uses a massive 

number of people to conduct the war game, via human-based or manual RT in which a 

force is divided into enemy and friend groups, known as the red and blue teams 

respectively (Sidran, 2004). Manual RT does not explore all aspects of problems and is 

difficult to implement in term of cost. Thus, manual RT was progressively replaced by 

various models, including software-based RT which uses computer simulations of 

multi-agent systems to detect the vulnerabilities in a plan or operation. Computer-based 

RT also involves two major groups including the red and blue teams. Each of these is a 

representation of a set of adversarial behaviours and defenders respectively (Yang, et 

al., 2006).  
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As shown in Figure 2.1, RT approaches can be categorized into two types, conventional 

and software models. The conventional model contains manual approaches of 

conducting RT such as the Lanchester Equations and sand tables. The software model 

consists of two categories, namely the conventional simulation model and ABS. 

 

 
Figure 2.1: Approaches of the RT in combat (Source: Yang, 2006; Parunak, 2007) 

 

2.1.1 Conventional Combat Models 

Combat simulations allow commanders to model a variety of scenarios in which they 

can exercise to find alternative strategies based on specific scenarios. In this section, 

some of the conventional combat models such as Lanchester Equation and game theory 

are discussed.  

 

2.1.1.1 Lanchester Equations 

Lanchester Equations (LEs) (Lanchester, 1916) are a set of mathematical formulae that 

calculate the relative strengths of two opposing teams in a battle. LEs are differential 

equations that consider combatants‟ casualties as a continuous function over time 

(Yang, 2006). The equations demonstrate how increasing the number of combatant will 

reduce the total number of casualties (Ilachinski, 2000, 2003). 

 

In the equation, there are representations for two teams, the blue and red. The numbers 

of soldiers in the blue and red teams are represented by symbols B and R respectively. B 

(0) and R (0) are initial strengths of B and R team. R (t) and B (t) are numerical strengths 
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at a time t. Each team has offensive firepower, which corresponds to the number of 

adversaries the team can defeat per unit time. The constant effective firing rates at one 

unit of strength on each side are represented by αb and αr for the B and R respectively. 

In the following equation, the symbol dR/dt is the rate of change of the number of red 

combatants over time t. The loss of soldiers is indicated by a negative value. Likewise, 

dB/dt represents the rate of change of the number of blue combatants. 

 

 RRtB
dt
dR

b  )0(),(  

 BBtR
dt
dB

r  )0(),(  

 

As described by Sidran (2004), the Lanchester‟s Equation states that mathematically, 

the fighting strength of an army is proportional to both the efficiency of its weapons and 

the number of troops; also, the rate at which one force loses its fighters is proportional 

to the number of opponents. 

 

However, according to Ilachinski (2000), LEs have the following limitations:   

 They ignore the spatial variation of forces such as relation between movement and 

attrition. 

 They do not have event driven behaviours as they neglect the capability of human 

factors in decision-making and their impact in combat. 

 They follow a top-down or reductionist approach to simulate combat. 

 They are incapable of addressing the changes in combat scenarios that show 

different outcomes in combat due to sudden decisions made by local commanders. 

 

2.1.1.2 Sand Table 

A well known conventional combat approach, in addition to the use of mathematical 

equations, is the sand table approach. The sand table can be conducted on a table or the 

ground in which each soldier on each opposing side is represented by a specific entity. 

The simulation designer simulates a part of the real world using the environment set up 

on the ground. The designer physically moves entities to show the movement and 

interaction amongst the two opposing sides. The movement of entities on the sand table 
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assists designers to understand the combat scenario which mitigates the vulnerabilities 

and aids in preparing an effective strategy to respond to a situation. In this type of 

simulation, once the vulnerabilities in the plan and strategy are identified, real troops 

have to be engaged to conduct the war game (Parunak, 2007). 

 

2.1.2 Software Simulation Models 

Conventional models such as LEs and sand tables provide an idealised model of 

military operation but have trouble addressing non-linear behaviours associated with 

combat. Owing to the complexities of the combat behaviours, these conventional 

approaches may produce unrealistic results. In order to address the limitations of 

conventional approaches, software simulation was introduced. The basic idea of a 

software combat model was to represent each entity as a software agent. The approach 

is inexpensive and faster in comparison to the manual approaches. Initially, software 

models were introduced as computer games that required user control. These are being 

superseded by multi-agent systems. Thus, this section is discussed in two parts: 

conventional software simulations and agent-based systems. 

 

2.1.2.1 Conventional Software Simulation 

Conventional software simulation involves a computer program that simulates a combat 

zone with controllable warriors, semi-automated forces, and an environment, which is 

directed by one or more players. Some examples of conventional combat simulations 

are Modular Semi-Automated Forces (ModSAF), Extended LANchester model (ELAN) 

and combined arms and support task force evaluation model (CASTFOREM) 

(Ilachinski, 2003; Yang, 2006). Software simulation brought changes in combat 

simulation since the involvement of a massive numbers of people in the RT process is 

reduced to just a program and the hardware system. However, Yang (2006) has outlined 

some limitations in this approach including limited data collection and analysis 

facilities; focus on high level instead of low level competencies; difficult to use due to 

unavailability of user friendly interface and high dependence on users. 
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2.1.2.2 Agent-Based Systems 

In a computer simulation that simulates a part of the real world, an agent is a software or 

hardware component with the capacity to represent an entity of the real world (Buckle et 

al., 2002; Bui & Barlow, 2003; Cleary, Ball, Madahar, & Thorne, 2008). An ABS 

possesses characteristics similar to many complex adaptive systems (CASs), including 

that of emerging global behaviour through interactions of low-level individual 

components or agents (Buckle, et al., 2002). The following are some characteristics of 

an ABS (Flores-Mendez, 1999; Jennings, Sycara, & Wooldridge, 1998; Liu & Zhang, 

2008; Schumacher, 2001). 

 Every entity has its specific goal whilst lacking awareness of the overall objective of 

the system. The overall goal of the system is a black box to the individual agents 

and vice versa. 

 It is built on bottom-up approaches since individual entities have limited viewpoints 

and there is no central controller in this system.  

 It is a fault tolerant system as any agent can substitute for the failure of another 

agent. 

 Since it is a robust system, an ABS may be reconstructed by removing or adding a 

number of agents.  

 An ABS system is reusable since the environment created for one application may 

be implemented in another application with necessary modifications. 

 The data is decentralized and distributed to the agents and the environment. 

 

In software combat simulation, the limitation of conventional models can be addressed 

by introducing agent-based systems (Ilachinski, 2003), which are based on the principle 

that complex behaviours emerge due to the autonomous agents‟ interactions. The 

autonomous agents could be homogeneous or heterogeneous. The effect of using an 

ABS is that the behaviours and interactions of individual entities are modelled rather 

than a coarse grained model of a group of entities as a whole (such as with the 

Lanchester Equation) (Lauren, 1999; Levin, 2002). 

 

Many researchers have successfully implemented ABS in a number of application 

domains such as a computer-based tutoring system (Shakshuki & Kajonpotisuwan, 

2002), mobile robots (Innocenti, Lopez, & Salvi, 2003), an error-detecting system for 
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spreadsheet applications (Clearly et al., 2008), system for controlling intelligent 

buildings (Davidsson & Boman, 2000) and in production and distribution systems 

(Davidsson & Wernstedt, 2002). A multi-agent system (MAS) is a type of ABS that 

includes many such agents with their specific environments and processes of achieving 

goals. When a group of autonomous agents with local behaviours interact among 

themselves and with their environment, they can produce an emergent global behaviour 

(Cleary, et al., 2008; Poslad, Buckle, & Hadingham, 2000).  

 

Consequently, ABSs have proven to be versatile and useful, able to be applied in a 

number of domains. One domain is that of combat simulation for RT, in which agents 

play the role of defenders and attackers. 

 

Agent-based distillation (ABD) is a term associated with ABS in which the level of 

detail associated with the modelling of individual agents is very low (Bui & Barlow, 

2003). Due to their simplicity, ABDs are suitable in applications where multiple agents 

need to be simulated, and where the simulation needs to be repeated many times. One 

example is in evolving strategies for combat scenarios, as addressed in this thesis. 

Several simulators already exist in this domain. Some of these include:  

 Irreducible Semi Autonomous Adaptive Combat (ISAAC) 

 Enhanced ISAAC Neural Simulation Toolkit (EINSTein) 

 Conceptual Research Oriented Combat Agent Distillation (CROCADILE)  

 Warfare Intelligent System for Dynamic Optimization of Missions (WISDOM)  

 Map Aware Non-Uniform Automata (MANA) 

 

2.1.2.2.1 ISAAC 

Irreducible Semi Autonomous Adaptive Combat (ISAAC) is a land combat simulation, 

developed by Ilachinski (1997) for the US Marine Corporation. It is built in ANSI C 

and executes in DOS in command mode. This software is considered as the first agent 

based simulation of small unit combat used by the military operations research 

community. The basic foundation of ISAAC is modelled according to mobile cellular 

automata (CA) rules. The basic element of ISAAC is an ISAAC agent (ISAACA). 

Agents are basic elements in an ISAAC model that represent all components used in a 

combat system, including infantryman, tank, transport and other vehicles. Every agent 
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possesses four characteristics, namely doctrine, mission, situational awareness and 

adaptability. These characteristics represent: a default strategy to be taken in a generic 

environment; a main goal or objective that directs behaviour; a sensor-generated 

internal map of an environment; and a technique for changing behaviour of agents to the 

changing environment respectively (Ilachinski, 1997).  

 

Each agent considers six factors; four of them represent an agent‟s personality such as 

how the agent behave with alive friend, alive enemy, injured friend and injured enemy 

troops within the agent sensor range. The other two factors relate to the goal of 

capturing the blue or the red flags by opponent teams. Each agent has seven capability 

attributes including probability of hit, maximum targets, sensor, fire, movement, 

communication and threshold ranges. The „probability of hit‟ indicates the possible 

number of shots that an agent can endure before getting killed within the firing range. 

Maximum target is a maximum number of targets that an agent can engage with, at any 

single time step. Sensor range performs the job of recognizing other agents in its 

surroundings. Fire range represents the suitable distance to fire upon an opponent. 

Movement range is the number of grid squares an agent can move in a single step. 

Communication range is the distance within which an agent can interact with other 

friendly agents. Threshold range is the area within which the number of other agents is 

taken into account when deciding on the next move (Ilachinski, 1997). 

 

2.1.2.2.2 EINSTein 

Enhanced ISAAC Neural Simulation Toolkit (EINSTein) (Ilachinski, 2003) is a 

successor to the text-based combat simulator, ISAAC. EINSTein includes a graphical 

user interface (GUI) that helps in visualizing agents‟ activities. Most of the 

characteristics of ISAAC are incorporated EINSTein. Additionally, some characteristics 

from ISAAC are improved and integrated into EINSTein, described below: 

 There are five run modes including interactive, playback, multiple time series, two-

parameter fitness and the use of optimization technique using a GA. The GA 

optimizes only one team at a time, against a fixed opponent‟s strategy.  

 Three graphical views are available namely main battlefield, race and combat view. 

Each of them represents terrain elements, territorial occupancy and combat intensity 

respectively. 
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 On-line data collection and visualization of recorded combat is available. 

 Additional meta-personality behaviour added into EINSTein include hold, pursuit-I, 

pursuit-II, Retreat, Support-I and Support-II characteristics. 

 Different levels of agents are defined such as: combat agent, local command, global 

command and supreme command level.  

 Multiple terrain types, which can be used as per the requirement of users, are 

available within the system. Users can choose any terrain environment such as 

roads, woods and rivers. Besides the default terrain, user may use imported or 

manually designed terrain as well.  

 Independent multi-squads are capable of interacting and making decisions as per the 

situation. 

 

2.1.2.2.3 CROCADILE 

Conceptual Research Oriented Combat Agent Distillation (CROCADILE), developed 

by M. Barlow and A. Easton in 2003, is an object oriented ABD built in the Java 

programming language. It consists of features including 2D and 3D battlefield 

environments, user extensible agent behaviours, backup of combat objects, multi-team 

structure, probabilistic or projectile-physics combat resolution and improved 

communication structure. Each agent can be modelled with firepower, mobility, 

sensing, communication and command. The six personality features of the agent 

including the conditions of dead, health, force-ration, mission, timing and command 

triggers are defined in this ABD. User defined terrain and integrated digital terrain maps 

can be used in the system (Bui & Barlow, 2003). 

 

2.1.2.2.4 WISDOM 

Warfare Intelligent System for Dynamic Optimization of Missions (WISDOM) was 

initially developed by Yang, Abbas and Sarker (2003). It was subsequently extended to 

WISDOM-II by using the concept of network centric multi-agent architecture 

(NCMAA) in 2004. There are five components in WISDOM-II namely Command, 

control and communication (C3), sensor, engagement, visualization and reasoning. The 

C3 component contains command, control and communication functionality. The sensor 

component receives information from the environment. The engagement component 
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contains firing and movement activities. The visualization component demonstrates 

visual information such as graphs. The reasoning component interprets the results in 

natural language during the simulation process (Yang, 2006). 

 

WISDOM-II has four defined types of agents: combatant, group leader, team leader and 

general commander in which the team leader and general commander are the virtual 

agents. Each agent has different characteristics such as health, skill, obedience, 

visibility, vision, communication, movement and engagement. Various weapons, 

including explosives, direct and indirect weapons, have individual characteristics such 

as fire power, range and damage radius (Yang, 2006). 

 

2.1.2.2.5 MANA 

The ABD, Map Aware Non-uniform Automata (MANA), is used as a simulator to run 

military scenarios for this study. MANA is a cellular automaton combat simulation 

model, designed by M. K. Lauren in 2001 at the New Zealand Defence technology 

agency (DTA). MANA was inspired by ISAAC and EINSTein, hence, most of the 

characteristics defined by Ilachinski, including strategy of agents‟ movement based on 

its surrounding cells, are also implemented in MANA (Yang, 2006). MANA was 

introduced as a scenario exploration model to address some of the limitations of 

conventional combat simulation models. The limitations of user dependence in 

conventional models are addressed by providing an environment in which interactions 

of autonomous local entities produce an emergent global behaviour.  The autonomous 

behaviours, which reduce the user involvement on a planning process, produce a 

realistic outcome. There are many versions of the MANA simulator, MANA version IV 

introduced in 2004 was utilized in this study. The simulator contains some extra 

features which were not addressed in early ABDs including: 

 Situational awareness (SA): Each squad uses a common platform for interchanging 

information among squad members, called a SA map. The concept of a SA map for 

squads is implemented in two ways, the squad SA map, which allows sharing 

information amongst squad members, and the inorganic SA map, which works with 

the information obtained from sensors or other squads.  
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 A communication model: This is one of the unique characteristics included in 

MANA IV. Agents in MANA communicate in various ways, individual, inter-squad 

and intra-squad.  

 Terrain map: It is a map that demonstrates the type of environment in which agents 

are situated. The environment can be created using various terrain types that are 

available, such as billiard table, easy going, wall and hilltop which represents plain 

terrain, smooth road, blockade and bushlands. Besides the available combat 

scenarios, users may import their own terrain. 

 Way-points: These are used to guide the agents to a particular destination. Users can 

pre-define or change the way-points during a simulation. 

 Event-driven personality changes: Certain events such as being shot at, taking a 

shot, reaching a waypoint and enemy contact, trigger different personality in agents; 

this change lasting a certain period of time. The effect of personality changes can be 

triggered for an agent or for a whole squad. 

 Data farming: MANA is built in data farming capability facilitate fully automated 

mapping of a scenario‟s parameter space.  

  Furthermore, built in data farming capability facilitate fully automated mapping of 

a scenario‟s parameter space. 

 Movement constraints: The constraints associated with movement can be used to 

prevent agents moving towards a goal without a minimum number of friendly 

agents in their squad. The combat type determines the required number of minimum 

agents before approaching the enemy. 

 Capabilities of agents: An agent‟s performance or capability is fully dependent upon 

its weapons, sensors, movement, speeds and interactions among agents and 

environments. 
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Table 2.1: Evaluation of existing ABDs 

Features ISAAC EINSTein MANA CROCADILE WISDOM 
GUI interface No Yes Yes Yes Yes 
Developed in C++ C++ Delphi Java * 
Cellular automata Yes Yes Yes Yes Yes 
SA map No No Yes Yes Yes 
Saving scenario No Yes Yes Yes Yes 
Terrain selection No Yes Yes Yes Yes 
Genetic Algorithm No Yes Yes Yes Yes 
Multi-run facility No Yes Yes Yes Yes 
Simulation type Land Land/air/water 
Agent architecture Reactive NCMAA 

Source: Ilachinski, 2004; Lauren, 2005; Lui & Barlow, 2003; Yang, 2006 

* Not found in the literature 

 

2.1.2.2.6 Analysis of ABD Simulators 

An analysis of existing ABDs was conducted, a summary of features is provided in 

Table 2.1. The analysis indicated that all simulators have their pros and cons. Some of 

the points that were discovered during the investigation are: 

 WISDOM-II supports a hierarchy of combatants such as, team leader and general 

commander agent; however, their strengths and effects are still unclear in the 

process. 

 WISDOM-II uses a network centric multi-agent architecture (NCMAA) modelling 

that defines the relationships between the agents as a network; however, gaps exist 

for agent communication within and between squads. For example, there are no 

provisions for reinforcement of troops in emergency situations.  

 Despite introducing 2D and 3D terrain features in CROCADILE, the large influence 

on movement of valleys, rivers, hills and mountains were not satisfactorily 

addressed. 

 EINSTein, MANA, CROCADILE and WISDOM all feature a variety of battlefields 

including land, air and water. However, their utilizations are limited to an individual 

type of battlefield. Exchanges between air combatants and land and water 

combatants and vice versa are yet to be developed in these ABDs. 
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 Department of Defence (DOD) has recognized that social, cultural and religious 

factors can influence combat outcomes (Department of Defence, 2003); however, 

those factors are not included in existing ABDs. 

 MANA has defined the number of hits required to kill an enemy combatant; 

however, it does not allow for varying degrees of injured combatant such as some 

whom are able to continue to battle and some who cannot.  

 Most of the ABDs have defined squads of warriors who maintain their distance 

from each other but yet stay together all of the time. However, existing ABDs have 

not addressed the possibilities of splitting groups according to changing scenarios, 

for example, to surround another team.  

 During combat, combatants might seize high-tech weapons from their adversaries, 

which then could be used against an enemy squad. These possibilities are not 

addressed by the current ABDs. 

 

The analysis above highlights some of the limitations related to the functionality of 

existing ABDs in which a combat scenario is simulated to identify vulnerabilities in a 

plan. In general for all ABDs, the individual agents interact together and with their 

environments. From these interactions there emerge global behaviours. Most simulators 

available share the limitation that their scenarios are based on characteristics of entities 

which are user-defined. Simulators on their own do not recommend optimal values of 

characteristics for entities so that they can respond to various situations. Finding 

vulnerabilities in a team‟s plans is very complex as there are numerous characteristics to 

consider. Therefore, researchers including Upton and McDonald (2003), Hingston 

(2011) and Choo et al. (2007), used techniques in which simulated scenarios were 

combined with search algorithms to identify appropriate entities‟ characteristics to best 

suite the scenario. The most commonly used search algorithms for this task are EAs. 

The following section presents a review of the use of EAs. 

 

2.1.3 Real Time Strategy Games 

Simulation and computer-based games have become a crucial part of modern military 

training and entertainment industry respectively (Buro, 2003). These two fields have 

commonality in terms of using a real-time AI technique in developing applications 
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(Herz & Macedonia, 2002). Real-time games are computer war games which are based 

on simulations in  which each character performs their role simultaneously in real time 

(Schadd, Bakkes, & Spronck, 2007).  

 

There are some difference between turn-based games and real time games. In a turn-

based game, such as a Chess game, a player and the opposition take action turn-wise. 

Users can view all the actions of the opposing players as the entire playground is 

displayed on the screen. However, in real time games each entity operates in real time. 

Since the game is based on a scenario, users can display a global view of the scenario to 

observe the overall activity of entire players or can concentrate on only a specific part 

of the scenario. Maps are an essential part of real time games without which users 

cannot effectively play the game (Johnson, Yannakakis, & Togelius, 2010). 

  

Real time games are divided into two categories, first person shooter (FPS) and real 

time strategy (RTS) games (Claypool, 2005). In FPS games, a part of the scenario is 

displayed on the screen as seen by the eyes of character. In the entire scenario, a battle 

occurs only in a particular part of the scenario in which the main player exists. Entities 

do not perform an active role in other parts of the scenario in which a main player does 

not exist. Maze War, Quake and Doom are some examples of FPS games in which the 

players move towards a destination by defeating deadly monsters and collecting 

armours and weapons. Unlike in FPS games, entire entities perform their own duty 

within a scenario in RTS games regardless of which portion of the scenario is displayed 

on the users screen. 

 

RTS games use a centralised server in client-server architecture with multiple users over 

the network or also can be played against AI opponents within a single computer 

system. Games are played in a provided scenario or users can built their own scenario. 

A scenario consists of an environment, workers, army and invaders. Command and 

Conquer, Starcraft, Warcraft, Age of Empires and Age of Mythology are some examples 

of RTS games. For example, according to (Claypool, 2005), in Warcraft III, there are 

three major units: building, exploration and combat. The building unit involves 

construction of infrastructure and upgrading buildings during a war. These tasks are 

mostly performed by the worker entities who are also involved in gathering resources 



30 

 

such as money and materials. Geographical information is gathered by entities in 

exploration units which helps to locate enemy towns or units. Combat units consist of 

attackers and defenders whose purpose is to defeat and destroy invaders. 

 

With increasing popularity of RTS games, researchers have used various algorithms to 

find suitable strategies and tactics that defeat enemy agents in a scenario. Ponsen (2004) 

used a GA to optimize strategies of a Wargus RTS game scenario in which each 

chromosome consists of 4 types of genes: build, research, economy and combat. Jang, 

Yoon and Cho (2009) optimized scenarios of Command and Conquer using EAs. 

Churchill and Buro (Churchill & Buro, 2012) used heuristic search-based AI system, 

depth first branch and bound algorithms (Churchill & Buro, 2011), to optimize 

strategies in StarCraft. Likewise, Togelius et al. (2010) used MOEA and Mora et al. 

(2012) and Othman et al. (2012) used EAs to optimize strategies in StarCraft scenarios. 

Miles (2007) and Avery and Louis (2010) used a CEA to optimize strategies in 

LagoonCraft and Capture-the-flag RTS games respectively. The authors considered 

building, finance and combat as evolving factors. Munir, Kitchin and Crampton (2010) 

used a Monte-Carlo planning approach, Upper Confidence Tree and Rapidly Exploring 

Random Tree (Chung, Buro, & Shaeffer, 2005) in solving the path finding problem in 

an RTS game called RC-RTS.  

 

There are some significant differences between RTS games and MAS combat RT. In 

RTS games, an entire island or town is simulated and each entity in the simulated area 

performs simultaneously. A player or multiple players control entities‟ activities in the 

scenario especially to set the preference of entities tasks such as building infrastructure 

and attacking enemies. In terms of optimization, factors such as building infrastructures, 

gathering resources and finding optimal strategies to win over enemies using available 

resources are mostly used in RTS games. However, in combat RT, such as in MANA, a 

small part of the real world is simulated as a scenario which enables to clearly view 

each entity‟s interaction that allows an analyst to determine the strategy to be 

incorporated. Unlike in RTS games, users are not involved in combat scenarios but 

autonomous agents interact with each other and also with their environment to achieve 

their own goal. In optimization of a combat scenario, the environment remains 
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unchanged but strategies evolve on the basis of agents‟ decision making (for example, 

personality and waypoints). 

 

2.2 Evolutionary Algorithms 

Evolutionary algorithms (EAs) were first introduced in the late 1950s as utilities for 

finding optimal solutions to problems (Coello, Lamont, & Veldhuizen, 2007). In 

mathematical terminology, “optimization” is defined as the process of minimizing and 

maximizing given specific criteria (Coello, 1999a; Veldhuizen, 1999). EAs apply 

biological principles of natural evolution to artificial systems. The foundation of EA is 

Darwin‟s evolution theory; the EA suggests that problems may be solved by an 

evolutionary process that selects the best solution from a population (Hussein A 

Abbass, Sarker, & Newton, 2001; Abraham, Jain, & Goldberg, 2005; Alcala, Alcala-

Fdez, Gacto, & Herrera, 2007; DeJong, 1975; Eiben & Smith, 2007; Veldhuizen, 1999; 

Zitzler, 1999). According to Coello et al. (2007), EAs are adaptive heuristic search 

algorithms that derive the set of best solutions by using natural selection: each solution 

gets a chance to reproduce a certain number of times depending on its performance. The 

specific steps of the search process for selecting the set of best solutions iterates until 

the desired results are attained. Thus, quality results are achieved by selecting among 

the set of best solutions. (Hussein A Abbass, et al., 2001; Abraham, et al., 2005).  

 

EAs have been successfully implemented in various sectors, including ecology, 

machine learning, automatic programming, population genetics, economics, 

optimization, social systems and operations research (Abraham, et al., 2005; Coello & 

Pulido, 2001; Eiben & Smith, 2007; Zitzler, 1999). Several evolutionary search 

methodologies have been proposed, depicted in Figure 2.2 in the realm of 

computational intelligence, namely GA, evolution strategies (ES), multi-objective 

evolutionary algorithm (MOEA) and CEA.  

 



32 

 

 
Figure 2.2: Taxonomy of evolutionary algorithms in the computational intelligence realm. 

 

All EAs, including GA, ES, MOEA and CEA, are population-based search algorithms. 

The search begins with a population of the potential solutions (Cliff & Miller, 1995; 

Ficici, 2004; Ficici & Pollack, 2001; Guo, Cao, & Yin, 2007; Seredynski, Zomaya, & 

Bouvry, 2003). All EAs have a common strategy of selecting the best solutions. Figure 

2.3 depicts the general steps involved in generic EAs, including CEA. The process 

begins by generating random individuals for a population. The individuals are possible 

solutions. In the second step each individual is evaluated and ranked according to some 

objective function, called fitness value. Thirdly, selection methods consider individuals 

for crossover or mutation; individuals with a higher fitness value have higher chances to 

participate in breeding. Crossover is a sexual process in which two individuals 

participate, whereas mutation is an asexual process which involves only an individual 

for the breeding process. Fourthly, an offspring is generated for the next generation. The 

entire process of creating generations is repeated until a set of satisfactory outcomes is 

obtained.  
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Figure 2.3: Flowchart indicating EA processes (Source: Ficici, 2004) 

 

Although all EAs have some common principles, there are also some variations which 

are briefly described in the following sections. Since this research utilized a GA and 

CEA, the focus will be given to these two algorithms.  
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Get an optimize population 
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2.2.1 Genetic Algorithms 

There are four important components in a GA: an individual that represents a candidate 

solution; a fitness function that evaluates an individual; selection of the fittest parents; 

and reproduction to generate new individuals using crossover and/or mutation 

(Goldberg, 1989). Chromosomes are the representation of strategies which also play a 

role in generating new genetic material for the subsequent generation by transforming 

the „genes‟ (Goldberg, 1989). 

 

The general steps that occur in GAs are depicted in the flowchart in Figure 2.4. 

Generally, individuals are created by randomly generated numbers or strings that 

represent a solution. There is an objective function to calculate the fitness of individuals 

in GAs which varies according to the domain. If elitism is implemented, a solution with 

the highest fitness value, an elite solution, is copied to the subsequent generation 

without any modification. Other „good‟ solutions are then selected, based on the fitness 

value using a selection algorithm. According to (Pohlheim, 2006), some common 

selection algorithms are roulette wheel, stochastic uniform and tournament selection. 

Using a selection algorithm, two parents are selected. In order to generate offspring, the 

selected parents undergo crossover and mutation and produce new offspring which are 

then added to the new population. There are various types of crossover and mutation 

available such as single-point and two-point crossover and bit flips, Gaussian and 

polynomial mutation (Deb & Goyal, 1996). As shown in Figure 2.4, the process of 

evaluation, selection and producing new offspring continues until the termination 

criterion is satisfied. In the figure, the termination criterion shown was a specified 

number of generations; however, it could also be another factor such as amount of time, 

minimum fitness threshold satisfied or whether fitness has reached a plateau. 

 

Although GAs have been used as effective search optimization techniques for many 

application domains, they also have limitations. Issues associated with GAs include 

their inability to be applied in the absence of objective measures and in large search 

spaces when there are Cartesian products involving two or more interacting subspaces. 

The Cartesian product in EAs arises when each individual from a population interacts 

with every individual in one or more populations. It has been found that CEAs are 

capable of overcoming these limitations.(Wiegand, 2003).  
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Figure 2.4: Flowchart showing various steps of GAs 
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2.2.2 Evolution Strategies 

Evolution strategy (ES) is a branch of EAs. The purpose of an ES is to optimize an 

objective or quality function. A set of decision variables or control parameters are tested 

in a given objective function. The major steps involved in this approach are: evaluation, 

selection and reproduction. The evaluation process begins by providing fitness values to 

each individual. For the selection process, parents are selected based on fitness. 

Subsequently, the selected solutions go through the recombination and mutation 

processes to generate a child solution. The newly created child solution again competes 

against the current solution and the winning solution is added to the population for the 

new generation (Eiben & Smith, 2003).  

 

There are some differences between ES and GAs in terms of evolving a new population. 

Traditional GAs used binary representation and ES used real numbers; however, a real 

coded GA also uses real numbers representation. A major difference between these two 

algorithms is the selection of individuals for a new population. In GAs, two individuals 

are selected on the basis of their fitness value and offspring are produced by using a 

crossover and mutation process. The new offspring become a part of a new population. 

However, in ES, typically, an individual is selected on the basis of the fitness value and 

a new offspring is produced by mutating the individual. Subsequently, a newly created 

offspring and the parent individuals are compared and the best fit individual joins the 

new population. 

 

 

The ES involves the following steps (Jacob, 2001): 

1. Initialize the population P 

2. Evaluate each individual in population P using a specific objective measure 

(fitness function) 

3. Select two parents ip1 and ip2 from P 

4. Recombine and/or mutate the selected individuals ip to generate ic 

5. Generate a new population by using any one of the following methods:  

a. Select the best individuals from a set of parents, ip, and a new offspring, 

ic. In this process ic and ip compete and the best one (fittest individual) 

either a child or parent stays in subsequent generations 
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b. Select the best individuals from a set of parents, ip, and a new offspring 

ic. In this process a best parent and a best offspring move to subsequent 

generations 

6. Repeat from step 2 until a termination criterion is satisfied. 

 

2.2.3 Multi-Objective Evolutionary Algorithm 

One of the emerging research areas in which EAs have been successfully employed is 

that of multi-objective optimization problems (MOPs) (Coello, 1999a, 1999b; Coello, et 

al., 2007; Coello & Pulido, 2001). There are many problems in the real world that 

involve many factors which need to be considered in order to identify a competent 

solution. (Hiroyasu, Miki, Iwahashi, Okamoto, & Dongarra, 2003). For example, in 

order to design a new model of an existing car, many factors need to be considered 

including wheels, body, bumper and engine. All factors cannot be considered as a single 

objective problem; in order to optimize a car design it is not sufficient to provide only a 

better engine. Some factors in MOPs complicate the process of finding the best 

solution. Optimising each factor on its own often does not lead to an optimal solution, 

rather there are several combinations of factors that produce individual optimal 

solutions along a Pareto front. To deal with MOPs, a class of EAs, known as multi-

objective evolutionary algorithms (MOEAs) (Abraham, et al., 2005) can be utilised. 

 

The first real implementation of an MOEA was in 1980 (Zitzler, 1999). Since then, a 

considerable amount of research has been done in this area. According to Zitzler (1999) 

and Coello (1999a), many MOEA approaches have been introduced, some of these are 

listed in Table 2.2. These algorithms are capable of concurrently searching for solutions 

in a single simulation run. 
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Table 2.2: Various approaches of MOEA 

Approaches Inventors Date 
Vector Evaluated Genetic Algorithm (VEGA) David Schaffer 1985 
Weighting-based Genetic Algorithm (WGA) Hajela and Lin 1992 
Multi objective GA (MOGA) Fonseca and Fleming 1993 
Niched Pareto GA (NPGA) Horn and Nafpliotis 1993 
Non-dominated Sorting GA(NSGA) Srinivas and Deb 1994 
Strength Pareto EA (SPEA) Zitzler and Thiele 1998 
Pareto Achieved Evolution Strategy (PAES) Knowles and Corne 2000 
Pareto Envelop-based Selection Algorithm (PESA& 
PESA-II) 

Corne et al. 2000 

Strength Pareto EA (SPEA2) Zitzler et al. 2001 
Micro-GA Coello 2001 
Niched Pareto GA (NPGA-II) Erikson, Mayor and 

Horn 
2001 

Non-dominated Sorting GA (NSGA-II) Deb et al. 2002 
Indicator-based Evolutionary Algorithm (IBEA) Zitzler and Kuzli 2004 
Multiple Criteria Decision Making (MCDM) Thiele, Miettinen, 

Korhonen and Molina 
2009 

Reference Point Evolutionary Algorithm (RPEA) Figueiraa, Liefooghe, 
Tabli and Wierzbickie 

2011 

Sources: Zitzler (1999), Coello (1999a), Alcala et al. (2007), Coello et al. (2007), Zitzler & 

Kuzli (2004), Thiele, Miettinen, Korhonen, & Molina (2009), Figueiraa, Liefooghe, Talbi, & 

Wierzbickie (2010) 

 

2.2.4 Coevolutionary Algorithms 

The CEA involves a process of mutual adaptation which emerges when agents in some 

domains interact for a purpose. The process involves multiple entities that attempt to 

find the optimal solution for a problem by interacting with each other. The fitness of 

each entity depends on its relationships between other entities and their interactions. In 

CEA, a set of individuals is categorized into different sub-populations which coevolve, 

whilst influencing each other (Ficici, 2004). Wiegand (2003) describes a CEA as a 

collection of EAs in which fitness is determined by the interaction of the individuals 

involved. The fitness measure, on the basis of individuals‟ interaction, is called a 

subjective measure. Wiegand (2003) argued that some limitations of GAs, such as their 

inability to be applied in the absence of objective measures and their problems when 

applied in complex problem domains, can be addressed by introducing CEAs since they 

do not rely on objective fitness measures.  
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The differences between generic EAs and CEAs are summarised in Table 2.3. Like 

other EAs, CEA is also a population-based search algorithm which consists of a 

population of potential solutions. It may contain one or more initial populations in 

which the fitness of individuals determines the possibilities of selection for reproduction 

(Casillas, Cordon, Herrera, & Merelo, 2002; Guo, et al., 2007). In contrast to traditional 

EAs, CEAs are believed to be effective in searching for solutions to problems with 

complex structures which do not have intrinsic objective measures and may have 

infinite search spaces (Sameer et al., 2012). The evaluation process is another 

dissimilarity, which requires interaction between multiple individuals. Depending on 

the search problems, the interacting individuals may be members of the same or 

different populations (Ficici, 2004; Guo, et al., 2007; Rosin, 1997). When applied 

specifically to a military RT process, a traditional EA can propose the best solution in 

response to an opposition‟s single tactic. When an opposition‟s ability to respond and 

change tactics is recognized, traditional EA cannot be effectively utilized to address the 

situation. Instead, a CEA has the potential to deal with such situations by modelling the 

opponents‟ tactics as another, also evolving population. 

 

Table 2.3: Difference between EAs and CEAs 

Generic EAs CEAs 
Suitable to apply for those problems in 
which intrinsic objective measures are 
known. Fitness is absolute or objective. 

Suitable to apply for problems in absence 
of intrinsic objective measures to evaluate 
fitness of individuals. Fitness is relative or 
subjective. 

The selection process examines each 
individual and rates it according to some 
objective functions to produce fitness 
values. Higher fitness values indicate 
higher possibilities of becoming parents. 

The fitness values, which determine the 
possibilities of becoming parents, are 
calculated according to an individual‟s 
interaction with other internal or external 
entities rather than a known objective. 

Since a population competes against an 
objective entity, the fitness of evolving 
population usually gets better in each 
generation until it converges as measured 
against that fixed objective entity. 

Since evolving individuals are evaluated 
against other individuals that are also 
evolving, the problem of “relativism” 
occurs, where the fitness values may not 
converge.   

 

Axelrod (1987) and Hillis (1990) successfully adapted the concept of coevolution as a 

general problem solving technique. Axelrod (1997) investigated a game called iterated 

prisoner‟s dilemma (IPD) in which two players play prisoners‟ dilemma repeatedly. In 
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this game, when two players meet again, they remember their opponent‟s action in their 

previous meeting and change their strategy accordingly. A GA was utilized to study the 

prisoner‟s dilemma problem (Axelrod, 1987) in which a player‟s choice is either 

„cooperate‟ or „defect‟. The choice of defection leads a player to a higher payoff than 

cooperation; however, the payoff is lower when both parties choose to defect rather than 

to cooperate. Axelrod (1987) found that when a player repeatedly meets multiple 

players, each possessing a unique strategy, cooperation strategy appeared to be more 

effective than the defection strategy. However, the best strategy found was called tit-

for-tat. In this strategy, a player cooperates on the first move of the game. Subsequently, 

the player responds according to how he/she was treated on the previous meeting. 

 

One characteristic of coevolving competing populations is the occurrence of an “arms 

race” phenomenon. In an arms race a change in one population forces others to improve 

the quality of certain behaviours. The population may not appear to be better than the 

opposing population as both evolve simultaneously. However, better performance can 

be seen when the evolved populations are measured against a fixed external test. Hillis 

(1990) demonstrated the use of CEAs in complex problem domains that demonstrate an 

„arms race‟. In this domain, one population represents a sorting network and another 

population represents data sets. The first population coevolves by seeking better devices 

to handle the data sets, whereas the other population coevolves by making itself more 

complex for the sorting network. The approach of evolving the network and data sets 

simultaneously prevents the problem of getting trapped in local optima because the 

opposing individuals encourage generation of new data sets and networks in every 

generation. This approach also increases the efficiency of testing networks and data sets 

by removing tests that are ineffective, which speeds up the optimization process in 

subsequent generations. With this method Hillis (1990) was able to generate a sorting 

network that was more effective than any found previously. 

 

Likewise, there have been many other applications developed utilizing CEAs. Miller 

and Todd (1993) applied CEA to investigate the role of sexual selection in evolution. 

One population represents male characteristics and another represents female attractions 

towards the male depending on their characteristics. Potter and DeJong (1994) also used 

CEAs in static function optimization and neural network learning.  
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There are two types of CEAs: competitive and cooperative (Ficici, 2004; Wiegand, 

2003). In competitive CEAs (CCEAs), the evolving population tries to defeat all 

individuals from other populations. The repetitive evolution process tends to become an 

„arms race‟ in which populations eventually improve their behaviours, such as in the 

predator-prey model (Wiegand, 2003). Ficici (2004) defined CCEA as a zero-sum game 

in which advancement of one population also forced other populations to advance. As 

both populations improve their performances, the overall outcomes remain unchanged. 

Unlike CCEA, in cooperative CEAs (COCEA), the populations coevolve by supporting 

each other and this helps them to advance simultaneously. During the coevolution 

process, the populations support each other to improve their quality so that they can 

both benefit. The bee/flower model, in which the bee benefits from collecting the food 

and the flower benefits from pollination, provides an example. Ficici (2004) highlighted 

the need for a work break-down structure (WBS), which he considered as a major 

characteristic of COCEA, to deal with a large complex problem. A complex problem 

decomposes into a set of small problems. Coevolving those small sets collectively 

presents the solution for the complex problem. 

 

Since this study uses a CCEA, all analyses of CEAs in the remainder of this thesis 

represent CCEAs. Likewise, a CEA may also be used with a single population; 

however, this thesis concentrates only on multiple populations (Ficici, 2004). In a CEA 

(as in other GAs), optimization begins with generating a population then various 

operators are applied for evaluation, selection of the parents, elitism, crossover and 

mutation. The descriptions of these components will now be detailed: 

 

2.2.4.1 CEA Components 

The algorithms require various operators in optimizing any domains. There are various 

operators available for conducting each stage of the optimization. The stages are 

evaluation, selection, elitism, crossover and mutation. The following sub-sections 

discuss the specific operators that were chosen in this thesis.  
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 Evaluation of Individuals 

DeJong (2004) explained a number of ways to calculate an individual‟s fitness value 

relative to another population of individuals (subjective fitness). Figure 2.5 shows three 

interaction methods: all versus best, all versus some and all versus all. In the first 

method, each individual in one population receives a fitness value by only competing 

against the best individual in the opposing population, whereas in the second method, 

each individual in one population receives a fitness value by competing against a subset 

of randomly selected individuals in the opposing population. In the third method, every 

individual competes against all members from the opposing population in order to get 

its fitness value. All three methods have their specific pros and cons. The first two 

methods may be computationally faster but may not be very effective as individuals are 

evaluated against one or a subset of the potential strategies in the opposing population. 

The third method evaluates an individual more rigorously than the first two methods; 

however, it is computationally more intensive. In order to ensure more rigorous 

evaluation of the individuals the third method was chosen for this thesis. 

 
All Vs. Best All Vs. Some All Vs. All 
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* * * * * * * * 

* * * * * * * * 
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Figure 2.5: Agent interaction methods (Source:  (DeJong, 2004)) 

 

The fitness depends on the evaluation of an individual with its competing population, 

which makes the fitness dynamic rather than static (DeJong, Stanley, & Wiegand, 2007; 

Ficici, 2004). Equation (2.1) shows how subjective fitness fi of individual i is calculated 

in a naïve CEA. 
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𝑓𝑖 =  
1

n
 𝑠𝑐𝑜𝑟𝑒𝑖 ,𝑗

𝑛

𝑗=1

 
(2.1) 

 

 

Each individual i from one population competes against each of its opponent j from the 

other population and gets a score scorei,j, where n is the number of opponents. The 

average of the score values, fi, is a fitness value for the individual i. Fitness values are 

calculated this way for every individual. These fitness values are then used to drive a 

simulated evolutionary process as described in the pseudo code of Figure 2.6. 

 

1. Randomly initialize Population1 and Population2 
2. Evaluate each individual of Population1 with Population2 to determine the values 

scorei,j as in Equation (2.1) 
3. Store each evaluated score in a matrix format as shown in Table 2.4 
4. Calculate fitness values of Population1‟s individuals by averaging the column 

values. Likewise average row values from the matrix to calculate fitness values of 
individuals from Population2 

5. Copy the fittest individual in each population (the elite individual) into the next 
generation of each population 

6. Do until a new generation of Population1 is completed: 
(a) Select two parents from the old Population1 according to a selection function 

based on fitness  
(b) Perform crossover according to the crossover operator and apply mutation to 

obtain two new offspring 
(c) Add the new offspring to the new generation 

7. Repeat step 6 for Population2 
8. Repeat steps 2-7 for the required number of generations. The solution is the final two 

populations. 

Figure 2.6: Pseudo code of a CEA 

 

When evaluating individuals, each individual needs to be evaluated against individuals 

in the competing population. In each evaluation, the individual receives a score which is 

added into a table as shown in Table 2.4. The purpose of creating a table is to avoid the 

re-evaluation of the individuals while calculating the opponent‟s fitness value. Note that 

this is only the case where the fitness calculation is symmetric, such that scorei,j = 

scorej,i, otherwise a separate table is needed for evaluating individuals of population2 

against population1. Table 2.4 illustrates how each pair of individual interaction scores 

is listed and produces a fitness value by averaging those scores horizontally or 
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vertically. The averages of column or row values represent the fitness of the members 

of a population and its opponents respectively. 

 
Table 2.4: Matrix format showing a fitness calculation method  

10 23 72 66 76 49.4 

R
ow
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55 31 30 46 32 38.8 

67 63 95 84 34 68.6 

32 56 73 34 55 50.0 

84 62 21 67 84 63.6 

49.6 47.0 58.2 59.4 56.2  

Column Average 

(Fitness of Population1) 

 

(Source: DeJong (2004)) 

 

After calculating individuals‟ fitness values the selection process detailed in the 

following section is then employed. 

 

 Selection Procedure 

In CEAs as in the general EAs, the individuals are first sorted according to their fitness 

value fi. Elite individuals directly copied to the new generation without further 

processing, as shown in step 4 of Figure 2.6. Subsequently, the selection procedure is 

applied to select a pair of parents for generating offspring. A selection procedure is one 

of the important processes which determine the selection of individuals that will be 

parents to produce offspring for the next generation. Parents are selected according to 

their fitness values: the fitter individuals have more chances to be selected. Examples of 

existing selection procedures include Tournament Selection and Roulette Wheel 

Selection (Singh & Deb, 2006). For this thesis, stochastic universal sampling (Baker, 

1987) is chosen as a selection operator and is depicted in Figure 2.7. 
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Figure 2.7: Stochastic universal selection with the range of bins (Source: Pohlheim, 2006) 

Each individual is assigned a bin, with the width of the bin corresponding to the 

individual‟s fitness value. A cumulative fitness is calculated across the bins and is used 

as a selection index into the set of bins. The steps of stochastic universal sampling are 

listed below: 

1. A common difference d is calculated by dividing the value for the total 

cumulative sum (in Figure 2.7) of fitness by population size. In the figure if the 

population size is 7 the value of d will be  𝑑 =
1

7
= 0.14 

2. A random number u between 0 and the last value of the cumulative sum is 

generated. In the above figure a random number in the range of 0 to 1 will be 

generated. For this example assume the randomly generated value is 0.75. 

3. This generated number, 0.75 (generated in step 2), is used as a pointer to choose 

the individual whose bin this pointer falls. In this case 0.75 lies in the bin of 

individual 5; thus, the fifth individual is selected.  

4. The common difference, d, is added to the pointer index to choose the next 

individual. The second selection will be in the position of (0.75+0.14=0.89) 

which is in the sixth bin. Likewise, the third selection will be (0.89+0.14=1.03) 

which is beyond the range of 0 to 1. Therefore, the maximum value will be 

subtracted from the sum value such as (1.03 - 1 = 0.03), 0.03 falls in between 0 

and 0.2 which is on the first bin. Again the common ratio will be added 

(0.03+0.14=0.17) which is still in the first bin. Likewise the process continues 

until the stipulated number of individuals for the next generation has been 

selected. 

 

Since individuals with higher fitness have wider bins, they are more likely to be 

selected. In the above example, the individual in the first bin is selected twice whereas 
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the fourth and seventh individuals are never selected. Once the parents are selected, 

they go through the reproduction process using the crossover and mutation operators. 

These are described next. 

 

 Crossover Operator 

Crossover is a process in which two or more parents exchange their genes in order to 

introduce diversity into their offspring. Like selection procedures, there are a number of 

existing crossover operators. In this thesis, a single point crossover operator (Poli & 

Langdon, 1997) is chosen.  

 

A single point crossover executes according to the predefined crossover probability. 

The system generates a random number between 0 and 1. Crossover occurs only if the 

generated number is within the provided crossover probability (for example, if 80% was 

a pre-defined crossover probability, the generated value was 0 to 0.8 but not greater 

than 0.8). When the individuals are chosen for the crossover, a second process begins 

with another random number generated to determine for the crossover point. The 

crossover point determines the position within the parents‟ chromosome at which to cut 

and swap the genes to create a pair of new offspring. 

 

Parent1 Parent2 Cross Point 

0.5 

Child1 Child2 

     

Figure 2.8: Chromosomes before and after the single point crossover 

 

For this example, assume that the randomly generated crossover point is 0.5, which 

indicates that two parents will equally share their chromosomes to generate new 

children. Figure 2.8 depicts the two parents at the left side, with distinct chromosome 

structures (blue and purple). When the crossover is applied at the 0.5 point the new 

children, given at the right side of the figure, contain the first half of their chromosome 

from parent and the second half from the other. 
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 Mutation Operator 

Like selection and crossover, mutation is also a basic process of the CEA which is 

applied to new individuals immediately after the crossover. Like selection and 

crossover, there are many existing mutation operators. For this thesis, two mutation 

operators have been selected for different problems. In both of these mutation operators, 

the process begins with the generation of a random number. A particular gene in a 

chromosome changes when the generated number is less than the pre-defined mutation 

rate, otherwise the specific gene remains unchanged. The process of generating random 

numbers and changing the genes continues until every gene is considered in the 

chromosome. The amount of change that occurs in the gene value is determined by the 

type of mutation operator selected.  

 

There are various mutation algorithms developed including Polynomial and Gaussian. 

These two different types of mutation algorithms were used in this thesis. These two 

mutation algorithms will now be discussed. 

 

o Polynomial Mutation 

Polynomial mutation is a technique introduced by Deb and Goyal (1996) whereby a 

gene is mutated by adding the product of a noise value, the maximum value of change 

permissible, as depicted in Equations (2.2) and (2.3). The maximum value permissible 

to change is calculated by subtracting the maximum (𝜏𝑚𝑎𝑥 )and minimum (𝜏𝑚𝑖𝑛 ) gene 

value. For example if the gene values range from 10 to 100, the maximum change that 

can be applied is 90 (100-10).  Equation (2.2) shows the calculation of mutated value γi 

by adding the product of the noise value λ and the maximum changeable value (τmax-

τmin) to the un-mutated value 𝜌𝑖 . Equation (2.3) depicts the calculation of the noise value 

λ which begins with generating a random value ri between 0 and 1. The equation uses a 

constant, ηm, which represents a distribution index. Rubner et al. (2000) have suggested 

that 10 is a suitable value to be used for ηm.  

 

𝛾𝑖 = 𝜌𝑖 + 𝜆(𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛 ) (2.2) 
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𝜆 =  
(2𝑟𝑖)

1
(𝜂𝑚+1) − 1,                 𝐼𝑓 𝑟𝑖 < 0.5

1 − [2 1 − 𝑟𝑖 ]
1

(𝜂𝑚+1),    𝐼𝑓𝑟𝑖 ≥ 0.5

  
(2.3) 

  
 

o Gaussian Mutation 

This mutation operator adds a Gaussian distributed random value to a chosen gene 

value as depicted in Equation (2.4) (Higashi & Iba, 2003; Hinterding, Michalewicz, & 

Peachey, 1996; Ursem, 2002). The user can specify the upper and lower bounds of the 

gene values. If a new gene value falls outside of the user specified lower or upper 

bounds for the gene, the new gene value is clipped to fit within the range of the lower 

and upper bound. 

 

γi= ρi + σ × G (2.4) 

 

The mutated value γi is calculated by summing the non-mutated gene value ρi with the 

product of standard deviation for the Gaussian noise (σ) and Gaussian noise (G). The 

standard deviation σ is set to 0.1 as per Hinterding, Michalewicz and Peachey (1996).  

 

After applying the mutation operator to the individuals, a new population is created. 

The process of evaluation, selection, crossover and mutation repeats until the required 

number of generations. These are the components of the naïve CEA, which has long 

been used in optimization tasks. Despite the successful utilization of the coevolution 

concept in evolutionary computing (EC) by many authors including, for example 

Axelrod (1987) and Hillis (1990), Garcia-Pedrajas, Castillo and Ortiz-Boyer (2009), 

Kouchmeshky, Quino, Bongard and Lipson (2007) and Choo, Chua, Low and Ong 

(2009), as a general EC problem-solving technique, there are certain situations in which 

naïve CEAs are less effective. These are discussed next. 

 

2.2.4.2 Pathologies of CEAs 

Naïve CEAs has been known to demonstrate various pathologies, such as 

disengagement, cyclic behaviours, and forgetting when employed in different problem 

domains (Wiegand, 2003). 
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 Disengagement 

Disengagement or loss of gradient occurs when one population no longer seems to 

impacts on the other, indicating that there is no relative fitness assessment between the 

individuals of the populations (this situation is known as evolutionary drift). This 

typically occurs when it is much easier for one population to achieve a superior 

optimization than another competing population. Disengagement can be exemplified by 

an untrained naïve soccer team playing a match with a professional well known team. 

No matter how much effort the naïve soccer team players put in, it can never win over 

the expert team. Even though same individuals in the naïve team will be better than 

others, subjective fitness against the professional team will rank them all equally badly, 

impacting the naïve team‟s evolution as poor individual as likely to be picked for the 

next generation as stronger individuals. The strategies that the expert team is equipped 

with are almost beyond the reach for the naïve team to achieve. 

 

 Cyclic Behaviours 

According to DeJong et al. (2007) and Wiegand (2003), cyclic behaviours are major 

problems that occurs in CEA applications. There are a number of causes for 

coevolutionary cycling. Often, it can be a direct consequence of relative fitness since 

individuals in the population(s) are rewarded on the basis of out-performing their 

opponents. This characteristic may result in earlier evolved “fitter” solutions being lost 

after many subsequent generations and leads to cycling owing to a loss of evolutionary 

momentum. 

 

An intransitive superiority relationship is another cause that can also trap a system in a 

repetitive cycle. The intransitivity problem often occurs in CEA domains (Ficici, 2004) 

including in the RT domain. Intransitivity can be exemplified by an example: If a 

solution A is better than solution B, and B is better than solution C and yet C is better 

than A as in the example of the rock-paper-scissors game. In this game, there is no 

solution that is superior: paper beats rock and scissors beats paper but scissors does not 

beat rock, instead the rock beats scissors. 
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 Forgetting 

Another major CEA pathology explained by Wiegand (2003), Ficici (2004) and DeJong 

et al. (2007) is the forgetting problem which occurs when the population concentrates 

only on the existing strategies from the other population and overlooks the ancestor 

populations‟ solutions. The fitness measure of a CEA is subjective depending on the 

individuals‟ interaction with another population. Individuals are evaluated against a set 

of opposing individuals from the same generation. On the basis of their performance 

new populations are evolved for the subsequent generation. These populations again are 

evaluated against the opposing population from the same generation to produce new 

populations for the subsequent generation. The selection procedure determines which 

individuals persist in the subsequent generations, on the basis of their fitness. This leads 

to certain individuals which were discovered during the coevolutionary search, later 

disappearing from the population. 

 

2.2.4.3 Remedies of CEA Pathologies 

In order to address cycling and disengagement pathologies some researchers, including 

Rosin and Belew (1997), DeJong et al. (2007) and Chong, Tino and Yao (2009), 

stressed increasing the diversity of the population. In addition, the use of an archive that 

remembers old solutions, when added to the basic algorithm, is believed to be effective 

in addressing the forgetting problem. Details of diversity maintenance techniques and 

archives are detailed in this section. 

 

 Diversity Maintenance Techniques 

CEA pathologies, namely disengagement and cycling may lead the search process to a 

premature convergence or no convergence at all (DeJong et al., 2007; Rosin & Belew, 

1997). Since the fittest individuals are repeatedly selected, all individuals in subsequent 

generations may be very similar. Therefore, the objective of finding the optimal solution 

may suffer from premature convergence, where the population is driven to a single local 

optimum (or cycles between local optima) before the search space has been adequately 

explored. Additionally, disengagement can occur as there are not many diverse 

solutions available that can perform better than the existing solution. In order to address 

such premature convergence or lack of convergence owing to disengagement or cycling, 

various diversity maintenance techniques can be introduced to the naïve CEA.  
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Researchers, such as Eshelman and Schaffer (1993), Ryan (1994) and Rosca (1995) 

discovered that maintaining diversity in the population can address premature 

convergence as well as help in finding global optima, thus addressing the problem of 

disengagement and cycling. A diversity maintenance technique can preserve unique 

solutions and downgrades similar solutions. When there are a variety of solutions 

available in the search space, one specific solution would not obstruct the improvement 

of the process of finding the optimal solution. Chong et al. (2009) argued that diversity 

in a population can be maintained in two ways: explicit and implicit. 

 

o Explicit Diversity Maintenance: Varying Mutation Rates 

Maintaining diversity of the population may be carried out using an explicit method. 

Explicit diversity maintenance methods achieve diversity through variation. A simple 

method is to increase the mutation rate. The mutation operator changes the genome 

according to the mutation rate set. When a high mutation rate is applied it increases the 

chances of altering the individuals‟ genome (Ursem, 2002). A higher mutation rate 

forces higher diversity; however, a higher diversity caused by extreme mutation and 

hybridization (crossover) may not give a favourable outcome in terms of finding the 

optimal solution. These reproductive methods create new solutions by changing 

individuals‟ genomes which produce a genetically different individual i.e. increase 

diversity in the population. However, their performance may not be significantly 

different from their parents as they share common genes. Therefore, Wright (1986) 

stresses the balance between genetic homogeneity and heterogeneity, which also 

supports the argument that extreme diversity may not be always good. 

 

o Implicit Diversity Maintenance 

Whilst mutation rate explicitly affects the diversity, a population‟s diversity may also 

be maintained implicitly. Implicit diversity maintenance (IDM) methods achieve 

diversity by favouring more diverse solutions in the selection process. IDM can be 

categorised into three categories, namely the kernel, nearest-neighbour and histogram 

approaches (Talbi, 2009). The kernel method considers the distance between the 

involved solutions, which is a concept of fitness sharing. The nearest-neighbour 

maintains diversity on the basis of the distance of the individual from other individuals 
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within a specific distance. In the histogram approach, a number of partitions are created 

on the basis of individuals‟ gene values. Each individual is then evaluated and put into a 

specific partition. Thus, the number in each partition is counted and reward is provided 

to the individuals in the partition in which there are less number of individuals.  

 

A typical method of maintaining diversity implicitly is by using fitness sharing (FS) 

(Goldberg & Richardson, 1987), a method belonging to the category of kernel 

approaches (Talbi, 2009). The FS approach was introduced by Holland (1975) and later 

extended by Goldberg and Richardson (1987). According to Goldberg and Richardson 

(1987), in FS, diversity is maintained in the population by discouraging individuals with 

similar characteristics. In this process, the fitness values are reduced for those 

individuals within the population who have similar gene structures. Subsequently, 

individuals with unique gene structures get higher fitness values, which then diversify 

the population.  

 

Goldberg and Richardson (1987)‟s FS is implemented by many authors in various 

domains (Beasley, et al., 1993; Cioppa, Stefano, & Marcelli, 2004; Mckay, 2000; Rosin 

& Belew, 1997; Sareni & Krahenbuhl, 1998). According to Goldberg and Richardson 

(1987) as depicted in Equation (2.5),  the shared fitness fi
‟ (fitness value after the 

implementation of the FS) of an individual i is calculated by dividing the raw fitness fi 

of an individual i (calculated in Equation (2.5)) by the niche count ci. 

 

𝑓𝑖
′ =  

𝑓𝑖
𝑐𝑖

 
(2.5) 

 
 

Niche count is calculated on the basis of the individual‟s gene structure variation di,j in 

the population. The di,j is the Euclidean distance between the chromosomes of two 

individuals, i and j, in the population. Equations (2.6) and (2.7) are used to calculate 

niche count ci and gene variations di,j respectively. 

 

𝑐𝑖 =   
1 −  

𝑑𝑖 ,𝑗

𝑛𝑟
 

𝜏

,     𝑖𝑓 𝑑𝑖 ,𝑗 ≤ 𝑛𝑟

0,                         𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 
𝑛

𝑗=1

 (2.6) 
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𝑑𝑖 ,𝑗 =   (𝑥𝑖 ,𝑚 − 𝑦𝑗 ,𝑚)2

𝑢

𝑚=1

 (2.7) 

 

In Equation (2.6) τ is a constant parameter that determines the shape of the sharing 

function, nr is a constant niche radius and n is the population size. In Equation (2.7), u 

represents the length of genome, xi,m, represents the mth gene value of the ith individual, 

yj,m is the mth gene value of the other individual j.  

 

Researchers employed FS in various ways. Smith, Forrest and Perelson (1993) 

introduced some variations on the use of FS, known as emergent FS where FS was used 

in a single population EA. In this FS, the fitness of an individual is calculated in three 

steps.  

Step 1: An individual is randomly chosen from a population.  

Step 2: Secondly, a set of individuals (N number) from the same population is chosen 

randomly.  

Step 3: The distance is measured between the individual selected in step 1 and each of 

the N individuals selected in step 2. Each of the N individuals receives a certain 

score according to their dissimilarity with the individual from step 1.  

 

The above mentioned three steps iterate up to the required times, mostly the repetition is 

equal to the number of population size. Finally, individuals with high scores get fitness 

preferences. 

 

Another FS method introduced by Rosin and Belew (1997) is known as competitive FS. 

This approach was developed for “two population competitive CEAs” and tested on a 

3D tic-tac-toe game. Normally, FS rewards genetically unique solutions; however, 

competitive FS emphasizes those individuals which may not be genetically unique but 

can defeat a strong opponent (a strong opponent is one which can defeat many 

individuals). Therefore, for any individual, it is not how many opposing individuals it 

defeats, but what type of opposing individuals it defeats that is important to achieve 

higher preferences in competitive FS. In this FS method every individual has its own 
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function which counts how many opponents it defeats. The record of its strength 

(number of individuals it defeats) will then be used when fitness is calculated. 

 

 Archives 

Another way of addressing CEAs‟ pathologies is the use of archives in the form of a 

memory mechanism. In CEAs a fit individual (on the basis of the fitness value) has a 

higher probability of being selected for the next generation. If any individual receives 

higher fitness than the fittest individual from the previous generation, then the 

previously fittest individual may never be selected for subsequent generations. Thus, in 

order to be selected in every generation, the individual has to achieve a high fitness 

value all the time. If the fit individual, which remained good for many generations, is 

not selected just once, the same individual (which could be a prominent solution) will 

be lost. Therefore, in order to preserve such optimal individuals, a memory mechanism 

is used. The concept can be defined as an extension of elitism in which the best 

individuals are copied to the memory in every generation. The stored optimal 

individuals are then used in fitness evaluation in later generations.  

In memory mechanism, a number of the fittest individuals are accumulated in memory 

over many generations. While collecting the individuals, the same solution may be 

reselected for the memory in different generations. Subsequently, when individuals 

from one population are evaluated with another population, they are also evaluated with 

individuals from the memory (individuals in the memory are a collection of the best 

performers on the basis of the fitness). This extra evaluation of the individuals with 

memory individuals helps prevent the CEA‟s forgetting pathology as the evaluation 

with memory individuals reminds the evaluating individual about the old counterpart. 

The evaluation of individuals with the individuals from memory, promotes only those 

individuals that can perform well over the memory individuals. Researchers introduced 

various memory mechanisms such as the Hall of Fame (Rosin & Belew, 1997), Shared 

Memory (Puppala, Sen, & Gordin, 1998), Nash Memory (Ficici & Pollack, 2003) and 

History Bank (Avery, et al., 2008).  

 

A memory mechanism called the Hall of Fame (HOF) which was introduced by Rosin 

and Belew (1997), is used as an archive in this study, due to its wide use. The HOF has 

been proven to be a technique that addresses CEAs‟ forgetting pathology (DeJong, et 
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al., 2007; Ficici, 2004; Nolfi & Floreano, 1998; Watson & Pollack, 2001; Wiegand, 

2003). The HOF is a technique that allows the population to interact with a set of the 

best individuals from the previous generations of the opponent population. The best 

individuals are the ones that receive higher fitness values. Generally, the best 

individuals from both the populations in every generation are accumulated in an 

archive, which interacts with the populations during the fitness evaluation. The purpose 

of the HOF is to preserve the best individuals from different generations so that in every 

generation when populations are evaluated they not only evaluated against the other 

population but also evaluated against the individuals in the HOF memory. This 

additional evaluation reminds the new populations of their previous problems and 

challenges which help to avoid the CEA pathologies. When the HOF is used, fitness fi 

of individual, i, is calculated by using the Equation (2.8). 

 

𝑓𝑖 =  
1

𝑛 + 𝑚
 𝑠𝑐𝑜𝑟𝑒𝑖 ,𝑗

𝑛+𝑚

𝑗=0

 
(2.8) 

 

The score function is the same as was given in Equation (2.1). The symbol n is the 

population size of the other population; m is the size of the HOF archive. 

 

Despite the usefulness of the HOF, some researchers including Nolfi and Floreano 

(1998) drew attention to the fact that the size of HOF may negate the usefulness of this 

approach. As a fittest individual is added into the HOF in every generation, there will be 

many individuals in the HOF as the number of generations increases. As the size of 

HOF increases, when individuals are evaluated, they are evaluated less with the 

evolving but more with the non-evolving counterparts from the previous generations. 

The process of evaluating individuals, in which individuals are evaluated against the 

competing population and also against the individuals from previous generation of 

opposing population, was found to be better than the HOF for their predator and prey 

robots. 

 

In the Nash memory approach (Ficici & Pollack, 2003), the best strategies are collected 

from each population. This memory mechanism consists of two memory spaces. The 

capacity of the first memory bank is relatively larger in which the number of stored 
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strategies increases monotonically as the search progresses. The second memory bank; 

however, has a limited capacity and stores only selective past strategies. The selected 

best strategy competes against individuals in the first memory and decides whether the 

second memory bank requires updating. This approach has been tested using the 

intransitive number problem which was introduced by Watson and Pollack (2001). The 

authors have shown that this technique was effective in enhancing the algorithms‟ 

performance in solving the intransitive number problem. 

 

The history bank (Avery, et al., 2008) was utilized in the Tempo military planning 

game.  In this technique, the best strategies from both the populations are stored in the 

same memory space rather than creating separate memory space for each population. 

Thus, the size of the history bank grows continuously as two individuals are added in 

each generation. In every generation, each individual is evaluated against the other 

population and also with randomly chosen individuals from the history bank. The 

authors have identified that this approach was beneficial in enhancing the algorithms‟ 

performance in solving a problem called the Tempo problem. 

The above discussion presented the various CEA components. With regard to RT, many 

researchers including Upton and McDonald (2003), Hingston (2011) and Choo et al. 

(2007), used techniques in which simulated scenarios are combined with EAs to 

identify appropriate strategies that best suit the scenario. The following section reviews 

the existing optimization methods that used various EAs to optimize simulated 

scenarios. 

 

2.3  RT Optimization 

In order to determine optimal combat strategies, researchers have used and developed 

optimization tools based on various search techniques using the various ABDs 

presented in section 2.1.2.2 as simulation environments. In computer-based RT, a 

scenario can be created which can be run many times to gather data. Subsequently, 

search-based optimizations and machine learning methods can be applied on those 

gathered data to identify the best solution sets. Military RT applications are optimized 

by optimizing the combatants‟ characteristics, helping to detect vulnerabilities. 

 



57 

 

Except for ISAAC, all simulators discussed in section 2.1.2.2 have in-built optimization 

techniques in which they utilized a GA to optimize the agents‟ characteristics. In 

addition to these optimization techniques, Upton and McDonald (2003), Choo, Chua 

and Tay (2007), have also utilized GAs in their RT optimization techniques. Some 

researchers including Choo, Chua, Low and Ong (2009), Hingston, Preuss and Spierling 

(2010); and Hingston and Preuss (2011) have introduced RT optimization techniques 

based on CEAs. Details of some optimization techniques follow. 

 

2.3.1 Optimization Tools Integrated in Simulators 

Ilanchiski (2003) introduced an optimization technique in computerized RT via 

EINSTein. It uses a GA to optimize the agent‟s characteristics in a specific scenario 

generated in EINSTein. Likewise, MANA also incorporated a GA, which acts to select 

an agent‟s personality, including the trigger state and behaviour of the agent in special 

conditions. Additionally, MANA also supports the optimization of both red and blue 

teams within a single run. However, each team evolves against one fixed opponent 

strategy; thus, despite both teams evolving simultaneously, it is not coevolution. The 

evolution of one team does not adapt to the changes brought about by the evolution of 

the other teams. The MANA GA tool includes the facilities of optimizing multi-squads 

simultaneously with the facilities of selecting different measures of effectiveness 

(MOE) and agent‟s personality. 

 

2.3.2 Automated RT 

Choo, Chua and Tay (2007) introduced a RT optimization tool called automated red 

teaming (ART). The ART system consists of some major components; parameter 

setting, ART Controller, Simulation model, EA models and Condor cluster and 

controller with ART output module. The functionality begins with the selection of the 

GA parameters such as crossover rate, mutation rate and population size. The entered 

parameters are received by the controller along with a scenario and sent to the GA to 

optimize.  
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ART has been used in optimizing some scenarios including the urban scenario 

(McIntosh, Galligan, Anderson, & Lauren, 2007), the coastline scenario (Chua, et al., 

2008) and anchorage protection scenario (Han et al., 2007). The authors claimed that 

just by modifying the behavioural parameters, the red force survivability can be 

improved by 27% in the urban scenario. This information provides an opportunity for 

blue force to review their plans and strategy in order to reduce casualties and eventually 

to win the battle.  

 

The authors also claimed that RT was compatible with any algorithms such as GA, 

MOEA and SPEA. However, in this study only GA has been used as an optimization 

algorithm. Since GA cannot optimize both teams in RT simultaneously, the 

optimization results are limited to respond to a single strategy. However, in reality there 

may be many strategies that an adversary team may incorporate. Additionally, the 

authors have not disclosed the situation when the opposing team is optimized against an 

already optimized team. The performance of the algorithm was evaluated by monitoring 

the fitness value. However, the commonly used technique, diversity maintenance, was 

not emphasized in any of these studies. Although the fitness is calculated by considering 

a number of measure of effectiveness (MOE), such as the probability of reaching the 

goal and the combatants‟ casualties, their individual improvements from the initial 

generation to the final generation was not discussed. 

 

Decraene, Chandramohan, Malcolm and Choo (2010) argued that two factors, 

computing budget and constraint handling, should be considered while optimizing 

military-based RT scenarios. However, the authors only presented an example of ART 

to describe the computing budget; it is an issue for almost all RT optimization. The fact 

is that RT optimizations require a high performance computing system to meet the time 

constraints and experimental requirement. The constraint handling involved focussing 

on the trade-off in financial or practical cost. The authors stressed that in the 

optimization of scenarios involving only parameter values, it may not be possible to 

implement the emerged strategies in the “real-world” owing to their unrealistic nature or 

their actual implementation cost. When optimizing the red team; mostly, the movement 

speed value is recommend to be the maximum value in the given range. Red agents with 
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high speed increase the chances of breaking the blue security. Such features may be 

expensive to implement in reality.  

 

Decraene et al. (2010) proposed cloud computing to address the issue of computing 

budget. Cloud computing is a technique to access software service via the internet 

which avoids the need for one‟s own hardware. The authors found that this technique 

not only reduced the cost but also it solved the issue of scalability as many computer 

systems can be deployed for conducting a very large scale experiment. To address the 

issue of constraint handling, the authors proposed to modify preferences. While 

optimizing the red team, rather than focussing only on maximizing blue casualties and 

minimizing red casualties, the authors also considered a cost related factor. When the 

speed of movement increases the cost related factor also increase which reduces the 

fitness of an individual. 

 

2.3.3 Automated Coevolution 

Choo, Chua, Low and Ong (2009) introduced automated coevolution (ACE) that 

utilized a CEA for military operational analysis. The authors have depicted a 

comparative analysis of various algorithms including ant colony optimization (ACO), 

particle swarm optimization (PSO), strength Pareto evolutionary algorithm version 2 

(SPEA 2) and elite Pareto genetic algorithm (EPGA). The authors have mentioned that 

the coevolution runs were executed with EPGA and PSO. The study discovered that the 

performance of EPGA was better than the PSO in terms of quality of solution. 

Furthermore, the authors illustrated the comparative study of various interaction process 

namely „all vs. best‟, „all vs. top5‟ and „all vs. all‟. The authors found that „all vs. all‟ 

would evolve more robust and less cyclic solutions; however, it is computationally 

more intensive and more robust solutions are not always the optimal solutions. Thus, 

the authors found that „all vs. best‟ could be the appropriate method to use for their 

specific scenario.  

 

ACE was capable of evolving two populations simultaneously. They have evaluated 

ACE using an anchorage protection scenario, in which various evolved strategies for the 

blue and red team were depicted. However, evolving two teams simultaneously is still 
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not viable in their study as one team remains constant while the other evolves. In 

addition, the study analyses the algorithms‟ performance on the basis of the simulation 

run (attrition rate) - there was no other methods described that measure the performance 

of the algorithms in optimizing the scenario such as the improvement of fitness or 

generalisation performance. Based on the pseudo code presented by the authors, the 

study uses a test population against which the evolving population competes; however, 

how the test populations were created was also not clearly explained. 

 

2.3.4 RedTNet 

With respect to RT applications, a combination of simulators and search-based 

algorithms such as EAs have been extended by Hingston and Preuss (2011) who 

presented an optimization tool based on CEAs. The authors stressed the necessity of 

CEAs in optimizing RT applications due to the dynamic characteristics of the problem. 

They coevolve two involved teams simultaneously and also tested the developed tool on 

an intransitive number problem that was introduced by Watson and Pollack (2001) to 

demonstrate that it could address the problem of intransitivity. The tool was later 

applied in a RedTNet scenario that represents a critical infrastructure problem. 

 

In most of the previously mentioned RT optimizing tools, GAs are used as a search 

optimization algorithm, in which the population evolves against a specific strategy from 

the competing team. However, the ACE and RedTNet tools are based on CEAs. ACE 

introduced the concept of coevolution in RT but the study contained some limitations. 

The study did not appear to address problems associated with CEA pathologies. Also, 

the study discussed only the evolved strategies but did not disclose how the 

performance of the algorithms was evaluated. In RedTNet, the authors coevolve 

strategies of both teams simultaneously; however, again, no evidence of integrating any 

techniques to address CEA pathologies was provided. In addition, performance 

measures of the algorithms were not included in the study. 

 

In every optimization technique mentioned above, a specific scenario is required. This 

scenario is run many times and is evaluated with the help of a suitable algorithm. A 
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comparison of the characteristics of various optimization techniques is provided in 

Table 2.5. 

 
Table 2.5: Comparative study of the optimization tools 

Optimization 
tool 

EINSTein MANA WISDOM ART ACE RedTNet 

Algorithm used GA GA GA GA CEA CEA 
GUI Yes Yes Yes Yes Yes No 

ABDs EINSTein MANA WISDOM MANA MANA RedTNet 
Cluster facility No No No Condor Condor No 

 

 

2.3.5 Limitations of Existing RT Optimization Methods 

Some of the limitations highlighted below remain in existing RT optimization methods. 

 The existing applications use simplistic AI techniques such as single objective GAs 

which do not address all the expectations of highly non-linear military operations. 

Although some optimization tools use CEA, more investigation is required into 

enhancing the algorithms‟ performances in finding good solution sets. 

 There is a lack of suitable performance measures to evaluate the algorithms‟ 

performance.  

 Existing studies are based only on objective measures. A systematic study of factors 

affecting the algorithms has not yet been conducted. 

 When optimizing RT scenarios using CEAs, the pathologies associated with the 

algorithms are not sufficiently addressed. 

 RT domain may have intransitivity, which is associated with CEAs‟ cycling 

pathology. There was no literature that investigates this issue. 

 Additionally, the expectation was that there may be more than one good solution to 

address an opponent‟s strategy in RT scenarios. This introduces a concept of 

multimodality. No literature was found that investigates multimodality in RT 

applications. 
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2.4  Conclusion 

This chapter described three major areas associated with this study, a review of RT 

applications, optimization algorithms (EAs and CEAs) and optimization techniques 

applied to the RT domain. The review highlighted that despite availability of some 

optimization techniques that help to detect vulnerabilities in combat plans, limitations 

remain in every technique. No literature has been found that mention RT issues such as 

intransitivity and multimodality. In order to investigate the limitations and issues 

associated with RT applications, a pilot study was conducted and is presented in the 

following chapter 
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3 A Pilot Study: Red Teaming Optimization using GAs 

Chapter 2 reviewed the literature that is associated with this thesis. This chapter reports 

on a pilot study in which a GA was used to optimise one team‟s strategy in a RT 

scenario. The coastline protection scenario used in this study was developed in the 

Defence Science Organisation (DSO) in Singapore (Chua, et al., 2008). The scenario 

was built in MANA and has been employed by other researchers including Chua et al. 

(2008) in investigations using various techniques including data farming and EAs. 

Scenarios created in MANA have many characteristics including the agent‟s 

personality, situational awareness and trigger states (see section 2.1.2.2). These 

characteristics can be used as optimization parameters for realistic outcomes. 

Additionally, these scenarios can be run multiple times by being integrated with the 

optimization tools. For the pilot study, GA was chosen as an optimization algorithm. 

The reason for choosing this algorithm was that it has been commonly used in existing 

optimization tools, including MANA and ART. GA is also suitable when objective 

measures can be defined for calculating the fitness of individuals.  

 

The first section of this chapter is a description of the optimization tool (OT) which was 

developed to optimize RT scenarios and other applications in this study. The second 

section presents a description of the incorporated DSO scenario. The third section 

describes the chosen parameters for optimizing the scenario. The fourth section shows 

the results of optimizing the teams involved in the DSO scenario. 

 

3.1  Description of the Optimization Tool  

The OT is an automated tool that was developed to assist with RT and other similar 

applications in finding optimal strategies. In the case of RT, the OT assists to find 

vulnerabilities in a security plan. The architecture of the tool is depicted in Figure 3.1 

and its various components are described in the following sub-sections. 
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Figure 3.1: Framework showing various sections of the OT tool 

 

3.1.1 Initial Parameters 

The OT requires some essential parameters to begin the optimization of a scenario. The 

parameters needed to set up the optimization task are supplied via an input file. Table 

3.1 depicts the common parameters used for the empirical tests in this study.  

 

Table 3.1: Parameters Considered for Experimentation 

Parameters Meaning 

Population size The size of the population 
Simulation run  Determines how many times the simulation runs 

for evaluating each individual 
Number of generations Determines how many generations the 

populations evolve. 
Mutation rate Probability of executing the mutation operator 
Crossover probability Probability of executing the crossover operator 
Type of algorithm Whether it is GA or CEA 
Path for a test file For example, “c:\File\test.csv” 
Path for a scenario file  For example, “c:\Scenario\coastline.xml” 
Number of runs Determines the number of times the program 

iterates  
The following additional components should be defined when using CEAs 

Variants Variant options: None, FS, HOF or both 
Niche radius for FS Value that determines the extent of diversity 
HOF size Determines how big the HOF space would be 
Shoal 
 

Requires  a Boolean expression to indicate 
whether Shoal should be in use 

 

 

Initial Parameters 

Output 

Evolutionary 

Algorithm 

(CEA or GA) 

Controller 
Shoal 

Fitness 
Evaluation 
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3.1.2 Controller 

This component manages the overall optimization process as it deals with receiving the 

inputs and producing the output. According to the given parameters, an initial 

population for each team is created. The controller also prepares for the use of either 

GA or CEA and prepares Shoal, a distributed computing library, if the user specified its 

use for calculating the fitness of the individuals. This component creates a HOF if users 

have stipulated this option via the input file. The controller ultimately calculates the 

performance of the evolving populations in each generation. 

 

3.1.3 Genetic or Coevolutionary Algorithm? 

Depending on the user's selections, the OT utilizes GAs or CEAs to optimize various 

strategies for problem domains. GAs optimize a single population at a time to find a 

high quality solution to a problem, whereas CEAs are capable of optimizing multiple 

populations simultaneously. Details of these algorithms are described in section 2.2.4. 

These algorithms require parameters such as the number of generations, crossover and 

mutation rates, which they get from the controller. After a specified number of 

generations, they produce optimized population(s), depending on the algorithm 

provided as input to the controller. 

 

3.1.4 Output 

The output of the OT is an optimized population(s) which contains a list of potential 

solutions. Since GA optimizes a single population, the output also contains a single 

population. However, CEA produces two optimized populations. The final populations 

produced from CEA contain optimal solutions from the optimization process for 

counteracting the competing population. In the case of RT, the output is a list of agents‟ 

characteristics, including the ways in which they move and the targets they select. The 

generated parameters can be supplied to the scenario file, which can be used in the 

simulation (MANA) to verify the validity of the evolved strategy. 
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3.1.5 Shoal  

Shoal is an open source Java library that can be integrated in distributed applications for 

load balancing and/or fault tolerance (Danculovic, 2007). Shoal was used to run one or 

multiple instances of the simulator, MANA. In the network, Shoal performs various 

tasks including data sharing, communication and notification of relevant messages such 

as the connection, disconnection, and failure of a node(s). Each node has its own unique 

identity called a Global Unique ID which prevents the conflict of the nodes. A single 

network can host many nodes; however, each node consumes additional bandwidth and 

processing resources. Group management service (GMS) is another important concept 

in Shoal. The GMS manages the nodes, mediates and facilitates nodes communication 

(Danculovic, 2007). 

 

Shoal does not impose any structure on the cluster; however, according to developers‟ 

design, Shoal may have a master component or a slave component. Then, the 

application programming interface (API) sends signals to specific nodes to perform 

tasks allocated to the components. Figure 3.2 shows three machines interacting in 

Shoal. Each application instance loaded one Shoal‟s GMS and all are joined in a group 

to communicate. Machines 1 and 2 are each running a Java virtual machine (JVM) and 

executing a single instance of the application whereas Machine3 is running two JVMs 

running two different instances. 

 

Figure 3.2: A Shoal system‟s architecture (Source: Danculovic, 2007) 

 Machine1 
 Application Instance 

GMS 

 Machine2 
 Application Instance 

GMS 

“Virtual” Group  
of 4 instances 

 Machine3 
 Application Instance 

GMS 

 Application Instance 

GMS 
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Note that Shoal is not essential for problem domains like the intransitive number and 

the multimodal problem, since computational times for their fitness evaluations are 

minimal. Even in the case of the RT application, it does not take long to run a single 

simulation. When the experiments involved applications of GA, it may not be necessary 

to use Shoal.  

 

When the experiments involved CEA being employed on a RT scenario, the scenario 

needs to be executed many times via MANA, as individuals from one population must 

be evaluated against all individuals from the other population. This number of 

simulations increases the computational time. In such a situation, Shoal becomes 

necessary to reduce the processing time. When the population‟s fitness is evaluated, a 

master machine distributes the simulations to other workstations to reduce its workload. 

The master machine is responsible for the conduct of the entire process from creating 

genomes, individuals and populations to finally displaying the output. Other 

workstations are slaves that perform only the tasks allocated by the master machine for 

the purpose of evaluating individuals according to the fitness functions provided. The 

slaves return the results of each simulation to the master once they have been executed. 

 

3.1.6 Fitness Evaluation 

Fitness evaluation is an important step in the evolutionary process as it determines the 

fitness of individuals on the basis of defined fitness functions. A fitness function may be 

a simple equation, e.g. a square of a value, a complex equation such as those described 

for an intransitive number or multimodal problem (as in chapters 5 and 6 respectively) 

or it may be calculated from the measures of effectiveness (MOE) received by running a 

scenario in a simulator in the RT.  

 

In the RT application, MANA is utilized as a simulator that runs scenarios in order to 

evaluate strategies. In MANA, a scenario file describes the particular environment, 

which is written in extensible mark-up language (XML). The scenario file also 

describes at least two military squads with different intentions and targets. When the 

scenario runs in MANA, it uses the strategies incorporated by both the teams in that 

particular environment. 
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3.2  Scenario Description 

As a preliminary study the OT tool was used to optimize a RT scenario using the GA. 

For this study, the coastline Key Installation (KIN) protection scenario which was 

developed using MANA at the Defence Science Organisation (DSO) National 

Laboratories was used. The aim of using this scenario was to replicate Chua et al. 

(2008)‟s investigation and to provide a baseline for comparison with subsequent 

experiments involving coevolution. 

 

The scenario contains red boats, blue boats and key installations. The key installations 

are immobile infrastructures placed at the coastline and the red boats are penetrators 

that try to breach the blue boats‟ surveillance. The blue boats maintain surveillance at a 

slow speed with lethal weapons, whereas the red boats are unarmed penetrators. Their 

aim is to breach the blue surveillance and reach the coastline (Chua, et al., 2008). 

 

 
Figure 3.3: Scenario for Key Installation protection 
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The original scenario consists of three KINs, three blue patrolling boats and five red 

boats. Each blue boat constantly moves in a specific route to resist any penetrator. 

Figure 3.3 depicts one possible set of blue surveillance routes and KINs along with the 

initial positions of the red boats. Each blue boat follows its specified route unless one of 

the red boats comes into its contact area. When any blue boat finds a red boat within its 

sensor range, it moves towards the red boat and attacks it. The parameters considered 

for this experiment are discussed in the following section. 

 

3.3  Experimental Setup 

This section presents the parameters used in the pilot study. Combatants‟ personalities 

listed in Table 3.2 are used as genomes for the optimization process. The table also 

depicts the chosen personalities and their upper and lower bound values. The GA 

parameter values are listed in Table 3.3. 

 

In order to explore the strategies available to each side in this scenario, the number of 

attacking boats (i.e. red boats) is chosen to be a number in the range between two to five 

boats. Every scenario has the same number of blue agents, with identical patrolling 

strategy and mission. In the first variation of the scenario, two red boats try to penetrate 

against the three blue patrolling boats. Subsequently, the second, third and fourth 

scenarios have three, four and five red boats respectively. 

 

The two factors considered as the red boats‟ measures of effectiveness (MOEs) are: (1) 

maximizing the goal achievement (that is, breaking the blue boat patrolling tactics by 

getting at least one boat to the coastline) and (2) minimizing the red casualties. These 

two factors are combined to define the fitness function to guide the selection in GA. The 

fitness is calculated for each individual set of personality parameters from 20 

simulations using Equation (3.1). In every fitness analysis, MANA simulations are run 

for a specified number of times and a mean value for four factors: blue team casualty, 

red team casualty, blue team achieved the goal and red team achieved the goal is 

obtained. A value for casualty depends on the number of boats involved in the scenario 

whereas a value for achieving the goal by boats for each team is set to 1 for success and 

0 for failure to achieve the goal.   
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Table 3.2: Selected agent personality parameters 

Characteristics 
Considered 

Description Values in Range 

Movement 
Speed 

The value determines the number of cells agents 
move in a given time step. Its range is 0 to 1000; 
however it is normalized to 100 so that an agent 
can move one cell per time step. 

0 to 100 

Agent Situational Awareness (SA) indicates that agents take actions on the basis of 
the information available from its own sensors. Negative and positive value 

indicates repulsion and attraction respectively. 
Enemy Attraction or repulsion with the agent with enemy 

allegiance 
-100 to 100 

Enemy Threat 3 Attraction or repulsion with the agent with enemy 
allegiance Threat Level 3  

-100 to 100 

Uninjured 
Friends 

Attraction or repulsion with the agent with same 
allegiance 

-100 to 100 

Cover Determine the distance of shooting by direct fire 
weapons in the terrain. 

-100 to 100 

Concealment Determine the visibility of agents in the terrain. -100 to 100 
Squad SA indicates that agents take actions on the basis of the information 

available on the squad’s SA map. Negative and positive value indicates repulsion 
and attraction respectively. 

Enemy Threat 3 Attraction or repulsion with the agent with enemy 
allegiance Threat Level 3 

-100 to 100 

Friends Attraction or repulsion with agents of the same 
squad 

-100 to 100 

 
Table 3.3: GA parameter values 

Properties Values 

Agent-based simulation MANA 
EA variant GA 
Simulations per individual 20 
Population size 20 
Generations 50 
Crossover rate  60% 
Mutation rate 1/gene length 
Number of experiments 20 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑅𝑒𝑑 𝐺𝑜𝑎𝑙 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

× (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑 𝑎𝑔𝑒𝑛𝑡𝑠)2 −𝑀𝑒𝑎𝑛 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑎𝑙𝑡𝑖𝑒𝑠

+ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑 𝑎𝑔𝑒𝑛𝑡𝑠 

 

(3.1) 

 

In MANA, the simulation termination condition was set to 1000 simulation steps, or all 

red agents destroyed, or any red agent achieving the goal of reaching the coastline. With 

the above mentioned agents‟ personalities and GA parameters, the OT was used to 

conduct the experiment. The results derived are discussed in the following section. 

 

3.4 Results and Analysis 

This section presents the outcome of optimizing the coastline scenario in two sub-

sections. The first sub-section is a discussion of the experiment when different numbers 

of the red boats are evolved against the fixed blue boats. The second sub-section is a 

discussion of the empirical study when the blue boats are evolved against the already 

optimized red boats. 

 

3.4.1 Evolving Red Boats 

The results presented in this section are for the red boats‟ optimization against a fixed 

blue surveillance strategy. Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 depict 

convergence plots showing the fitness values versus generations in scenarios with the 

red agents ranging from two to five respectively. Each graph shows median values of 

best fitness values for each generation over 20 repeats of the GA along with the range of 

fitness values found in the population. In this particular experiment, it was noticed that 

the median is more robust than the mean. The theoretical maximum fitness (with all 20 

runs resulting in success and no red casualties) is also shown on the graph. The results 

demonstrate that there is a direct relationship between the number of penetrators 

involved in the battle and the likelihood of them achieving their goal. 

 

In all convergence plots the search converges quickly, in less than 20 generations. 

When five attackers were used in a simulation, the GA reliably converges to a solution 

with a fitness value close to 30 (the theoretical maximum). However, when only two 
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attackers were used in a simulation, convergence is much less reliable, with a range of 

final fitness values between 5 and 6 much lower than the theoretical maximum of 10. 

This indicates that, as expected, with fewer attackers it is more difficult to find good 

solutions for the red team.  

 

 
Figure 3.4:  Median fitness values of the red team with five red boats. 

 

 
Figure 3.5:  Median fitness values, along with an indication of the range of fitness values, of 

the red team with four red boats. 
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Figure 3.6. Median fitness values, along with an indication of the range of fitness values, of the 

red team with three red boats 

 

 
Figure 3.7. Median fitness values, along with an indication of the range of fitness values, of the 

red team with two red boats. 

 

The series of experiments with different numbers of red boats show that the tactics used 

by the red boats vary according to the number of red boats involved. Figure 3.8, Figure 

3.9, Figure 3.10 and Figure 3.11 depict the tactics used by the red team when different 

numbers of red boats are involved. Figure 3.8 shows that when there are only two red 

boats, they tend to avoid confrontation with the blue boats and use a flanking strategy to 

reach at the coastline. When there are three red boats, as in Figure 3.9, the tactic 

employed is to use one boat as a distraction so that other two can easily pass through the 

blue patrol formation. 
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Figure 3.8: An evolved strategy for two red boats to penetrate the blue patrolling boats 

 

 
Figure 3.9: An evolved strategy for three red boats to penetrate the blue patrolling boats 
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Figure 3.10: An evolved strategy for four red boats to penetrate the blue patrolling boats 

 

 
Figure 3.11: An evolved strategy for five red boats to penetrate the blue patrolling boats 
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When there are more than three attackers, they use saturation strategies which are 

depicted in Figure 3.10, with 4 red boats, and Figure 3.11 with 5 red boats. Some boats 

are used as a distraction and follow direct confrontation tactics. They move towards the 

blue surveillance area by maintaining distance with friendly boats. Simultaneously, 

some red boats narrowly escaped by avoiding confrontation and moving through areas 

in which there was no surveillance.  

 

The evolved tactics indicate that the red boats should follow the flanking strategy to 

increase its success, when there are a smaller number of red boats involved. However, a 

mixed strategy is recommended when there are a larger number of attackers involved in 

breaching 3 patrolling defenders. The result also demonstrated that there are different 

levels of internal cooperation among the red agents when the number of the red boats is 

varied. This cooperation is stronger when a larger number of red agents are involved in 

the penetration process. Conversely, they maintain their distance if there is a smaller 

number of agents involved, which leads them to follow flanking strategies to avoid 

casualties. As the number of the red agents increases, their tactics change from flanking 

to direct confrontation. 

 

Table 3.4 shows the evolved personality values for the red team with two, three, four 

and five agents (the descriptions for variables shown in the columns in Table 3.4 are 

detailed in Table 3.2). These values indicate that the red agents stay away from the blue 

boats while they also maintain a distance between friendly agents. The flanking tactics 

and increased speed help the red agents to avoid confrontation with the blue agents and 

reach their goal. The red teams with the given characteristics succeed almost entirely in 

achieving their goal while minimizing their casualties. The negative value under 

„Enemy‟ for the red team shows the repulsion with their competing team, the blue. The 

positive and negative value in the „Friend‟ rows show closeness with, and distance 

from, the friendly boats. 

 

Scenarios with agent personalities, as listed in Table 3.4, were further analysed to 

evaluate their effectiveness. For this, an additional 50 repetitions of each scenario were 

run in MANA. Table 3.5 tabulates the mean MOEs and fitness values for different 

numbers of red agents. 
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Table 3.4: Personality suggested by OT for a red team 

Personalities/ Number of Boats 2 3 4 5 

D
is

ta
nc

e 
fr

om
 

En
em

y 

 

Agent 

SA 

Enemy -90 -60 -83 -93 

Enemy Threat 3 -95 -98 -99 -98 

Squad 

SA 

Enemy Threat 3 -85 -75 -90 -87 

D
is

ta
nc

e 
fr

om
 

Fr
ie

nd
s 

Agent 

SA 

Uninjured Friend -96 -35 30 50 

Squad 

SA 

Friend -65 -20 22 35 

Inorganic SA 0 0 0 0 

Movement Speed 100 100 100 100 

 

 
Table 3.5: Mean casualties and success rate of optimized red team. 

Red 
Agents 

Mean 
Casualties 

Std. Dev. 
(+/-) 

Mean Success 
Rate 

Std. Dev. 
(+/-) 

Fitness 

2 0.38 0.07 0.95 0.02 5.54 
3 0.65 0.19 0.96 0.05 11.03 
4 0.7 0.10 0.97 0.02 19.04 
5 1.24 0.14 0.98 0.02 28.26 

 

The results in Table 3.5 indicate that there is a direct relation between the number of 

agents involved in penetration and their success rates. Additionally, as the number of 

agents involved in the scenario increased, their attrition also increased. 

 

3.4.2 Evolving Blue Boats 

To explore the strategy options further, another experiment was devised to optimize 

blue agents against the already optimized red agents. In this case, only the scenario with 

two red boats was considered in which the blue strategies are evolved against the red 

strategy. The default personality values for the red boats are shown in the second 
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column of Table 3.4. GA parameters were the same as in the previous experiments, as 

depicted in Table 3.3. Two factors are considered as MOEs to evaluate individuals: 

maximizing the red casualties and stopping the red boats from passing through the 

patrolled area. The formula used in the fitness function is depicted in Equation (3.2): 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑀𝑒𝑎𝑛 𝑟𝑒𝑑 𝑐𝑎𝑠𝑢𝑎𝑙𝑡𝑖𝑒𝑠 − 𝑅𝑒𝑑 𝑔𝑜𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 + 3 (3.2) 

 

With two red boats in the scenario, the theoretical maximum for the blue team fitness 

function (mean red casualties = 2 and red goal success proportion = 0) is 5. After the 

application of OT, the evolved characteristics for the blue team for defeating the red 

boats are shown in Table 3.6. The evolved tactics for the blue boats in response to the 

optimized red boats strategy is more aggressive and active behaviours. Despite the use 

of flanking tactics by the optimized red boats, the optimized blue boats were capable of 

taking action against them. Against the default blue strategy, optimized red boats would 

reach their destination almost all the time. However, when the blue team was optimized, 

the red team winning ratio was reduced by one third. The fall in the red winning ratio 

after blue optimization indicated that improved tactics could address the weaknesses of 

the plan if they were identified in advance. 

 

Table 3.6: Optimized personality of the blue agents 

Personalities Evolved value 
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Agent 
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Enemy 100 

Enemy Threat 3 100 

Squad 

SA 

Enemy Threat 3 25 

D
is

ta
nc

e 
w

ith
 F

rie
nd

s Agent 

SA 

Uninjured Friend -84 

Squad 

SA 

Friend -71 

Movement Speed 100 
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Figure 3.12: Mean fitness values, along with an indication of the range of fitness values, of the 

blue team while considering two red boats trying to penetrate three blue patrolling boats in the 

scenario. 

 

Figure 3.12 depicts the progress of GA via the fitness values of the blue teams in each 

generation. The graph indicates that the gaps between maximum and minimum values 

are wide in every generation and convergence is hard to attain when optimizing the blue 

team against an already optimized the red team. 

 

Table 3.7: Mean casualties and success rate of red boats after optimizing the blue boats. 

Red agents Mean Casualties Std. Dev.  
(+/-) 

Mean Success Rate  Std. Dev.  
(+/-) 

Fitness 

2 1.46 0.09 0.32 0.07 4.14 
 

It was observed that when one team was optimized by keeping another team‟s strategy 

fixed, the optimized team identified various strategies that defeat the opponent team. 

Subsequently, as the first team‟s optimal strategy was kept fixed and the second team 

was then optimized against it. The second team then found some good strategies to 

defeat the first team‟s strategies. This indicated that even optimal strategies may be 

defeated when the opponent team is optimized against them. This provided sufficient 
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evidence that the tool was capable of generating an effective strategy to address the 

opponent‟s strategy. However, it also illustrated that taking turns in terms of evolving 

one team at a time against their opponent‟s specific optimal strategy is not practicable. 

Therefore, a comprehensive analysis would have to consider the range of possible red 

tactics and their likelihood of success but the fact is that GAs only support the 

optimization of a single population at a time. However, CEAs are capable of evolving 

two populations simultaneously. 

 

3.5  Conclusion 

This chapter presented different tactics which emerged in response to the blue patrolling 

boats while different numbers of red attackers were involved. When the blue boats were 

optimized against the already optimized strategy of the red boats, the blue boats again 

found a better strategy to respond to the red boats‟ optimal strategy. While the simple 

approach illustrated here can be used to gain valuable insights into a scenario, in 

general, the situation is very complicated and CEAs may be better approach as they can 

evolve multiple populations simultaneously.  
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4 Problems, Algorithms and Performance Measures 

Chapter 3 presented a pilot study using GAs. The problem investigated in the pilot 

study, in which the RT scenario was optimized, showed that the optimization of RT 

applications can be enhanced by evolving two teams simultaneously. This task cannot 

be performed by using GAs as they can evolve only one population against a fixed 

strategy. CEAs are capable of evolving multiple populations at the same time. However, 

there are some pathologies which may be problematic for the performance of CEAs in 

finding good solutions when applied to RT applications. Additionally, there are some 

RT characteristics which are associated with the manifestation of these pathologies. 

Therefore, the first section of this chapter discusses RT characteristics. The second 

section presents CEAs, with and without variants designed to address CEA pathologies. 

The final section discusses various techniques that measure the performance of CEAs. 

 

4.1 RT Characteristics 

RT and its strengths and limitations have been reviewed in Chapter 2. This section 

presents two characteristics, intransitivity and multimodality, of RT applications that are 

investigated by this study. Details of these characteristics are explained in the following 

sub-sections. 

 

4.1.1 Intransitivity in RT 

A problem domain is intransitive when a simple ranking of solution strength cannot be 

performed. For example, intransitivity occurs if a solution A is better than solution B, 

and B is better than solution C, yet C is better than A, as in the example of the rock-

paper-scissors game. The literature (section 2.2.4.2) showed many CEA domains 

demonstrate intransitivity characteristics (DeJong et al., 2004). With regard to RT, a 

strategy that is considered ineffective against one opponent may turn out to be a 

winning strategy for another (Sidran, 2004). This indicates that a simple ranking of 

good strategies may not be meaningful, which suggests that intransitivity also occurs in 

RT applications.  
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4.1.2 Multimodality in RT 

A multimodal problem demonstrates a number of local optima which are better than all 

their neighbouring solutions (however, their fitness may be below the globally optimal 

solution). Eiben and Smith (2003) suggested that most domains demonstrate 

multimodal characteristics. However, to the knowledge of this author, no literature has 

been found that investigated issues of multimodality associated with RT. Based on the 

assumption that there may be more than one high quality solution to address strategies 

of the opponents, a further investigation was conducted on the output produced by the 

pilot study in chapter 3. It was designed to find whether the domain demonstrated 

multimodality. A "peak detection technique" was developed to carry out this 

investigation. A description of the technique is presented in the following section. 

 

4.1.2.1 Peak Detection Technique 

This technique is used to check whether a point (i.e. solution) in an evolved population 

is a local optimum. The technique involves taking a point into consideration and a 

number of points that are similar to it are randomly generated. A radius value is used to 

limit how far away these points can be generated from the specified point of interest. 

Figure 4.1 depicts the area of the „small value‟, the radius and the randomly generated 

points (i.e.18 points in Figure 4.1). If a generated point falls within the range of the 

„small value‟ (red stars in Figure 4.1) then that point is removed and a substitute point is 

then generated. The rationale is that we are satisfied thatwe have found a local optimum 

if the point in question is “close enough” to a real local optimum. 

 

Subsequently, fitness values are calculated for all those points that are within the radius 

value (blue stars in Figure 4.1) by evaluating against a fixed test set (see Table 4.4). The 

differences between the fitness value of each generated point and the original point 

(white star) is compared with an assigned epsilon value. If the fitness differences are not 

bigger than the epsilon value then each of those points is regarded as being 

approximately the same fitness as the original. If the fitness of the original point is 

higher than or equal to all other points, then the original point is a local optimum. If one 

of the randomly generated points has a higher fitness value than the original point of 

interest, then it indicates that the original point is not a local optimum. 
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Figure 4.1: Randomly generated points around the specified point with radius and small value 

4.1.2.2 Multimodality test in RT strategies 

To explore if multimodality exists in the solution space of RT, an analysis using the 

technique described in section 4.1.2.1 conducted on data generated from the pilot study 

technique with similar parameters. Since the population size was 20 in the pilot study 

(see Chapter 3), the final evolved population consists of 20 strategies (after 50 

generations) which is depicted in Table 4.1 (this data was generated from the case of 

involving 5 red boats competing with 3 blue boats). The descriptions for variables 

shown in the columns in Table 4.1 are described in Table 4.2 with the minimum and 

maximum range of each variable. Each individual in the population consists of a 

genome with the length of 12. Each gene is a real number ranging from 0 to 100. The 

peak detection technique was applied to these 20 strategies (individuals) to test for local 

optima. In their evaluation, for each evolved strategy (i.e. point of interest), 20 other 

similar strategies were generated randomly within a radius value of 5 and using a “small 

value” of 0.2. To calculate the fitness value of each strategy, simulations each with 40 

iterations were executed. As detailed above, the fitness values associated with the points 

of interest (i.e. one of the evolved strategies) and those randomly generated strategies 

were compared using an epsilon value of 0.025. Of the 20 strategies tested, first 5 

strategies were identified as local optima.  
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Table 4.1: Strategies studied 

Alive 
Enemy 

En 
Threat 

1 

Alive 
Friend 

Cover Conce-
alment 

Move-
ment 
Speed 

Min Dist 
to Enemy 

Min Dist 
to Friend 

Org 
Threat 

3 

Org 
Squad 
Friend 

Min Dist 
to Org 
Threat 

Min Dist 
to Squad 

Friend 

39.17 -81.46 100 11.91 -59.18 100 2705.03 7904.84 -95.88 45.71 0 4217.46 

70.98 -91.51 100 11.91 -61.58 100 6931.15 9706.83 -71.66 38.53 0 961.04 

39.17 -81.46 100 11.91 -61.58 100 6931.15 9706.83 -94.73 38.53 0 4217.46 

33.88 -100 87.64 77.19 -45.77 97.2 7015.86 10000 -94.73 38.53 0 1821.49 

51.61 -81.46 100 11.91 -61.58 100 6931.15 9706.83 -94.73 38.53 0 961.04 

51.61 -100 98.99 100 -61.58 100 6931.15 9706.83 -71.66 38.53 0 961.04 

100 -100 -10.87 -82.08 -61.58 100 6931.15 9706.83 -56.07 42.89 0 216.95 

46.05 -100 81.84 45.9 -38.14 100 6308.67 8425.06 -100 100 0 1277.5 

51.61 -100 98.99 100 -61.58 100 6931.15 9706.83 -94.73 38.53 0 961.04 

39.17 -81.46 41.36 64.35 11.83 90.79 8906.94 7044.59 -100 -38.52 0 664.28 

51.61 -81.46 100 11.91 -61.58 100 8254.66 9706.83 -94.73 38.53 0 961.04 

51.08 -100 86.45 11.91 -61.58 100 6931.15 9706.83 -94.73 38.53 0 4217.46 

39.17 -100 86.45 75.33 -93.65 98.45 6795.49 6652.5 -79.31 17.54 1782.48 10000 

70.98 -91.51 65.22 44.05 -45.27 95.62 7649.54 8862.75 -64.78 29.81 0 628.85 

84.31 -58.12 12.66 38.76 -66.01 100 5756.91 7458.15 -100 45.75 1130.99 871.56 

73.85 -71.2 100 30.76 -13.24 87.51 7523.71 10000 -67.4 51.95 18.33 965.64 

43.95 -77.05 29.71 72.57 -49.07 87.3 7123.05 8762.69 -88.54 28.72 934.4 3161.41 

33.66 -82.77 100 3.19 -44.36 73.86 6939.74 9165.11 -97.94 34.25 1193.31 5900.37 

91.52 -53.78 99.59 49.12 -79.94 67.28 7339.83 8757.65 -82.39 36.56 0 0 

72.83 -100 100 -72.63 -27.52 84.91 6798.23 10000 -100 100 2160 0 

 

 

When utilizing the peak detection technique described in section 4.1.2.1 in evaluating 

the strategies found in the pilot study, associated with a specific RT scenario, it showed 

that there is more than one local optimum. This means that, within a population, there 

exists more than one high quality strategy to address the opponent‟s plan. This result 

provided some evidence that the solution space associated with RT scenarios may 

possess multimodal characteristics. 
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Table 4.2: Properties description 

Properties Description Min Range Max Range 

Alive Enemy: 
Attraction or repulsion with the agent which 
consists a property called enemy allegiance 

-100 100 

En Threat1: 
Attraction or repulsion with the agent with a 

property called enemy allegiance Threat Level 1 
-100 100 

Alive Friend: 
Attraction or repulsion with the agent with same 

allegiance 
-100 100 

Cover: Determine the distance of shooting by direct fire -100 100 
Concealment: Determine the visibility of agents in the terrain -100 100 

Movement Speed: 
Determine the number of cells agents move in a 

given time step 
0 100 

Min Dist to 
Enemy: 

Minimum distance the agent can spot their enemy. 
0 value indicates the agent cannot spot the enemy 
agent and 100000 means the agent is very active in 

spotting enemies 

0 10000 

Min Dist to Friend: Minimum distance the agent can spot their friends 0 10000 

Org Threat 3: 
Attraction or repulsion with the agent with enemy 
allegiance with threat level 3 from organic squad 

-100 100 

Org Squad Friend: 
Attraction or repulsion with the agent with friend 

allegiance from organic squad 
-100 100 

Min Dist to Org 
Threat: 

Minimum distance the agent can spot their enemy 
agents. 

0 10000 

Min Dist to Squad 
Friend: 

Minimum distance the agent can spot their friends 
from the same squad 

0 10000 

 

4.2 Problems Studied 

The previous sections of this chapter presented results for some investigations for the 

pilot study, specifically multimodality in RT. In order to test CEA for RT 

characteristics, their performance is evaluated on carefully-designed test problems. For 

testing intransitivity, the problem developed by Watson and Pollack (2001) was utilised 

as the basis for further investigation. For testing multimodality, a new test problem 

(Ranjeet, et al., 2012) was introduced. 

 

4.2.1 An Intransitive Number Problem 

In order to verify that the CEA examined in this thesis can address intransitivity, which 

occurs in RT scenarios, a test problem called "an intransitive number problem", 

proposed by Watson and Pollack (2001) was used in this study. This problem was 
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designed to test the behaviour of CEAs in a situation where there is an intransitive 

relationship between the strength of the evolved strategies. Due to the complexities of 

the intransitive number problem, there is no single solution that always wins. In 

situations where both opponents are evolving, a cyclic pathology may result, and the 

opposing sides may cycle between solutions. The investigation involving CEAs and the 

intransitive number problem is described in chapter 5. 

 

 

4.2.2 A Multimodal Problem 

To test the performance of CEAs in handling multimodal problems, a test problem is 

presented in this study called the n-peak problem. The n-peak problem was introduced 

for CEAs with two competing sides. Since there are n equally good strategies in this 

problem, the challenge for CEAs is to locate as many as possible of these peaks. As this 

is a symmetric problem, both sides are evaluated using the same method. The 

investigation involving CEAs and the multimodal problem is described in chapter 6. 

 

4.2.3 RT Scenarios 

The third domain is the RT application in which two scenarios are tested. Each scenario 

consisted of different environments in which each team tries to achieve its own 

objective using specific strategies. The aim was to ensure that the algorithms can 

effectively optimize and provide good strategies as outcomes in RT scenarios. The 

investigations employing CEAs in RT scenarios are described in chapter 7. 

 

4.3 Experimental Environment 

When optimizing a scenario in the RT application, a simulation run does not require a 

long computation time. However, in the CEA a high number of interactions were 

required, which then extends the time needed for the overall optimization process. In 

order to shorten the simulation running time, an environment was built by establishing a 

cluster using Shoal (see section 3.1.5). Experiments on the intransitive number problem 

and an RT scenario were conducted, with and without the use of Shoal to validate the 
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outcomes. The results produced with and without Shoal were consistent. In addition, the 

use of Shoal significantly lowered the computational time for optimizing the RT 

application. Shoal was not used in the investigations of the intransitive number problem 

and the multimodal problem. However, it was used in optimizing RT scenarios when 

CEAs, with and without variants, were used. 

 

4.4 CEAs and Variants 

The pilot study showed the optimization of each team in terms of evolving a better 

strategy against the opposing team‟s plans using GAs. In the pilot study evolution takes 

turns to fix the strategy of one team and evolving the competing team. Since the 

optimization takes place against one or few known strategies, the process may not be 

effectively applied when there are multiple strategies to be addressed. However, CEAs 

are capable of optimizing multiple strategies simultaneously for multiple populations. 

 

Initially, the developed optimization tool (OT) used a GA which was subsequently 

modified to incorporate CEAs. The OT can be used with a GA or CEA on the basis of 

problems to be solved. The tool can be used to optimize single or multiple populations 

using the GA or the CEA respectively. However, CEAs suffer from various pathologies 

(Wiegand, 2003; Ficici, 2004) such as cycling, disengagement and forgetting. These 

pathologies may cause the CEA to become ineffective, as it may find the same solutions 

again and again (cycling), a population may outperform another population and cause 

its individuals to become indistinguishable in terms of fitness (disengagement), and 

during the optimization process it may forget the good solutions from the preceding 

generations (forgetting). Additionally, some RT characteristics including intransitivity 

and multimodality need to be addressed in order to improve the effectiveness of the 

optimization process.  

 

Therefore, test problems associated with each characteristic are first investigated using a 

basic CEA and a number of variants that incorporated techniques for FS, HOF and a 

combination of both. The aim is to explore how well these algorithms will perform in 

these isolated problem domains (i.e. each problem with only one of the characteristics) 

before applying them to optimise RT scenarios 
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Figure 4.2 presents various CEAs that were created by integrating different variants in 

the naïve CEA to optimize the applications used in this thesis. Their naming 

conventions are included in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2: A naïve CEA and three variants that use evaluation (E), selection (S), crossover (C) 

and mutation (M) operators. 

 

4.4.1.1 Naïve Coevolutionary Algorithm (CEAN) 

The initial level of Figure 4.2 depicts the CEAN which is a naïve CEA; the adjective 

“naïve” indicates that no variants were used in this algorithm. Its characteristics are the 

same as those of the algorithm explained in Figure 2.6 (section 2.2.4). The specific CEA 

operators for Evaluation (E), Selection (S), Crossover (C) and Mutation (M) are now 

discussed. A stochastic uniform selection operator was used to select parents. A single 

point crossover was used as a crossover operator. For the intransitive number problem 

and RT scenarios domain, a polynomial mutation was used whereas a Gaussian 

mutation was used for the multimodal problem. The termination criterion of the 

optimization process was a specific number of generations, i.e. the process iterates until 

a specified number is completed. The procedures of those operators were explained in 

section 2.2.4.1. 

CEAN (CEA) 

E→ S → C → M 

Fitness Sharing Hall of Fame 

CEAFS CEACFH CEAHOF 

Algorithm 

Variants 

Algorithms 
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In order to address CEA pathologies, the FS and HOF variants were integrated in the 

CEAN individually and in combination as depicted in the second level of Figure 4.2. 

The third level shows the algorithms that were generated by integrating variants. The 

descriptions of these algorithms are presented in the following sections. 

 

4.4.1.2 Coevolutionary Algorithm with Fitness Sharing (CEAFS) 

In order to enhance the CEAs‟ optimization capability, the FS technique described in 

section 2.2.4.3, proposed by Goldberg and Richardson (1987) was used in this thesis. 

FS is integrated into the CEAN to create an algorithm CEAFS. Researchers including 

Rosin and Belew (1997) and DeJong (2007) assert that FS helps to address various CEA 

pathologies mainly cycling and disengagement.  

 

1. Randomly initialize Population1 and Population2 
2. Evaluate each individual of Population1 with Population 2 to determine the values 

scorei,j as in Equation (2.1)  
3. Store each evaluated score in a matrix format as shown in Table 2.4 
4. Calculate fitness values of Population1‟s individuals by averaging the column 

values. Likewise average row values from the matrix to calculate fitness values of 
individuals from Population2 

5. Divide previously calculated fitness of each individual by niche count as in Equation 
(2.5) and receive new fitness values 

6. Copy the fittest individual in each population (the elite individual) into the next 
generation of each population 

7. Do until a new generation of Population1 is completed: 
(a) Select two parents from the old Population1 according to a selection function 

based on fitness (Detailed in Section 2.2.4.1) 
(b) Perform crossover according to the crossover operator described in section 

2.2.4.1 and apply mutation as per in section 2.2.4.1 to obtain two new offspring 
(c) Add the new offspring to the new generation 

8. Repeat step 7 for Population2 
9. Repeat steps 2-8 for the required number of generations. The solution is the final two 

populations. 

Note: The highlighted line is the only different step in this algorithm from the CEAN 

Figure 4.3: Pseudo code of CEAFS 

 

The optimization of any problem using this algorithm was similar to the CEAN except 

for the method of the fitness calculation. In the CEAN, the parents were selected on the 
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basis of the raw fitness (the fitness that individuals receive by evaluating against the 

other population members). However, in the CEAFS the raw fitness is divided by the 

niche count as shown in pseudo code in Figure 4.3 

 

In this thesis, the value of τ in Equation (2.6) was set to 1, which was as suggested by 

Sareni and Krahenbuhl (1998). To determine a value for the niche radius, nr, a method 

suggested by Horn and Nafpliotis (1994) was used. According to this method, the total 

surface area of frontier is divided by population size to get the approximate niche radius 

value. The total surface area of the frontier is calculated by using Euclidean distance 

between the upper and lower bounds of the attributes used in the search space.  

 

When the approximate niche radius value was calculated using Horn and Nafpliotis 

(1994)‟s method, again a series of experiments were conducted using a suggested niche 

radius value and its smaller or bigger nearest value. Subsequently, the best fit niche 

radius value was selected to use in the experiment. The analyses for finding a suitable 

niche radius were conducted in all domains studied in this thesis (an intransitive number 

problem, a multimodal problem and RT scenarios). The values used for the niche radius 

in each of these domains are discussed in the associated chapters. 

 

4.4.1.3 Coevolutionary Algorithm with Hall Of Fame (CEAHOF) 

The CEAHOF used in this study was created by integrating a memory mechanism, the 

HOF, in the CEAN. The HOF introduced by Rosin and Belew (1997) was used in this 

study to address the CEAs‟ forgetting pathology. Rosin and Belew (1997) 

recommended populating the HOF by choosing one best solution from each generation. 

Nolfi and Floreano (1998) found that the concept of adding one elite individual from 

every generation may be problematic, as the HOF size also increases, requiring a large 

amount of memory. Also, in subsequent generations, evaluation of individuals will 

focus more upon non-evolving past strategies than the evolving competing population. 
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1. Randomly initialize Population1 and Population2 
2. Create memory spaces for HOF1 and HOF2 (HOF1 Size = Population1 size and 

HOF2 Size = Population 2 Size) 
3. Evaluate each individual of Population1 with Population 2 and also with HOF2 

individuals (if the size of HOF2 != 0) to determine the values scorei,j as in Equation 
(2.1) 

4. Yet again evaluate each individual of Population2 with HOF1 individuals (if the size 
of HOF2 != 0) 

5. Store each evaluated score in a matrix format as shown in Table 4.3 
6. Calculate fitness values of Population1‟s individuals by averaging the column 

values. Likewise average row values from the matrix to calculate fitness values of 
individuals from Population2 

7. Copy the fittest individual in each population (the elite individual) into the next 
generation of each population and also in the HOF. If the HOF is full (i.e. the 
number of individuals in the HOF = HOF size) then compare the fitness value of the 
HOF individuals and remove the individual with lesser fitness value 

8. Do until a new generation of Population1 is completed: 
(a) Select two parents from the old Population1 according to a selection function 

based on fitness (Detailed in Section 2.2.4.1) 
(b) Perform crossover according to the crossover operator described in section 

2.2.4.1 and apply mutation as per in section 2.2.4.1 to obtain two new offspring 
(c) Add the new offspring to the new generation 

9. Repeat step 8 for Population2 
10. Repeat steps 2-9 for the required number of generations. The solution is the final two 

populations. 

Note: The highlighted lines are the only different steps in this algorithm from the 

CEAN 

Figure 4.4: Pseudo code of CEAHOF 

 

In this study, a limitation of the HOF size was applied, i.e. the number of HOF 

individuals cannot exceed the pre-defined maximum size of the HOF. The maximum 

HOF size was set to be the same as the current population size; to ensure that the HOF 

had sufficient room to store past strategies and also to minimize the memory 

consumption. When the allotted HOF space is full, individuals selected later for 

insertion into the HOF are compared with existing HOF individuals. On the basis of 

their fitness values, the weakest individuals are replaced from the HOF. It was noticed 

that when the best individuals are repeatedly selected, all individuals may become 

genotypically similar in the HOF. In future research, removing the most genotypically 

similar individual from the HOF can be considered. 
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The CEAHOF behaves in a similar manner to the CEAN, except for the method of the 

fitness calculation. In this algorithm, steps shown in Figure 4.4, the individuals‟ fitness 

was calculated not only by evaluating them against all individuals from competing 

populations, but also against the HOF members. The process of fitness calculation used 

by this algorithm is depicted in Equation (2.8) which is similar to Equation (2.1) except 

for the use of combine population size (population size + HOF members). The symbol n 

is the population size of the competing population; m is the size of the HOF archive, 

which starts from 0 and increases by one in every generation until it reaches the 

maximum size defined by the user. 

 
Table 4.3: Matrix format showing a fitness calculation method in the HOF. 

 Population HOF  
P1I1 P1I2 P1I3 P1HI1 P1HI2 

Po
pu

la
tio

n P2I1 1 1 5 3 3 2.6 

R
ow

 A
ve

ra
ge

  
(F

itn
es

s o
f p

op
ul

at
io

n 
2)

 

P2I2 8 9 2 4 9 6.4 
P2I3 4 0 10 9 3 5.2 

H
O

F P2HI1 7 1 2 X X X 

P2HI2 7 4 6 X X X 

  5.4 3 5 X X X 

Column Average (Fitness of Population1)  

 

In Table 4.3, the symbols P, I and H represent Population, Individual and Hall Of Fame 

respectively. 

 

4.4.1.4 Coevolutionary Algorithm with Combined HOF and FS (CEACFH) 

The CEACFH used in this thesis was created by integrating the combine approaches of 

FS and HOF into the CEAN as depicted in Figure 4.5. FS is a well known diversity 

maintenance technique which has been used in CEAs to address the cycling and 

disengagement pathologies and the HOF preserves the old strategies and introduces 

them at the time of evolving a new generation, which helps to avoid the CEAs‟ 

forgetting pathology. An interesting exploration is to integrate these two proven 
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techniques into the CEAN and then to examine the algorithms‟ capability to address 

various pathologies of CEA as well as intransitivity and multimodality.  

 

1. Randomly initialize Population1 and Population2 
2. Create memory spaces for HOF1 and HOF2 (HOF1 Size = Population1 size and 

HOF2 Size = Population 2 Size) 
3. Evaluate each individual of Population1 with Population 2 and also with HOF2 

individuals (if the number of HOF2 != 0) to determine the values scorei,j as in 
Equation (2.1) 

4. Yet again evaluate each individual of Population2 with HOF1 individuals (if the 
number of HOF2 != 0) 

5. Store each evaluated score in a matrix format as shown in Table 4.3 
6. Calculate fitness values of Population1‟s individuals by averaging the column 

values. Likewise average row values from the matrix to calculate fitness values of 
individuals from Population2 

7. Divide previously calculated fitness of each individual by niche count as in Equation 
(2.5) and receive new fitness values 

8. Copy the fittest individual in each population (the elite individual) into the next 
generation of each population and also in the HOF. If the HOF is full (i.e. the 
number of individuals in the HOF = HOF size) then compare the fitness value of the 
HOF individuals and remove the individual with lesser fitness value 

9. Do until a new generation of Population1 is completed: 
(a) Select two parents from the old Population1 according to a selection function 

based on fitness (Detailed in Section 2.2.4.1) 
(b) Perform crossover according to the crossover operator described in section 

2.2.4.1 and apply mutation as per in section 2.2.4.1 to obtain two new offspring 
(c) Add the new offspring to the new generation 

10. Repeat step 9 for Population2 
11. Repeat steps 2-10 for the required number of generations. The solution is the final 

two populations. 

Note: The highlighted line is the only different step in this algorithm from the 

CEAHOF 
 

Figure 4.5: Pseudo code of CEACFH 

 

FS implicitly influences the algorithms to maintain diversity by giving a high priority to 

unique solutions; however, the HOF may reduce the diversity of the population. The 

HOF collects a best solution from each generation due to which the HOF members may 

be similar in structure. When individuals are evaluated against the HOF members, 

individuals with similar structure get equal response from the HOF which reduces the 

diversity of the population. Despite the contradicting characteristics (FS increases and 

HOF decreases diversity) of these two techniques in terms of diversity maintenance, a 
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question of interest would be: if these techniques were capable of addressing CEA 

pathologies individually, how will the combination perform? 

 

The pseudo code in Figure 4.5 shows the steps in this algorithm. They are similar to 

CEAHOF except for the additional calculation for fitness sharing. As in CEAHOF, 

individuals were evaluated not only against the individuals from the opposing 

population but also against the HOF members. The score gained by individuals in each 

interaction were stored in a matrix format as shown in Table 4.3. The fitness of 

individuals was calculated by averaging the scores by column or row wise. 

Subsequently, the calculated fitness was processed for FS as in the CEAFS. 

 

The fitness calculation of this algorithm is given in Equation (2.5) in which the raw 

fitness fi was calculated by using Equation (2.8), the n and m are the population size of 

the competing population and HOF population respectively. The niche count ci was 

calculated according to Equation (2.6). The symbol n and m is a total population size 

and the HOF size respectively and i and j are two competing individuals. 

 

4.5 Performance Measures 

Now that the test problems and CEA algorithms that will be employed have been 

described, attention turns to the evaluation of the performance of these chosen CEAs. 

All chosen test problems were used to evaluate all four algorithms, CEAN, CEAFS, 

CEAHOF and CEACFH. The performance of these algorithms was measured using a 

number of evaluation techniques. The quality, based on each individual‟s fitness value, 

and diversity (measured on the basis of genome and fitness value diversity) of the 

population are measured. The performance measures studied in this thesis are: the 

generalisation performance (GP), Peak Ratio, Success Ratio and Circular Earth Movers‟ 

Distance (CEMD). The following sub-sections present descriptions of these techniques. 

 

4.5.1 Estimated Generalisation Performance 

In CEAs, the performance of one evolving population, on the basis of their fitness, 

against its evolving opponents cannot be used as an objective measure of quality 
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because both these populations evolve simultaneously. In such situations, a technique 

called estimated generalisation performance can be used that measure the algorithms‟ 

performances by testing the evolving population against the fixed test population to 

monitor their progress in subsequent generations (Chong et al., 2008, 2009).  

 

Chong et al. (2008, 2009) begin by defining estimated GP as the mean score of a 

solution in all possible test cases. This intuitively appealing definition poses several 

practical difficulties. First, for many problems of interest, the space of all possible test 

cases could be very large, or even infinite, and there may be no way to compute a mean 

score analytically. Therefore, they propose a statistical approximation approach, in 

which a mean score is computed for a suitable sample of test cases. The second 

difficulty is what probability distribution should be used over the space of test cases. In 

many cases, scores against “high quality” test cases might be considered more 

important. They therefore proposed two different methods for sampling the space of test 

cases: unbiased sampling (which is purely random) and biased sampling (which favours 

higher quality test cases).  

 

Chong et al. (2008, 2009) used GP to measure the performance of a single population 

CEA whereas this technique was adapted for use involving multiple (two) populations 

CEAs in this thesis. There were some modifications from the original approach to 

account for the fact that two populations were used rather than one. The test cases were 

created for each participating population based on biased sampling. The procedure to 

obtain a biased test set for each population is outlined in Table 4.4. 

 

Table 4.4: Procedures to generate a test set population 

1. Generate n random test solutions for each population 
2. Calculate fitness values by scoring these against each other 
3. Select and save the fittest individual from each population 
4. Repeat steps 1-3 until the desired number of test cases have been collected. 

 

In this procedure, the larger the value of n, the more biased towards quality the test set 

becomes. In this thesis the value of n used was three times of population size in each of 

the domain problems (an intransitive number, multimodal problem and RT scenarios). 
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After generating these test sets, the quality of the evolving population can be estimated 

by evaluating each solution against the test set solutions. Chong et al. (2008, 2009) 

proposed three ways of measuring estimated GP: average, best and ensemble which are 

described below. 

 

 Estimated Average GP 

Although in an EA a population of solutions are evolved, usually the top few, on the 

basis of fitness, are of most interest. Thus, when calculating the quality of a population, 

the population is first sorted according to fitness values (since this is the only quality 

information available to the algorithm), and then only the best few, in term of highest 

fitness value, nBest, in the sorted list are considered. Estimated average GP is then 

estimated as in the Equation (4.1). 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑃 =
1

𝑛𝐵𝑒𝑠𝑡
 𝐸𝑖

𝑛𝐵𝑒𝑠𝑡

𝑖=1

 

 

(4.1) 

 

Where Ei, is the average score of solution i against the test set as defined in Equation 

(4.2). 
 

𝐸𝑖 =
1

𝑛𝑇𝑒𝑠𝑡
 𝑠𝑐𝑜𝑟𝑒𝑖 ,𝑗

𝑛𝑇𝑒𝑠𝑡

𝑗=1

 
(4.2) 

 

where, nTest is the size of the test set. scorei,j is a fitness that individual i receives when 

competing against j individual. For calculating the estimated average GP, nBest is set to 

5 and nTest is set equal to the population size in each domain studied in this thesis. 

 

 Estimated Best GP 

Another measure of estimated GP is estimated best GP. This is a quality of the best 

solution amongst the top nBest solutions in the population. The average score of each 

solution against the test set Ei is calculated as defined in Equation (4.2). The highest 

score of the nBest solutions will be considered as the estimated best GP. For calculating 
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the estimated best GP, as in the estimated average GP, nBest is set to 5 and nTest is set 

equal to the population size in each domain studied in this thesis. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑒𝑠𝑡 𝐺𝑃 = max
𝑖<𝑛𝐵𝑒𝑠𝑡

𝐸𝑖  (4.3) 

 

 Ensemble 

Ensemble examines the individuals in an evolving population that best defeat the 

competing population. In this approach selected individuals, nBest, compete against a 

number of fixed test set opponent individuals, nTest. Each nTest individual is tested 

against all nBest and each time the highest score when defeating an nTest individual is 

collected. The collected value is an ensemble for the specific evolving population. 

Equation (4.4) shows the calculation for ensemble. 

 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝐵𝑗

𝑛𝐵𝑒𝑠𝑡

𝑗=1

 

 

𝐵𝑗 = max
𝑖=1 𝑡𝑜  𝑛𝑇𝑒𝑠𝑡

𝑆𝑐𝑜𝑟𝑒𝑖,𝑗  

(4.4) 

 

All ways of measuring the estimated GPs are between the selected number of 

individuals from the fixed test population, nTest, and top individuals from the evolving 

population, nBest. In the entire thesis the size of nTest is equal to the population size 

and nBest is always 5 regardless of the problem, which was a number chosen based on 

the work of Chong et al (2008, 2009). 

 

Since the Ensemble GP gathers only the highest score, the ensemble value often appears 

to be a maximum value. The estimated best GP chooses the best score among the top 

individuals; thus, the highest score is returned as the best GP-value. The estimated 

average GP is an average score of nBest individuals while competing against nTest 

individuals. Thus, the average GP‟s value is smaller in comparison to the ensemble and 

the best GP as all individuals may not be equally good in their performance. All GP-

values are expected to be higher in subsequent generations in comparison to earlier 

generations. 
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4.5.2 Objective Quality Measurement 

This performance measure was used only in the intransitive number problem as the 

domain‟s objective quality can be measured according to the gene values. In this 

domain each individual contains two genes, and each represents a coordinate value. The 

coordinate value can be within a range of 0 to 100. The quality of solution i is 

calculated as Equation (4.5), the average of the solutions x and y values in which x and y 

are coordinate values. The measures for the objective quality of a population are then 

defined in a similar way as for estimated GP. 

 

𝐴𝑖 =
𝑥 + 𝑦

2
 (4.5) 

 

 

 Objective Average Quality Measurement 

Similar to Equation (4.1), a specific number of top ranked (based on fitness value) 

individuals, nBest, are evaluated and their scores are averaged to calculate the objective 

average quality. The difference is that instead of evaluating against a test set the 

objective quality measure in Equation (4.5) is used. The average objective quality 

measure is depicted in Equation (4.6). For calculating the objective average quality, the 

nBest is set to 40% of the population size and nTest is set equal to the population size in 

the intransitive number domain. 
 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
1

𝑛𝐵𝑒𝑠𝑡
 𝐴𝑖

𝑛𝐵𝑒𝑠𝑡

𝑖=1

 
(4.6) 

 
 

 

 Objective Best Quality Measurement  

The objective best quality is calculated by considering the nBest top individuals (based 

on fitness value) and selecting the highest objective quality value from that set. The 

objective best quality is derived in Equation (4.7). For calculating the objective best 

quality, the size of the nBest is set to 5 and nTest is set equal to the population size in 

the intransitive number domain. 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑒𝑠𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = max
𝑖<𝑛𝐵𝑒𝑠𝑡

𝐴𝑖  (4.7) 

 

4.5.3 Circular Earth Mover’s Distance 

This performance measure was used only in the multimodal problem. Since 

multimodality is one of the RT characteristics, a multimodal problem was proposed to 

check capabilities of CEAs in finding multiple optimal solutions. In the multimodal 

domain, a number of peaks can be specified and depending on the algorithms‟ 

performance the peaks are detected. The algorithms‟ performance (in finding multiple 

peaks) cannot be measured by only the GPs. The circular earth movers‟ distances 

(CEMD) (Rabin, et al., 2008) is proposed to specifically measure the algorithms‟ 

performance in detecting multiple peaks.  

 

Earth mover‟s distance (EMD) (Rubner, et al., 2000) is a technique that measures the 

minimum total number of movements that would be required to make the two 

histograms identical. This technique has previously been used for comparing two 

histograms in image processing related research such as image retrieval (Rubner, et al., 

2000), measurement of texture and colour similarities (Levina & Bickel, 2001), image 

matching (Ling & Okada, 2006) and image comparison (Rabin, et al., 2008). Rabin, 

Delon and Gousseau (2008) introduced the concept of CEMD, based on the EMD 

designed to compare one-dimensional circular histograms.  

 

In the multimodal problem studied in this thesis, the CEMD is used to measure the 

performance of CEAs in identifying the multiple optima. The multimodal problem 

proposed in this thesis allows a user to specify the number of peaks. Since the true 

location of the peaks in the problem is known, an “ideal” distribution can be created in 

the form of a histogram for both the populations. In the histogram, all buckets that 

include the peak contain equal number of solutions and the remaining buckets which do 

not contain any peak are empty. Likewise, an actual histogram can be created for each 

evolving population which can be compared with the ideal histogram. 

 

On the basis of similarities between the two histograms, the CEMD value is assigned. A 

CEMD value close to zero is considered to be good because a zero difference indicates 
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that the histogram for the evolving population is identical to the ideal histogram. 

Equation (4.8) is used to calculate circular earth movers‟ distance in which the evolving 

population‟s histogram and the ideal histogram is represented by Fk and Gk respectively 

in which N number of intervals are allocated. The value of Fk and Gk can be calculated 

according to Equation (4.9) 

 

 
(4.8) 

Where, ∀ 𝑘 ∈  1,… ,𝑁 , Gk can be calculated exactly the same way as Fk.  

 

 

𝐹𝑘  𝑖 =

 
 
 

 
 
 𝑓[𝑗]

𝑖

𝑗=𝑘

                         𝑖𝑓 𝑖 ≥ 𝑘

 𝑓 𝑗 +  𝑓[𝑗]

𝑖

𝑗=1

       𝑖𝑓 𝑖 < 𝑘

𝑁

𝑗=𝑘

  

(4.9) 

 

Table 4.5: Distribution for the ideal histogram with 40 buckets and 5 peaks 

Peaks P1        P2        P3        P4        P5        P1 
                                          
Value 0.1 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0.1 
Bucket 
Number 

1 2 to 8 9 10 to 16 17 18 to 24 25 26 to 32 33 34 to 40 1 

0.2 
 
 
 
 
0.1 
 
 
 
 
 

           

Range 0.0 -
0.0125 

       0.1875
-

0.2125 

       0.3875
- 

0.4125 

       0.5875
- 

0.6125 

       0.7875
- 

0.8125 

       0.9875
- 1.0 

   
Peak 
at 0.0 

Increase by 
0.025 in 

each bucket 

 
Peak 
at 2.0 

Increase by 
0.025 in each 

bucket 

 
Peak 
at 4.0 

Increase by 
0.025 in 

each 
bucket 

 
Peak 
at 6.0 

Increase by 
0.025 in 

each 
bucket 

 
Peak 
at 8.0 

Increase by 
0.025 in 

each 
bucket 

 
Peak 
at 0.0 

 

For example, if the ideal histogram (Gk) has forty buckets (N=40) and the multimodal 

problem has five optima, each peak is positioned with 7 bucket intervals for an equal 

distribution as shown in Table 4.5. The bucket value is a distribution of 0 to 1. The first 

𝐶𝐸𝑀𝐷 𝑓,𝑔 =
𝑚𝑖𝑛

𝑘 ∈ {1,… . ,𝑁}
 

1

𝑁
  𝐹𝑘 𝑖 − 𝐺𝑘[𝑖] 

𝑁

𝑖=1
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and last buckets have 0.0125 intervals whereas remaining buckets have 0.025 intervals. 

Since it is circular in nature, the first peaks shares the bucket at the first half and last 

half as shown in Table 4.5 (P1 at the first and after the last bucket). These two half 

buckets are assigned 0.1 and 0.1 values respectively for the first half and last half 

buckets. Other peaks which are located at the 0.2, 0.4, 0.6 and 0.8 buckets are assigned 

with 0.2 values each. The remaining buckets are empty.  

 

The actual histogram (Fk) can be calculated in the same way as Gk. Unlike in the ideal 

histogram distribution, individuals in an evolving population (only one gene in each 

individual in the proposed multimodal problem) are assigned to different buckets 

according to their gene values. Subsequently, the resulting distance is compared with 

the ideal histogram using Equation (4.9). A small gap between the actual and ideal 

histogram represents a success of algorithms in detecting all the mentioned peaks in the 

problem.  

 

4.5.4 Peak Ratio and Success Ratio 

To measure the performance of CEAs in detecting multiple optima, two additional 

measurement methods were used; the peak ratio and success ratio. These performance 

measures have previously been used for GAs (Beasley, et al., 1993) and differential 

evolution (DE) (Thomsen, 2004). Subsequently, Epitropakis, Plagianakos, Vrahatis 

(2011) and Otani, Suzuki and Arita (2011) also used these same techniques to measure 

the capabilities of DEs for multimodal optimization. 

 

The peak ratio (PR) measures the percentage of global optima identified within a 

number of known global optima. In both evaluation methods, a tolerance level needs to 

be assigned (such as 10-2, 10-3, 10-6 and 10-7). The tolerance level is an acceptable 

computed value to be considered as an optimum (for example the value 2.001 and 4.008 

are considered as 2 and 4 if 10-2 tolerance level is set). The peak ratio is calculated 

according to Equation (4.10). 

 

𝑃𝑅 =
𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑒𝑎𝑘 𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑎𝑘𝑠
 

(4.10) 
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Another method, success ratio (SR), measures the number of times that all global 

optima are found in a specific number of runs. The SR is calculated according to 

Equation (4.11). 

 

𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑙𝑙 𝑔𝑙𝑜𝑏𝑎𝑙 𝑜𝑝𝑡𝑖𝑚𝑎 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑁 𝑟𝑢𝑛𝑠 

𝑁 𝑟𝑢𝑛𝑠
 

(4.11) 

 

4.5.5 Diversity Evaluation Techniques 

The purpose of measuring diversity was to examine whether the population remain 

equally diverse from the initial to final generations. In addition, diversity evaluation 

helps to identify whether the diversity influences the characteristics of the population 

such as the population‟s performance in achieving optimal solutions. In this thesis, two 

diversity measures were used, namely genotypic and phenotypic. These two diversity 

measures are described in the following sub-sections. 

 

4.5.5.1 Genotypic Diversity Measurement 

According to Herrera and Lozano (1996), the diversity of the population can be 

measured based on Euclidian distance between chromosomes. The authors have 

proposed this diversity measure, called “genotypic diversity measures based on 

Euclidian distance” for real coded GAs. However, this diversity measure is used for the 

multiple population CEAs in this thesis.  

 

In this diversity measure approach, the distance between each gene from one individual 

to other individuals are measured. The diversity of the population is calculated on the 

basis of individuals‟ gene values within a population. In Equation (4.12), the value of D 

is the average of the genotypic variation dj. The symbol n represents the number of 

individuals in the population. 

 

𝐷 =
1

𝑛
 𝑑𝑗

𝑛

𝑗=1

 
(4.12) 
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dj is calculated as the Euclidian distance between individuals‟ genes which is depicted 

in Equation (4.13). u is a length of the genome. The length of the genome in the 

intransitive number problem was two. The genome length in the multimodal problem 

was one. With regard to RT scenario, coastline protection, the length of genome for the 

blue was 15 and the red was 12. xm is a gene from an individual which is being 

evaluated and yj,m is a gene from j individual from the same population. 

 

𝑑𝑗 =   (𝑥𝑚 − 𝑦𝑗 ,𝑚)2

𝑢

𝑚=1

 (4.13) 

 

4.5.5.2 Phenotypic Diversity Measurement 

While genotypic diversity was measured in the population, the phenotypic diversity was 

also calculated. The phenotypic diversity is a measure based on fitness of the population 

in this study. This diversity measurement method evaluates the population according to 

the similarity or dissimilarity of the fitness value that individuals receive.  

 

In order to calculate phenotypic diversity of the population, this study used the entropy 

concept introduced by Ray (1993). The process of calculating entropy begins with the 

creation of a number of clusters (N) (in this study, on the basis of individual‟s fitness 

value). The interval between the clusters (R) is calculated by using the formula, 

R =  
Smax −Smin

N
 , so that N evenly spaced clusters are created between maximum score 

(Smax), and the minimum score (Smin). All individuals in the population are categorized 

into specific clusters (based on their fitness value). 

 

The numbers of individuals belonging to the specific cluster are counted (pk) then the 

following formula is applied to calculate the entropy of the population (E) as in 

Equation (4.14). If the cluster is empty, the value of pk is zero. 

 

𝐸 =  −   𝑝𝑘 . 𝑙𝑜𝑔𝑝𝑘

𝑁

𝑘

 
(4.14) 
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4.6 Summary 

The first section of this chapter presented brief descriptions of test problem domains 

considered in this thesis. More details and experiments for these domains are presented 

in the subsequent chapters. Chapter 5, 6 and 7 present the analysis of the intransitive 

number problem, multimodal problem and RT scenarios respectively. Subsequently, a 

description of CEAs (with and without the use of variants) used in this thesis was 

explained in the second section. Some well known variants such as FS and the HOF 

were integrated in a CEA to enhance the algorithms capabilities. These algorithms will 

be utilized in subsequent chapters to optimize the considered domains. 

 

In addition, descriptions of some techniques that measure the performance of algorithms 

were also explained. In this thesis, the performance measures evaluate two factors: the 

quality and diversity of the population. The performance measures including GP, 

CEMD, PR and SR measures quality. The diversity of the population is measured on the 

basis of their genotype and phenotype. These performance measures are also used in the 

subsequent chapters to measure the effectiveness of the algorithms in addressing 

specific problems. Now, the next two chapters present how a naïve CEA with three 

variants, address intransitivity and multimodality. 
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5 Testing CEAs on an Intransitive Problem 

Chapter 4 provided descriptions of the problems, algorithms and the performance 

measures that are studied in this thesis. This chapter describes the evaluation of four 

algorithms in terms of their generalisation ability and the objective quality of solutions 

using an intransitive number problem. A naïve CEA and three variants were employed 

in solving this problem. This chapter begins with a definition of intransitivity in section 

5.1 which is followed by the description of the test problem considered in section 5.2. 

Section 5.3 explains the parameters used for the experimental setup and section 5.4 

shows the results of this empirical study. 

 

5.1 What is Intransitivity? 

An example of a transitive relationship is in the ordering of numbers in a set of integers 

a = 10, b = 5 and c = 3. For these integers, it can be seen that if a > b and b > c it can be 

inferred that the relationship of a > c holds. As a result of this transitive relationship, the 

problem of determining the largest or smallest number in a set of integers is called a 

transitive problem. In contrast, an example of an intransitive relationship is that of 

finding a „winning move‟ in the game rock, paper and scissors. In this game, there is no 

optimal move that will always win. For example, paper beats rock and rock beats 

scissors but that does not imply that paper beats scissors; in fact, scissors beats paper. 

Owing to such relationships, it is not possible to find a superior solution. In this 

situation both opponents are evolving; a cyclic pathology can result, and the opponents 

may cycle between the solutions.  

 

As mentioned in section 4.2.1, the assumption was that intransitivity exists in RT. When 

two teams try to evolve dominant strategies against each other, eventually, the process 

evolves a counter strategy that has been a solution previously. For example, if the blue 

team evolves a strategy A to counteract the red team‟s strategy B, the red team could 

evolve a strategy C that defeats strategy A. Subsequently, the blue team could evolve a 

strategy D in response to strategy C. In order to defeat strategy D, the red team could 

evolve another strategy which could be strategy B again. Such a reappearance of the 

same strategy to counter an evolved strategy is a symptom of intransitivity. In such 
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situations, a cyclic pathology occurs as the competing teams cycle between the 

previously evolved solutions. RT is a very complex domain in which to test whether the 

optimization algorithm can address intransitivity. Therefore, in order to see whether the 

CEA can address intransitivity, a carefully designed test problem was studied. 

 

5.2 Problem Domain 

In this section, a problem domain that was chosen to study intransitivity using CEAs is 

explained. A test problem introduced by Watson and Pollack (2001) was chosen for this 

study. Researchers have utilized various test problems to analyse the performance of 

CEAs, for example, Chong et al. (2008, 2009) used Iterated Prisoner‟s Dilemma (IPD) 

and Rosin and Belew (1997) used the games of Nim and 3-D Tic-Tac-Toe. IPD is a 

widely studied problem; however, it is an extremely difficult problem for a CEA. The 

game contains complex evolutionary dynamics and an enormous search space. In fact, 

researchers always limit their search to solutions that use some restricted representation, 

such as a finite state machine. The intransitive number problem that was chosen for this 

study has some advantages over the other test problems mentioned above. It has the 

specific feature of intransitive relationships that makes the problem difficult, yet it can 

be represented in a simple manner. The problem is suitable for evaluating CEAs as it is 

possible to define an objective quality criterion since the theoretical optimum is known. 

 

An intransitive number problem introduced by Watson and Pollack (2001) is adapted 

into a version with two populations. The problem is symmetric in which both sides are 

evaluated using the same method. In this problem, individual solutions in both 

populations consist of pairs of real numbers each ranging from 0 to 100. The score 

when solution a = (ax, ay) from one population competes with solution b = (bx, by) from 

the other population is given in Equation (5.1). Score (a, b) has three possible 

outcomes: 1 if a > b; 0 if a < b and if a = b, the score is assigned a value of 1 or 0 

randomly. 

 

Consider three solutions, P = <10:90>, Q = <11:88> and R = <8:89>. When the values 

of P and Q are evaluated according to Equation (5.1), the value of score ((ax, ay),(bx, 

by)) will be score (ax, bx) because the condition |ax - bx| < |ay, by| is met. Then the value 
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of score (a, b) will be 0 because a < b. The basic idea is to check which two of the axes‟ 

values are closer, and check whether the first axis‟ value is greater than its second 

value. One example is when score (a, b) is 0 (for example, Q beats P), because 10 and 

11 are closer than 90 and 88, so the score is determined by which solution has the larger 

x value. Similarly, R beats Q (based on y being larger than x), and yet P beats R. Thus, 

the relationships between these solutions are intransitive. 

 

𝑠𝑐𝑜𝑟𝑒   𝑎𝑥 ,𝑎𝑦 ,  𝑏𝑥 ,𝑏𝑦   =   

𝑠𝑐𝑜𝑟𝑒 𝑎𝑥 ,𝑏𝑥 ,                       𝑖𝑓|𝑎𝑥 − 𝑏𝑥 | < |𝑎𝑦 − 𝑏𝑦 | 

𝑠𝑐𝑜𝑟𝑒 𝑎𝑦 , 𝑏𝑦 ,                      𝑖𝑓 𝑎𝑥 − 𝑏𝑥  > |𝑎𝑦 − 𝑏𝑦 |

𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑖𝑐𝑒 𝑜𝑓 𝑎𝑏𝑜𝑣𝑒, 𝑖𝑓 𝑎𝑥 − 𝑏𝑥  = |𝑎𝑦 − 𝑏𝑦 |

  
(5

.1) 

 

 

𝑤𝑒𝑟𝑒, 𝑠𝑐𝑜𝑟𝑒 𝑎, 𝑏 =  

1,                             𝑖𝑓 𝑎 > 𝑏
0,                             𝑖𝑓 𝑎 < 𝑏
0 𝑜𝑟 1,                   𝑖𝑓 𝑎 = 𝑏

   

 

To see how intransitivity could cause convergence problems for a CEA, suppose there 

are two competing populations and that at some point one population (α) contained a 

high proportion of P-like solutions. This might lead to an increase in the number of Q-

like solutions in the other population (β). In turn, this would favour R-like α solutions, 

which would then favour P-like β solutions. A repeat of a cycle, described above is 

repeated with Q-like α solutions being favoured, followed by, favouring of R-like β 

solutions, finally returning to favouring P-like α solutions. This would be a return to the 

situation that was 6 generations ago. That is, there is the potential for a cyclic dynamic 

to be established.  

 

5.3 Experimental Setup 

This section presents the experimental design and the parameter settings for the 

experimentation of this problem domain. The intransitive number problem is used to 

evaluate the performance of a basic competitive CEA and variants (CEAN, CEAFS, 

CEAHOF and CEACFH), as introduced in chapter 4, in handling intransitivity. The 

performance of these algorithms is measured via two ways: generalisation performance 

and objective quality. The generalisation performance tests how well solutions found 
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for one side in a contest, learned via a CEA, generalise to compete against arbitrary 

strategies for the other side. In this intransitive number problem, although the 

superiority relationship is complex, the closer the solution is to the theoretical optimum 

i.e. <100:100>, the higher quality the solution is, that is the more likely it is to be better 

than a randomly chosen solution. The method of calculating objective quality of the 

solution is defined in section 4.5.2. For each algorithm tested, the mutation rate was 

varied from 2.5% to 100% in 2.5% increments. The crossover and mutation operators 

and values of the parameters used in these experiments are listed in Table 5.1. For each 

execution, in each generation, diversity (genotypic and phenotypic), generalisation 

performance (best GP, average GP and ensemble), and objective quality (best and 

average quality) were calculated. Although Chong et al. (2008, 2009) found the 

ensemble measure to be more interesting, for this specific problem, the ensemble 

measure this case provided similar results in every generation for each of the four 

algorithms. Thus, this measure is excluded for further analysis. 

 

Table 5.1: Parameters used in the experiments 

Properties Algorithm/Values 
Population size 25 in each population, as recommend by Watson and 

Pollack (2001) 
Gene value 0 to 100 
Crossover Single point 
Crossover rate 60%, as recommend by Watson and Pollack (2001) 
Mutation Polynomial 
Mutation rate 2.5% to 100% stepwise increments of 2.5% 
Selection Stochastic universal sampling 
Generations 300 
Number of runs 60 
Niche radius 5 (best value suggested by experimentation) 
HOF sample size 25 (equal to population size) 
  

 

Initial gene values were randomly generated values between 0 and 100. The interaction 

between two individuals produces a score for each individual involved. As the 

intransitive number problem is symmetric, two competing individuals were evaluated 

using the same method. The score was calculated using Equations (5.1). As seen in 

Equation (5.1), the score (a, b) has 3 possible outcomes; 1 if a > b; 0 if a < b and in the 

case of a = b, the score will be randomly assigned a value of 0 or 1, resulting in non-
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deterministic outcomes. To address this, each pair of individuals are evaluated for 20 

times and the average over the 20 iterations was considered as an interaction score for 

each of the individuals involved in the interaction. 

 

For calculating fitness, as shown in Equation (2.1), when the individual is evaluated 

against all the members from the competing population the fitness values received by an 

individual are also averaged over the number of individuals in the competing 

population. In terms of FS, an empirical study was carried out to investigate suitable 

values for niche radius. The value of 5 was found to be the best one for this domain. 

Each run of an algorithm was repeated 60 times to allow for statistical variation. 

 

5.4 Results and Analysis 

The results of the experiments are analysed using the quality and diversity of the 

populations that were produced by the CEAN, CEAFS, CEAHOF and CEACFH. The 

quality of the populations was measured in two ways: using the GP (discussed in 

section 4.5.1) and the objective quality (section 4.5.2). Diversity of the population was 

also measured in two ways: the genotypic and phenotypic (sections 4.5.5.1 and 4.5.5.2 

respectively). The data for each measure (diversity and quality) were examined in four 

ways: (1) a profile (interaction) plot of each measure against mutation rate, (2) ANOVA 

test, (3) Correlation analysis for measures associated with each of the four algorithms 

and (4) Scatter plots are presented to visualise the relationship between quality and 

diversity. 

 

5.4.1 Evaluation of Four Algorithms via GPs 

This section presents an analysis of the quality of two competing populations (evolved 

by each of the four algorithms) using one of the measures for generalisation 

performance, the estimated best GPs. The two competing populations were named the 

blue and red respectively. Each of the four algorithms was run 60 times using the 

parameters shown in Table 5.1. The average of these 60 runs for each of the 

corresponding 5000 generations is presented as convergence plots depicted in Figure 
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5.1 when a mutation rate of 2.5% was used. The x-axis represents the number of 

generations and the y-axis represents the estimated best GPs.  
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Figure 5.1: Convergence plots showing the estimated best GPs of the four algorithms for (a) the 

blue and (b) the red team using mutation rates of 2.5% 

 

Figure 5.1 (a) and (b) show that the performance of each of the algorithms in terms of 

receiving the estimated best GP was similar in both, the blue and red, teams. The 

performance of the solutions associated with all four algorithms suffers from 

fluctuations. Although CEAFS received the highest estimated best GP value in both 
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teams, there still exists some amount of fluctuation. In comparison to CEAFS, the other 

three algorithms fluctuated for mutation rate of 2.5%. This is presumably due to the 

intransitive nature of the problem in which each team evolve superior solutions in every 

generation making it hard to converge at very low mutation rate. 
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Figure 5.2: Convergence plots showing the estimated best GPs of CEANs for (a) the blue team 

and (b) red team using mutation rate of 5%, 7.5%, 10% and 15% 

 

Since CEAN, CEAHOF and CEACFH were not converging even after 5000 generations 

for a mutation rate of 2.5%; a further analysis was conducted to evaluate CEAN for a 

number of mutation rate using the estimated best GP and mutation rate of 5%, 7.5%, 

10% and 15% over 2000 generations. The results are shown in Figure 5.2 in which x-

axis represents generations and y-axis the estimated best GP. The estimated best GP 

starts to converge in about 100 generations with some fluctuations when the mutation 

rate is 10% and 15%.  

 

Based on the above experimentation each run in subsequent investigations involved 300 

generations, as it was shown that these algorithms had relatively stabilised when a 

mutation rate of 10% and above was applied. In order to see the effect of mutation 

rates, as small, medium and large, mutation rates of 2.5%, 50% and 100% were chosen 

respectively. 

 

Figure 5.3 (a) and (b) show the plot with a 2.5% mutation rate, for both the blue and red 

team. The solution associated with CEAFS (the green plot) scored the highest estimated 

best GP value with the algorithm starting to converge at around 150 generations. The 

solution associated with CEACFH achieved the second highest estimated best GP value 

and the algorithm also converged in a similar manner as the CEAFS. These two 

algorithms incorporate the FS method. The CEAN was third and the CEAHOF achieved 

the lowest estimated best GP value in comparison to the other three algorithms. For 

both CEAN and CEAHOF, their generalisation performance appeared to improve as the 

mutation rate increases. Throughout this chapter, the phrase “performance of the 

algorithm” implies the “performance of the evolved solutions generated by the 

algorithm”. 

 

When 50% mutation rate was applied, unlike in the case of 2.5% mutation rate, the 

performance of all four algorithms was not very different from each other. These 

algorithms converged at around 10 generations for both teams (Figure 5.3 (c) and (d)). 

However, the estimated best GP value received by the CEAN and CEAHOF was 
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slightly higher than two other algorithms. The performance of the CEACFH was 

relatively low.  
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Figure 5.3: Convergence plots showing the estimated best GPs of the four algorithms for the 

blue and red team using mutation rates of (a) 2.5% blue (b) 2.5% red (c) 50% blue (d) 50% red 

(e) 100% blue and (f) 100% red  

 

Similar results, as in those associated with 50% mutation rate, can also be seen for both 

teams when mutation rate of 100% was applied (Figure 5.3 (e) and (f)). The 

performance of the CEAN and CEAHOF appeared to be slightly higher than the 

CEAFS and CEACFH. The graph for CEAFS was relatively smoother but the graph for 
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CEACFH were noisy, with values fluctuating up and down. The convergence plots for 

mutation rates of 2.5%, 50% and 100% showed that the blue and red teams‟ 

performances were similar in achieving the estimated best GP. This was expected as the 

intransitive number problem was symmetrical. These similarities imply that it is 

sufficient to use data from only one team in subsequent analyses. 

 

It was observed that the performance of the four algorithms in terms of the estimated 

best GP were different when using 2.5%, 50% and 100% mutation rates. Additionally, 

Chong et al. (2008, 2009) analysed the performance of algorithms involving various 

mutation rates to evaluate whether they perform equally well despite varying mutation 

rate. The authors found that algorithms performed differently, when mutation rate was 

varied. Therefore, in order to examine the impact of varying mutation rate on estimated 

best GP for each of the four algorithms, 40 different mutation rates ranging from 2.5% 

to 100% in stepwise increment of 2.5% were used in this study.  

 

Univariate analysis of variance (ANOVA) was conducted using the International 

Business Machines‟ (IBM) Statistical package for the social sciences (SPSS) software 

version 19. The GP was measured in two different ways: the estimated average and 

estimated best GP. Effects of varying mutation rates on the estimated best GP and 

estimated average GP are explained in sections 5.4.1.1 and 5.4.1.2 respectively. 

 

5.4.1.1 Analysing Estimated Best GP 

Figure 5.4 shows the interaction plot in which each of the four algorithms‟ estimated 

best GP was investigated by varying the mutation rates from 2.5% to 100% with a 

stepwise increment of 2.5%. The x-axis represents the mutation rate and y-axis 

represents the estimated best GP. For each mutation rate the average of the estimated 

best GP for the final 60 generations is plotted. In CEAN and CEAHOF, there was a 

rapid increase in the estimated best GP between mutation rate of 2.5% and 17.5%. 

However, an increase of mutation rate above 17.5% increases the value of estimated 

best GP steadily. This indicated that even the naïve CEA may improve its performance 

in achieving higher estimated best GP values when higher mutation rate is applied.  
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Figure 5.4: Interaction plots of the estimated best GP (mean over the final 60 generations) 

versus mutation rate for each of the 4 algorithm variants 

 

From the plot, it can be seen that increasing the mutation rate generally has no impact 

on CEAFS. In CEACFH, the value of estimated best GP gradually decreased as 

mutation rate increased (i.e. slope of the line passing through the data points have a 

negative gradient). This requires further investigation to establish the reasons for this 

effect. The estimated best GP associated with CEACFH was relatively low compared to 

that in the CEAFS. Intuitively, it was expected that the HOF might combat intransitivity 

by preserving past solutions in its archive and FS might combat by ensuring that a mix 

of diverse solutions remain in the population, the combination of these two techniques 

might further improve the performance of algorithms. However, the result indicated that 

the combination seems to be negating each other. FS aims to increase diversity of the 

population and at the same time the HOF decreases diversity. Additionally, it was 

noticeable that the effect on each of the four algorithms is relatively small for increasing 
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mutation rate above 17.5 % as indicated by the respective gradients of lines (“best 

fitted” over the points) being close to zero. 

 

Two-way ANOVA was conducted to analyse estimated best GP with 40 levels of 

mutation rate and algorithm used. The overall model and all effects were statistically 

significant. The interaction effect was (F (117, 9440) = 5.775, p < 0.05, Partial Eta 

Squared = 0.067). The table associated with ANOVA is depicted in Appendix A.1. 

 

5.4.1.2 Analysing Estimated Average GP 

This section presents the analysis of the estimated average GP of the populations, 

produced by CEAN, CEAFS, CEAHOF and CEACFH when the same series of 

experiments as those for estimated best GP were conducted. An interaction plot of the 

mutations rates and the estimated average GPs are presented in Figure 5.5. In CEAN, 

the estimated average GPs increases over first few mutation rates and subsequently 

fluctuates within the band of 0.83 to 0.88. The CEAHOF was also similar to CEAN but 

the average GP value gradually decreases after 50% mutation rate. The CEAHOF 

scored the highest value for estimated average best GP when the mutation rates range 

from 7.5% to 37.5%. Unlike these two algorithms, the CEACFH starts with the highest 

estimated average GP value at 2.5%. The estimated average GP associated with 

CEAFS decreases when mutation rate of 2.5% to 17.5% was applied and remained 

approximately at the same value at mutation rates higher than 17.5%. The slope of 

CEAFS and CEACFH flatten out when mutation rate is 30% and above, indicating that 

increasing mutation rate seems to have little impact on the GP of each of these two 

algorithms. 
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Figure 5.5: Interaction plots of the estimated average GP (mean over the final 60 generations) 

versus mutation rate for each of the 4 algorithm variants 

 

Two-way ANOVA was conducted to analyse estimated average GP with 40 levels of 

mutation rate and four types of algorithm used. The overall model and all effects were 

statistically significant. The interaction effect was F ((117, 9440) = 6.216, p < 0.05, 

Partial Eta Squared = 0.072). The table associated with ANOVA is depicted in 

Appendix A.2. 

 

On the basis of the analysis involving GPs, the above results showed that the CEAHOF 

and CEAN were equally good algorithms when used with higher mutation rate to 

address the intransitive number problem. This indicated that the integration of the HOF 

could enhance the capacity of the naïve CEA. Likewise, the use of higher mutation rate 

in the naïve CEA helped to increase the performance of the algorithm in scoring higher 

GPs value. After the evaluation of estimated best GP, the following section presents the 
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evaluation of a naïve CEA and three variants in terms of objective quality, a measure of 

how close the evolved solution is to the theoretical optimum. 

 

5.4.2 Evaluation of Algorithms via the Objective Quality 

This section explores the performance of the algorithms using the objective quality. 

Chong et al. (2008, 2009) argued that performance of algorithms could be enhanced by 

applying a suitable mutation rate. This evaluation of the performance in terms of the 

objective best quality and the objective average quality (as explained in section 4.5.2) 

are described below. 

 

5.4.2.1 Analysis of the Objective Best Quality 

This section describes the use of objective best quality in evaluating the performance of 

CEAN, CEAFS, CEAHOF and CEACFH when mutation rate was varied. An 

interaction plot of the algorithms used versus different mutation rate is presented in 

Figure 5.6 to show the effect of varying mutation rate in these algorithms. Increasing 

mutation rate adversely affects the performance of CEACFH, with a negative gradient 

for a line “best fitted” over the points. The objective best quality oscillates up and down 

with increasing mutation rate but there was still an upward trend for the CEAN and 

CEAHOF. These algorithms managed to produce relatively higher values for the 

objective quality at a higher mutation rate. CEAFS received the highest value of 

objective best quality. The slope associated with the points for CEAFS has a small 

positive gradient.  

 

When evaluating the estimated best GP and objective best quality, Figure 5.4 and 

Figure 5.6, similar trends for the CEAFS and CEACFH can be seen. The performances 

of these algorithms are similar in both measurements. However, the performance of 

CEAN and CEAHOF is highly different in these two different measures. The estimated 

best GP associated with CEAN and CEAHOF rapidly increased initially (mutation rates 

of 2.5% to 10%) with some small fluctuations in the GP values at the higher mutation 

rates. However, these algorithms were not very effective to achieve higher objective 

best quality. The performance of the CEAHOF produced values that showed large 
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fluctuations. Figure 5.6 also shows that even in high mutations, the objective quality of 

the CEAN and CEAHOF remained far below than the best quality of the CEAFS.  
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Figure 5.6: Interaction plots of the objective best quality (mean over the final 60 generations) 

versus mutation rate for each of the 4 algorithm variants 

 

Two-way ANOVA was conducted to analyse objective best quality with 40 levels of 

mutation rate and four types of algorithm used. The overall model and all effects were 

statistically significant. The interaction effect was F (117, 9440) = 2.391, p < 0.05 

(Partial Eta Squared = 0.029). The table associated with ANOVA is depicted in 

Appendix A.3. 

 

5.4.2.2 Analysis of the Objective Average Quality 

This section investigates the impact on the objective average quality of the populations 

from employing the CEAN, CEAFS, CEAHOF and CEACFH as mutation rate changes. 

The interaction plots indicating the objective average quality in these algorithms are 
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depicted in Figure 5.7. In the CEAN and CEAHOF, the objective average quality varies 

within a band value of 72-79 with a slight upward trend as mutation rate increases. In 

CEAFS, a lower mutation rate gave relatively higher objective average quality which 

dropped over the initial few values of mutation rate and again slowly increased as the 

mutation rate increased. In the CEACFH, the overall trend was that objective average 

quality decreases as mutation rate increased with some small fluctuations in the 

objective average quality values. 

 

O
bj

ec
tiv

e 
av

er
ag

e 
qu

al
ity

 

 
Mutation (%) 

Figure 5.7: Interaction plots of the objective average quality (mean over the final 60 

generations) versus mutation rate for each of the 4 algorithm variants 

 

Two-way ANOVA was conducted to analyse objective average quality with 40 levels 

of mutation rate and four types of algorithm used. The overall model was statistically 

significant. The interaction effect was F (117, 9440) = 1.564, p < 0.05 (Partial Eta 

Squared = 0.019). The table associated with ANOVA is depicted in Appendix A.4 
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The above analysis showed the evaluation of the performances of each of the four 

algorithms in terms of the objective quality. Specific to this problem domain, the result 

indicated that the performance of CEAFS (when measured using the objective best 

quality) appeared to be the best out of the four algorithms tested in terms of evolving 

solutions that approach the theoretical optimum. Higher mutation rate helped to 

enhance the performance of algorithms except for CEACFH where increasing mutation 

rates had an adverse effect.  

 

When evaluating the objective best quality and objective average quality; the 

performance of CEAFS, in terms of the objective average quality, was relatively poor. 

This was expected, as the average calculation involved all individuals from the 

population and the population may include individuals that are not so optimal in order 

to maintain diversity  

 

Interestingly, each of the four algorithms performance on the basis of the estimated GP 

(performance of solutions when competing against arbitrary strategies) and objective 

quality (the theoretical optimum) was different. The CEAN and CEAHOF appeared to 

be a high achiever with higher mutation rate when the performance of the algorithms 

was measured in terms of estimated GP. However, these algorithms were not so 

effective in comparison to CEAFS when the algorithm‟s performance was measured on 

the basis of the objective quality. In addition, the above analysis suggests that an 

appropriate mutation rate can influence the performance of all four algorithms. Chong 

et al. (2009) also stressed the importance of diversity in order to enhance the 

performance of the algorithms. Therefore, experiments were conducted to investigate 

how diverse the evolved populations from these algorithms were when different values 

of mutation rate were applied. The following section presents details of this experiment. 

 

5.4.3 Analysis of Diversity of the Population  

In order to investigate diversity of the population associated with all four algorithms 

employed in this study, diversity was measured here in two ways: genotypic and 

phenotypic. This section presents the analysis of each of these diversity measures in 

sections 5.4.3.1 and 5.4.3.2 respectively. 
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5.4.3.1 Analysis of Genotypic Diversity 

This section presents the analysis of genotypic diversity when mutation rate increased 

from 2.5% to 100% in stepwise increments of 2.5%. The genotypic diversity was 

measured according to the steps discussed in Section 4.5.5 against a fixed test 

population (see Table 4.4). The interaction plot for genotypic diversity versus mutation 

rate is depicted in Figure 5.8. Each point in the plot represents a mean value of 60 runs 

of experiment in which the averages of the last 60 generations were calculated. The x 

and y axes represent mutation rate and genotypic diversity respectively. 
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Figure 5.8: Interaction plots of genotypic diversity (mean over the final 60 generations) versus 

mutation rate for each of the 4 algorithm variants 

 

For CEAN and CEAHOF, genotypic diversity increases as mutation rate increases, with 

some oscillations. However, the diversity of the evolved population from these 

algorithms did not reach the same level of the CEAFS and CEACFH. The genotypic 

diversity increases as mutation rate increased from 2.5% to approximately 20% in 



123 

 

CEAFS and CEACFH. Increasing the mutation rate beyond 20% appears to have little 

effect on increasing the genotypic diversity, as the slope, associated with the points for 

these two algorithms respectively, flatten out thus indicating that increasing mutation 

rate seems to have little impact on the genotypic diversity for each of these two 

algorithms. This may be due to the FS method that was integrated in these two 

algorithms which was an effective means of increasing diversity in the populations. 

 

Two-way ANOVA was conducted to analyse genotypic diversity with 40 levels of 

mutation rates and four types of algorithm used. The overall model and all effects were 

statistically significant. The interaction effect was (F (117, 9440) = 11.77, p < 0.05, 

Partial Eta Squared = 0.127). The table associated with ANOVA is depicted in 

Appendix A.5. 

 

It was noticed that the populations evolved by CEAFS and CEACFH were highly 

diverse in comparison to the populations evolved by CEAN and CEAHOF. It appeared 

to be fitness sharing is a good technique to maintain diversity in the population. 

However, the population associated with CEAN and CEAHOF maintain diversity well 

at higher mutation rate. When evaluating interaction plots, it seems that an increase in 

genotypic diversity increases quality of the populations (best GP and objective best) 

associated with CEAN and CEAHOF. In higher mutation rate, genotypic diversity also 

increases as well as the best GP and objective best quality for these two algorithms. 

However, for the populations associated with CEAFS and CEACFH, it seems like there 

is no impact of increasing genotypic diversity on their performance. Further analysis is 

required to evaluate the relationship between diversity and quality of the solutions and 

this will be described in section 5.4.4. 

 

5.4.3.2 Analysis of Phenotypic Diversity 

A similar analysis to that described in section 5.4.3.1 was conducted to analyse 

phenotypic diversity in all four algorithms. The steps involved in calculating phenotypic 

diversity were described in 4.5.2. As in the case of quality measures (GPs and objective 

quality) and other diversity measure (genotypic diversity), the phenotypic diversity was 

also calculated for each evolving population in every generation and the last 60 

generations were averaged from each run. Note that there were 60 repetitions for every 
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algorithm execution at a specific mutation rate. The average of these 60 runs was taken 

into consideration for evaluation. The interaction plot between the mutation rate and 

algorithms used is shown in Figure 5.9. The x and y axes represent mutation rates and 

phenotypic diversity respectively. 
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Figure 5.9: Interaction plots of phenotypic diversity (mean over the final 60 generations) versus 

mutation rate for each of the 4 algorithm variants 

 

Figure 5.9 demonstrates that an increase in mutation rate also increased phenotypic 

diversity of the evolved populations associated with all four algorithms. In each of these 

algorithms, the increase was rapid for low mutation rate. However, for higher mutation 

rate, the increase was relatively slower in the CEAFS and CEACFH. The slopes 

associated with CEAFS and CEACFH are similar. The mutation rate continued to 

increase the phenotypic diversity at a consistent rate in the CEAN and CEAHOF. FS 

introduced higher phenotypic diversity, as was shown for genotypic diversity (section 

5.4.1.1). In the CEAN and the CEAHOF, there was less diversity in small mutations but 
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diversity rapidly increased with the increase of mutation rate. The slopes associated 

with CEAN and CEAHOF are similar. 

 

Two-way ANOVA was conducted to analyse phenotypic diversity with 40 levels of 

mutation rates and four types of algorithm used. The overall model and all effects 

were statistically significant. The interaction effect was (F (117, 9440) = 13.985, p < 

0.05, Partial Eta Squared = 0.148). The table associated with ANOVA is depicted in 

Appendix A.6. 

 

A point to note is that by examining Figure 5.8 and Figure 5.9, it can be seen that the 

plots for genotypic and phenotypic diversity are quite similar. The effect of mutation 

rate on CEAFS and CEAHOF was relatively higher when measuring phenotypic 

diversity. An increase in mutation rate increases both genotypic and phenotypic 

diversity; however, increase was slight in genotypic diversity for CEAFS and 

CEACFH. In order to further analyse the relationship, correlation analysis is 

conducted. Chong et al. (2008, 2009) also analysed the relationship between the 

diversity of a population with its GP and found that diversity maintained by the 

implicit and explicit method in the population highly influenced the GP. Bearing 

that in the mind, relationship between diversity and quality of the evolved 

populations produced by all four algorithms are analysed in the following section. 

 

5.4.4 Relationship between Diversity, GPs and Objective Quality  

To examine the relationship between variables involved in this study, correlation 

analysis was conducted. These variables were diversity measures (genotypic and 

phenotypic diversity), estimated GPs (estimated average GP and estimated best GP, 

objective average quality and objective best quality) and mutation rate. The correlations 

between these variables in the CEAN, CEAFS, CEAHOF and CEACFH are presented 

in Table 5.2, Table 5.3, Table 5.4 and Table 5.5 respectively.  
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Table 5.2: Correlation between factors in CEAN algorithm 

 Genotypic Phenotypic Avg_GP Best_GP Obj_Avg Obj_Best Mutation 

Genotypic 1       

Phenotypic .854** 1      

Avg_GP .127** .151** 1     

Best_GP .292** .297** .693** 1    

Obj_Avg .057** .043* -.347** .150** 1   

Obj_Best .122** .108** -.336** .231** .948** 1  

Mutation .513** .382** .034 .191** .042* .097** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

Table 5.2 shows that genotypic and phenotypic diversity measures were positively 

correlated. The mutation was also positively correlated with genotypic diversity which 

supports the result presented in Figure 5.8. In addition, both these diversity measures 

were positively correlated with the estimated best GP and also with the objective best 

quality. Although, the correlations were not very strong this indicated that this is a link 

between obtaining solutions with good generalisation performance and those that are 

closer to the theoretical optimum <100,100>. Unexpectedly, the estimated average GP 

appeared to be negatively correlated with objective average quality and objective best 

quality. This requires further investigation to explore the reason of this effect. On the 

other hand, mutation is positively correlated with all the variables, supporting some of 

the finding from the interaction plots. 

 

The correlation between variables for the CEAFS was depicted in Table 5.3. There was 

a positive but weak correlation between genotypic and phenotypic diversity; however, 

their relationship was significant at p < 0.01. These diversity measures are positively 

correlated with the estimated best GP. This indicated that an increase in diversity 

increases this quality measure. The correlation between the estimated best GP and 

objective best quality was also significant but weakly positive (0.048). Mutation rate 

has a negative correlation with all the variables except for objective best quality, 

showing that increasing mutation rate for CEAFS did not effect as for the case of 

CEAN where in the previous table it can be seen that it has a positive correlation with 

all variables.  
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Table 5.3: Correlation between factors in CEAFS algorithm 

 Genotypic Phenotypic Avg_GP Best_GP Obj_Avg Obj_Best Mutation 

Genotypic 1       

Phenotypic .111** 1      

Avg_GP -.010 .032 1     

Best_GP .043* .059** .463** 1    

Obj_Avg -.065** -.005 .360** -.117** 1   

Obj_Best -.059** -.126** .120** .048* .712** 1  

Mutation -.139** -.584** -.034 -.123** -.060** .245** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

 

Table 5.4: Correlation between factors in CEAHOF algorithm 

 Genotypic Phenotypic Avg_GP Best_GP Obj_Avg Obj_Best Mutation 

Genotypic 1       

Phenotypic .388** 1      

Avg_GP .082 .141** 1     

Best_GP .250** .243** .710** 1    

Obj_Avg .056** .042* -.235** .211** 1   

Obj_Best .107** .075** -.279** .248** .954** 1  

Mutation .458** .166** -.110 .181** .084* .183** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

The correlation between variables for the CEAHOF was depicted in Table 5.4. The 

correlation between two diversity measures was positive and stronger than in the 

CEAFS. In addition, both these diversity measures have positive correlation with the 

estimated best GP and estimated average GP and also with the best objective quality 

and average objective quality. Unlike the case with CEAFS, there was a positive 

correlation between the estimated best GP and objective best quality. Interestingly, the 

correlation between the objective average quality and estimated average GP was 

negative; a fact not reflected for the related measures associated with “best quality” as 
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the objective best quality and estimated best GP were positively correlated. Similar to 

CEAN, both diversity measures are positively correlated with the quality measures and 

mutation is also positively correlated to all the other variables except the estimated 

average GP. 

 
Table 5.5: Correlation between factors in CEACFH algorithm 

 Genotypic Phenotypic Avg_GP Best_GP Obj_Avg Obj_Best Mutation 

Genotypic 1       

Phenotypic .045* 1      

Avg_GP -.054** .270** 1     

Best_GP -.025 .206** .632** 1    

Obj_Avg -.036 .185** .512** .097** 1   

Obj_Best -.032 .133** .309** .128** .791** 1  

Mutation -.056** -.612** -.408** -.294** -.302** -.185** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

The correlation between variables for the CEACFH is depicted in Table 5.5. The 

correlation between genotypic and phenotypic diversity was positive but weak at 0.045. 

Genotypic diversity was negatively correlated with the estimated best and average GP 

and also with the objective best quality and objective average quality. However, 

phenotypic diversity was positively correlated with the estimated average GP and best 

GP and also with the objective average quality and objective best quality. Similar to 

CEAFS, mutation rate has a negative correlation with all the variables (including 

objective best quality).  
 

The correlation analysis shows that mutation rate was positively correlated with 

genotypic and phenotypic diversity for CEAN and CEAHOF. Interestingly, the mutation 

rate was negative correlated with both diversity measures. The reason may be that 

fitness sharing already maintained diversity and when mutation changed the genome, it 

generated solution more similar to each other.  

 

As depicted in the interaction plots, the correlation between genotypic and phenotypic 

diversity was positive in all four algorithms; however, it was strong only in CEAN, 
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moderate in CEAHOF and weak in CEAFS and CEACFH. This was expected as the 

algorithms with FS were already diverse and there was a low space for further diversity, 

in terms of both genotypic and phenotypic.   

 

Another interesting relationship was in between genotypic diversity and estimated best 

GP, the correlation between them was positive except in CEACFH. The correlation was 

weak in CEAFS and moderate in the other two algorithms. The expectation was that an 

increase in diversity increases quality but the results show that there was no strong 

correlation between diversity and quality. However, diversity helps to improve quality. 

Unlike the presumption made on the basis of interaction plot in section 5.4.2.1, the 

correlation between two quality measures (estimated best GP and objective best quality) 

was positive. This indicated that the solution close to the theoretical optimum can 

receive higher score against the arbitrary strategy (fixed population set). 

 

5.4.4.1 Genotypic Diversity and Estimated Best GP 

In order to further the examination on the relationships between genotypic diversity and 

estimated best GP and also to visualize the information, Figure 5.10 depicts scatter plots 

for each of four algorithms used in this thesis. The x-axis and y-axis represent the 

genotypic diversity and estimated best GP respectively. The x value of each data point 

is the mean value of genotypic diversity over the last 60 generations from each run with 

a specific mutation rate. There were 40 variations of mutation rate in this experiment. 

Each of the four algorithms was executed for 60 times with a specific mutation rate. 

Similarly, the y value of each point is the corresponding mean value of estimated best 

GP. Therefore there are 60 x 40 = 2400 points in each algorithm. 

 

The relationship between the estimated best GP and genotypic diversity is shown in 

Figure 5.10. The scatter plots for CEAFS and CEACFH were similar in nature which 

was also shown in the interaction plots associated with each of the four algorithms and 

also from the correlation analysis. The points are concentrated in a region bounded by 

the estimated best GP value around 1.0 and the genotypic diversity in the range of 

approximately 0.3 to 0.4 which indicates that neither genotypic diversity nor the 

estimated best GP changes a lot based on mutation rate.  
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Figure 5.10: Scatter plot of estimated best GP versus genotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithms. Each point is a mean value of particular mutation 

rate and there were 40 mutation variations, there were 60 runs for each mutation rate.  

 

In contrast, the scatter plots for CEAN and CEAHOF show that despite changing 

genotypic diversity, the estimated best GP remained less changed. In both cases the 

points are mostly concentrated in a region bounded by the estimated best GP value 

ranging between 0.8 to 1.0 and the genotypic diversity in the range of approximately 

0.05 to 0.4. Scattered points at the bottom part of the associated charts also indicated 

that sometimes the population received low estimated best GP and low genotypic 

diversity which did not occur in the CEAFS and CEACFH. The plots show that there 

was no strong correlation between the estimated best GP and genotypic diversity for all 

four algorithms. 

 

5.4.4.2 Phenotypic Diversity and Estimated Best GP 

Figure 5.11 shows the scatter plot for the phenotypic diversity and estimated best GP for 

these algorithms. The x-axis and y-axis represent phenotypic diversity and estimated 

best GP respectively. Similar to Figure 5.10, each point represents an interaction 

between phenotypic diversity and estimated best GP. In the CEAFS and CEACFH, 

scatter chart shows that the data points are concentrated in the upper right-hand 

quadrant. The estimated best GP is in the range of 0.9 to 1.0 and the phenotypic 

diversity ranges approximately from 1.4 to 2.0. They appeared to be positively 

correlated. A point to notice was that both these algorithms received the highest 

phenotypic diversity. In the CEAN and CEAHOF, the scatter plot shows that most of 

the data are mostly concentrated around a region where the estimated best GP is 1.0 and 

phenotypic diversity is between 0.3 and 1.9. In the case of CEAN, there are a small 
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number of points scattered randomly and in CEAHOF, there is also a small number of 

points with low estimated best GP values concentrated at the bottom of the chart. 

 

 
Figure 5.11: Scatter plot of estimated best GP versus phenotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithms 

 

5.4.4.3 Genotypic Diversity and Objective Best Quality 

Figure 5.12 shows the relationship between genotypic diversity and the objective best 

quality in each of the four algorithms studied in this thesis. In all four algorithms, the 

data points appear to be concentrated towards the upper right-hand quadrant (i.e. high 

objective best quality and genotypic diversity). The points associated with CEAFS and 

CEAFCH are located densely in a very small region whereas the points are much more 

spread out for CEAN and CEAHOF with objective best quality ranging from 60 to 100 

and genotypic diversity from 0.05 to 0.4. There are also many points having less 

genotypic diversity and high objective best quality. 

 

 
 

Figure 5.12: Scatter plot of objective best quality versus genotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithms 
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5.4.4.4 Phenotypic Diversity and Objective Best Quality 

Figure 5.13 shows the effect of phenotypic diversity on the objective best quality. The x-

axis and y-axis represent phenotypic diversity and objective best quality respectively. 

The scatter plots here are quite similar (except for the area of the regions being less 

spread out along the phenotypic diversity axis) to those in the previous section which 

examined the relationship between genotypic diversity and objective best quality.  

 

 
Figure 5.13: Scatter plot of objective best quality versus phenotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithms 

 

5.4.4.5 Genotypic Diversity and Estimated Average GP 

Figure 5.14 presents the relationship between genotypic diversity and estimated average 

GP. The x-axis and y-axis of the chart represent genotypic diversity and estimated 

average GP respectively. For CEAN and CEAHOF, the data points appear to be 

concentrated towards the upper half quadrant (i.e. high estimated average GP) with 

genotypic diversity ranging from 0.05 to 0.4. The points associated with CEAFS and 

CEACFH are located densely in a very small region whereas the points are much more 

spread out for CEAN and CEAHOF with objective best quality ranging from 60 to 100 

and genotypic diversity from 0.05 to 0.4. In the case of CEAN, there are a small number 

of points scattered randomly and in CEAHOF, there is also a small number of points 

concentrated at the bottom left-hand corner of the chart (i.e. with low estimated average 

GP and low genotypic diversity values). In the CEAFS and CEACFH, the points are 

lined concentrated around genotypic diversity of 0.34 and estimated average GP 

ranging from 0.5 to 0.9 and from 0.4 to 0.9 respectively. 
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Figure 5.14: Scatter plot of estimated average GP versus genotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithms 

 

5.4.4.6 Genotypic Diversity and Objective Average Quality 

Figure 5.15 shows the relationship between genotypic diversity and objective average 

quality. The x-axis and y-axis represents genotypic diversity and objective average 

respectively. The scatter plots here appear to be similar (except for the area of the 

regions being more spread out along the objective average quality axis, with values 

ranging from 50 to 100 for CEAN and CEAHOF and less spread out for CEAFS and 

CEACFH with values ranging approximately from 60 to 80) to those in the previous 

section which examined the relationship between genotypic diversity and estimated 

average GP.  

 

 
Figure 5.15: Scatter plot of objective average quality versus genotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithms 
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5.5 Conclusion 

Experiments were conducted with different variants of a naïve CEA by incorporating 

different techniques: FS, HOF, and a range of mutation rates. These variants were 

tested on a test problem called an intransitive number problem which was designed to 

be difficult for CEAs due to an intransitive superiority relationship between solutions. 

The effects of varying mutation rates on the performance of the four algorithms were 

measured in terms of population diversity and solution quality. The diversity of the 

population was measured in two ways, genotypic and phenotypic, and the quality of the 

population was measured by using techniques such as the GP and objective quality. The 

data gathered from each measure was analysed in 4 ways using an interaction plots, 

ANOVA, correlation and scatter charts.  

 

This study showed that the algorithms that incorporated fitness sharing were less 

influenced by the mutation rate in term of maintaining diversity in the population. This 

may be due to the reason that the population diversity is already maintained by fitness 

sharing. It was found that a moderate amount of diversity helps to achieve high quality 

solutions. In addition, the HOF method can also improve quality, but not as reliably as 

FS. The diversity maintenance methods that were tested in this study do not combine 

well with the HOF as CEACFH received the lowest quality (in terms of the GPs and 

theoretical optimum).  
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6 Testing CEAs for Multimodal Domains 

Chapter 5 described the investigation of a basic CEA and three variants, in dealing with 

the intransitive number problem. This chapter aims to evaluate the capability of the four 

algorithms in terms of their generalisation and peak finding ability in multimodal 

domains. The optimization of multimodal problems is relatively challenging as the 

process needs to maintain parallel convergence into multiple solutions. 

 

Multimodal domains have been studied by many researchers in the context of 

evolutionary algorithms, including Deb and Goldberg (1989), to test the effectiveness of 

the GA in finding multiple local optima. These authors identified that the GA converges 

not only to a single optimum but also to multiple peaks. Multimodal problems were also 

studied by Miller and Shaw (1995), Hansen and Kern (2004) and Ronkkonen, Li, Kyrki 

and Lampinen (2008). Some researchers, including Parsopuulos and Vrahatis (2004) 

and Yu and Suganthan (2010), also have tested multimodal functions using differential 

EAs. Researchers identified that multimodality often appears in real world problems 

such as machine learning problems (Mahfoud, 1995) and the inversion of teleseismic 

body waves (Koper, Wysession, & Wiens, 1999). A pilot study, a preliminary 

component of this study, also found that RT applications can demonstrate 

multimodality, which means that there may be more than one „good‟ strategy to address 

the opponent‟s tactics. 

 

In order to evaluate the capacity of CEAs in detecting multiple optima, a test problem is 

introduced and described in section 6.1. Section 6.2 outlines the selected parameters and 

operators used in the experimentation, followed by section 6.3 which shows the results 

for each algorithm using various performance measures. 

 

6.1 Problem Domain: A Circular Multimodal Problem 

The literature (including Deb & Goldberg, 1989; Yu & Suganthan, 2010) has shown 

that existing multimodal problems were designed for single population GAs or MOEA; 

however, none was found to be suitable for evaluating competitive CEAs. Therefore, in 

this study, a new circular multimodal problem known as the n-peak problem is 
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proposed. The advantage of using n-peak is that there are n equally good strategies for 

each side in which their locations (peaks) are known. Since there is no external 

objective function to optimize, the challenge for CEAs is to identify the defined n 

peaks. The n-peak problem is symmetric, which means both sides are evaluated using 

the same method. The domain for each side is the interval [0, 1]. Equations (6.1) to 

(6.6) show the method of calculating a score in which two individuals x and y compete 

and receive a score of either 0 or L or H. The symbol n represents the number of peaks 

to be identified and also the number of intervals within the domain. H and L are two 

payoff values with H > L and L > 0. 

 

𝑖𝑥 =  (𝑥 ×  𝑛)  (6.1) 

𝑖𝑦 =  (𝑦 ×  𝑛)  (6.2) 
 

𝑣𝑥 =  0.5 −  𝑥 × 𝑛 + 𝑖𝑥   (6.3) 
 

𝑣𝑦 =  0.5 −  𝑦 × 𝑛 + 𝑖𝑦   (6.4) 
 

𝑔𝑎𝑝 = 𝑚𝑜𝑑 𝑖𝑥 − 𝑖𝑦 , .𝑛  (6.5) 
 

𝑠𝑐𝑜𝑟𝑒 𝑥,𝑦 =  

𝐻,   𝑖𝑓 𝑔𝑎𝑝%2 = 0 𝑎𝑛𝑑 𝑣𝑥 > 𝑣𝑦
𝐿,   𝑖𝑓 𝑔𝑎𝑝%2 = 1 𝑎𝑛𝑑 𝑣𝑥 < 𝑣𝑦
0,   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                                

  

 

(6.6) 
 

 

In a game between two players, one from each team, getting a payoff (winning) depends 

on two factors. The first factor is the intervals to which two players belong. Symbols ix 

and iy in Equations (6.1) and (6.2) represent the intervals in which individuals x and y 

fall. The second factor is the distance between the values and the centres of their 

intervals, which is represented by symbols vx and vy in Equations (6.3) and (6.4) for x 

and y individuals respectively. The value of gap in Equation (6.5) calculates a distance 

from y interval number to x interval number. For e.g. in a 5 peaks problem, if x is in the 

fourth interval and y is in second interval, the gap value will be 2 (i.e. mod ((4-2), 5)). 

On the basis of whether the gap value is odd or even number, as per Equations (6.6), x 

and y gets 0 or L or H score. 

 

In order to visualize the winning teams in a colour code as per Equations (6.1) to (6.6), 

Figure 6.1 illustrates the situation when H = L = 1 and n = 5. If the intersection point of 
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x and y falls in the blue space, the x team wins and vice versa. For example, the red 

team wins in the positions marked as „A‟ (x = 0.1 & y = 0.05) and „B‟ (x = 0.3 & y = 

0.95) but the blue team wins in the position marked as „C‟ (x = 0.75 & y = 0.7). The 

colour combinations of the blue and red were arranged in such a way that it follows the 

pattern of Equations (1) to (6).  

y 
(R

ed
) 

 

 
X (Blue) 

 

Figure 6.1: Winning and losing conditions in the multimodal function. Blue wins in the blue 

space and red wins in the red space. 

 

Figure 6.2 also illustrates the situation when H = L = 1 and n=5. Those individuals, 

close to the boundaries of intervals, get a payoff of 1 against approximately 60% of 

randomly selected opponents, for an average payoff of 0.6. Those nearer the middle of 

their interval only get a payoff of 1 against about 40% of opponents, an average payoff 

0.4. Although n = 5 has been used in Figure 6.2, the picture is similar for other odd 

values of n. By setting different values for H and L, the difference between peak and 

trough values can be manipulated. It is also straightforward to extend the idea to higher 

dimensions, by subdividing a hypercube into cells, and using Manhattan distance (as 

explained in Gillbert (1965)), between cells instead of using the gap value in Equation 

(6.5). 
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Figure 6.2: Mean payoffs against random opponents for solutions to the n=5 with H=L=1 

 

6.2  Experimental Setup 

Similar to the experiments in chapter 5, experiments are set up to compare the 

performance of a basic competitive CEA and variants as introduced in chapter 4 

(CEAN, CEAFS, CEAHOF and CEACFH) in handling a multimodal problem using an 

appropriate set of performance measures. The performance of the algorithms was 

evaluated by measuring the quality of the population via the GP and the diversity via 

genotypic and phenotypic diversity. Unlike domains with a single optimum, the 

outcomes for a multimodal domain cannot be evaluated only on the basis of 

convergence to an optimum. Therefore, in order to test the effectiveness of algorithms 

in finding a number of local optima, performance measures such as the circular earth 

mover‟s distance (CEMD) and peak ratio and success ratio (previously described in 

sections 4.5.3 and 4.5.4 respectively) were also used. 

 

The parameters used for the optimization process are listed in Table 6.1. To investigate 

the effects of diversity maintenance via FS and/or mutation, and of an archive in the 

form of a HOF, on the 5-peaks problem, each algorithm was executed 60 times to 

account for statistical variation, with mutation rate varying from 2.5% to 100% in 



139 

 

stepwise increments of 2.5%. In each run, results from the last 60 generations were 

averaged. The mean of these average values over 60 runs was used for the further 

analysis. For each execution, in each generation, diversity, generalisation ability, and 

peak finding ability were calculated. Generalisation ability was measured by using GPs 

in three ways: the average, best and ensemble (see section 4.5.1). Similarly to the 

intransitive number problem in chapter 5, ensemble did not provide meaningful 

information in this study despite its use by Chong et al. (2008, 2009). Ensemble 

measures displayed similar results for each of the four algorithms, making it hard to 

distinguish the algorithms‟ performance. Thus, the analysis of this measure was omitted 

from this study. Chong et al (2009) argued that diversity of the population highly 

influences performance/quality. In order to see the influence of diversity in the 

population‟s performance, diversity was measured in two ways: genotypic and 

phenotypic. Peak finding ability was measured using the three techniques: CEMD, peak 

ratio (PR) and success ratio (SR). Similar to chapter 5, the data for GPs and two 

diversity measures were examined in four ways: (1) An interaction (profile) plot of each 

measure against mutation rates, (2) ANOVA test, (3) correlation analysis for measures 

associated with each of the four algorithms and (4) scatter plots are presented to 

visualise the relationship between quality and diversity. 

 
Table 6.1: CEA parameters used 

Properties  Algorithms/Values  
Population size 50 in each population 
Gene value 0 to 1 
Crossover Single point 
Crossover rate 60% 
Mutation Gaussian 
Mutation rates 2.5% to 100% stepwise increments of 2.5% 
Selection Stochastic universal sampling 
Generations 300 
Number of runs 60 
Niche radius 0.2 (best value suggested by experimentation) 
HOF sample size 50 (equal to population size) 

 
 

Initial gene values were randomly generated values between 0 and 1. As in the 

intransitive number problem, the interaction between two individuals produces a score 

for each individual involved. Since the multimodal problem is symmetrical, two 
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opposing individuals were evaluated using the same method using Equations (6.1) to 

(6.6). For calculating fitness as shown in Equation (2.1), when the individual is 

evaluated against all the members from the competing population scores received by the 

individual are averaged. In terms of FS, an empirical study was carried out to 

investigate suitable values for niche radius. The value of 0.2 was found to be the best 

niche radius for this domain. 

 

6.3  Results and Analysis 

As mentioned in section 6.2, four algorithms, the CEAN, CEAFS, CEAHOF and 

CEACFH were employed in optimizing this multimodal problem. The four algorithms‟ 

quality in terms of their generalisation and peak finding ability are presented in this 

section. Generalisation ability is measured using GP (see section 4.5.1) and the peak 

finding ability is measured using the techniques such as CEMD, PR and SR (see 

sections 4.5.3 and 4.5.4). Additionally, diversity of the populations is also measured to 

evaluate the influence of diversity on the performance of populations. In this section, 

the relationship between diversity and quality is also presented. 

 

6.3.1 Evaluation of Algorithms via GPs 

This section presents an analysis of the two competing populations‟ quality via the 

estimated best GPs for all four algorithms. Two populations were labelled blue and red 

respectively. The GP measured the performance of evolving populations by evaluating 

against the fixed test population (see Table 4.4). Each of the four algorithms was run 60 

times and the average value for the best GP of those 60 runs in each generation is 

presented as convergence plots which are depicted in Figure 6.3. The x-axis represents 

the number of generations and the y-axis represents the estimated best GPs.  

 

Figure 6.3 (a) and (b) show the best GPs of the blue and red teams respectively when 

2.5% mutation rate was applied. The solution associated with the CEACFH scored the 

highest estimated best GP in both the blue and red team. Solutions associated with the 

CEAFS achieved the second highest estimated best GP and those associated with the 

CEAHOF and CEAN received relatively lower estimated best GP. Subsequently, when 
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a 50% mutation rate was applied, convergence plots of the blue and red teams are 

depicted in Figure 6.3 (c) and (d) respectively. Solutions associated with the CEAHOF 

have better estimated best GP values in comparison to those associated with the 2.5% 

mutation rate. The performance of all four algorithms is quite noisy, fluctuating up and 

down within a narrow range of 0.52 to 0.6. Similar results can be seen in both teams 

when a 100% mutation rate was applied (Figure 6.3 (e) and (f)). The convergence plots 

with 2.5%, 50% and 100% mutation rate show that the blue and red teams‟ 

performances were similar in achieving the estimated best GP. This was expected, as 

the proposed multimodal problem was designed to be symmetric, i.e. both sides are 

evaluated using the same function. These similarities confirm that it is sufficient to use 

data from only one team for further analyses. The same procedure as described in 

section 5.4.1 was used here.  
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Figure 6.3: Convergence plots showing the estimated best GPs of the four algorithms for the 

blue and red team in mutation rates of (a) 2.5% for blue (b) 2.5% for red (c) 50% for blue (d) 

50% for red (e) 100% for blue and (f) 100% for red teams 

 

6.3.1.1 Analysing Estimated Best GP 

Figure 6.4 is an interaction plot that depicts the estimated best GP of the populations for 

each of the four algorithms, with mutation rate varied from 2.5% to 100% in stepwise 

increments of 2.5%. For reference, assuming that both populations are reasonably 

diverse, GP should theoretically be in the range 0.4 to 0.6. Figure 6.4 shows that the 
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estimated best GP of CEAN and CEAHOF increases for mutation rate of up to about 

20%. Subsequently when mutation rate of above 20% were applied, the estimated best 

GP was level out in CEAN and slowly declined in CEAHOF. In CEAFS and CEACFH, 

an increase in mutation rate up to above 10%, increases the estimated best GP which 

slowly deteriorates with increasing the mutation rate above 20%. From the figure, it 

also appears that there is a specific mutation rate where the estimated best GP is 

optimum for CEAFS and CEACFH, supporting the argument that an appropriate 

mutation rate is required to enhance the quality of the population. For these two 

algorithms mutation rate of about 10% seems the best. However, for CEAN, mutation 

rate of 20% or above seems good and for CEAHOF mutation rate between 20% and 

40% seems good. 

 

Es
tim

at
ed

 b
es

t G
P 

 
Mutation (%) 

Figure 6.4: Interaction plots of estimated best GP (mean over the final 60 generations out of 

300 generations in 60 runs) versus mutation rate for each of the 4 algorithm variants 
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The estimated best GP was analysed by means of a two-way between-subjects ANOVA 

test with 40 levels of mutation rate and four types of algorithm used. All effects were 

statistically significant. The interaction effect was, (F (117.9440) = 59.879, p < 0.05, 

Partial Eta Squared = 0.426). The associated ANOVA table is depicted in Appendix 

B.1. 

 

6.3.1.2 Analysing Estimated Average GP 

Figure 6.5 is an interaction plot that shows the estimated average GP associated with 

each of the four algorithms with mutation rate varies from 2.5% to 100% in 2.5% 

stepwise increments. Similar to the estimated best GP, the estimated average GP for 

CEAFS and CEACFH increases up to mutation rates about 10%, then rapidly decay for 

higher mutation rate. For CEAN and CEAHOF, increase of mutation rate up to above 

15% increases the estimated average GP. Subsequently it level out up to about mutation 

rate of 20% which rapidly decay above mutation rate of 20%. The slope of each of the 

four algorithms was approximately similar for mutation rate greater than 40% and 

increasing mutation rate above 50% seems to have little impact on the GP of each of the 

algorithms. 

 

The estimated average GP was analysed by means of a two-way between-subjects 

ANOVA test with 40 levels of mutation rate and four types of algorithm used. All 

effects were statistically significant. The interaction effect was, (F (117, 9440) = 

58.028, p < 0.05, Partial Eta Squared = 0.418). The associated ANOVA table is 

depicted in Appendix B.2. 
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Figure 6.5: Interaction plots of estimated average GP (mean over the final 60 generations out of 

300 generations in 60 runs) versus mutation rate for each of the 4 algorithm variants 

 

From the analysis of estimated average GP in this section and the previous section for 

estimated best GP, the two-way between-subjects ANOVA test with 40 levels of 

mutation rate  and four types of algorithm used showed consistently that the interaction 

effect was significant for both GP measures. In both cases, the population associated 

with CEACFH consistently has higher GP value at low mutation rates in comparison 

with the other three algorithms. Interestingly, as mutation rate increases towards 100%, 

the four algorithms were spread within a band value of 0.54 to 0.57 for estimated 

average GP (towards upper limit of the theoretical range of 0.4 to 0.6) while the 

estimated average GP of the four algorithms converges towards the lower theoretical 

limit; around 0.42. 

 

The following section presents the analysis of a naïve CEA with three variants in terms 

of their ability of finding multiple peaks. 
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6.3.2 Analysis of Algorithms for Peak Detection Ability 

This section explores the performance of the four algorithms in finding multiple peaks 

via the techniques of CEMD, PR and SR. Again each algorithm was evaluated with 

mutation rate varying from 2.5% to 100% in 2.5% increments. 

 

6.3.2.1 Analysis via CEMD 

Figure 6.6 shows an interaction plot in which CEMD associated with all four algorithms 

was investigated by varying mutation rate from 2.5% to 100% with a stepwise 

increment of 2.5%. The x-axis represents the mutation rate and y-axis represents the 

CEMD. Note that lower CEMD values imply that the distribution of the evolving 

population is similar to the ideal distribution. Thus, in this analysis, the algorithm which 

scores low CEMD values is better as it shows that the evolving population can better 

detect more of the specified number of peaks. 

 

The CEMD results associated with both CEACFH and CEAFS appeared to be quite 

similar and have the lower CEMD values in comparison to CEAN and CEAHOF. The 

performance of both these algorithms was better at low levels of mutation rate. As 

mutation rate increased, the performance of CEACFH and CEAFS deteriorates. The 

CEMD plots associated with the CEAN and CEAHOF show that these algorithms 

improved their performance as the mutation rate increases but never attain performance 

equal to CEACFH or CEAFS. Eventually, the performance of all four algorithms 

became similar within a band of 2 to 3 at mutation rates closer to 100%; mutation rates 

beyond 50% appears to have little impact on CEMD (indicated by slope of the 

associated points in this region). 
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Figure 6.6: Interaction plots of circular earth mover‟s distance (mean over the final 60 

generations out of 300 generations in 60 runs) versus mutation rate for each of the 4 algorithm 

variants 

 

Consequently, the CEAFS and CEACFH, both of which incorporated fitness sharing, 

were relatively good algorithms that detect a number of peaks in this 5-peaks 

multimodal domain. The performance of the CEAN and CEAHOF may also be 

improved by using higher mutation rates.  

 

The CEMD was analysed by means of a two-way between-subject ANOVA test with 40 

levels of mutation rate and four types of algorithm used. All effects were statistically 

significant. The interaction effect was, (F (117, 9440) = 151.577, p < 0.05, Partial Eta 

Squared = 0.843). The table associated with ANOVA is depicted in Appendix B.3. 
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6.3.2.2 Analysis via PR and SR 

In order to support the result obtained for CEMD, two more tests were performed, the 

PR and SR (details in section 4.5.4). The PR was calculated on the basis of what 

percentage of optima (peaks) were identified. In this experiment, there were 60 runs 

each with 300 generations. Unlike the GPs and CEMD, the average of only the last 

generation‟s population from each run was calculated for this analysis. 
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Figure 6.7: Interaction plots of peak ratio versus mutation rate for each of the 4 algorithm 

variants. Each point is an average of how many global optima the algorithm detects in the final 

generation over 60 runs 

 

Figure 6.7 shows the PR for mutation rate ranging from 2.5% to 100% at 2.5% 

increments were used. This analysis also supported the finding made using CEMD, that 

the CEACFH appear to be slightly better in terms of detecting the specified peaks in 

comparison to the other three algorithms. The performance of the CEAFS is very 

similar to CEACFH. Both of these algorithms incorporated fitness sharing. In these two 

algorithms, as mutation rate increases (between 7.5% to approximately 40%), PR 
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values decrease and appear to flatten out between 40% to 100%, indicating that 

increasing mutation rate in this interval has little impact on the performance of these 

two algorithms. The CEAN and CEAHOF were not effective in detecting multiple 

optima with lower mutation rate. Their performance gradually improved as mutation 

rate increases (between 2.5% to approximately 40%) and then flattened out when 

mutation rate is in the range between 40% and 100%. The performance of all four 

algorithms was similar for higher mutation rate (as indicated by the slopes of their 

respective points), showing that increasing mutation rates in this interval has little 

impact on the performance of these algorithms. 
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Figure 6.8: Interaction plots of success ratio versus mutation rate for each of the 4 algorithm 

variants. Each point is an average of how many times the algorithms recognized all five global 

optima in the last generation over 60 runs 

 

The SR was also calculated according to the method described in section 4.5.4. Each 

point is an average of 60 runs in which each run it receives either 1 or 0 on the basis of 

whether it recognizes all local optima within 10-2 tolerance. Figure 6.8 is an interaction 
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plot that shows the interaction of the mutation rate and SR. Results are similar to those 

obtained with PR. CEACFH is relatively good in detecting all global optima. The 

performance of the CEAFS was similar to the CEACFH. Both these algorithms‟ 

performance decreased when mutation rate increased (between 7.5% to approximately 

40%). The performance of the CEAN and CEAHOF in detecting all global optima was 

not effective; however, their performance improved slightly when higher mutation rate 

was applied, between 2.5% to approximately 40%. Similar to PR, the performance of all 

four algorithms was similar when mutation rate was between 40% and 100%, 

fluctuating up and down within a narrow band between 0.02 and 0.3. 

 

The above analysis showed performance of each of the four algorithms‟ ability in 

detecting multiple optima. Similar to the result from the CEMD, the PR and SR also 

show that CEACFH is a better algorithm for optimizing this multimodal problem. 

Specific to this domain, the result indicated that the performance of the naïve CEA can 

be enhanced by integrating a combined approach of the HOF and FS. The PR and SR 

indicated that the problem can be best optimized if CEACFH is used with a mutation 

rate of 5%. The analysis indicated that mutation rate can influence the performance of 

all four algorithms. 

 

6.3.3 Analysis of Diversity 

In order to investigate diversity of the population associated with each of the four 

algorithms employed in this study, diversity was measured in two ways: genotypic and 

phenotypic. This section presents the analysis of each of these diversity measures in 

sections 6.3.3.1 and 6.3.3.2 respectively. 

 

6.3.3.1 Analysis of Genotypic Diversity 

This section examines genotypic diversity associated with the evolved populations for 

each of the four algorithms. Figure 6.9 is an interaction plot which shows genotypic 

diversity versus mutation rate which varied from 2.5% to 100% in 2.5% increments. 

The x-axis is mutation rates and y-axis is genotypic diversity. In the CEAFS and 

CEACFH, the diversity was high even for low mutation rate, i.e. there was no effect of 

mutation rate on genotypic diversity in these algorithms. These are the algorithms that 
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incorporated FS. This indicated that FS is an effective means of increasing diversity in 

populations. In CEAN and CEAHOF there was rapid increase in genotypic diversity 

from mutation rates of 2.5% to 20%. Both these algorithms‟ plots plateau out with some 

fluctuations for mutation rate greater than 30%. Genotypic diversity associated with all 

four algorithms was within a band value of 30 to 32 for the mutation rate above 30%. 

The slope of the algorithms was similar in CEAFS and CEACFH and also in CEAN and 

CEAHOF respectively; the slope was almost negligible above the mutation rate of 30%. 

As mentioned in section 5.4.1.1, the CEAHOF produce less diverse population than the 

CEAN. This may be due to the additional interaction with HOF members.  
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Figure 6.9: Interaction plots of genotypic diversity (mean over the final 60 generations out of 

300 generations in 60 runs) versus mutation rate for each of the 4 algorithm variants 
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The genotypic diversity was analysed by means of a two-way between-subject ANOVA 

test with 40 levels of mutation rate and four types of algorithm used. All effects were 

statistically significant. The interaction effect was, (F (117, 9440) = 56.284, p < 0.05, 

Partial Eta Squared = 0.411). The associated ANOVA table is depicted in Appendix 

B.4.  

 

As discussed in chapter 5, although mutation influences the diversity of the population 

associated with CEAN and CEAHOF, the effect was very low in the populations 

associated with CEAFS and CEACFH. As mentioned earlier, this could be due to the 

use of FS which already diversify the population. However, increasing mutation rates 

between 2.5% to 30% increases diversity in the population evolved by CEAN and 

CEAHOF and from the plots associated with peak finding (CEMD, PR and SR), it can 

be seen that their performance in peak detection also improved. 

 

6.3.3.2 Analysis of Phenotypic Diversity 

This section presents the effect of mutation rate on phenotypic diversity in all four 

algorithms. Figure 6.10 is an interaction plot which shows phenotypic diversity versus 

mutation rates which were varied from 2.5% to 100% in 2.5% increments. In the CEAN 

and CEAHOF, there was a rapid increase in phenotypic diversity from the mutation rate 

of 2.5% to 20% which plateau out when the mutation rate is greater than 20%. In the 

CEAFS and CEACFH, an increase in mutation rate, from 2.5% to 12.5%, increases 

phenotypic diversity but it decreased from mutation rate of 17.5% to 27.5% which 

plateau out when the mutation rate is greater than 27.5%.  

 

The phenotypic diversity of the four algorithms was almost the same for mutation rate 

greater than of 27.5%, with the slope of the line associated with the data points for each 

algorithm being almost zero indicating that mutation rate has no impact on phenotypic 

diversity once the mutation rate is greater than 27.5%. 
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Figure 6.10: Interaction plots of phenotypic diversity (mean over the final 60 generations 

out of 300 generations in 60 runs) versus mutation rate for each of the 4 algorithm variants 

 

The phenotypic diversity was analysed by means of two-way between-subjects ANOVA 

test with 40 levels of mutation rate and four types of algorithm used. All effects were 

statistically significant. The interaction effect was (F (117, 9440) = 213.414, p < 0.05, 

Partial Eta Squared = 0.726). The table associated with ANOVA is depicted in 

Appendix B.5.  

 

The trend for genotypic and phenotypic diversity, of the populations associated with 

CEAN and CEAHOF, is similar. In these two algorithms, genotypic diversity increases 

up to about mutation rate of 50% whereas phenotypic diversity increases up to about 

mutation rate of 20%. The trend of these two diversity measures for CEAFS and 

CEACFH is also similar. At mutation rates between 2.5% and 12.5%, the diversity 

slightly increased, it decreased at mutation rates between 12.5% and 22.5% and flattens 

out for mutation rate above 22.5%. This indicated that there is a positive relationship 

between two diversity measures. Based on the interaction plots, the two algorithms with 
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FS may have weak relationship between genotypic and phenotypic diversity. A 

correlation analysis is presented to evaluate their relationship in the following section.  

 

6.3.4 Relationship between Diversity and Quality 

Correlation analysis was conducted to evaluate the relationship between different 

variables such as GPs, CEMD, genotypic diversity and phenotypic diversity. The 

relationships between these variables in all four algorithms, CEAN, CEAFS, CEAHOF 

and CEACFH are presented in Table 6.2, Table 6.3, Table 6.4 and Table 6.5 

respectively. In CEAN, there was a strong correlation between genotypic and 

phenotypic diversity as discussed in the evaluating of the interaction plots for these two 

diversity measures. The positive correlation between each of the diversity measures 

with the estimated best GP was also strong, indicating that an increase in diversity of 

the population leads to an increase in the estimated best GP. Conversely, there was a 

strong negative correlation between CEMD and each type of diversity measures and 

also with estimated best GP. This also showed that, as expected, a population with the 

high diversity has a small CEMD and low best GP-value. Lastly, the estimated average 

GP is negatively correlated with the genotypic diversity and positively correlated with 

the phenotypic diversity.  

 

Table 6.2: Correlation between various factors in the CEAN 

 Genotypic Phenotypic Avg_GP Best_GP CEMD Mutation 

Genotypic 1      

Phenotypic .854** 1     

Avg_GP -.020 .135** 1    

Best_GP .758** .755** .309** 1   

CEMD -.899** -.904** .065** -.820** 1  

Mutation .513** .382** -.462** .475** -.621** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

In CEAFS, there was a weak positive correlation (0.111) between genotypic and 

phenotypic diversity. The correlation between genotypic diversity and estimated average 
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GP was not significant which indicated that in this particular algorithm, the change in 

the genotypic diversity does not impact the estimated average GP. The CEMD was 

negatively correlated with the estimated best GP, estimated average GP and both types 

of diversity measures. As discussed in section 6.3.2.1, this is expected as a low value in 

CEMD shows that the evolving solutions are similar to the distribution of peaks in the 

specified n-peak problem. In addition, the correlation between the CEMD and mutation 

rate is strongly positive, that is in this particular algorithm an increase in mutation rate 

increases CEMD (as shown in Figure 6.6), implying that the algorithm performance in 

detecting peaks decreases. In addition, the estimated best GP positively correlated with 

genotypic and phenotypic diversity; however, the correlations are moderate at 0.125 and 

0.336 respectively. 

 

Table 6.3: Correlation between various factors in the CEAFS 

 Genotypic Phenotypic Avg_GP Best_GP CEMD Mutation 

Genotypic 1      

Phenotypic .111** 1     

Avg_GP .036 .636** 1    

Best_GP .125** .336** .746** 1   

CEMD -.066** -.674** -.856** -.599** 1  

Mutation -.139** -.584** -.680** . 523** .888** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

As indicated in Table 6.4 and similarly to CEAN and CEAFS, there was negative 

correlation between the CEMD with each of the two diversity measures, genotypic and 

phenotypic in CEAHOF. As described in the previous section, an increase in diversity 

improves the performance of the population associated with CEAHOF in evolving 

solutions that are similar to the ideal solutions. Both diversity measures were positively 

correlated with the estimated best GP; their relationship was significant but moderate, 

indicating that improving diversity will also improve the quality in terms of GP. Similar 

to CEAN, there is a negative correlation between the CEMD and mutation rate which 

indicated that an increase in mutation rate enhance this algorithm‟s performance to 
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evolve solutions that are similar to the distribution of peaks in the specified n-peak 

problem. 

 
Table 6.4: Correlation between various factors in the CEAHOF 

 Genotypic Phenotypic Avg_GP Best_GP CEMD Mutation 

Genotypic 1      

Phenotypic .388** 1     

Avg_GP -.288** .133** 1    

Best_GP .403** .487** .362** 1   

CEMD -.657** -.542** .493** -.407** 1  

Mutation .458** .166** -.650** .172** -.727** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 

 

As shown in Table 6.5, the correlation between genotypic and phenotypic diversity was 

positive but weak in terms of CEACFH. Interestingly, the correlation between 

genotypic diversity and estimated best GP is weak. CEMD is positively and strongly 

correlated with the mutation rate which indicated that as in CEAFS, an increase in 

mutation rate increases CEMD (as shown in Figure 6.6), implying that the algorithm 

performance in detecting peaks decreases. CEACFH is very similar in terms of its 

relationship with the other measures except that for this algorithm, it has a very weak 

negative correlation between genotypic diversity and estimated average GP. 

 

Table 6.5: Correlation between various factors in the CEACFH 

 Genotypic Phenotypic Avg_GP Best_GP CEMD Mutation 

Genotypic 1      

Phenotypic .045* 1     

Avg_GP -.005 .669** 1    

Best_GP .130** .426** .749** 1   

CEMD .055** -.656** -.894** -.606** 1  

Mutation -.056** -.612** -.750** -.613** .865** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 2400 
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6.3.4.1 Relationship between Genotypic Diversity and Estimated Best GP 

In order to visualize the relationship between the genotypic diversity and estimated best 

GP, Figure 6.11 contains four scatter plots representing each algorithm. The CEAN plot 

showed that genotypic diversity and the estimated best GP has a positive correlation, 

showing the relationship that was discussed in the previous section. The number of 

points at the top part is relatively more than at the bottom, which indicates that there 

were more diverse populations with the high GPs and a small number of low diverse 

populations with low best GPs. The points are much more scattered in the CEAHOF 

which confirmed a lower correlation relationship (as indicated in Figure 6.5). There are 

still quite a high number of points associated with populations with high diversity and 

high GP but it appears that there is a concentration of points in the middle region 

(average diversity with average GP). In the case of CEAFS and CEACFH, the points 

were almost in a horizontal straight line which is why there was a very weak correlation 

between genotypic diversity and the estimated best GP. The populations associated with 

these 2 algorithms all have high genotypic diversity, probably from the incorporation of 

the fitness sharing algorithm and their GP values are concentrated within a range of 

approximately 0.5 to 0.65.  

 

 
Figure 6.11: Scatter plot of estimated best GP versus genotypic diversity for CEAN, CEAFS, 

CEAHOF and CEACFH algorithm. Each point is a mean value of particular mutation rate and 

there were 40 mutation variations, there were 60 runs for each mutation rate. 

 

6.3.4.2 Relationship between Genotypic Diversity and Estimated Average GP 

Figure 6.12 consists of four scatter plots representing the relationship between the 

genotypic diversity and estimated average GP in each of the four algorithms. The 

CEAN chart shows that the points are vertically lined up which implies that there is not 
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much change in the estimated average GP as genotypic diversity changes from values 

near 0 to 0.4. The estimated average GP appears to concentrate around a band ranging 

from approximately 0.4 to 0.45 with more points towards the higher end for genotypic 

diversity. In the CEAFS and CEACFH, the distribution of points is similar to the 

relationship between genotypic diversity and the estimated best GP except for the range 

being between 0.4 and 0.55. In the CEAHOF, the points are much more scattered, with 

concentration of points in the middle region. There also appears to be a negative 

correlation between the two measures.  

 

 
Figure 6.12: Scatter plot of estimated average GP versus genotypic diversity for the CEAN, 

CEAFS, CEAHOF and CEACFH algorithm. Each point is a mean value of particular mutation 

rate and there were 40 mutation variations, there were 60 runs for each mutation rate. 

 

6.3.4.3 Relationship between Genotypic Diversity and CEMD 

For the purpose of visualizing the relationship between the genotypic diversity and 

CEMD, Figure 6.13 is presented. In the CEAN and CEAHOF, there is a negative 

correlation; higher genotypic diversity is associated with lower CEMD. This strong 

negative correlation between these two factors is clearly visible in the scatter plot. In the 

CEAFS and CEACFH, both variables, the genotypic diversity and CEMD, are 

concentrated in a very small region, in the left-hand upper corner. Bearing in mind that 

the points were collected when the mutation rates were varied, this indicated that 

change in the mutation rate neither change genotypic diversity nor the best GP.  
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Figure 6.13: Scatter plot of CEMD versus genotypic diversity for the CEAN, CEAFS, 

CEAHOF and CEACFH algorithm. Each point is a mean value of particular mutation rate and 

there were 40 mutation variations, there were 60 runs for each mutation rate. 

 

6.3.4.4 Relationship between Estimated Best GP and CEMD 

Figure 6.14 consists of four scatter charts representing each algorithm, demonstrating 

the relationship between the estimated best GP and CEMD. In the CEAN, when the 

estimated best GP decreases, the CEMD increases, clearly showing a negative 

correlation. Concentration of points can be found in the region bounded by estimated 

best GP having values between 0.5 to 0.6 and CEMD having values between 2 to 4.  

 

 
Figure 6.14: Scatter plot of estimated best GP versus CEMD for the CEAN, CEAFS, CEAHOF 

and CEACFH algorithm. Each point is a mean value of particular mutation rate and there were 

40 mutation variations, there were 60 runs for each mutation rate. 

 

In the chart associated with CEAHOF, negative correlation is not so clearly shown, with 

concentration of points can be found in the region bounded by estimated best GP having 

values between 0.5 to 0.65 and CEMD having values between 2 to 5. The points in the 
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two other charts for the CEAFS and CEACFH are similar, showing negative 

correlations. The distribution is concentrated in the upper left-hand quadrant with 

CEMD having a narrow range around 2 and estimated best GP having values between 

0.5 and 0.63. 

 

6.3.4.5 Relationship between Estimated Average GP and CEMD 

The visualization of the relationship between the estimated average GP and CEMD are 

depicted in Figure 6.15. In the CEAN algorithm, there is a very weak correlation 

(approximately a horizontal line can be fitted to the points) between CEMD and the 

estimated average GP. In the CEAHOF, points are much more scattered and appears to 

be positively correlated. In the CEAFS and CEACFH, the points are almost vertically 

lined up, showing a strong negative correlation (low CEMD and high estimated average 

GP versus high CEMD and low estimated average GP). The CEMD values are within a 

very narrow range around 1. 

 

 
Figure 6.15: Scatter plot of estimated average GP versus CEMD for the CEAN, CEAFS, 

CEAHOF and CEACFH algorithm. Each point is a mean value of particular mutation rate and 

there were 40 mutation variations, there were 60 runs for each mutation rate. 

 

6.4 Conclusion 

A test problem proposed in this chapter demonstrated a multimodal problem for a 

competitive CEA. The n-peak problem was defined and CEAs were used to optimize 

the problem by using a naïve CEA and by integrating three variants on it. The 

challenges for CEAs in the n-peak problem were to detect the known number of peaks 

that exists in the search space. A performance measure, GP, was used to evaluate the 
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algorithms‟ generalizing ability. Other performance measures such as CEMD, PR and 

SR were used to evaluate the algorithms‟ peaks detection ability. 

 

In this 5-peak multimodal domain, the CEACFH appeared to be the best algorithm that 

produces populations with the best generalizing ability and with individuals located at 

more of the peaks than the other three algorithms. It was found that the performance of 

CEACFH was high when a moderately low level of mutation rate (near 5%) was 

applied.  

 

A strong correlation between genotypic and phenotypic diversity shows that they shared 

common properties. Additionally, the FS technique was effective in maintaining high 

diversity in populations and experiments in increasing mutation rates in CEAFS and 

CEACFH shows that they have little or no impact on diversity and quality in the 

evolved population.  

 

Importantly, the result demonstrates that even the naïve algorithm, CEAN, when 

utilized with sufficient diversity in the population, increased its ability in detecting 

multiple optima. Although the CEAN and CEAHOF‟s performance improved with 

higher mutation rates, they were unable to perform as well as the algorithms with FS 

where diversity is biased towards fitter solutions. Algorithms that incorporated fitness 

sharing perform well in terms of identifying multiple peaks in this domain.  
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7 CEAs for Red Teaming 

Chapters 5 and 6 detailed the capabilities of CEAs in addressing the intransitive number 

and multimodal problems respectively. Those chapters demonstrated how a naïve CEA 

and three variants performed in dealing with intransitivity and multimodality, which are 

also characteristics of RT. This chapter aims to evaluate these four algorithms‟ 

performance in terms of their generalising ability in RT applications. Two RT scenarios 

that were created using MANA (section 2.1.2.2.5) are evaluated. In addition, 

experiments were conducted to test the ability of each of the four algorithms in locating 

more local optima. To conduct this test, a peak detection technique (section 4.1.2.1) was 

used. Additionally, the strategies generated from each of the four algorithms were 

evaluated.  

 

This chapter begins with a description of the two MANA scenarios: anchorage 

protection and coastline protection. Section 0 presents the experimental setup. Sections 

7.3 and 7.4 show the results and strategies evolved for anchorage protection and 

coastline protection scenarios respectively. 

 

7.1 MANA Scenarios 

Two maritime security scenarios, anchorage protection (Han, et al., 2007) and coastline 

KIN protection (Chua, et al., 2008) as discussed in the pilot study of chapter 3, were 

chosen to test the performance of CEAs in RT.  

 

These scenarios are of interest as in many Southeast Asian countries maritime security 

threats such as piracy, terrorism against maritime plant installation including oil and gas 

platforms increase the demand for security initiatives  (Liss, 2007). Some countries, 

including New Zealand, Singapore, Australia and the United States, have been 

introducing new techniques to secure their maritime systems to prevent unauthorized 

activities (Ilachinski, 2000; Lauren, 2002; Yang, et al., 2006). One of the techniques 

that they use is simulation software, which is utilized to develop plans and to test them 

to ensure maritime security. Details for the two scenarios chosen for this study are 

presented in the sections 7.1.1 and 7.1.2 respectively. 
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7.1.1 Anchorage Protection 

The first scenario involves protection of a safe anchorage area for commercial vessels. 

Sea pirates, terrorism and unlawful interference with maritime transport systems have 

led countries to introduce an organized anchorage security plans to ensure the safety of 

maritime transport systems (Liss, 2007). Anchorage protection includes anchorage 

security risk assessment and the implementation of security plans to address identified 

risks. Additionally, it also covers escorting important vessels and consideration of all 

security threats (Han, et al., 2007). 

 

The anchorage protection scenario was initially investigated by Han et al. (2007). Three 

categories of boats are considered: attacker, defender and neutral boats. Figure 7.1 

depicts the initial maritime security scenario which was designed by considering a 100 

x 50 nautical mile (NM) area of operation (AO). This area was represented using a (400 

× 200) grid area for which the origin (0, 0) was at the left top corner of the scenario. 

The anchorage is designed to be a 30 x 10 NM area, which is protected by the blue 

security patrol vessels (PVs). The green boats are neutral commercial boats anchored in 

the protected area. The blue boats patrol against the threat to the anchorage and the red 

boats are attackers which try to capture or destroy the green boats by penetrating the 

security provided by the blue.  

 

Five red boats, three at the top and two at the bottom, can move in any direction with 

low range weapons and a short detection range. The objective of the red boats 

(attackers) is to penetrate the blue security system to reach the neutral commercial boats 

that are guarded by the blue PVs. The blue boats are patrolling to protect the neutral 

commercial boats under threat from the red boats. The blue boats are heavily equipped 

and carry sophisticated weapons. Each blue boat has two triangular patrol routes within 

which they perform surveillance. In the scenario the neutral commercial boats are not 

armed and do not move. 
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Figure 7.1: Anchorage protection scenario (source: Choo et al., 2009) 

 

When optimizing this scenario, the blue and red fitness was calculated differently to 

account for the different priorities of each team. Features of the scenario and the 

parameters considered for the optimization process are depicted in Table 7.1. The 

parameters were the blue and red boats‟ characteristics were evolved; resulting in new 

strategies. When a scenario was run multiple times, the output contained information of 

how many times the blue and red team won and also the blue and red attrition. For the 

blue team, MOEs are defined as depicted in Equation (7.1).  
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Table 7.1: Anchorage scenario related information 

Scenario Features 

Features Red boats Blue boats Commercial 

boats 

Number of boats 5 (3 top, 2 bottom) 3 10 

Movement route Any direction Triangular Immobile 

Movement speed 16 knots 16 knots 0 

Detection range 2 NM 6 NM Nil 

Parameters Studied 

Red Parameters Min Value Max Value 

Home positionb (x,y)a  

          -For 3 Red Craft 

          -For 2 Red Craft 

Intermediate Waypointc 

Final Waypointd (x,y) 

 

(0,0) 

(0,160) 

(0,40) 

(139,79) 

 

(399,39) 

(399,199) 

(399,159) 

(259,119) 

Blue Parameters   

Home position (x,y) 

Waypoints 1 and 2 (x,y) 

(70,40) (329,159) 

 
a(x,y): Grid locations (400 × 200) 
bHome Positions: the positions at which agents appear when the scenario begins 
cIntermediate Waypoints: the positions that define the routes to reach the destinations 
dFinal Waypoints: the positions of the final destinations (goals). 

 

The emphasis was set by assigning a weighting value in maximizing red casualties. The 

red team‟s MOEs are depicted in Equation (7.2). The aim was to maximize the green 

and blue casualties and reduce the red casualties. In MANA, the simulation termination 

condition was set to 1000 simulation steps, or all red or blue agents destroyed. Since the 

weighting values (4 in equation (7.1) and 1.5 and 3 in equation (7.2)) are arbitrary, the 

analyst will determine appropriate values according to the context. A weighting value of 

4 for the blue team (Equations (7.1)) and weighting values of 1.5 and 3 for the red team 

(Equation (7.2)), were found to be suitable in this scenario context.  
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𝑏𝑙𝑢𝑒 𝑠𝑐𝑜𝑟𝑒 = 4 𝑟𝑐 + 1 −
𝑔𝑏𝑐

4
 

(7.1) 

 

𝑟𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 = 1.5 𝑔𝑏𝑐 + 1 −
𝑟𝑐

3
 (7.2) 

where, 

rc = mean red casualties 

gbc = green and blue casualties 

 

 

7.1.2 Coastline Protection 

The second scenario concerns protection of a key installation from attack by sea. The 

KIN coastline protection scenario (Chua et al., 2008) includes protection of KINs along 

with stopping anyone who tries to enter the coastline unlawfully. The scenario 

demonstrates the threat to KIN protection from non-military boats which try to 

penetrate regular surveillance carried out by three blue boats. The fairly low speed blue 

boats patrol a specific area of the coastline with low level weapons. Conversely, the red 

boats are without weapons and try to penetrate the blue patrol to get to the land using 

different escape tactics and routes (Chua, et al., 2008). In the scenario, there are three 

KINs and three blue patrol boats. Each blue boat has its patrol route which it constantly 

follows.  

 

This scenario has been studied in the pilot study described in chapter 3. However, the 

scenario developed by Chua, et al. (2008) is slightly modified here in order to make it 

suitable for use in CEA environments. The modified blue surveillance route and KINs, 

along with the initial positions of the red boats are depicted in Figure 7.2. There are 

three red boats whose objectives are to reach the coastline while avoiding the blue 

patrol boats. This scenario was designed in a grid area (200 × 400) for which the origin 

(0, 0) was at the left top corner of the scenario. 
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Figure 7.2: Coastline scenario (Source: Chua et al., 2008) 

 

The blue and red fitness was calculated differently by prioritizing factors relevant to 

each team. The features of the scenario and the associated parameters that were 

optimized are outlined in Table 7.2. Similar to the anchorage protection scenario, these 

parameters are related to the blue and red boats‟ characteristics, which are evolved 

during the optimization process to produce new strategies. When a scenario is run 

multiple times, an output file contains information of how many times the blue and red 

team wins and also the ratio of the blue and red attrition. MOEs for the blue team were 

defined using Equation (7.3) to calculate the interaction score. The emphasis was set by 

using weighting values for stopping the red team reaching their destination. The red 

team‟s MOEs are depicted in Equation (7.4). One of its aims was to maximize the 

achievement of its goal (that is, breaking the blue boat patrolling tactics by getting at 

least one red boat to the land) and another was minimizing red casualties. As mentioned 

in the anchorage protection scenario, the weighting values are not pre-defined. Thus, the 

analyst will determine an appropriate value according to the context. Suitable weighting 

values found for this scenario were values of 0.5 and 10 for the blue team (Equations 

(7.3)) and 10 and 1.5 for the red team (Equation (7.4) ). In MANA, the simulation 

termination condition was set to 1000 simulation steps, or all red agents destroyed, or 

any red agent achieving the goal of reaching the land.  
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Table 7.2: Coastline scenario related information 

Scenario’s Features 

Type of boats Red boats Blue boats KINs 

Number 3 3 3 

Movement route Any direction Triangular Immobile 

Movement speed 25 knots 15 knots (patrol) 

25 knots (chase) 

0 

Detection range 1NM 3 NM 5 NM 

Parameters Studied 

Parameters for each red boat Min Value Max Value 

Home position (x,y) (y non-evolving) 

Final waypoint(x,y) (y non-evolving) 

(0,350) 

(0,40) 

(199,350) 

(199,40) 

Parameters for each blue boat   

Home Position(x,y) (y non-evolving) 

Waypoints 1 (x,y) (y non-evolving) 

Waypoints 2 (x,y) (y non-evolving) 

(0,140) 

(0,140) 

(0,190) 

(199,140) 

(199,140) 

(199,190) 

Common Parameters 

     -Alive Enemya 

     -Alive Friends1b 

     -En Threat 1 (High)c 

     -Next Waypointd 

     -Alternate Waypointe 

     -Movement Speedf 

 

-100 

-100 

-100 

-100 

-100 

0 

 

100 

100 

100 

100 

100 

100 

 
aAlive Enemy: Measure of attraction or repulsion to the agent with enemy allegiance 
bAlive Friends1: Measure of attraction or repulsion to the agent with same allegiance 
cEn Threat 1 (High): Measure of attraction or repulsion to the agent with enemy allegiance 

with low threat level 
dNext Waypoint: The value determines the dedication of agents in achieving the goal 
eAlternate Waypoint: The value determines how determine agents‟ are in moving in their pre-

determined waypoint 
fMovement Speed: The value determines the number of grid agents move in a given time step.  
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𝑏𝑙𝑢𝑒 𝑠𝑐𝑜𝑟𝑒 = 0.5 × 𝑏𝑤 +  0.5 
𝑟𝑐

𝑛𝑟𝑎
+ 10.0  1 − 𝑟𝑤  (7.3) 

 

𝑟𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 = 10 × 𝑟𝑤 + 1.5 
𝑛𝑟𝑎 − 𝑟𝑐

𝑛𝑟𝑎
+ 1 − 𝑏𝑤  (7.4) 

where, 

bw = proportion of blue wins 

rw = proportion of red wins 

rc = mean red casualties 

nra= number of red agent 

 

 

7.2 Experimental Setup 

Experiments were set up to compare the performance of a naïve CEA and variants 

(CEAN, CEAFS, CEAHOF and CEACFH), in optimizing the two RT scenarios using 

an appropriate set of performance measures. As in the intransitive number problem and 

the multimodal problem, one aspect of performance is generalisation performance, 

which measures how well solutions found for one side in a contest, learned via a CEA, 

generalise to compete well against arbitrary strategies for the other side. Specific to RT 

optimization, another relevant aspect of performance is to identify how many locally 

optimal solutions are found in the final population from each algorithm (i.e. how many 

local optima are located). Subsequently, for both the blue and red teams, the solutions 

(i.e. parameters associated with the scenario) generated by each of the four algorithms 

were used to instantiate the scenario and their strategies were examined by running a 

simulation associated with the scenario. 

 

To investigate the effect of diversity maintenance via fitness sharing and/or mutation, 

and the effect of using an archive in the form of a HOF, all four algorithms were tested 

with mutation rates of 10%, 20%, 40% and 60%, on each of the two scenarios chosen 

for this study. In chapters 5 and 6, 40 different mutation rates were applied; however, 

due to the large computation time required to simulate the red teaming scenarios, only 

four mutation rates were evaluated in RT optimizations. For a small and large mutation 

rate, a value of 10% and 60% were chosen respectively. Additional evaluation was 
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required to see the effect of mutation rates; thus, two intermediate mutation rates 20% 

and 40% were also evaluated.  

 

The parameters used in these experiments are listed in Table 7.3. Each of the four 

algorithms was executed 15 times to account for statistical variation. For calculating the 

GPs and diversity of the population, the last 10 generations‟ values were averaged from 

each execution of the algorithm and these average values from 15 runs were again 

averaged.  

 

Similar to the investigation in chapters 5 and 6, in every execution, in each generation, 

generalisation ability was measured by using GPs (average and best) (see section 4.5.1) 

and diversity of the population was measured on the basis of genotypic (see section 

4.5.5.1) and phenotypic (see section 4.5.5.2) diversity. The data for GPs and two 

diversity measures were examined in four ways: (1) A profile (interaction) plot of each 

measure against mutation rates, (2) ANOVA test, (3) Correlation analysis for measures 

associated with each of the four algorithms and (4) Scatter plots to visualise the 

relationship between quality and diversity. 

 

Table 7.3: CEA parameters used in the algorithms studied 

Properties  Algorithms/Values  
Population size 15 in each population 
Gene value 0 to 100 
Crossover Single point 
Crossover rate 60% 
Mutation Polynomial 
Mutation rates 10%, 20%, 40% and 60% 
Selection Stochastic universal sampling 
Generations 50 
Number of runs 15 
Niche radius 80 (best value suggested by experimentation) 
HOF sample size 15 (equal to population size) 
MANA simulation run 15 per evaluation 

 

Initial gene values were randomly generated values between 0 and 100. As mentioned 

in section 3.1.5, the scenario needs to be executed many times via MANA which increases 

the computational time. Thus, MOEs were calculated by executing 15 simulation runs in 

each evaluation of individuals. On the basis of MOEs, the score is calculated for the 
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interaction between two individuals. Since the RT problem is asymmetric the two teams 

are evaluated using different formulas. For the anchorage protection scenario, a score is 

calculated using Equations (7.1) and (7.2) for the blue and red team respectively. 

Likewise, a score for the blue and red team, in the coastline protection scenario, is 

calculated using Equations (7.3) and (7.4) respectively. Each score received by an 

individual, when it is evaluated against all the members from the competing population, 

are averaged for calculating fitness as shown in Equation (2.1). In terms of FS, an 

empirical study was carried out to investigate suitable values for niche radius. The niche 

value of 80 was found to be the best one for this domain. The experiment for each 

algorithm with a specific mutation rate was run 15 times to account for statistical 

variation.  

 

7.3 Results and Analysis for the Anchorage Protection Scenario 

In this section, the performance of the four algorithms in optimizing the anchorage 

protection scenario is presented in terms of the GP, diversity and testing for the 

existence of multiple optima in the populations produced by these algorithms. Similar to 

chapters 5 and 6, the generational plots for the two competing sides are presented 

section 7.3.1. 

 

7.3.1 Analysis of GPs in the Blue and Red Teams 

This section presents the analyses of the blue and red teams‟ estimated best GP via 

convergence plots in Figure 7.3. The estimated best GP of the populations from CEAN, 

CEAFS, CEAHOF and CEACFH were individually calculated for each of the two 

teams. In the execution of each algorithm, there were 50 generations. To account for 

statistical variation, each algorithm was executed 15 times and the average of these 15 

runs was calculated in each generation for each mutation rate used in this study. In 

Figure 7.3, the x-axis is the number of generations and the y-axis represents the 

estimated best GPs.  

 

Figure 7.3 (a) and (b) show the estimated best GPs of the blue and red teams 

respectively when 10% mutation rate was applied. In the blue team, the estimated best 
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GP value of the solutions associated with CEACFH was slightly lower than the other 

three algorithms. The estimated best GP associated with CEAFS, CEAHOF and CEAN 

were similar. In the red team, the estimated best GP associated with all four algorithms 

was similar. Due to the fact that the computation time was high only 15 simulations per 

evaluation and 50 generations were run. This causes the graphs to appear less smooth 

than for the scenarios in previous chapters and at low mutation rates, some algorithms 

appear not to have converged. In realistic scenario, decisions must be made in a 

reasonable time, with limited computational time. So an algorithm that finds the optima 

faster has an advantage. 

 

Likewise, Figure 7.3 (c) and (d) show blue and red‟s estimated best GPs at a mutation 

rate of 20%. Similar to Figure 7.3 (a) and (b), CEACFH did not perform as well as in 

comparison to the other three algorithms in the blue team whereas the performance of 

all four algorithms was similar in the red team. Figure 7.3 (e) and (f) demonstrate the 

two teams‟ estimated best GPs at a mutation rate of 40%. The performance of each of 

the four algorithms was similar to those at the mutation rate of 20% for both the teams. 

At a mutation rate of 60% (Figure 7.3 (g) and (h)) the four algorithms associated with 

the blue and red team also show the similar performance to those obtained at a mutation 

rate of 20%. 
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Figure 7.3: Convergence plots showing the estimated best GPs of the four algorithms for the 

blue (a, c, e, g) and red (b, d, f, h) team for mutation rates of: (a, b) 10%, (c, d) 20%, (e, f) 40%, 

(g, h) 60% 
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To further examine the result shown in the convergence plots, statistical test were 

conducted. The ANOVA procedures and interaction plots associated with the estimated 

best GP and the estimated average GP are presented in the following sub-sections. 

 

7.3.1.1 Analysing Estimated Best GP 

Figure 7.4 shows the interaction plots of the estimated best GP associated with CEAN, 

CEAFS, CEAHOF and CEACFH versus mutation rates for the blue team. The mutation 

rates of 10%, 20%, 40% and 60% were employed to investigate the estimated best GP 

in this study. The x-axis is estimated best GP and y-axis is mutation rates.  
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Figure 7.4: Interaction plots of estimated best GPs (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the blue 

team 

 

Figure 7.4 also shows that the estimated best GP associated with CEACFH was 

relatively lower than the three other algorithms, which confirms the result depicted in 

Figure 7.3. The performance of CEAN, CEAHOF and CEAFS was similar, and with 

values within a band width of 22.0 to 22.5. The performance of CEAN at the mutation 

rate of 40% was slightly higher than the other three algorithms in terms of estimated 
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best GP value. From the interaction plot, it is hard to evaluate whether there is an effect 

of mutation rate on estimated best GP and it appears that there is no interaction.  

 

Two-way ANOVA was conducted to analyse estimated best GP with four levels of 

mutation rate and four types of algorithm used. The table associated with ANOVA is 

depicted in Appendix C.1. ANOVA shows that the overall model is statistically 

significant, (F (15, 224) = 4.835, p < 0.05, Partial Eta Squared = 0.245). The effect of 

algorithms used was also statistically significant (F (3, 224) = 23.03, p < 0.05, Partial 

Eta Squared = 0.236). However, mutation rate F (3, 224) = 0.592, p = 0.621, Partial Eta 

Squared = 0.008 and the interaction (algorithms used × mutation rate) (F (9, 224) = 

0.184, p = 0.996, Partial Eta Squared = 0.007) were not statistically significant. 
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Figure 7.5: Interaction plots of estimated best GPs (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the red 

team 

Similar to the blue team, the interaction plot of estimated best GP associated with each 

of the four algorithms versus mutation rates for the red team is depicted in Figure 7.5. 

The performance of each of the four algorithms in terms of estimated best GP value is 

similar, with points associated with each of the algorithms falling within a band width 

of 18.8 to 19.9. As in the blue team, there does not appear to be any interaction and it 
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was hard to evaluate whether the mutation rate has any influence on estimated best GP 

for the red team. 

 

Two-way ANOVA was conducted to analyse estimated best GP with four levels of 

mutation rate and four types of algorithms used. A table associated with ANOVA 

procedure is depicted in Appendix C.2, which shows that the overall model is not 

statistically significant, (F (15, 224) = 0.973, p = 0.485, Partial Eta Squared = 0.061). 

The effect of the algorithm used was statistically significant (F (3, 224) = 3.394, p = 

0.019, Partial Eta Squared = 0.043) but the effect size is small. However, mutation rate 

(F (3, 224) = 0.518, p = 0.670, Partial Eta Squared = 0.007) and the interaction 

(algorithm used × mutation rate) (F (9, 224) = 0.317, p = 0.969, Partial Eta Squared = 

0.013) were not statistically significant.  

 

Since the RT is an asymmetric problem, the fitness for the blue and red was measured 

using different fitness functions (see Equations (7.1) and (7.2)). Thus, the interaction 

plots for the estimated best GP of the blue and red team have different scales. While 

evaluating the two teams, it was found that the performance of CEACFH was non-

competitive for the blue team whereas it was equally competitive for the red team. From 

this behaviour of CEACFH, it appears that the performance of an algorithm differs on 

the basis of the tasks employed in the scenario. 

 

7.3.1.2 Analysing Estimated Average GP 

This section demonstrates the effect of varying mutation rates on the estimated average 

GP for each of the four algorithms studied in this thesis. Figure 7.6 depicts an 

interaction plot of estimated average GPs versus mutation rate in all four algorithms for 

the blue team.  
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Figure 7.6: Interaction plots of estimated average GPs (mean over the final 10 generations out 

of 50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the 

blue team 

 

Figure 7.6 shows that, as expected, estimated average GP is negatively influenced by 

mutation rate in all four algorithms. The relatively higher estimated average GP were 

found in the population of the CEAHOF and CEAN. The performance of the solutions 

associated with CEAFS was higher than that in the CEACFH except in the mutation 

rate of 60%, in which both these algorithms received similar estimated average GP 

value. However the performance of CEAFS is slightly lower in comparison to CEAN 

and CEAHOF. 

 

As in section 7.4.1.1, estimated average GP was analysed by means of two-way 

between subjects ANOVA test with four levels of mutation rate and four types of 

algorithm used. The overall model was statistically significant, (F (15, 224) = 6.483, p < 

0.05, Partial Eta Squared = 0.303). The interactions and mutation rate was not 

statistically significant, (F (9, 224) = 0.923, p = 0.506, Partial Eta Squared = 0.036) and 

(F (3, 224) = 2.442, p = 0.065, Partial Eta Squared = 0.032) respectively. However, the 

effect of algorithm used was statistically significant, (F (3, 224) = 27.206, p < 0.05, 
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Partial Eta Squared = 0.267). The table associated with ANOVA is depicted in 

Appendix C.3. 
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Figure 7.7: Interaction plots of estimated average GPs (mean over the final 10 generations out 

of 50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the red 

team 

 

An interaction plot from the red team is depicted in Figure 7.7. The estimated average 

GP associated with all four algorithms was similar when mutation rate of 10%, 20%, 

40%, 60% was employed. The effect of the mutation rate is negative in CEAN and 

CEAHOF. However, the effect of the mutation rate is not clear in CEAFS and 

CEACFH.  

 

Two-way ANOVA was conducted to analyse estimated average GP with four levels of 

mutation rate and four types of algorithm used. The ANOVA output shows that the 

overall model was not statistically significant for the red team, (F (15, 224) = 2.124, p = 

0.10, Partial Eta Squared = 0.125). The effect of algorithm used and mutation rate was 

significant but the effect is small, (F (3, 224) = 4.552, p = 0.04, Partial Eta Squared = 

0.057) and (F (3, 224) = 3.018, p = 0.031, Partial Eta Squared = 0.039) respectively. 

The interaction effect was also not statistically significant, (F (9, 224) = 1.017, p = 
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0.427, Partial Eta Squared = 0.039). The table associated with ANOVA is depicted in 

Appendix C.4. 

 

In the anchorage protection scenario, the analysis of the GPs, on the basis of the 

ANOVA test, showed that there was no interaction effect on estimated best and 

estimated average GP in both the blue and red teams. As in the findings of chapters 5 

and 6, there is a specific mutation rate where the estimated best GP and estimated 

average GP is optimum for each algorithm, supporting the argument that an appropriate 

mutation rate is required to enhance the quality of the population. It was expected that 

fitness sharing would enhance the performance of the coevolutionary algorithm in terms 

of generalisation ability. However, the performance associated with CEAFS was not 

better than the other three algorithms. The reason may be fitness sharing was based on 

the genomes rather than the behaviours. Maintaining diversity on the basis of 

behaviours is not practicable as there are no suitable methods to distinguish strategies 

except observing the simulation. A small change in genome may make large influence 

to a team‟s strategy, which may be the reason that the performance of CEAFS was not 

effective in this domain problem.  

 

7.3.2 Local Optima Test for the Evolved RT Strategies 

The pilot study showed that multimodality was one of the characteristics of RT 

problems. Thus, after measuring the algorithms‟ performance according to their GP, an 

additional test was conducted to detect the number of local optima found. Details of 

how the local optima technique works were presented in section 4.1.2.1. 

 

In the experiment for the anchorage protection scenario, the population size was 15, 

which provided 15 evolved strategies for each team in each generation. For the local 

optima test, only the last generation evolved using a 40% mutation rate with each of the 

four algorithms was analysed. The evolved strategies from each of the four algorithms 

are depicted in Appendix E.5, Appendix E.6, Appendix E.7 and Appendix E.8 

respectively. For each of these specific strategies, as in section 4.1.2.1, 10 random 

strategies were developed within a radius of 5 (each strategy (individual) in the 

population consists of genome of length of 18 for the blue and 30 for the red team. Each 
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gene is a real number ranging from 0 to 100.). The „small value‟ and epsilon value was 

set to 0.2 and 0.025 respectively. Table 7.4 shows the number of local optima detected 

in the final generation for all four algorithms. 

 

Table 7.4: Local optima test result for the anchorage protection scenario 

Algorithm
s 

Local 
Optima 

Blue  
CEAN 5 
CEAFS 9 
CEAHOF 8 
CEACFH 4 
Red  
CEAN 6 
CEAFS 8 
CEAHOF 8 
CEACFH 5 

 

Table 7.4 shows that the performance of the CEAFS and CEAHOF appeared to be the 

best out of four algorithms tested. These two algorithms were capable of detecting more 

local optima than the other two algorithms. 

 

The above analysis showed that although all four algorithms (except CEACFH in the 

blue team) performed similarly in terms of generalising ability, CEAFS and CEAHOF 

locate more optima in comparison to CEAN and CEACFH. The peak finding 

performance of CEAFS was expected, as higher diversity encourages a more complete 

exploration of the search space, but the good performance of HOF was unexpected. An 

explanation for this result is a possible subject for future research. 

 

As in the intransitive number problem and multimodal problem, experiments were 

conducted to investigate diversity of the populations produced by the algorithms when 

10%, 20%, 40% and 60% mutation rate was applied. The following section presents 

details of this experiment. 
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7.3.3 Evaluating Diversity 

In order to analyse diversity of the populations in all four algorithms employed in this 

study, interaction plots and ANOVA analysis associated with genotypic and phenotypic 

diversity are presented in the sections below. 

 

7.3.3.1 Analysing Genotypic Diversity 

This section explores genotypic diversity associated with the four algorithms. 

Interaction plots of the blue and red teams are depicted in Figure 7.8 and Figure 7.9 

respectively. In both figures, the genotypic diversity associated with CEAFS and 

CEACFH was clearly higher than in two other algorithms. CEAN and CEAHOF, which 

do not use fitness sharing, received relatively low genotypic diversity. This indicated 

that, even in this domain, FS increased diversity in the populations. Based on the slope 

of the associated points in each of the four algorithms, an increase in mutation rate 

increases genotypic diversity of the population. 
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Figure 7.8: Interaction plots of genotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the blue 

team 
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Figure 7.9: Interaction plots of genotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the red 

team 

 

For each team, the dependent variable, genotypic diversity, was analysed using a two-

way between-subjects ANOVA with four levels of mutation rate and four types of 

algorithm used. The test for both the teams shows that the overall model and each of the 

independent variables involved, including the interaction effect, were statistically 

significant. The interaction effect for the blue and red team was (F (9, 224) = 8.455, p = 

0.00, Partial Eta Squared = 0.254) and (F (9, 224) = 15.240, p = 0.00, Partial Eta 

Squared = 0.383) respectively. The tables associated with ANOVA are shown in 

Appendix C.5 and Appendix C.6. 

 

7.3.3.2 Analysing Phenotypic Diversity 

A similar analysis as in section 7.3.3.1 was conducted for phenotypic diversity. Figure 

7.10 and Figure 7.11 show interaction plots of mutation rates versus phenotypic 

diversity for all four algorithms from the blue and red teams respectively. In the blue 

team, as mutation rate increases phenotypic diversity also increases. The phenotypic 

diversity of the blue team associated with each of four algorithms was similar at the 
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mutation rate of 40%. At the mutation rate of 60%, CEAN and CEAHOF received 

similar phenotypic diversity. In the red team, there is a smaller effect of changing 

mutation rates on phenotypic diversity as phenotypic diversity was spread within a band 

value of 1.918 to 1.962. However, CEAFS and CEACFH clearly received higher 

phenotypic diversity at the mutation rates of 40% and 60%. 
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Figure 7.10: Interaction plots of phenotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the blue 

team. 

 

For each team, the dependent variable phenotypic diversity was analysed using two-way 

between-subjects ANOVA with four levels of mutation rate and four types of algorithm 

used. For the blue team, the overall model and the effect of mutation rate were 

significant but the effect of the interaction was not statistically significant. The 

interaction effect for the blue team was (F (9, 224) = 0.977, p = 0.460, Partial Eta 

Squared = 0.038). In the red team, neither the overall model nor the effect of any of the 

independent variables was statistically significant. The interaction effect was (F (9, 224) 

= 0.302, p = 0.974, Partial Eta Squared = 0.012). The tables associated with ANOVA 

are depicted in Appendix C.7 and Appendix C.8. 
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Figure 7.11: Interaction plots of phenotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the red 

team. 

 

The two diversity measures, genotypic and phenotypic, were inconsistent as genotypic 

diversity was highly influenced by the mutation rate; however, the effect of mutation 

rate on phenotypic diversity was low. While measuring genotypic diversity, CEAFS and 

CEACFH produce relatively more diverse population than CEAN and CEAHOF; 

however, while measuring phenotypic diversity, the performance of all four algorithms 

was similar.  

 

Rather than examining diversity in isolation, its effect on GP is a useful performance 

indicator for the algorithms studied. Chong et al. (2008, 2009) analysed the relationship 

between the diversity of a population and GP. The authors found that diversity 

maintained by the implicit and explicit method in the population highly influenced GP. 

Therefore, the relationship between diversity and quality of the populations produced by 

all four algorithms are analysed in the following section to investigate whether the same 

findings hold true in this study. 
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7.3.4 Relationship between Diversity and GPs  

This section examines the relationship between diversity and GP involved in this study. 

Correlation analysis was conducted for each of the two teams and each of the four 

algorithms individually. Thus, there are eight correlation tables (2 teams x 4 algorithms 

= 8) presented. Each table includes genotypic diversity, phenotypic diversity, estimated 

average GP, estimated best GP and mutation rate.  

 

Table 7.5: Correlation between variables involved in the CEAN for the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .331** 1    

Avg_GP -.195 -.270* 1   

Best_GP .163 -.112 .874** 1  

Mutation .904** .349** -.174 .161 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 

 

 
Table 7.6: Correlation between variables involved in the CEAN for the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .179 1    

Avg_GP -.359** -.260* 1   

Best_GP -.040 -.227 .878** 1  

Mutation .897** .088 -.317* -.026 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 

 

Table 7.5 and Table 7.6 show correlations of the variables involved in the CEAN for 

the blue and red team respectively. The correlation between the genotypic diversity 

and mutation rate was positive and strong in both teams which indicated that 

increase in mutation rate is correlated with increased genotypic diversity. This 

finding supports the outcomes of the interaction plot and ANOVA output in section 
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7.3.3.1. The correlation between genotypic and phenotypic diversity was also 

positive but weak in both teams. This indicates that spread in genomes slightly 

affect the distribution of fitness of individuals in the population generated by the 

CEAN. The correlation between the estimated best GP and average GP was positive 

and strong which indicated that the increase in the overall performance of the 

population in this algorithm also improves the performance of the top individual 

(strategy) in both teams. The correlation between the estimated best GP and 

genotypic diversity was unexpectedly weak and not significant in both teams. This 

result indicated that increase in diversity is not necessarily associated with an 

increase in the performance of the naïve algorithm for this specific RT problem. The 

reason for this is not known but may be related to the small population size (15).  

 

Table 7.7: Correlation between variables involved in the CEAFS for the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .264* 1    

Avg_GP -.537** -.062 1   

Best_GP -.124 -.128 .749** 1  

Mutation . 767** .207 -.422** -.047 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 

 

 
Table 7.8: Correlation between variables involved in the CEAFS for the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .216 1    

Avg_GP -.172 -.113 1   

Best_GP -.017 .027 .910** 1  

Mutation .504** .180 -.085 -.012 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 
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The correlation analysis was also conducted to examine the relationship between the 

same variables in the CEAFS for the blue and red team, which are presented in 

Table 7.7 and Table 7.8 respectively. Similar to the CEAN, the correlation between 

the genotypic diversity and mutation rate was significant in the CEAFS for both 

teams. Their correlation was also positive and strong which indicated that an 

increase in mutation rate increases genotypic diversity. The correlation between the 

two diversity measures was positive but weak. This indicated that changes in 

genomes only slightly change the spread of individuals‟ fitness in the population 

evolved by the CEAFS. As in the CEAN, a positive and strong correlation between 

the estimated best and average GP is also shown for CEAFS, indicating that the 

increase in the performance of overall population was associated with an increase 

the performance of the top individual in the evolved population. However, the 

correlation between genotypic diversity and the estimated best GP here was weak 

and negative in both teams. This weak correlation indicates that an increase in 

diversity may not ensure an increase in the best GP. 

 

Table 7.9: Correlation between variables involved in the CEAHOF for the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .431** 1    

Avg_GP -.184 .125 1   

Best_GP -.007 .318* .945** 1  

Mutation .905** .418** -.091 .074 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 

 

  



188 

 

Table 7.10: Correlation between variables involved in the CEAHOF for the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .057 1    

Avg_GP -.341** .152 1   

Best_GP -.082 -.129 .934** 1  

Mutation .883** .077 -.266* -.028 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 

 

The correlations between variables involved in the analysis of CEAHOF are presented 

in Table 7.9 and Table 7.10 for the blue and red teams respectively. Similar to the 

CEAN and CEAFS, genotypic diversity was significantly related to the mutation rate in 

both teams and also the correlation between them was positive and strong. This implied 

that even in the CEAHOF, an increase in mutation rate is correlated with increases in 

genotypic diversity. The correlation between genotypic and phenotypic diversity was 

also positive; however, in the red team the correlation was weaker. There was a positive 

and strong correlation between the estimated best GP and estimated average GP. As in 

the previously mentioned two algorithms, the correlation between genotypic diversity 

and the estimated best GP was also weak and negative. 

 
Table 7.11: Correlation between variables involved in the CEACFH for the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .351** 1    

Avg_GP -.281* .071 1   

Best_GP -.171 .147 .885** 1  

Mutation .806** .510** -.094 .051 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 
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Table 7.12: Correlation between variables involved in the CEACFH for the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 

Genotypic 1     

Phenotypic .072 1    

Avg_GP -.073 .001 1   

Best_GP -.130 .057* .887** 1  

Mutation .452** .137 .058 .138 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

N= 60 

 

Table 7.11 and Table 7.12 show the relationship between variables involved in the 

CEACFH for the blue and red teams respectively. As in the other three algorithms, 

genotypic diversity was strongly and positive correlated with mutation rates in both 

teams. The correlation between genotypic and phenotypic diversity was positive but 

weak. The estimated best GP is negatively correlated with genotypic diversity in both 

teams.  

 

The correlation analysis in each of the four algorithm employed in this study shows that 

genotypic diversity was strongly correlated with mutation rate. However, phenotypic 

diversity and mutation rate are not strongly correlated in all four algorithms. The 

correlation between the estimated average GP and estimated best GP were also strongly 

positive. 

 

The relationship between the variables involved is visualized via scatter plots in the 

following section. 

 

7.3.4.1 Relationship between Genotypic Diversity and Estimated Best GP 

In order to visualize the relationship between the estimated best GP and genotypic 

diversity, Figure 7.12 (a) and (b) presented scatter plots for the blue and red teams‟ 

population respectively.  
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(b)  Red 

  
Estimated best GP 

 
Figure 7.12: Scatter plots of genotypic diversity versus the estimated best GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

Each plot consists of four parts representing four algorithms: the CEAN, CEAFS, 

CEAHOF and CEACFH. In both teams points associated with these two algorithms 

were less spread than in CEAN and CEACFH. 

 

7.3.4.2 Relationship between Genotypic Diversity and Estimated Average GP 

Figure 7.13 (a) and (b) shows the relationship between the estimated average GP and 

genotypic diversity for the blue and red team respectively. Although genotypic diversity 

was higher in the CEAFS and CEACFH, the average GP was lower as the points did not 

reach at the right side of plot. In case of the CEAN and CEAHOF, although the 

diversity was not very high, the average GP was higher. This result was also shown by 

the other statistical test, correlation, in section 7.3.4.  
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Figure 7.13: Scatter plots of genotypic diversity versus the estimated average GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

The above section demonstrated the relationship between variables involved in this 

study. The plots show similar results to those shown in the intransitive number problem 

but the clusters are not so tight and clear in this study. The reason for this greater 

statistical variation may be due to the noise caused by the simulation run. Due to the 

computational time, only 15 simulation runs were executed to evaluate the individuals.  

 

In order to visualize the evolved parameters as strategies, scenarios were created with 

the evolved parameters from each of the four algorithms. The following section 

provides the discussion of the evolved tactics. 

 

7.3.5 Evolved Strategies for the Anchorage Protection Scenario 

In optimizing the anchorage protection scenario, four CEA variants were used and their 

performance was evaluated. Each algorithm was tested at mutation rate of 10%, 20%, 

40% and 60%. Each algorithm at a specific mutation rate produces two optimized 
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populations, one each for the blue and red. As the population size for this study was set 

to 15, each optimized population suggests 15 sets of parameters, each of which 

represents a strategy. Due to the high number of evolved strategies, it is not possible to 

discuss them all here. Therefore, a set of parameters (corresponding to a single strategy) 

with a higher fitness value was selected for examination in more detail for each team. 

The best evolved sets of parameters at a mutation rate of 40% from each of the four 

algorithms are discussed below: 

 

 
Figure 7.14: The red and blue evolved tactics when the scenario was optimized using the 

CEAN algorithms at 40% mutation rate 

 

The best CEAN evolved strategies of the blue and red team for the anchorage protection 

scenario are depicted in Figure 7.14. The red boats used penetration tactics (direct 

attack) in which the team attacked the anchorage directly to maximize the opponent‟s 

casualties without regard to their own casualties. The tactics followed by the red team 

seemed appropriate as their purpose was to maximize the destruction of the neutral 

ships. The blue patrolling strategies were distributed into two types, outer (shown as 

blue triangles) and inner surveillance (shown as yellow triangle). Two blue boats tried 
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to stop the red boats from the outside and one blue boat tried to destroy the red that 

entered in the anchorage area.  

 
Figure 7.15: The red and blue tactics when the scenario was optimized using the CEAFS 

algorithm at 40% mutation rate 

 

The best CEAFS evolved strategies for the blue and red teams are depicted in Figure 

7.15. The red boats targeted the anchorage area from different locations to destroy the 

neutral green shipping and ran away from the place attacked to protect themselves from 

the blue boats. The blue boats focused surveillance more on the top side from where 

three red boats try to penetrate. The blue strategy may be effective as one blue boat can 

reach at the bottom part of the anchorage by the time when two red boats try to enter. 
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Figure 7.16: The red and blue emerged tactics when the scenario was optimized using the 

CEAHOF at 40% mutation rate 

 

Figure 7.16 depicts the red team and blue teams‟ strategy that were evolved when the 

scenario was optimized using the CEAHOF algorithm, again at 40% mutation rate. 

Similar to the previous two scenarios, the red team incorporated a direct attack plan 

from all four corners. Since there were only three blue boats, the red boat strategy could 

maximize the blue attrition which was one of the aims of the red boats. The blue 

surveillance focussed on outer patrol and gave priority on the top left side of the 

anchorage from where two red boats can simultaneously attack. The red boats‟ strategy 

is especially challenging as they were distributed in different starting locations. 

However, the blue strategy was also effective as they did not focus on any specific area 

but widened their surveillance area, so that which they could detect penetration action in 

every corner of the anchorage. 
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Figure 7.17: The red and blue emerged tactics when the scenario was optimized using the 

CEACFH at 40% mutation rate 

 

The evolved blue and red strategies from CEACFH at 40% mutation rate are depicted 

in Figure 7.17. Similar to the tactics associated with the three previous scenarios, in this 

scenario the red team also followed a penetration strategy in which they directly 

attacked the anchorage from three corners to maximize the blue casualties and destroy 

the green boats. The blue team also focused their surveillance on each of the three 

corners from where there were possibilities of a red boat entering the anchorage. The 

blue strategy may be effective as they discovered the location from where the red boats 

could enter in the anchorage. The red strategy on the other hand could maximize the 

blue casualties as the green boats are within firing range when they encounter the blue 

boats. 

 

From the scenario analysis, it was found that the red boats follow a direct attack strategy 

using different starting locations. The blue team focus more on outer surveillance. In 

each of the scenarios analysed above, out of three blue boats two of them focus on outer 

patrol whereas one blue boat gives priority to inner patrol.   
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7.4 Results and Analysis for the Coastline Protection Scenario 

Similar to section 7.3, CEAN, CEAFS, CEAHOF and CEACFH were employed in 

optimizing another RT scenario, the coastline protection scenario. The performance of 

these algorithms in terms of their generalisation ability and also their capabilities for 

producing multiple optimal solutions in this specific scenario are presented in this 

section. For measuring generalisation ability, GP was used and the existence of the 

multiple optimal solutions was analysed by the peak detection technique detailed in 

4.1.2.1. In order to see the influence of diversity on the performance of the algorithms, 

diversity was also measured.  

 

7.4.1 Analysis of the GPs for the Blue and Red Team 

This section presents an analysis of the estimated best GP associated with the four 

algorithms from each of the two teams, the blue and red team. Each of the four 

algorithms was executed 15 times using the parameters shown in Table 7.3 for each of 

the teams involved. The estimated best GP was measured at mutation rate of 10%, 

20%, 40% and 60%. The average of these 15 runs for each of the corresponding 50 

generations is presented using convergence plots, depicted in Figure 7.18. The x-axis 

and y-axis represent the number of generations and the estimated best GP respectively.  

 

When a mutation rate of 10% (Figure 7.18 (a) and (b)) was employed, in the blue team, 

CEAN and CEAHOF performed slightly better than CEAFS and CEACFH in terms of 

estimated best GP. In the case of the red team, the performance of CEACFH appeared 

to be less competitive whereas the performance of other three algorithms was similar. 

Despite using the same parameters in terms of simulation runs and generations, the 

performance of the algorithms were more stable in final generations in this scenario in 

comparison to the anchorage protection scenario. 
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Figure 7.18: Convergence plots showing the estimated best GPs of the four algorithms for the 

blue (a, c, e, g) and red (b, d, f, h) team for mutation rates of: (a, b) 10%, (c, d) 20%, (e, f) 40%, 

(g, h) 60% 
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When 20% mutation rate was applied (Figure 7.18 (c) and (d)), similar result as in the 

10% mutation rate was shown; however, it is noticeable that all four algorithms become 

stable by approximately the 40th generation. When a 40% mutation rate was applied 

(Figure 7.18 (e) and (f)), estimated best GP associated with all four algorithms were 

similar and fluctuating within a band width of 9 to 10.5 from approximately the 30th 

generation. When a mutation rate of 60% was applied, (Figure 7.18 (f) and (h)), all four 

algorithms were stable with some degree of fluctuations from approximately the 20th 

generation.  

 

The coastline protection scenario is an asymmetric problem as two teams were 

evaluated using different formulas (Equations (7.3) and (7.4) for the blue and red team 

respectively). Therefore, it is expected to have different outcomes for each of the two 

teams. Figure 7.18 also showed that the trend of each algorithm in the blue and red 

teams was dissimilar. In order to further analyse the performance of the four algorithms, 

the estimated best GP and the estimated average GP are presented via interaction plots 

and ANOVA output. 

 

7.4.1.1 Analysis of Estimated Best GP 

Figure 7.19 shows the interaction plots of the estimated best GP associated with four 

algorithms versus mutation rate. The estimated best GP was evaluated by employing 

the mutation rate of 10%, 20%, 40% and 60%. As in section 7.3.1.1, each point is a 

mean value of last 10 generations over 15 runs. The x-axis is the estimated best GP 

value and the y-axis is mutation rate. 

 

Figure 7.19 shows that estimated best GP associated with CEAN and CEAHOF was 

higher in comparison to CEAFS and CEACFH. In each of the four algorithms, the 

estimated best GP value was lowest at a mutation rate of 20% and highest at a mutation 

rate of 40%.  
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Figure 7.19: Interaction plots of the estimated best GP (mean over the final 10 generations out 

of 50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the 

blue team 

 

The estimated best GP was analysed by means of a two-way between-subjects ANOVA 

test with four levels for mutation rate and four levels for algorithm used. The overall 

model is statistically significant, (F (15, 224) = 3.404, p < 0.05, Partial Eta Squared = 

0.186). The effect of the algorithm used was also statistically significant (F (3, 224) = 

16.064, p = <0.05, Partial Eta Squared = 0.177). However, mutation rate (F (3, 224) = 

0.851, p = 0.467, Partial Eta Squared = 0.011) and the interaction (algorithms used × 

mutation rate) were not statistically significant with (F (9, 224) = 0.035, p = 1.00, 

Partial Eta Squared = 0.001). The tables associated with ANOVA outputs are depicted 

in Appendix D.1 
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Figure 7.20: Interaction plots of the estimated best GP (mean over the final 10 generations out 

of 50 generations in 15 runs) versus mutation rate for each of the 4 algorithm variants in the red 

team 

 

Figure 7.20 shows an interaction plot of estimated best GP versus mutation rate from 

the red team. The estimated best GP associated with CEAN, CEAHOF and CEAFS 

were similar whereas CEACH was low. As in the blue team, estimated best GP of all 

four algorithms except CEAHOF was highest at a mutation rate of 40%. In CEAHOF, 

estimated best GP was slightly higher at a mutation rate of 20%. It appears that there is 

no interaction between mutation rate and algorithm used in this analysis. 

 

ANOVA was conducted which shows that the overall model is statistically significant, 

(F (15, 224) = 9.289, p < 0.05, Partial Eta Squared = 0.383). The effect of the algorithm 

used (F (3, 224) = 38.132, p < 0.05, Partial Eta Squared = 0.338) and mutation rate (F 

(3, 224) = 6.448, p < 0.05, Partial Eta Squared = 0.079) was also statistically significant. 

However, the interaction (algorithm used × mutation rate) was not statistically 

significant with (F (9, 224) = 0.622, p = 0.778, Partial Eta Squared = 0.024). The table 

associated with ANOVA is depicted in Appendix D.2 

 

As with the anchorage protection scenario studied in the previous section, the coastline 

protection scenario is also an asymmetric problem. The fitness for the blue and red team 
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was measured differently using Equations (7.3) and (7.4) respectively. Thus, the 

interaction plots for the estimated best GP show different scales for the two teams‟ data.  

 

7.4.1.2 Analysis of Estimated Average GP 

This section presents the estimated average GP associated with all four algorithms from 

the blue and red team. An interaction plot was created to visualize the interaction of 

estimated average GP and mutation rate from the blue team which are depicted in 

Figure 7.21. The estimated average GP associated with CEAN and CEAHOF shows 

that there was a negative impact of mutation rates on estimated average GP. However, 

estimated average GP associated with CEAFS and CEACFH was not highly influenced 

by varying mutation rates. 
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Figure 7.21: Interaction plots of the estimated average GP (mean over the final 10 generations 

out of 50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the 

blue team. 

 

ANOVA was again conducted to further investigate estimated average GP and the 

effect of mutation rate, algorithm used and their interaction. The tables associated with 

ANOVA outputs are depicted in Appendix D.3. The test shows that the overall model is 
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statistically significant, (F (15, 224) = 5.489, p < 0.05, Partial Eta Squared = 0.269). The 

effect of the independent variables, algorithms used and mutation rate was also 

statistically significant. (F (3, 224) = 19.591, p < 0.05, Partial Eta Squared = 0.208) and 

(F (3, 224) = 4.074, p < 0.05, Partial Eta Squared = 0.052) respectively. However, their 

interaction (F (9, 224) = 1.261, p = 0.259, Partial Eta Squared = 0.048) was not 

statistically significant.  

 

Figure 7.22 shows that, in the red team, estimated average GP associated with CEAN 

and CEAHOF were relatively higher than in CEAFS and CEACFH. As in the blue 

team, the performance associated with CEACFH was not competitive. Additionally, it 

appears that there is no interaction between the estimated average GP and mutation 

rate.  
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Figure 7.22: Interaction plots of the estimated average GP (mean over the final 10 generations 

out of 50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the 

red team. 

 

The estimated average GP was analysed by means of ANOVA which shows that the 

overall model (F (15, 224) = 15.617, p < 0.05, Partial Eta Squared = 0.511), the effect 

of the algorithm used (F (3, 224) = 68.138, p = 0.00 (Partial Eta Squared = 0.477) and 

mutation rate (F (3, 224) = 5.093, p = 0.002, Partial Eta Squared = 0.064) were 
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statistically significant. However, the interaction (algorithm used × mutation rate) was 

not statistically significant with (F (9, 224) = 1.618, p = 0.111, Partial Eta Squared = 

0.061). The table associated with ANOVA is depicted in Appendix D.4 

 

The ANOVA analysis of estimated best GP and estimated average GP, in both the blue 

and red team, shows that there was no interaction effect on each of the GP analysed. 

The algorithm used was significant in all four models whereas mutation rate was also 

significant except in the estimated best GP of the blue team. As discussed in the 

anchorage protection scenario analysis, the expectation was that fitness sharing would 

provide better performance in terms of GP. However, the performance of CEAFS was 

not very different from the other three algorithms. The reason may be due to the fact 

that the fitness sharing was based on the genomes rather than behaviours. 

 

As in the anchorage protection scenario, a peak detection technique was used to analyse 

whether each of the four algorithms locates multiple local optima. The results are 

described in the following sections. 

 

7.4.2 Local Optima Test of the Evolved RT Strategies 

Similar to the anchorage protection scenario as in section 7.3.2, an additional test was 

conducted that examines whether each of the algorithms are capable of locating 

multiple local optima. Since the population size was 15 for this empirical study, there 

were 15 evolved strategies for each team. For the local optima test, only the last 

generation population at a 40% mutation rate for each algorithm were analysed as in the 

anchorage protection scenario analysis. The evolved strategies from CEAN, CEAFS, 

CEAHOF and CEACFH for both the blue and red team are depicted in Appendix E.1, 

Appendix E.2, Appendix E.3 and Appendix E.4 respectively. 

 

As in the anchorage protection scenario, 10 strategies were randomly generated within a 

radius of 5 (in this scenario, each gene is a real number ranging from 0 to 100). The 

small value was set to 0.2 and a value of 0.025 was used as an epsilon value. Table 7.13 

shows the number of local optima detected in the final generation in all four algorithms. 
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Table 7.13: Local optima test result for the anchorage scenario 

Algorithm
s 

Local 
Optima 

Blue  
CEAN 5 
CEAFS 8 
CEAHOF 7 
CEACFH 5 
Red  
CEAN 6 
CEAFS 9 
CEAHOF 8 
CEACFH 5 

 

Similar to the anchorage protection scenario result, Table 7.13 showed that CEAFS and 

CEAHOF were capable of locating more local optima than CEAN and CEACFH in 

both the blue and red teams. 

 

The above analysis showed that although all four algorithms (except CEACFH in the 

blue team) performed similarly in terms of generalising ability, CEAFS and CEAHOF 

locate more multiple optima in comparison to CEAN and CEACFH. The peak finding 

performance of CEAFS was expected, as higher diversity encourages a more complete 

exploration of the search space, but the good performance of HOF was again 

unexpected. An explanation for this result is a possible subject for future research. 

 

As in the anchorage protection scenario, experiments were conducted to investigate 

diversity of populations produced by the algorithms when 10%, 20%, 40% and 60% 

mutation rate was applied. The following section presents details of this experiment. 

 

7.4.3 Analysing Diversity 

This section presents the analysis of the four algorithms‟ capability in producing diverse 

population. For this, diversity of the population was measured in two ways: genotypic 

and phenotypic diversity. The mutation rates of 10%, 20, 40% and 60% were used to 

examine the diversity of the population. Interaction plots and ANOVA output are 

presented to evaluate diversity of the population associated with these four algorithms. 

The results are explained on the basis of the effect on a genotypic and phenotypic 

diversity measures. 
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When analysing genotypic diversity of the blue and red team, similar results to those 

described in chapter 5 (an intransitive problem) and chapter 6 (a multimodal problem) 

were displayed in this scenario. CEAFS and CEACFH evolved populations with higher 

diversity in comparison to the populations evolved by CEAN and CEAHOF. 

Additionally, an increase in mutation rate increases the diversity of populations 

associated with all four algorithms. However, the effect of fitness sharing and mutation 

rate was small when phenotypic diversity was measured. All four algorithms were 

equally diverse in terms of phenotypic diversity in both blue and red team but the effect 

of mutation rate is higher in the blue team. Interaction plots of genotypic diversity from 

the blue and red team are depicted in Figure 7.23 and Figure 7.24 respectively. 

Likewise, interaction plots of phenotypic diversity were depicted in Figure 7.25 and 

Figure 7.26 for the blue and red team respectively. The tables associated with ANOVA 

for genotypic diversity is depicted in Appendix D.5 and Appendix D.6 for the blue and 

red team respectively. Additionally, the ANOVA outputs for the phenotypic diversity of 

the blue and red team were depicted in Appendix D.7 and Appendix D.8 respectively. 
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Figure 7.23: Interaction plots of genotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the blue 

team. 
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Figure 7.24: Interaction plots of genotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the red 

team. 
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Figure 7.25: Interaction plots of phenotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the blue 

team. 
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Figure 7.26: Interaction plots of phenotypic diversity (mean over the final 10 generations out of 

50 generations in 15 runs) versus mutation rate, for each of the 4 algorithm variants in the red 

team. 
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As in the anchorage protection scenario, the two diversity measures were inconsistent as 

genotypic diversity was highly influenced by the mutation rate. The effect of mutation 

rate on phenotypic diversity was different for each of the two teams. In the blue team 

the effect was less whereas in the red team, phenotypic diversity was not highly 

influence by the mutation rate in CEAFS and CEACFH. 

 

7.4.4 Relationship between Diversity and GPs  

In order to examine the relationship between diversity and GP, correlation analysis was 

conducted. The relationships between variables involved in all four algorithms; CEAN, 

CEAFS, CEAHOF and CEACFH are presented individually.  

 

Table 7.14: Correlation between variables in the CEAN algorithm of the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic .505** 1    

Avg_GP -.423** -.518** 1   

Best_GP -.012 -.174 .829** 1  

Mutation .885** .484** -.355** .066 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 
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Table 7.15: Correlation between variables in the CEAN algorithm of the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic .196 1    

Avg_GP -.100 -.552** 1   

Best_GP .047 -.514** .963** 1  

Mutation .911** .139 -.153 -.009 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 

 

The variables in CEAN are shown in Table 7.14 and Table 7.15 for the blue and red 

team respectively. There was a significant positive correlation between the mutation 

rate and genotypic diversity which also support the result depicted in the interaction 

plots (Figure 7.23 and Figure 7.24) and ANOVA outcomes. Likewise, the estimated 

best GP and estimated average GP were positively correlated which was expected as an 

increase in the performance of overall population also increases the performance of the 

top individual. As expected, there was a positive correlation between genotypic and 

phenotypic diversity in both teams. Interestingly, the correlation between phenotypic 

diversity and estimated average GP was negative and strong.  

 
Table 7.16: Correlation between variables in the CEAFS algorithm of the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic .154 1    

Avg_GP .080 -.340** 1   

Best_GP .130 -.127 .871** 1  

Mutation .621** .461** -.006 .120 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 
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Table 7.17: Correlation between variables in the CEAFS algorithm of the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic .017 1    

Avg_GP -.110 -.508** 1   

Best_GP .044 -.424** .873** 1  

Mutation .602** -.344** .173 .291* 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 

 

The relationship between the variables involved in the CEAFS is shown in Table 7.16 

and Table 7.17 which represents the blue and red tem respectively. As shown in the 

CEAN, the correlation between genotypic diversity and mutation rate was strong and 

positive in both teams. Likewise, the correlation between genotypic and phenotypic 

diversity was not significant in both the blue and red team. The correlation between 

mutation rate and estimated best GP was not statistically significant in the blue teams 

but the correlation was weak in the red team which support the result depicted in the 

ANOVA outcome. 

 

Table 7.18: Correlation between variables in the CEAHOF algorithm of the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic .581** 1    

Avg_GP -.335** -.520** 1   

Best_GP .042 -.199 .761** 1  

Mutation .867** .637** -.339** .031 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 
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Table 7.19: Correlation between variables in the CEAHOF algorithm of the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic -.336** 1    

Avg_GP -.406** -.653** 1   

Best_GP -.169 -.561** .923** 1  

Mutation .858** -.223 -.219 .010 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 

 

The correlation between variables in the CEAHOF is shown in Table 7.18 and Table 

7.19 for the blue and red team respectively. As in the analysis of CEAN and CEAFS, 

the correlation between genotypic diversity and mutation rate was strongly positive in 

both teams. The phenotypic diversity was significant with the mutation rate in the blue 

team but their correlation was not significant in the red team. Interestingly, genotypic 

diversity was not significant with the estimated best GP in both the blue and red team. 

This variation between two teams also reflects the nature of the asymmetric behaviour 

of RT application.  

 

Table 7.20: Correlation between variables in the CEACFH algorithm of the blue team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic .402** 1    

Avg_GP -.140 -.472** 1   

Best_GP -.102 -.261* .866** 1  

Mutation .571** .489** -.070 .107 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 
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Table 7.21: Correlation between variables in the CEACFH algorithm of the red team 

 Genotypic Phenotypic Avg_GP Best_GP Mutation 
Genotypic 1     

Phenotypic -.052 1    

Avg_GP .231 -.514** 1   

Best_GP .413** -.314* .852** 1  

Mutation .581** -.091 .328* .339** 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
N= 60 

 

Table 7.20 and Table 7.21 depict correlation tables from the blue and red team 

respectively for CEACFH. As in the other three algorithms, the correlation between 

genotypic diversity and mutation rate was positive in both teams. Interestingly in the 

blue team, the correlation between the estimated best GP and both diversity measures 

was not significant; however, in the red team genotypic diversity was positively 

correlated but phenotypic diversity was negatively correlated with the estimated best 

GP. 

 

The above tables presented the correlation between variables involved in both the blue 

and red teams. In all four algorithms, as expected, genotypic diversity was strongly 

correlated with mutation rate. Likewise, estimated average GP and estimated best GP 

were also positively and strongly correlated. In order to visualize their relationship, the 

following section presents the scatter plots. 

 

7.4.4.1 Relationship between Genotypic Diversity and Estimated Best GP 

In order to visualize the relationships between variables involved in this study, the 

scatter plots are presented in Figure 7.27 (a) and (b), showing the relationship between 

genotypic diversity and estimated best GP in the blue and red team respectively. The 

plots show that in both teams, the CEAFS and CEACFH received higher diversity but 

low estimated best GP. Contrary, the CEAN and CEAHOF achieve low diversity but 

higher estimated best GP. 
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(a) Blue

 
(b) Red 

 Estimated best GP 
Figure 7.27: Scatter plots of genotypic diversity versus the estimated best GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

7.4.4.2 Relationship between Phenotypic Diversity and Estimated Best GP 

The relationship between the phenotypic diversity and estimated best GP for the blue 

and red teams are depicted in Figure 7.28 (a) and (b) respectively. In both teams, there 

was negative relationship between these two variables in CEAN and CEAHOF whereas 

the relationship between these two variables was unclear in CEAFS and CEACFH 

which support the result obtained from the correlation analysis. 

 



214 

 

Ph
en

ot
yp

ic
 d

iv
er

si
ty

 

(a) Blue 

(b) Red 

 Estimated best GP 
Figure 7.28: Scatter plots of phenotypic diversity versus the estimated best GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

7.4.4.3 Relationship between Genotypic Diversity and Estimated Average GP 

Similar to Figure 7.28, the relationship between the genotypic diversity and estimated 

average GP is depicted in Figure 7.29 (a) and (b) for the blue and red team respectively. 

The figures also demonstrate weak relationship between these two variables. As in the 

relationship between the estimated best GP and genotypic diversity, the CEAN and 

CEAHOF achieve higher best GP and low genotypic diversity. Contrary, the CEAFS 

and CEACFH achieve higher diversity but low estimated best GP. 

 



215 

 

G
en

ot
yp

ic
 d

iv
er

si
ty

 

(a) Blue 

 
(b) Red 

 Estimated average GP 

Figure 7.29: Scatter plots of genotypic diversity versus the estimated average GP in the CEAN, 

CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of the last 

10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each plot. 

 

7.4.4.4 Relationship between Phenotypic Diversity and Estimated Average GP 

Similar to Figure 7.28, the relationship between genotypic diversity and estimated 

average GPs for the blue and red team are depicted in Figure 7.29 (a) and (b) 

respectively. The figures also demonstrate weak relationship between these two 

variables. 
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(a) Blue

(b) Red 
 Estimated average GP 
Figure 7.30: Scatter plots of phenotypic diversity versus the estimated average GP in the 

CEAN, CEAFS, CEAHOF and CEACFH for (a) blue and (b) red team. Each point is a mean of 

the last 10 generations over 15 runs in 4 varieties of mutation rate which made 60 points in each 

plot. 

 

The above section described information about all four algorithms indicating the 

relationship between diversity and GP in this study. Scatter plots displayed that there 

were negative relationship between phenotypic diversity and GP (both the estimated 

best and estimated average). However, the relationship between genotypic diversity and 

GP (both) was not so strong.  

 

In order to visualize the outcomes as strategies obtained from the four algorithms, the 

following section provides the discussion of the evolved tactics.  

 

7.4.5 Evolved Strategies for the Coastline Protection Scenario 

Similar to the anchorage protection optimization, the coastline protection was also 

optimized using four variants of CEAs with the population size 15. Thus, there were 15 

sets of parameters in each team which evolved in each generation in each of the four 

algorithms. Each set of these parameters represents the blue or red team‟s strategy. Due 
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to the high number of strategies, it is not possible to discuss all strategies here. 

Therefore, from the last generation, a set of parameters with the highest fitness value 

from each team were put into the scenario and it was executed in the simulator to 

investigate the evolved strategy. From each of the four algorithms, the evolved set of 

parameters at a mutation rate of 40% from both teams was chosen. The evolved tactics 

for the blue and red team are presented below. 

 
 

 
Figure 7.31: The red and blue emerged tactics when the scenario was optimized using the 

CEAN at a mutation rate of 40% 

 

Figure 7.31 shows the blue and red team‟s tactics that were evolved when the scenario 

was optimizing using the CEAN. The red team uses deception tactics as one of the red 

boat sneaks through the right corner while two others grab the attention of surveillance 

patrols. This strategy may maximize their aim of reaching the coastline as one red boat 

uses a flanking strategy. In order to counteract the red team‟s strategy, the blue team 

expanded the surveillance area. This may be a wise strategy for the blue boats as they 

cannot focus on only a specific area which could increase risks of penetration. 
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Figure 7.32: The red and blue emerged tactics when the scenario was optimized using the 

CEAFS at a mutation rate of 40% 

 

Likewise, Figure 7.32 shows the evolved strategies for the blue and red teams when the 

scenario was optimized using CEAFS. The red team again followed deception tactics in 

which two boats distract the blue patrols and another red boat sneaks from the left side. 

As mentioned in the CEAN scenario analysis, flanking tactics are always a strong 

strategy for the red boats especially when they are unarmed and have to face armed 

opponents. The blue boat targeted the potential route of the red boats and did not widen 

the patrolling area. In this scenario, the blue team‟s strategy could be economic; 

however, in reality, their surveillance would not be effective to stop red boats if similar 

to the evolved route shown above were used by the red boats.  
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Figure 7.33: The red and blue emerged tactics when the scenario was optimized using the 

CEAHOF in 40% mutation rate 

 

Figure 7.33 shows the evolved tactics when the scenario was optimized using the 

CEAHOF. Similar to the previous two scenarios, the red boats follow a deception 

strategy in which two boats sneak from two opposing sides when another red boat 

distracts the patrolling blue boats. This was an effective tactics for the red boats that 

maximize their aim of reaching the coastline. The blue boats widen their surveillance 

area to stop sneaking boats. This strategy could best address the red team‟s flanking 

strategy.  
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Figure 7.34: The red and blue emerged tactics when the scenario was optimized using the 

CEACFH in 40% mutation rate 

 

Figure 7.34 shows the red boat and blue boat‟s tactics that emerged from the CEACFH. 

The red teams followed the penetration tactics by following a relatively direct route 

from different locations. This strategy may lead them to reaching the coastline if they 

could trick the patrolling boats. However, this red strategy could increase their attrition 

rate if they are caught by the blue surveillance. The blue boats extended their 

surveillance area focussing their patrol on locations from where there could be more 

attempts at penetration. This strategy could be less expensive in comparison to the 

strategy obtained from CEAHOF but if the red boats use deception tactics, this blue 

strategy may not be effective to stop their penetration attempt.  

 

The analysis of the four scenario from each of the four algorithms shows that the red 

boats use flanking strategy (avoid direct confrontation) to reach the coastline. Some red 

boats were found to be using a direct confrontation strategy which may be to distract the 

attention of the blue boats. The blue boats, except in the scenario from CEAFS, widen 

their surveillance area in order to counter the red teams‟ flanking strategy. However, the 
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blue boats in CEAFS detect the anticipated route of the red boats and patrol only in that 

area. 

 

7.5 Conclusion 

Experiments were conducted to optimise two RT scenarios, anchorage protection and 

coastline protection, using a naïve CEA and three variants in this study. The challenge 

for these algorithms was to find optimum strategies for the team that could best 

counteract the opposing strategies. Each of these four algorithms has been evaluated on 

the intransitive number problem and multimodal problem described in chapter 5 and 6 

respectively. In this chapter, the performance of the algorithms was also measured by 

their generalising ability and also their ability to locate multiple optimal solutions.  

 

When measuring the performance of the algorithms via their generalising ability, each 

of the four algorithms appeared to be similar except CEACFH in the anchorage 

protection scenario for the blue team. Additionally, the same algorithm has low 

performance in the coastline protection scenario for the red team. It was expected that 

fitness sharing would perform better than other algorithms; however, it seems that 

higher diversity is not the most important factor in evolving solution in both these RT 

problem scenarios. The reason may be that fitness sharing was based on the genomes 

and a small change in genome makes a large influence to a team‟s strategy. The 

behavioural diversity could be more supportive; however, it is not practicable as there 

are no suitable methods to distinguish strategies except manual observation via 

simulation.  

 

However, in terms of locating multiple optimal solutions, CEAFS and CEAHOF 

appeared to be the better algorithms in both scenarios studied. It was expected that 

CEAFS would locate many local optimal solution as a higher diversity encourages a 

more complete exploration of the search space. However, the good performance of 

CEAHOF was unexpected and an explanation of this result could be a possible subject 

for future research.  
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In addition, some evolved strategies were also explained in this chapter. Those 

strategies provide alternatives to analysts to address existing vulnerability in their 

security plans. 

 

In this empirical study a maximum of only 5 red boats and 3 blue boats in the coastline 

protection scenario and a maximum of only 10 green boats, 5 red boats and 3 blue boats 

in the anchorage protection scenario is considered. If ever required to optimize a 

scenario that includes large number of boats (MANA allows up to 1000 number of 

agents in each team), the developed optimization tool does not require any changes to 

optimize the scenario. Despite varying the number of boats in the scenario, the search 

space remains the same. Due to the stable search space, the optimization tool can 

optimize scenarios with a small to large number of boats. As depicted in the result in the 

pilot study in chapter 3, when the number of boats involved in the scenario varied, the 

approach produced different outcomes in terms of the strategies incorporated by the 

boats. Thus, when a large numbers of boats are involved in a scenario, the strategy for 

the invaders and defenders will be obviously different. Additionally, the number of 

boats in a scenario heavily influence the computation time for running simulations.  If 

the number of boats is symbolized by n, computational time is expected to be O(n2), 

which indicates that more boats makes the optimization process much slower. However, 

the computational time can be reduced by using one or more of the following options: 

1) Adding more workstations on the Shoal cluster 

2) Reducing the number of simulations 

3) Using a one-to-some interaction approach in the CEA rather than all-to-all 

4) Facilitating with a cloud computing. 

All the above options have some drawbacks such as, each additional computer system 

would increased computing cost. If the number of simulation is reduced, the level of 

noise increases in the fitness of individuals, that is, the same individual may receive 

high or low fitness in different runs. The one-to-some interaction approach reduces 

computational time; however, it allows individuals to compete against limited 

strategies. The performance of cloud computing is heavily dependent on the internet or 

intranet service. The cloud computing would be hard to use in the area where the 

internet speed is slow. 
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8 Conclusions and Future Directions 

This chapter summarises the key findings of this research relating to RT applications 

and other related areas. Additionally, during the course of this study, some potential 

areas for additional investigation were identified. The first section presents the 

conclusion of this thesis, followed by a discussion of limitations of the study and 

suggestions for future work. 

 

8.1 Conclusion 

The literature demonstrated that RT techniques have long been used in various 

applications including military applications. Traditional RT is expensive and time 

consuming. Computerized military RT was easy to use effectively; however, finding 

the optimal strategy that best counteracts the opponent‟s strategy was still a tough 

challenge. This thesis provides contributions to the area of optimization for RT and 

other associated CEA applications. This study aimed to: 

1. Investigate approaches incorporating EAs, specifically GAs and CEAs, for finding 

good solution sets for RT scenarios and other similar applications. 

2. Identify suitable techniques that enhance CEAs. Incorporate the identified variants 

in CEAs for investigating the issues of intransitivity and multimodality in RT 

scenarios and other similar domains. 

3. Investigate suitable measures to evaluate CEAs‟ performance in various problems, 

including RT. 

 

In order to achieve these purposes, RT applications and evolutionary algorithms were 

investigated. This thesis presented a systematic study of CEAs, with and without 

common enhancements, for finding good solution sets in the context of RT. During 

analysis, this study also evaluated the general applicability of competitive CEAs using 

two other problems, the intransitive number problem and the multimodal problem. 

Details of results for each of the aims of the thesis are now summarised. 

 

In addressing the first and second aims, this study extends knowledge of factors 

affecting the application and performance of evolutionary algorithms, in the context of 
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RT and other similar applications, by conducting a systematic study involving GA, a 

basic CEA and three variants (CEAFS, CEAHOF and CEACFH). The study involving 

GA was described in Chapter 3, showing the limitation associated with GAs supporting 

the optimization of a single population at a time. An observation from this study 

showed that by fixing the strategy of one competing team, various strategies capable of 

defeating the opposition can be evolved for the optimized team. However if in turn, the 

optimal strategy of the optimised team is then used as the fixed strategy and a GA is 

used to optimised strategies for the former team, it is possible to find some good 

strategies for the former team that is able to defeat that fixed optimal strategy. This 

indicated that even “optimal” strategies may be defeated when the opponent team is 

optimized against them. The optimization tool, described in Chapter 3, searched for a 

best strategy that could counteract one known fixed opponent‟s strategy. However, in 

combat it is never enough to consider or hypothesize just one, or even a few, 

opponents‟ strategies and practice to defeat those plans. In reality, teams in combat 

need to adjust strategies to react to different strategies that opponent may utilize at 

different points. CEAs were identified as suitable algorithms which were capable of 

optimizing two teams simultaneously for RT applications. 

 

The incorporation of CEAs for RT is still in its infancy and existing studies that used 

CEAs have yet to explore issues associated with the pathologies associated with CEAs 

and characteristics such as intransitivity and multimodality. This thesis presents a more 

complete and systematic study of these issues in the following way. This study carried 

out a systematic study of variants of CEAs (i.e. CEAN, CEAFS, CEAHOF and 

CEACFH) on four different test problems; one with intransitivity, followed by one with 

multimodality and lastly two RT scenarios. In terms of the variants of CEA, they are: 

naïve CEA (CEAN), FS integrated into the naïve CEA (CEAFS), HOF integrated with 

the naïve CEA (CEAHOF) and lastly HOF and FS were both integrated into the naïve 

CEA (CEACFH). It has been shown that individually, FS and HOF can enhance the 

performance of CEAs. However, there is an absence of literature in which these two 

well known techniques are jointly integrated in CEAs (or EAs). FS was included as an 

example of an implicit diversity maintenance technique. In addition, the performance 

of these algorithms in these test problems was investigated by increasing mutation rate, 

an explicit diversity maintenance technique. Chapter 5, 6 and 7 outlined these 



225 

 

investigations and described associated results. The general observations from the 

application of the four algorithms in these four different problems show that the 

performance of these algorithms in terms of GP and diversity measures appears to 

differ in these domains.   

 

Chapter 5 described the investigation to test whether CEA variants are capable of 

addressing intransitivity. They were evaluated on a well-known intransitive number 

problem. The performance of these algorithms was measured in terms of the GP and 

also the objective quality of the solutions was measured. The diversity of the 

populations was also evaluated on the basis of genomes and fitness of individuals. The 

experiments showed that in order to achieve higher objective quality, a naïve CEA‟s 

performance could be much improved when combined with a fitness sharing approach. 

In addition, it was found that the use of higher mutation rates in the naïve CEA could 

achieve higher GPs. The relationship between the two types of diversity indicated that 

if individuals are diverse genetically, they receive diverse fitness. Additionally, the 

relationship between quality and diversity shows that more diverse populations perform 

better in terms of achieving higher quality. 

 

In the context of RT, there may be more than one good strategy to defeat an 

opposition‟s plans. In addition, in the literature, it is stated that multimodality 

commonly appears in most domains. Therefore, a technique developed to test for 

multiple optima in an evolved population was described in Chapter 4. The result of the 

pilot study was used for this analysis. It was found that RT demonstrated more than one 

locally optimal solution. This led to the development of a scalable multimodal problem, 

n-peak, that has been described in Chapter 6. Subsequent investigation involved using 

the 5-peaks multimodal problem. The challenge for CEAs was to identify a pre-defined 

set of peaks.  Subsequently, the performance of the four CEA variants was measured 

using GP, CEMD, PR and SR. The diversity of the populations was also measured. It 

was found that, rather than using only a naïve CEA, the algorithm‟s performance could 

be improved if it was used with a combination of the HOF and the FS approaches in 

this domain. The relationship between quality and diversity shows that diverse 

populations can achieve higher quality and also find more peaks than non-diverse 

population in a multimodal domain problem. 
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The optimization tool, which was used in the intransitive number and multimodal 

problems, was subsequently used in two RT scenarios. This is described in Chapter 7. 

These two scenarios were created using the MANA simulator and have different 

environments and objectives. In the pilot study, the GA was used to optimize a RT 

scenario. However, GAs cannot evolve two teams simultaneously. CEAs, with and 

without common enhancements, were used to optimize the previously studied scenario 

as they can evolve two populations simultaneously. For the enhancement of the CEA‟s 

performance, variants such as the HOF and FS were integrated. The quality of the 

algorithms used in this study was measured using GP. This thesis has also offered an 

in-depth analysis of the strategies which emerged for the blue and red teams in the RT 

application. A multimodal test was also conducted on the evolved strategies to check 

the number of local optima that existed in the evolved populations.  

 

It was found that both teams performed better with a certain amount of diversity in both 

scenarios. The populations in the CEAFS were highly diverse as well as including high 

numbers of local optima, i.e. many good solutions rather than one the best solution 

existed. However, in terms of GP, the CEAFS‟s performance was relatively poorer than 

CEAN. The CEACFH also highly diversified the populations; however, its 

performance in achieving GP was relatively low and it failed to produce populations 

with high numbers of local optima.  

 

This empirical study demonstrated that the naïve algorithm, which suffers from various 

pathologies including cycling and forgetting, may perform well with high mutation 

rates. The results suggested that the higher mutation rate was beneficial, not only in 

diversifying the populations but also to improve the performance of the algorithms. The 

CEAN, when used with higher mutation rate, produced good quality populations that 

scored high GP. However, the multimodal test showed that the population did not 

evolve as many local optima as the other algorithms evaluated.  

 

Another finding from this thesis relates to the application of high mutation rates (a 

range of 2.5% to 100%). A higher mutation rate forces higher diversity; however, a 

higher diversity caused by extreme mutation may not give a favourable outcome in 
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terms of finding the optimal solution. Wright (1986) has stressed for the balance 

between genetic homogeneity and heterogeneity, which also support the argument that 

extreme diversity may not always be good. This study tries to examine the effect, of 

systematically increasing the mutation rate to its extreme, on the performance of CEAs. 

The results from Chapter 5 and 6 provide support that extreme mutation does not result 

in favourable outcomes as in many instances the performances of the algorithms starts 

to deteriorate when the mutation rates exceeds some specific values.  

 

In terms of addressing the third aim, this study investigated suitable measures to 

evaluate the performance of CEAs. In CEAs, the populations evolve by evaluating each 

individual against the opposing population. When a population improves its 

performance against its opposing population, this in turn forces the competing 

population to improve its performance. An „arms race‟ occurs in which the populations 

eventually get better performing individuals, which may be seen through comparison 

with an external criterion, such as a fixed test population. However, their subjective 

fitness will remain unchanged or, at least, very similar because the opposing 

populations are also evolving simultaneously. Therefore, CEAs‟ performance cannot be 

measured on the basis of their subjective fitness. In order to measure the quality of 

CEAs‟ population, a technique called „generalisation performance‟ (GP) was used. 

According to this technique, archive populations were created for each team. The 

archive population was a non-evolving fixed set of solutions which were selected on 

the basis of their performance against the randomly generated set of solutions. In every 

generation, evolving teams were evaluated against their respective archive population 

which showed the eventual progress of the evolving population. Therefore, the GP 

represents the quality of the population. 

 

The GP as a quality measurement technique was used in all domains studied in this 

thesis. Additional performance measures were also used in specific domains. In the 

intransitive number problem, the performance of the algorithms was also measured on 

the basis of their objective fitness. This thesis also introduced a probability distribution 

method, circular earth movers‟ distance (CEMD), to measure the performance of CEAs 

in their ability to detect multiple peaks. CEMD has been widely used in image 

processing applications. In addition, peak ratio (PR) and success ratio (SR) were 
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utilized to rate algorithms on the basis of the proportion of the total number of peaks 

detected.  

 

The diversity of the population was also measured in two ways: genotypic and 

phenotypic. Genotypic diversity was measured by calculating distance between the 

individuals‟ genes within a population. Likewise, phenotypic diversity was measured 

on the basis of fitness of individuals within a population. After measuring the quality 

and diversity of populations, a relationship between diversity and quality was also 

analysed in each of domain problem studied in this thesis. 

 

8.2 Limitations and Future Research 

The previous section has described the conclusions associated with this research. This 

section details the limitations of this study and suggests possible options for ongoing 

research into automated red teaming. Intuitively, coevolution involves a number of 

individuals‟ interactions to calculate their fitness done by simulating an interaction 

scenario. Additional scenario simulations are required when performance needs to be 

measured with a fixed test set. This characteristic of CEAs enormously increases the 

computational time to conduct RT optimization. Therefore, to economize the 

computational time, certain parameters in the study associated with the RT scenarios 

have been constrained as follows: 

 Population size of 15 was chosen for each team in both RT scenarios evaluated 

 Only 10 simulation runs were performed for evaluating each pair of strategies 

 Each run of each algorithm used only 50 generations 

 For statistical variation, only 15 runs of each algorithm were executed at each 

mutation rate 

 RT optimization was tested only at 4 levels of mutation rate. 

 

An increase in population size might suggest more realistic strategies. An increase of 

simulation runs would reduce the noise and an increase in the number of generations 

could provide more optimum results. Since the RT outcomes were highly fluctuating, if 

mutation rates can be varied in stepwise increments of 2.5%, a clearer picture of the 

algorithms‟ performances could be obtained. 
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Due to time constraints, this research was limited to investigations involving the 

integration of HOF and FS in CEAs. Other techniques addressing the pathologies of 

CEA can be investigated for RT applications.  

 

An additional limitation of this study would be the issue of scalability in RT scenario. 

This thesis considered only a small number of boats in both scenarios studied. If the 

number of boats is increased, it will increase the computational time. 
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Appendices 

Appendix A 

Chapter 5 Related Appendices 

Appendix A.1 

ANOVA Test for the Estimated Best GP from the Intransitive Number Problem 

(Section 5.4.1.1) 

Dependent Variable: Estimated Best GP 

Source Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 2.670a 159 .017 10.580 .000 .151 

Intercept 9161.525 1 9161.525 5772843.501 .000 .998 

Mutation .706 39 .018 11.402 .000 .045 

Algorithm .892 3 .297 187.306 .000 .056 

Mutation * Algorithm 1.072 117 .009 5.775 .000 .067 

Error 14.981 9440 .002    
Total 9179.176 9600     
Corrected Total 17.651 9599     

R Squared = .151 (Adjusted R Squared = .137) 
 

Appendix A.2 

ANOVA Test for the Estimated Average GP from the Intransitive Number 

Problem (Section 5.4.1.2) 

Dependent Variable: Estimated Average GP 

Source Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 146.028a 159 .918 227.437 .000 .793 

Intercept 5322.628 1 5322.628 1318103.775 .000 .993 

Mutation .689 39 .018 4.376 .000 .018 

Algorithm 142.402 3 47.467 11754.861 .000 .789 

Mutation * Algorithm 2.937 117 .025 6.216 .000 .072 

Error 38.120 9440 .004    
Total 5506.776 9600     
Corrected Total 184.147 9599     

R Squared = .793 (Adjusted R Squared = .790) 
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Appendix A.3 

ANOVA Test for the Objective Best Quality from the Intransitive Number 

Problem (Section 5.4.2.1) 

Dependent Variable: Objective Best Quality 

Source Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 97307.022a 159 611.994 8.357 .000 .123 

Intercept 7.494E7 1 7.494E7 1023324.162 .000 .991 

Mutation 10984.038 39 281.642 3.846 .000 .016 

Algorithm 65837.387 3 21945.796 299.690 .000 .087 

Mutation * Algorithm 20485.597 117 175.091 2.391 .000 .029 

Error 691275.869 9440 73.228    
Total 7.572E7 9600     
Corrected Total 788582.892 9599     

R Squared = .123 (Adjusted R Squared = .109) 
 

 

Appendix A.4 

ANOVA Test for the Objective Average Quality from the Intransitive Number 

Problem (Section 5.4.2.2) 

Dependent Variable: Objective Average Quality 

Source Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 154244.229a 159 970.089 11.141 .000 .158 

Intercept 5.014E7 1 5.014E7 575820.886 .000 .984 

Mutation 3363.494 39 86.243 .990 .487 .004 

Algorithm 134943.821 3 44981.274 516.597 .000 .141 

Mutation * Algorithm 15936.914 117 136.213 1.564 .000 .019 

Error 821961.630 9440 87.072    
Total 5.111E7 9600     
Corrected Total 976205.859 9599     

R Squared = .158 (Adjusted R Squared = .144) 
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Appendix A.5 

ANOVA Test for the Genotypic Diversity from the Intransitive Number Problem 

(Section 5.4.3.1) 

Dependent Variable: Genotypic Diversity 

Source Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 1.527E6 159 9601.134 209.281 .000 .779 

Intercept 1.646E7 1 1.646E7 358730.935 .000 .974 

Mutation 121062.407 39 3104.164 67.663 .000 .218 

Algorithm 1342305.200 3 447435.067 9752.961 .000 .756 

Mutation * Algorithm 63212.623 117 540.279 11.777 .000 .127 

Error 433077.386 9440 45.877    
Total 1.842E7 9600     
Corrected Total 1959657.615 9599     

R Squared = .779 (Adjusted R Squared = .775) 
 

Appendix A.6 

ANOVA Test for the Phenotypic Diversity from the Intransitive Number Problem 

(Section 5.4.3.2) 

Dependent Variable: Phenotypic Diversity 

Source Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 369.653a 159 2.325 91.086 .000 .605 

Intercept 29834.236 1 29834.236 1168879.307 .000 .992 

Mutation 174.003 39 4.462 174.802 .000 .419 

Algorithm 153.886 3 51.295 2009.711 .000 .390 

Mutation * Algorithm 41.764 117 .357 13.985 .000 .148 

Error 240.945 9440 .026    
Total 30444.834 9600     
Corrected Total 610.598 9599     

R Squared = .605 (Adjusted R Squared = .599) 
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Appendix B 

Chapter 6 Related Appendices 

Appendix B.1 

ANOVA Test for the Estimated Best GP from the Multimodal Problem (Section 

6.3.1.1) 

Dependent Variable: Estimated Best GP 

Source Type IV Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 4.108a 159 .026 79.192 .000 .572 

Intercept 2977.304 1 2977.304 9126690.180 .000 .999 

Mutation .990 39 .025 77.825 .000 .243 

Algorithm .832 3 .277 850.194 .000 .213 

Mutation * 

Algorithm 

2.285 117 .020 59.879 .000 .426 

Error 3.080 9440 .000    
Total 2984.491 9600     
Corrected Total 7.187 9599     

R Squared = .572 (Adjusted R Squared = .564) 
 

Appendix B.2 

ANOVA Test for the Estimated Average GP from the Multimodal Problem 

(Section 6.3.1.2) 

Dependent Variable: Estimated Average GP 

Source Type IV Sum of 

Squares Df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 3.825a 159 .024 159.706 .000 .729 

Intercept 1787.624 1 1787.624 1.187E7 .000 .999 

Mutation 2.452 39 .063 417.480 .000 .633 

Algorithm .350 3 .117 774.073 .000 .197 

Mutation * 

Algorithm 

1.023 117 .009 58.028 .000 .418 

Error 1.422 9440 .000    
Total 1792.870 9600     
Corrected Total 5.246 9599     

R Squared = .729 (Adjusted R Squared = .724) 
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Appendix B.3 

ANOVA Test for the CEMD from the Multimodal Problem (Section 6.3.2.1) 

Dependent Variable: Circular Earth Movers’ Distance 

Source Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 7085.988a 159 44.566 296.413 .000 

Intercept 63616.181 1 63616.181 423117.388 .000 

Mutation 2335.828 39 59.893 398.354 .000 

Algorithm 2083.759 3 694.586 4619.762 .000 

Mutation * Algorithm 2666.400 117 22.790 151.577 .000 

Error 1419.315 9440 .150   
Total 72121.483 9600    
Corrected Total 8505.302 9599    

R Squared = .833 (Adjusted R Squared = .830) 
 

 

Appendix B.4 

ANOVA Test for Genotypic Diversity from the Multimodal Problem (Section 

6.3.3.1) 

Dependent Variable: Genotypic Diversity 

Source Type IV Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 10.282a 159 .065 99.836 .000 .627 

Intercept 959.077 1 959.077 1480613.204 .000 .994 

Mutation 4.043 39 .104 160.029 .000 .398 

Algorithm 1.974 3 .658 1015.856 .000 .244 

Mutation * Algorithm 4.266 117 .036 56.284 .000 .411 

Error 6.115 9440 .001    
Total 975.474 9600     
Corrected Total 16.397 9599     

R Squared = .627 (Adjusted R Squared = .621) 
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Appendix B.5 

ANOVA Test for the Phenotypic Diversity (Section 6.3.3.2) 

Dependent Variable: Phenotypic Diversity 

Source Type IV Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 157.414a 159 .990 283.082 .000 .827 

Intercept 24620.603 1 24620.603 7039860.699 .000 .999 

Mutation 54.411 39 1.395 398.922 .000 .622 

Algorithm 15.666 3 5.222 1493.156 .000 .322 

Mutation * Algorithm 87.337 117 .746 213.441 .000 .726 

Error 33.015 9440 .003    
Total 24811.032 9600     
Corrected Total 190.429 9599     

R Squared = .827 (Adjusted R Squared = .824) 
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Appendix C 

Chapter 7 Anchorage Protection Scenario Related Appendices 

Appendix C.1 

ANOVA for the Estimated Best GPs of the Blue Team in the Anchorage Protection 

(Section 7.3.1.1) 

Dependent Variable: Estimated Best GP of the Blue Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 106.568a 15 7.105 4.835 .000 .245 

Intercept 114783.825 1 114783.825 78115.208 .000 .997 

Mutation 2.611 3 .870 .592 .621 .008 

Algorithm 101.520 3 33.840 23.030 .000 .236 

Mutation * 

Algorithm 

2.436 9 .271 .184 .996 .007 

Error 329.149 224 1.469    
Total 115219.542 240     
Corrected Total 435.717 239     

R Squared = .245 (Adjusted R Squared = .194) 
 

Appendix C.2 

ANOVA for the Estimated Best GPs of the Red Team in the Anchorage Protection 

(Section 7.3.1.1) 

Dependent Variable: Estimated Best GP of the Red Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 17.718a 15 1.181 .973 .485 .061 

Intercept 90129.131 1 90129.131 74222.717 .000 .997 

Mutation 1.888 3 .629 .518 .670 .007 

Algorithm 12.363 3 4.121 3.394 .019 .043 

Mutation * 

Algorithm 

3.467 9 .385 .317 .969 .013 

Error 272.005 224 1.214    
Total 90418.853 240     
Corrected Total 289.723 239     

R Squared = .061 (Adjusted R Squared = -.002) 
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Appendix C.3 

ANOVA for the Estimated Average GPs of the Blue Team in the Anchorage 

Protection (Section 7.3.1.2) 

Dependent Variable: Estimated Average GP 

Source 

Type III Sum 

of Squares Df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 155.321a 15 10.355 6.483 .000 .303 

Intercept 92654.641 1 92654.641 58014.198 .000 .996 

Mutation 11.699 3 3.900 2.442 .065 .032 

Algorithm 130.355 3 43.452 27.206 .000 .267 

Mutation * 

Algorithm 

13.268 9 1.474 .923 .506 .036 

Error 357.751 224 1.597    
Total 93167.714 240     
Corrected Total 513.072 239     

R Squared = .303 (Adjusted R Squared = .256) 
 

 

Appendix C.4 

ANOVA for the Estimated Average GPs of the Red Team in the Anchorage 

Protection (Section 7.3.1.2) 

Dependent Variable: Estimated Average GP 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 35.255a 15 2.350 2.124 .010 .125 

Intercept 76273.102 1 76273.102 68941.692 .000 .997 

Mutation 10.018 3 3.339 3.018 .031 .039 

Algorithm 15.109 3 5.036 4.552 .004 .057 

Mutation * 

Algorithm 

10.128 9 1.125 1.017 .427 .039 

Error 247.821 224 1.106    
Total 76556.177 240     
Corrected Total 283.075 239     

R Squared = .125 (Adjusted R Squared = .066) 
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Appendix C.5 

ANOVA for the Genotypic Diversity in the Anchorage Protection for the Blue 

Team (Section 7.3.3.1) 

Dependent Variable: Genotypic Diversity for the Blue Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 133131.910a 15 8875.461 100.334 .000 .870 

Intercept 2613108.837 1 2613108.837 29540.407 .000 .992 

Mutation 64253.124 3 21417.708 242.121 .000 .764 

Algorithm 62147.133 3 20715.711 234.185 .000 .758 

Mutation * 

Algorithm 

6731.653 9 747.961 8.455 .000 .254 

Error 19814.771 224 88.459    
Total 2766055.517 240     
Corrected Total 152946.680 239     

R Squared = .870 (Adjusted R Squared = .862) 
 

Appendix C.6 

ANOVA for the Genotypic Diversity in the Anchorage Protection for the Red 

Team (Section 7.3.3.1) 

Dependent Variable: Genotypic Diversity for the Red Team 

Source 

Type III Sum 

of Squares Df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 212919.387a 15 14194.626 64.167 .000 .811 

Intercept 4914668.248 1 4914668.248 22216.741 .000 .990 

Mutation 89549.286 3 29849.762 134.936 .000 .644 

Algorithm 93027.753 3 31009.251 140.177 .000 .652 

Mutation * 

Algorithm 

30342.349 9 3371.372 15.240 .000 .380 

Error 49552.078 224 221.215    
Total 5177139.714 240     
Corrected Total 262471.466 239     

R Squared = .811 (Adjusted R Squared = .799) 
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Appendix C.7 

ANOVA for the Phenotypic Diversity in the Anchorage Protection for the Blue 

Team (Section 7.3.3.2) 

Dependent Variable: Phenotypic Diversity for the Blue Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model .209a 15 .014 3.882 .000 .206 

Intercept 898.319 1 898.319 250319.925 .000 .999 

Mutation .145 3 .048 13.428 .000 .152 

Algorithm .033 3 .011 3.051 .029 .039 

Mutation * 

Algorithm 

.032 9 .004 .977 .460 .038 

Error .804 224 .004    
Total 899.332 240     
Corrected Total 1.013 239     

R Squared = .206 (Adjusted R Squared = .153) 

 

 

Appendix C.8 

ANOVA for the Phenotypic Diversity in the Anchorage Protection for the Red 

Team (Section 7.3.3.2) 

Dependent Variable: Phenotypic Diversity for the Red Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model .030a 15 .002 .815 .660 .052 

Intercept 899.042 1 899.042 360809.180 .000 .999 

Mutation .010 3 .003 1.353 .258 .018 

Algorithm .014 3 .005 1.818 .145 .024 

Mutation * 

Algorithm 

.007 9 .001 .302 .974 .012 

Error .558 224 .002    
Total 899.631 240     
Corrected Total .589 239     

R Squared = .052 (Adjusted R Squared = -.012) 
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Appendix D 

Chapter 7 Coastline Protection Scenario Related Appendices 

Appendix D.1 

ANOVA for the Estimated Best GPs of the Blue Team in the Coastline Protection 

(Section 7.4.1.1) 

Dependent Variable: Estimated Best GP of the Blue Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 12.446a 15 .830 3.404 .000 .186 

Intercept 25068.384 1 25068.384 102844.795 .000 .998 

Mutation .622 3 .207 .851 .467 .011 

Algorithm 11.747 3 3.916 16.064 .000 .177 

Mutation * 

Algorithm 

.077 9 .009 .035 1.000 .001 

Error 54.600 224 .244    
Total 25135.431 240     
Corrected Total 67.046 239     

R Squared = .186 (Adjusted R Squared = .131) 
 

Appendix D.2 

ANOVA for the Estimated Best GPs of the Red Team in the Coastline Protection 

(Section 7.4.1.1) 

Dependent Variable: Estimated Best GP of the Red Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 13.834a 15 .922 9.289 .000 .383 

Intercept 31533.584 1 31533.584 317593.075 .000 .999 

Mutation 1.921 3 .640 6.448 .000 .079 

Algorithm 11.358 3 3.786 38.132 .000 .338 

Mutation * 

Algorithm 

.555 9 .062 .622 .778 .024 

Error 22.241 224 .099    
Total 31569.659 240     
Corrected Total 36.075 239     

R Squared = .383 (Adjusted R Squared = .342) 
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Appendix D.3 

ANOVA for the Estimated Average GPs of the Blue Team in the Coastline 

Protection (Section 7.4.1.2) 

Dependent Variable: Estimated Average GP of the Blue Team 

Source 

Type III Sum 

of Squares Df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 34.624a 15 2.308 5.489 .000 .269 

Intercept 20266.109 1 20266.109 48196.751 .000 .995 

Mutation 5.139 3 1.713 4.074 .008 .052 

Algorithm 24.713 3 8.238 19.591 .000 .208 

Mutation * 

Algorithm 

4.772 9 .530 1.261 .259 .048 

Error 94.189 224 .420    
Total 20394.922 240     
Corrected Total 128.813 239     

R Squared = .269 (Adjusted R Squared = .220) 
 

 

Appendix D.4 

ANOVA for the Estimated Average GPs of the Red Team in the Coastline 

Protection (Section 7.4.1.2) 

Dependent Variable: Estimated Average GP of the Red Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 45.249a 15 3.017 15.617 .000 .511 

Intercept 28500.550 1 28500.550 147549.314 .000 .998 

Mutation 2.951 3 .984 5.093 .002 .064 

Algorithm 39.484 3 13.161 68.138 .000 .477 

Mutation * 

Algorithm 

2.813 9 .313 1.618 .111 .061 

Error 43.268 224 .193    
Total 28589.066 240     
Corrected Total 88.516 239     

R Squared = .511 (Adjusted R Squared = .478) 
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Appendix D.5 

ANOVA for the Genotypic Diversity of the Blue Team in the Coastline Protection 

(Section 7.4.3) 

Dependent Variable: Genotypic Diversity of the Blue Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 88218.501a 15 5881.233 63.371 .000 .809 

Intercept 1562821.350 1 1562821.350 16839.491 .000 .987 

Mutation 36646.005 3 12215.335 131.621 .000 .638 

Algorithm 46640.497 3 15546.832 167.518 .000 .692 

Mutation * 

Algorithm 

4931.999 9 548.000 5.905 .000 .192 

Error 20788.751 224 92.807    
Total 1671828.601 240     
Corrected Total 109007.252 239     

 R Squared = .809 (Adjusted R Squared = .797) 
 

Appendix D.6 

ANOVA for the Genotypic Diversity of the Red Team in the Coastline Protection 

(Section 7.4.3) 

Dependent Variable: Genotypic Diversity of the Red Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 68628.036a 15 4575.202 71.122 .000 .826 

Intercept 1373228.330 1 1373228.330 21347.103 .000 .990 

Mutation 24989.949 3 8329.983 129.491 .000 .634 

Algorithm 39524.196 3 13174.732 204.804 .000 .733 

Mutation * 

Algorithm 

4113.891 9 457.099 7.106 .000 .222 

Error 14409.597 224 64.329    
Total 1456265.963 240     
Corrected Total 83037.633 239     

R Squared = .826 (Adjusted R Squared = .815) 
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Appendix D.7 

ANOVA for the Phenotypic Diversity of the Blue Team in the Coastline Protection 

(Section 7.4.3) 

Dependent Variable: Phenotypic Diversity of the Blue Team 

Source 

Type III Sum 

of Squares Df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model .931a 15 .062 8.598 .000 .365 

Intercept 838.537 1 838.537 116135.179 .000 .998 

Mutation .658 3 .219 30.359 .000 .289 

Algorithm .152 3 .051 7.030 .000 .086 

Mutation * 

Algorithm 

.121 9 .013 1.868 .058 .070 

Error 1.617 224 .007    
Total 841.086 240     
Corrected Total 2.549 239     

R Squared = .365 (Adjusted R Squared = .323) 
 

Appendix D.8 

ANOVA for the Phenotypic Diversity of the Red Team in the Coastline Protection 

(Section 7.4.3) 

Dependent Variable: Phenotypic Diversity of the Red Team 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 3.031a 15 .202 8.578 .000 .365 

Intercept 620.073 1 620.073 26325.179 .000 .992 

Mutation .552 3 .184 7.809 .000 .095 

Algorithm 2.164 3 .721 30.622 .000 .291 

Mutation * 

Algorithm 

.315 9 .035 1.487 .154 .056 

Error 5.276 224 .024    
Total 628.379 240     
Corrected Total 8.307 239     

R Squared = .365 (Adjusted R Squared = .322) 
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Appendix E  

Chapter 7 Genomes of the Last Populations 

Appendix E.1 

Last Population of the Coastline Protection Scenario in CEAN (Section 7.4.2) 

Blue 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 WayPx21 WayPx22 WayPx23 
Alive 

Enemy 
Alive 

Friends 
En Threat 

1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 

87.93 185.97 158.84 191.98 85.58 47.28 176.06 0 175 100 -4.53 100 -45.11 95.89 100 

50.93 191.8 158.84 199 66.61 63.64 175.06 0 178.96 100 -4.53 100 -45.11 100 100 

0 194.32 175.81 199 66.61 107.32 180.58 0 199 100 7.93 100 -39.84 100 100 

20.78 185.52 105.3 199 54.35 199 189.39 68.57 95.38 1.2 -27.53 96.31 3 100 97.05 

0 144.96 0 169.79 13.19 38.69 169.14 49.23 49.93 -20.92 -22.97 100 37.54 49.91 100 

0.68 183.87 175.81 199 66.61 107.32 176.8 0 199 100 14.65 100 -39.84 100 100 

4.52 199 164.2 199 85.33 97.48 165.21 0 138.46 1.2 2.19 100 3 100 100 

0 199 180.77 174.03 52.3 129.79 174.85 0 199 45.9 -32.75 91.96 8.29 94.2 100 

0 199 108.21 199 126.43 184.88 151.5 16 138.46 1.2 -24.85 100 -39.84 100 99.61 

63.2 131.18 92.65 67.41 11.39 0 139.8 52.88 176.61 53.73 -7.47 64.09 3 82.32 100 

104.91 130.36 107.72 151.45 41.89 18.44 199 10.76 125.37 86.89 17.66 36.25 -10.28 100 93.25 

0 194.32 175.81 160.78 66.61 93.12 182.31 0 157.05 100 -30.73 100 3 100 92.66 

2.16 148.55 181.31 120.64 63.57 67.7 199 7.26 199 97.44 -73.99 100 -22.24 71.85 85.35 

51.87 77.66 9.88 151.02 34.37 29.7 199 28.36 140.47 0.47 -48.81 82.4 94.79 92.93 98.56 

0 199 108.21 199 88.52 130.08 136.76 77 101.35 1.2 -47.54 73.6 25.53 100 89.41 

Red 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 
Alive 

Enemy 
Alive 

Friends 
En 

Threat 1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 
   186.54 17.17 57.9 173.73 74.89 75.12 -23.44 -56.26 -100 26.18 -3.6 99.42 
   198.84 6.08 57.9 199 74.89 83.2 -23.44 -56.26 -100 26.18 -3.6 100 
   168.29 16.06 27.77 196.43 60.87 85.38 -41.09 -23.89 -82.84 30.56 -63.04 100 
   145.79 6.08 15.19 132.4 60.87 110.22 -41.9 -91.86 -48.2 41.16 -87.3 100 
   194.69 50.49 0 86.31 133.47 70 -62.18 -34.78 -49.87 65.23 -100 100 
   199 67.55 113.5 63.13 73.9 104.59 -98.16 8.21 -43.73 42.54 44.55 98.66 
   199 3.39 0.86 198.05 34.55 134.29 -30.16 -23.61 -82.84 54.6 -68.99 100 
   179.41 6.08 82.5 199 36.42 151.5 -31.01 -73.7 0.05 65.79 -90.59 100 
   199 102.5 17.91 100.77 70.21 104.26 -100 0.64 -79.32 32.37 -58.76 91.56 
   176.93 140.93 0 77.5 87.5 74.18 -36.27 -91.86 -12.32 41.16 -97.43 100 
   177.57 6.08 6.28 194.5 60.87 85.38 -41.9 19.75 -49.47 69.95 -87.3 100 
   199 175.02 0 79.36 110.73 79.15 -34.68 9.13 -49.47 21.3 -100 100 
   183.89 13.45 0 199 60.87 85.38 -71.72 -10.58 -77.87 18.88 -95.31 85.18 
   198.84 6.08 26.25 156.62 38.35 191.04 -49.06 -51.95 2.55 4.37 90.3 100 
   199 0 35.75 175.5 77.18 85.38 -41.09 -25.65 -100 10.81 -2.5 100 
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Home_x1 = x coordinate of home for boat 1 

Home_x2 = x coordinate of home for boat 2 

Home_x3 = x coordinate of home for boat 3 

WayPx11 = x coordinate of first waypoint for boat 1 

WayPx12 = x coordinate of first waypoint for boat 2 

WayPx13 = x coordinate of first waypoint for boat 3 

WayPx21 = x coordinate of second waypoint for boat 1 

WayPx22 = x coordinate of second waypoint for boat 2 

WayPx23 = x coordinate of second waypoint for boat 3 

Alive Enemy, Alive Friends, Enemy Threat, Next Waypoint, Alternate Waypoint, Movement Speed = as mentioned in Table 3.2 
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Appendix E.2 

Last Population of the Coastline Protection Scenario in CEAFS (Section 7.4.2) 

Blue 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 WayPx21 WayPx22 WayPx23 
Alive 

Enemy 
Alive 

Friends 
En Threat 

1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 

71.51 145.44 18.62 199 129.29 77.47 0 31.24 99.97 100 -100 76.49 4.44 -99.93 98.59 

125.74 177.3 2.19 199 160.36 98.16 0 0 0 42.67 -56.77 56.57 -3.53 -94.13 100 

199 121.62 15.78 5.53 188.57 46.55 16.14 70.64 124.21 100 -95.02 100 -7.37 -99.93 98.59 

90.57 193.71 47.02 0 188.57 46.55 16.14 50.12 114.01 100 -95.02 100 -7.37 -100 98.59 

71.51 145.44 14.9 199 111.02 77.47 0 34.08 96.79 100 19.07 87.97 30.28 -29.26 93.69 

99.45 184.44 86.16 136.55 199 0 21.43 30.61 0.26 82.72 -70.22 70.79 -0.63 -21.19 100 

53.59 153.83 31.6 163.92 197.53 141.6 95.84 0 13.27 87.99 -63.45 95.39 33.15 -16.51 88.54 

199 121.62 15.78 21.16 187.02 46.55 14.04 60.07 141.96 100 -100 100 -21.74 -29.26 100 

92.79 145.64 47.53 144.77 173.87 142.18 77.51 4.68 0 81.28 -25.24 56.57 -15.06 -75.29 100 

125.74 198.1 50.45 176.86 150.2 94.77 11.79 0 0 44.53 -78.34 39.31 36.72 -64.98 86.1 

92.79 145.64 47.53 179.81 173.87 142.71 77.51 7.55 16.07 100 -25.24 24.8 -0.63 -75.29 94.32 

199 121.62 15.78 27.65 139.09 86.59 86.46 94.96 1.33 64.67 -89.59 100 -24.74 -23.62 100 

116.03 132.16 97.6 155.28 154.82 75.38 76.7 52.86 0 95.32 -33.37 30.35 -27.05 18.11 100 

116.66 146.04 34.55 195.39 107.44 56.42 39.75 0 0 74.31 -100 75.74 -51.21 23.73 100 

199 199 57.99 164.98 123.64 91.99 41.25 67.54 0 96.13 -92.58 83.58 -32.15 9.51 100 

Red 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 
Alive 

Enemy 
Alive 

Friends 
En 

Threat 1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 
   27.99 113.13 71.76 73.56 175.11 47.65 -89.21 -46.36 -52.54 30.52 -60.46 100 
   3.3 14.94 89.56 34.94 136.55 199 -74.48 -100 -100 70.07 -100 100 
   11.2 158.09 131.68 0 95.92 44.06 -26.06 -100 -63.6 85.67 -88.39 100 
   19.52 96.96 167.48 52.25 191.43 125.74 -100 -22 -72.76 42.43 -90.56 97.6 
   27.99 113.13 48.93 170.73 176.39 47.65 -89.21 -46.36 -47.79 30.52 -60.46 100 
   33.32 193.06 150.53 99.01 104.71 182.18 -7.15 -14.36 -73.53 46.03 -90.1 100 
   0 125.84 97.36 97.19 101.28 161.4 -69.41 -100 -52.96 25.49 -85.4 100 
   0 122.93 71.21 72.64 95.48 161.84 -79.38 -79.5 -62.01 30.52 -32.94 100 
   4.12 60.62 112.99 0 158.52 173.23 17.51 -82.32 -86.71 51.48 -100 87.84 
   30.77 167.54 162.42 64.58 84.84 169.05 -35.7 -63.57 -100 74.9 -41.56 100 
   0 20.18 85.41 105.06 177.44 199 -57.33 -86.68 -55.47 50.5 -83.63 95.59 
   60.56 53.63 158.62 0 153.83 91.64 -18.04 -98.59 -63.54 73.76 -65.91 100 
   12.85 38.74 115.57 28.41 163.12 184.84 -100 -45.26 -96.05 43.71 -99.85 83.75 
   40.8 129.49 52.75 65.05 159.99 196.9 6.1 -81.99 -86.71 51.48 -89.2 87.84 
   17.5 159.21 162.42 90.19 103.46 131.25 -60.69 -81.54 -100 100 -22.52 95.94 
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Appendix E.3 

Last Population of the Coastline Protection Scenario in CEAHOF (Section 7.4.2) 

Blue 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 WayPx21 WayPx22 WayPx23 
Alive 

Enemy 
Alive 

Friends 
En Threat 

1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 

151.91 150.22 61.83 86.44 199 120.46 100.32 0 109.83 63.06 -40.07 67.86 -10.78 -57.49 100 

172.13 151.32 61.83 156.36 199.99 120.46 100.32 5.56 124.02 63.06 -40.07 67.86 -10.78 -57.49 100 

151.05 150.22 60.34 86.44 186.99 120.94 115.46 0 109.83 80.47 -40.14 67.86 -15.99 -15.96 100 

183.12 86.66 66.18 77.03 181.54 100.7 84.42 0 67.49 63.06 23.32 100 -4.27 -72.22 100 

138.19 150.22 61.83 25.02 184.22 143.83 80.42 0 109.83 63.06 -40.07 67.86 63.48 -57.49 100 

199 86.33 0 89.91 140.05 98.91 27.7 0 75.34 60.43 -99.97 100 -51.66 -88.09 97.32 

133.78 195.38 42.91 84.38 199 99.74 130.08 59.57 199 63.06 -63.01 64.34 -43.45 -59.46 100 

151.91 154.94 61.83 86.44 199 120.46 91.44 0 109.83 63.06 -40.14 67.86 39.76 -13.44 95.15 

151.31 148.45 90.13 65.53 181.54 120.27 149.23 0 38.94 95.27 52.89 100 -56.3 -92.79 100 

167.06 140.56 60.66 22.26 186.99 141.14 171.92 0 53.74 -38.19 13.43 85.45 -15.44 -91.93 97.43 

199 182.43 0 166.69 137.57 111.81 171.77 0 192.54 79.25 -51.31 79.32 -63.08 -80.52 99.42 

125.87 187.31 56.9 16.97 0 135.76 77.28 26.06 95.64 -100 -29.09 100 9.92 29.59 100 

199 86.33 0.66 89.91 146.32 98.91 54.94 43.16 57.58 82.9 -84.6 100 -38.22 -88.09 70.87 

136.89 122.32 0.12 179.9 3.02 152.42 76.66 27.24 99.7 -44.19 -30.09 51.59 1.14 -1.53 99.3 

129.78 161.51 67.08 16.97 19.37 145.96 78.86 108.48 22.18 -47.21 11.7 100 -29.95 23.04 94.03 

Red 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 
Alive 

Enemy 
Alive 

Friends 
En 

Threat 1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 
   79.18 161.72 68.95 79.63 164.35 55.19 -54.92 -14.52 -100 31.21 73.86 100 
   79.18 199 105.85 94.63 180.38 87.12 -54.92 -14.93 -100 31.21 41.31 100 
   18.26 197 81.94 65.93 199 26.39 -84.47 -29.28 -60.43 24.44 100 96.74 
   97.9 199 89.78 121.29 183.29 55.98 -98.28 -11.51 -100 24.44 96.37 100 
   74.67 160.03 61.74 121.29 199 0 -54.92 7.74 -98.07 31.21 60.26 93.26 
   130.33 160.54 131.83 93.61 164.5 64.85 -83.36 -5.66 -100 59.85 84.28 100 
   94.02 199 68.95 68.63 199 0 -100 73.79 -92.57 34.18 55.1 100 
   108.41 199 128.57 81.67 199.5 66.35 -83.39 4.46 -88.5 73.34 89.95 100 
   174.53 194.32 38.14 74.77 199 61.62 -80.57 -71.48 -81.51 74.88 99.23 100 
   84.96 189.56 0 100.22 157.79 192.55 -85.46 -62.81 -32.49 67.44 64.39 100 
   148.55 170.4 0 96.76 177.37 199 -92.95 -85.28 -100 24.44 96.37 100 
   119.72 199 56.59 181.81 199 0 -100 -68.44 -84.18 43.95 53.7 91.81 
   69.43 199 80.62 93.99 199 0 -100 30.1 -81.19 66.06 50.75 100 
   97.9 199 89.78 121.29 176.6 55.98 -58.79 -43.86 60.07 25.11 86.4 100 
   147.02 199 65.84 37.09 199 70.5 -63.14 -65.05 -100 90.11 33.03 85.77 
    

  



255 

 

Appendix E.4 

Last Population of the Coastline Protection Scenario in CEACFH (Section 7.4.2) 

Blue 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 WayPx21 WayPx22 WayPx23 
Alive 

Enemy 
Alive 

Friends 
En Threat 

1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 

148.94 57.4 74.78 38.82 120.01 0 158.95 193.5 107.1 100 -24.72 99.19 42.71 43.79 96.82 

0 123.65 163.47 63.54 102.14 42.07 66.8 157.66 150.01 25.41 -24.55 100 0.55 -82.75 90 

195.06 64.98 162.54 12.09 103.74 90.34 134.77 199 199 30.97 -55.61 80.77 -22.54 -94 89.72 

12.46 41.17 122.92 133.27 0 198.89 98.43 71.41 132.75 100 -10.73 26.98 42.42 -26.28 100 

199 80.68 199 31.34 183.98 144.7 101.23 193.81 182.19 42.95 -9.75 94.2 57.9 -58.54 96.11 

59.26 0 114.84 199 68.82 193.1 92.93 56.29 110.03 -28.34 -28.84 100 -13.13 -67.83 93.41 

0 115.1 167.47 116.61 47.21 34.87 110.88 191.77 148.76 27.1 29.74 93 -24.99 -67.83 100 

177.65 78.39 75.49 81.5 47.77 43.34 134.77 140.64 199 96.16 -32.76 100 -21.56 61.81 100 

6.63 84.73 163.47 83.39 90.38 82.64 93.17 199 143.07 70.35 -6.26 100 -3.87 -100 59.1 

0 112.99 163.47 106.13 27.87 75.44 136.61 160.49 103.39 100 57.71 96 -74.6 -52.27 100 

199 27.22 48.93 161.15 51.85 151.16 172.47 167.74 164.68 100 -22.6 62.72 94.77 -29.97 78.06 

42.31 9.05 119.83 68 86.27 2 179.35 199 189.75 27.14 54.12 35.7 12.95 -25.14 85.28 

199 66.32 198.07 31.34 183.98 149.63 128.21 191.54 199 75.64 -29.3 100 -18.62 61.81 100 

0 31.87 199 121.64 117.47 84.87 184.18 141.48 190.39 -67.95 92.35 74.88 -8.18 -13.14 100 

30.8 33.74 114.84 199 68.82 198.65 92.93 56.29 116.1 -45.82 -28.84 100 -13.13 -67.83 72.54 

Red 
              

Home_x1 Home_x2 Home_x3 WayPx11 WayPx12 WayPx13 
Alive 

Enemy 
Alive 

Friends 
En 

Threat 1 
Next 

WayPoint 
Alt 

WayPoint 
Movement 

Speed 
   130.64 63.96 110.29 189.36 82.32 52.24 -61.4 11.23 -79.04 92.05 59.43 100 
   134.74 144.08 125.57 158.78 199 16.02 -100 7.56 -96.66 100 -82.48 100 
   128.97 0 127.73 102.06 125.78 77.47 -92.54 -31.71 -72.8 61.21 -82.22 98.61 
   140.07 0 199 199 43.93 91.92 -91.57 45.01 -94.26 91.05 -47.31 96.1 
   146.3 48.41 31.35 166.2 53.84 175.33 -40.99 -91.17 -79.04 56.05 12.25 100 
   125.32 0 69.94 169.38 42.65 174.91 -25.51 -88.27 -24.76 100 49.54 94.25 
   106.44 7 199 138.61 41.93 138.31 -100 4.03 -85.95 52.2 -82.48 100 
   199 0 113.34 186.61 104.27 94.33 -28.44 100 -58.67 51.29 -59.37 96.49 
   70.54 53.39 112.14 165.39 57.59 128.19 -4.13 18.05 -16.19 76.74 -20.1 86.09 
   189.66 5.2 199 131.78 182.25 194.22 -74.81 -24.72 -96.89 88.73 -14.76 79.58 
   199 0 158.87 185.28 104.27 92.11 -44.56 100 -65.11 17.12 -48.58 100 
   152.09 0 199 140 85.8 106.21 -86.04 -100 -87.8 61.29 -81.54 99.63 
   157.24 0 69.94 169.38 59.78 165.64 -58.26 -88.27 -56.9 19.95 -67.31 72.74 
   199 53.59 24.15 131.73 83.98 1.62 -4.57 14.48 -83.34 -0.7 -100 76.36 
   122.8 15.96 199 138.61 41.93 132.16 -100 4.03 -100 7.06 -82.92 100 
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Appendix E.5 

Last Population of the Anchorage Protection Scenario in CEAN (Section 7.3.2) 

Blue 
                             Home_

x1 
Home_

x2 
Home_

x3 
Home_

y1 
Home_

y2 
Home_

y3 
WayPx

11 
WayPx

12 
WayPx

13 
WayPx

21 
WayPx

22 
WayPx

23 
WayPy

11 
WayPy

12 
WayPy

13 
WayPy

21 
WayPy

22 
WayPy

23 
            

202.08 180.43 243.15 54.62 130.72 60.88 108.3 256.64 105.93 144.45 264.32 246.49 154.6 97.94 96.83 88.58 84.09 117.13 
            

202.08 180.43 243.49 63.18 152.21 72.3 108.3 254.49 105.93 144.45 329 297.6 153.2 105.73 128.74 99.52 82.59 93.64 
            

203.15 181.85 242 62.31 152.21 66.16 110.36 292.64 100.44 144.45 329 238.18 159 121.73 72.64 65.55 88.61 95.8 
            

221.34 209.25 205.48 58.76 156.02 53.43 188.52 219.3 70 159.66 248.67 220.94 146.97 90.05 93.6 117.55 40 111.96 
            

192.64 245.22 243.15 48.31 131.46 59.97 70 117.24 70 104.81 329 236.4 130.55 103.03 40 114.85 73.5 123.15 
            

198.57 264.59 301.99 78.29 127.96 40 134.34 223.97 89.07 116.2 311.41 217.76 152.77 124.41 110.82 109.13 90.4 92.45 
            

151.27 198.84 160.3 53.32 128.47 51.13 108.3 241.63 105.93 144.45 264.32 278.75 154.6 97.94 102.7 86.42 84.09 130.4 
            

179.08 231.79 226.2 52.81 154.94 53.13 174.77 308.47 89.59 98.91 329 264.64 135.52 133.34 96.83 120.39 86.23 60.07 
            

178.92 286.94 192.18 52.81 146.51 45.68 165.62 251.34 85.79 91.76 277.98 166.73 159 67.92 53.2 80.13 56.64 137.64 
            

166.13 202.75 130.42 75.9 157.4 57.5 112.4 294.81 76.9 86.37 216.06 211.23 143.62 149.23 84.19 90.75 111.28 135.76 
            

164.98 146.72 243.15 55.72 155.67 55.97 87.66 260.72 70 70 276.91 275.83 152.89 99.18 93.81 108.25 58.5 89.84 
            

151.27 224.09 181.58 60.5 150.74 49.63 158.05 171.82 109.07 129.7 228.46 220.94 149.6 119.59 105.9 109.13 67.14 81.51 
            

198.83 135.62 234.82 40 147.19 40 86.37 154.77 70 139.63 241.49 293.25 159 106.83 110.89 114.5 64.91 133.13 
            

147.74 239.65 329 47.06 149.71 40 168.55 300.68 70 182.52 300.7 208.42 137.13 40.4 71 92.43 81.69 100.14 
            

153.64 217.89 86.75 69.24 155.79 41.95 119.95 328.4 165.61 98.73 323.89 239.33 155.72 81.83 81.64 142.76 83.66 105.44 
            

Red 
                             Home_

x1 
Home_

x2 
Home_

x3 
Home_

x4 
Home_

x5 
Home_

y1 
Home_

y2 
Home_

y3 
Home_

y4 
Home_

y5 
WayPx

11 
WayPx

12 
WayPx

13 
WayPx

14 
WayPx

15 
WayPx

21 
WayPx

22 
WayPx

23 
WayPx

24 
WayPx

25 
WayPy

11 
WayPy

12 
WayPy

13 
WayPy

14 
WayPy

15 
WayPy

21 
WayPy

22 
WayPy

23 
WayPy

24 
WayPy

25 

358.26 95.09 357.29 270.07 359.46 23.68 34.31 33.07 161.24 195.34 212.85 146.5 399 154.89 127.37 164.94 11.14 193.51 376.97 139 139.85 110.64 58.39 99.17 139.34 119 83.47 102.8 159 84.64 

393.79 95.82 399 259.37 359.46 19.61 33.43 31.88 170.86 192.71 205.32 146.5 399 153.87 70.95 172.17 47.6 193.51 399 141.33 130.78 112.63 58.39 99.13 140.12 111.43 66.04 107.33 159 79 

358.26 95.09 399 298.13 375.74 28.47 31.58 31.88 161.24 199 205.32 154.23 399 153.87 127.37 164.94 7.67 193.6 376.97 139 139.85 110.64 58.39 105.85 129.79 119 86.7 102.07 159 80.64 

358.26 95.09 339.75 293.26 277.05 23.68 33.74 39 161.24 195.34 212.85 146.5 399 154.89 39.82 164.94 11.14 193.51 376.97 139 136.18 110.64 59.6 98.08 139.34 118.13 83.47 102.8 159 84.64 

398.33 0 379.78 33.89 399 1.37 37.99 1.04 175.93 190.94 329.1 208.74 384.18 162.23 124.54 162.16 317.17 139 117.28 139 159 105.88 90.52 86.48 141.16 106.88 110.83 89.88 45.44 95.12 

399 95.09 346.42 315.77 347.75 29.83 36.34 31.88 161.24 195.34 205.32 146.5 399 180.02 198.32 181.06 11.14 193.51 376.97 139 139.85 110.64 58.39 105.95 139.34 119 99.97 105.02 155.43 81.34 

360.41 0 306.98 245.99 354 23.68 32.84 30.55 164.93 198.54 163.02 154.19 399 149.66 103.21 157.55 4.12 186.36 350.94 139 158.82 100.69 50.41 104.14 135.26 115.48 95.49 99.28 159 92.96 

399 0 244.59 371.72 341.69 33.84 33.63 30.11 166.3 199 236 178.19 148.57 180.5 91.68 160.51 0 211.4 399 139 147.13 113.09 58.39 105.35 149.79 119 84.02 102.73 147.04 91.15 

366.44 44.51 309.23 293.55 259.67 31.15 36.87 30.11 182.48 199 236 184.24 171.64 168.08 63.37 157.33 0 200.35 399 139 140.66 100.13 42.46 105.71 140.84 119 88.13 104.23 154.61 91.87 

346.88 126.99 226.39 266.92 307.26 18.97 39 37.69 166.54 189.57 184.9 142.93 274.43 145.91 304.27 166.47 10.03 177.68 399 147.79 106.66 95.45 111.3 105.09 131.46 97.4 53.14 96.57 156.43 89.71 

305.93 13.29 399 263.9 301.41 33.11 33.56 37.76 160 195.81 77.56 145.89 184.37 259 186.62 155.8 131.26 188.78 387.54 139 123.89 115.41 71.01 116.54 149.3 108.09 101.31 106.94 159 94.81 

367.27 102.14 399 288.04 393.39 19.61 39 28.11 168.33 191.02 294.28 180.49 123 209.36 231.79 141.18 129.53 187.2 296.37 210 78.57 119 117.11 110.9 94.68 88.99 59.57 101.89 138.88 79.21 

243.8 8.04 370.46 260.92 399 19.81 39 21.51 175.78 194.17 266.16 139 399 162.7 346.08 161.79 153.46 199.59 72.87 142.7 72.12 84.61 53.95 115.07 145.23 102.21 90.92 83.12 156.74 82.23 

332.7 198.07 269.79 216.4 258.46 15.72 39 38.57 164.26 189.3 239.18 139 316.95 149.49 180.35 152.48 101.55 159.07 314.86 139 101.88 92.23 70.68 105.02 118.77 112.27 63.45 99.57 135.7 88.32 

338.26 0 399 69.63 207.14 8.47 23.57 28.72 165.92 199 175.11 144.66 399 146.35 50.78 219.23 82.41 139 237.73 203.21 112.21 93.82 80.89 112.72 128.83 116.22 40 102.49 159 88.09 
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Home_x1 = x coordinate of home for boat 1 

Home_x2 = x coordinate of home for boat 2 

Home_x3 = x coordinate of home for boat 3 

Home_x4 = x coordinate of home for boat 4 

Home_x5 = x coordinate of home for boat 5 

Home_y1 = y coordinate of home for boat 1 

Home_y2 = y coordinate of home for boat 2 

Home_y3 = y coordinate of home for boat 3 

Home_y4 = y coordinate of home for boat 4 

Home_y5 = y coordinate of home for boat 5 

WayPx11 = x coordinate of first waypoint for boat 1 

WayPx12 = x coordinate of first waypoint for boat 2 

WayPx13 = x coordinate of first waypoint for boat 3 

WayPx14 = x coordinate of first waypoint for boat 4 

WayPx15 = x coordinate of first waypoint for boat 5 

WayPx21 = x coordinate of second waypoint for boat 1 

WayPx22 = x coordinate of second waypoint for boat 2 

WayPx23 = x coordinate of second waypoint for boat 3 

WayPx24 = x coordinate of second waypoint for boat 4 

WayPx25 = x coordinate of second waypoint for boat 5 

WayPy11 = y coordinate of first waypoint for boat 1 

WayPy12 = y coordinate of first waypoint for boat 2 

WayPy13 = y coordinate of first waypoint for boat 3 

WayPy14 = y coordinate of first waypoint for boat 4 

WayPy15 = y coordinate of first waypoint for boat 5 

WayPy21 = y coordinate of second waypoint for boat 1 

WayPy22 = y coordinate of second waypoint for boat 2 

WayPy23 = y coordinate of second waypoint for boat 3 

WayPy24 = y coordinate of second waypoint for boat 4 

WayPy25 = y coordinate of second waypoint for boat 5 
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Appendix E.6 

Last Population of the Anchorage Protection Scenario in CEAFS (Section 7.3.2) 

Blue 
                             Home_

x1 
Home_

x2 
Home_

x3 
Home_

y1 
Home_

y2 
Home_

y3 
WayPx

11 
WayPx

12 
WayPx

13 
WayPx

21 
WayPx

22 
WayPx

23 
WayPy

11 
WayPy

12 
WayPy

13 
WayPy

21 
WayPy

22 
WayPy

23 
            

302.3 184.14 189.5 82.18 40 128 213.75 87.06 250.92 214.78 305.37 159.54 58.39 113.51 110.31 120.47 60.2 76.67 
            

277.51 277.2 203.91 40 40 146.28 135.84 96.45 177.76 257.4 182.58 178.16 45.69 142.54 87.97 101.72 51.32 71.31 
            

300.16 241.58 251.46 83.46 70.73 113.15 168.44 70 206.69 169.02 174.57 105.27 42.59 135.62 118.15 87.74 96.34 129.42 
            

275.24 116.56 113.28 84.18 63.57 159 171.83 110.71 250.92 234.99 286.37 221.78 53.84 107.94 98.51 104.64 60.2 80.58 
            

275.24 91.89 113.51 92.21 40 155.8 222.26 89.85 250.92 214.78 329 233.44 58.39 106.42 106.74 104.02 87.69 71.31 
            

300.01 164.98 173.33 116.65 43.11 139.18 204.39 105.14 192.87 245.06 166.34 176.07 45.69 142.54 87.97 101.72 40 71.31 
            

255.57 146.31 151.31 80.89 40 139.5 227.88 70 239.36 232.32 248.61 229.29 78.92 131.35 101.71 127.37 67.89 75.88 
            

275.24 70 97.88 105.95 40 159 202.96 121.32 225.04 225.08 255.23 191.42 73.17 122.12 100.7 104.32 43.55 71.31 
            

329 144.15 203.58 101.72 50.87 159 230.16 84.34 232.27 194.3 148.83 186.19 48.67 96.76 159 129.81 108.37 63.97 
            

259.52 132.09 135.52 59.64 43.58 142.34 193.82 91.47 209.77 214.78 216.25 327.12 96.8 113.92 157.84 43.15 95.73 100.7 
            

302.3 122.72 224.28 82.18 51.96 153.47 198.69 114.69 225.04 193.6 227.9 172.64 117.61 133.41 123.64 115.81 41.16 80.26 
            

270.77 164.98 224.04 128.94 43.11 139.18 216.91 78.24 203.84 132.47 262.41 215.6 66.18 122.12 98.72 97.76 42.43 73.87 
            

307.41 101.67 224.28 82.18 60.65 159 155.77 114.69 226.36 193.6 234.09 181.53 119.38 115.98 128.94 130.87 66.71 43.23 
            

242.35 160.41 255.87 103.44 63.28 136.34 138.76 129.84 261.2 276.14 149.89 101.27 69.21 106.12 132.89 127.36 53.93 83.85 
            

329 193.31 220.17 97.65 97.05 159 131.48 74.73 215.22 181.26 156.58 323.98 88.91 116.89 154.48 41.56 85.53 69.35 
            

Red 
                             Home_

x1 
Home_

x2 
Home_

x3 
Home_

x4 
Home_

x5 
Home_

y1 
Home_

y2 
Home_

y3 
Home_

y4 
Home_

y5 
WayPx

11 
WayPx

12 
WayPx

13 
WayPx

14 
WayPx

15 
WayPx

21 
WayPx

22 
WayPx

23 
WayPx

24 
WayPx

25 
WayPy
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17.74 287.35 41.42 399 0 28.11 7.17 0 160 165.81 147.59 247.35 13.94 239.8 399 139 81.27 220.13 237.48 240.71 153.59 104.87 41.97 95.5 65.58 119 126.07 99.85 82.01 79 

147.28 361.27 0 352.22 67.95 29.54 12.92 0 168.71 164.78 189.73 255.42 0 219.61 288.34 139 41.84 194.79 240.78 258.61 139.36 106.64 87.31 93.04 74.93 114.07 112.87 105.32 56.57 82.48 

0 399 165.13 399 88.34 0 37.48 3.26 166.53 171.42 17.95 224.98 51.29 248.34 382.41 141.64 0 193.24 0 224.66 159 102.77 103.02 101.98 104.93 116.44 125.95 113.09 41.27 81.61 

77.31 384.93 247.82 237.34 67.95 21.3 17.03 3.25 166.84 164.3 139.7 249.9 0 239.71 399 162.63 6.23 195.45 204.99 214.82 130.31 94.74 69.45 95.5 77.17 116.48 127.33 105.43 40 88.48 

0 399 102.49 399 135.31 24.27 16.52 3.69 179.99 183.06 83.61 259 0 216.31 234.85 139 50.52 217.69 114.44 235.66 159 99.83 76.27 91.57 104.93 119 111.3 111.49 72.24 85.59 

131.7 351.89 216.03 399 88.34 32.11 16.52 8.04 179.99 183.06 83.61 259 0 218.78 234.85 139 50.52 217.69 114.44 225.32 159 99.83 76.27 91.57 93.82 118.96 111.3 104.66 72.24 86.45 

21.67 308.81 73.16 297.94 108.91 33.68 17.76 8.96 182.68 180.71 17.94 258.49 21.35 231.98 399 202.55 56.27 142.18 238.29 259 111.32 100.23 95.32 93.04 55.45 110.18 102.48 95.63 72.88 81.7 

10.44 399 278.72 399 112.93 32.11 17.85 0.47 164.58 160 331.82 246.19 113.39 216.05 328.67 139 36.29 193.18 102.34 239.01 159 98.68 85.83 86.4 104.93 119 113.73 111.49 82.59 92.07 

206.3 324.07 33.03 193.68 65.7 0 23.45 24.3 168.02 197.44 160.68 240.38 0 257.54 282.31 139 0 184.59 209.37 259 159 96.03 64.87 97.94 101.72 117.2 114.09 96.05 81.63 90.99 

0 399 102.49 399 135.31 24.27 18.99 4.96 172.73 160 227.9 246.19 84.3 221.68 362.77 158.64 13.84 213.35 176.37 242.79 155.04 99.35 76.27 86.45 104.93 119 113.73 119 73.09 88.27 

179.98 215.88 258.2 399 283.99 4.36 31.38 7.96 172.14 172.98 214.03 245.61 108.43 252.59 399 141.04 36.29 197.5 5.15 259 159 105.95 72.88 93.04 103.53 119 113.73 111.49 75.98 96.69 

0 266.72 241.39 293.68 88.34 32.11 16.25 18.67 172.14 160 196.22 246.19 84.3 200.52 328.67 141.04 32.84 242.47 114.44 242.79 159 93.3 66.85 91.57 104.93 115.64 100.15 98.47 40 80.7 

28.88 379.93 228.6 399 87.85 32.11 21.06 10.33 160 160 214.03 246.19 5.79 224.16 348.09 139.13 60.56 197.64 121.39 238.44 159 89.86 88.61 82.29 104.93 110.45 123.65 110.72 86 86.96 

107.75 337.23 214.24 369.72 75.9 28.13 22.31 0 166.38 160 364.82 259 55.89 217.67 318.71 141.04 49.39 201.7 118.72 247.65 144.18 100.55 62.14 98.16 41.22 113.5 101.4 100.72 40 80.89 

272.62 294.63 0 319.65 125.3 30.66 15.31 9.14 168.43 190.41 0 240.78 0 259 336.97 147.07 15.3 212.17 63.6 222.06 158.37 108.54 62.19 83.46 126.23 115.29 100.13 80.74 43.55 88.71 
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Appendix E.7 

Last Population of the Anchorage Protection Scenario in CEAHOF (Section 7.3.2) 
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239.4 146.11 213.6 40 158.89 61.93 148.59 266.64 134.53 162.53 215.65 150.59 59.03 93.37 76.75 81.56 95.56 108.2 
            

239.4 146.11 241.36 40 158.89 61.93 148.59 266.64 161.41 162.53 231.41 188.17 63.49 84.79 73.16 93.52 95.56 101.07 
            

287.2 147.19 232.24 42.13 159 60.72 143.21 245.5 116.91 162.53 215.65 150.59 59.03 93.37 56.14 73.83 95.56 108.97 
            

287.66 138.42 213.6 40 151.32 40.4 162.09 266.64 134.53 162.53 215.65 150.59 59.03 94.87 76.75 71.48 95.56 116.32 
            

287.2 138.42 213.6 40 159 98.67 162.09 274.72 143.62 162.53 215.65 150.59 68.91 94.87 76.75 81.56 95.56 87.17 
            

294.5 74.13 245.21 40 153.96 93.83 88.56 276.46 210.94 162.53 295.73 102.18 64.13 88.47 82.51 61.37 68.28 140.28 
            

262.15 148.84 183.18 51.76 120.79 40 128.16 258.7 155.58 188.32 275.14 98.3 40 96.8 120.49 79.37 129.25 118.38 
            

216.14 84.85 176.93 47.01 159 46.26 175.89 268.84 221.54 144.45 265.44 169.54 91.75 119.36 91.61 53.49 89.22 118.09 
            

287.2 117.24 165.91 40 153.44 51.7 74.85 280.25 143.91 156.39 160.95 132.23 40 104.21 65.19 72.16 98.96 122.18 
            

201.24 216.87 180.68 56 150.17 40.85 70 243.15 124.77 108.89 175.32 124 49.65 82.98 45.78 60.86 109.36 117.31 
            

283.15 113.66 240.04 47.9 159 57.32 120.88 236.46 163.14 80.81 222.18 199.79 54.31 94.87 76.75 69.97 83.02 87.86 
            

254.28 132.91 190.52 50.22 138.53 53.64 104.57 259.66 70 206.62 278.92 73.96 40.71 133.02 94.73 53.71 109.63 68.24 
            

254.28 152.82 183.11 40 121.85 40.2 138.36 282.37 87.32 203.14 278.92 73.96 40 106.44 72.45 69.49 108.23 109.82 
            

301.43 70 164.51 44.96 159 43.41 70 249.25 180.66 163.58 151.94 112.82 64.03 128.31 79.54 66.32 159 82.22 
            

309.53 70 184.91 72.95 134.64 117.51 110.53 310.03 206.09 180.48 266.18 115.84 40 117.09 79.92 49.41 102.52 142.42 
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374.96 75.36 399 204.43 110.54 0 17.26 23.9 188.67 195.08 0 160.96 369.38 149.25 21.77 193.75 79.49 232.66 249.38 139 40 86.55 68.39 79 47.02 95.65 117.22 79 104.88 99.14 

399 29.85 301.07 144.05 293.17 6.4 0 30.05 195.4 178.1 116.52 225.56 351.79 193.58 0 159.44 397.01 210.61 399 143.36 109.31 85.6 86.48 84.66 91.11 106.5 159 98.64 111.72 94.2 

399 29.85 368.34 177.86 293.17 6.4 0 30.05 195.4 178.1 77.69 219.2 351.79 205.29 0 159.44 393.78 229.37 399 139 109.31 84.42 72.02 88.39 91.11 106.5 159 98.22 104.93 95.63 

399 43.43 368.34 177.86 293.17 3.1 0 30.05 192.28 176.34 77.69 209.14 351.79 205.29 0 185.7 393.78 222.45 332.19 139 40 89.63 118.71 105.49 81.03 111.46 144.4 103.42 104.82 94.07 

399 53.36 303.12 211.6 46.99 1.53 17.56 32.29 191.08 198.95 4.26 198.2 399 139 0 165.01 5.37 238.42 268.98 139 66.26 85.86 65.05 83.4 40 114.86 141.14 81.46 87.49 100.03 

399 61.7 368.34 177.86 279.84 7.7 1.33 30.05 194.58 178.1 77.69 226.68 346.45 205.29 0 159.44 393.78 229.37 399 140.79 119.98 83.34 59.35 87.97 112.23 106.5 142.93 98 104.93 83.05 

350.81 254.24 387.71 157.44 55.42 0 11.66 34.39 187.77 199 0 186.14 399 139 0 183.25 291.23 216.67 318.53 142.84 52.66 94.68 66.15 104.72 146.15 102.23 112.47 97.36 118.02 114.44 

296.81 117.49 399 162.5 0 4.69 21.68 29.25 173.62 193.15 0 211.94 310.67 191.2 6.14 149.5 106.53 254.78 282.64 182.58 40 94.53 73.3 79.82 47.02 103.67 151.49 94.86 92.92 88.69 

340.87 125.9 399 186.96 112.94 2.12 23.21 23.9 175.35 198.36 42.02 200.61 395.02 139 21.77 176.61 79.49 220.72 278.28 139 56.56 81.18 71.1 79.01 91.4 110.83 145.62 81.53 101.24 105.3 

371.81 146.01 399 168.92 95.27 2.12 24.94 15.07 170.97 198.36 0 192.57 399 139 20.95 176.61 93.32 211.54 262.97 139 54.01 84.96 68.39 79 45.53 98.11 117.66 81.53 110.86 105.3 

350.81 124.84 383.69 208.73 258.11 6.11 0.16 30.05 195.19 188.23 0 226.68 301.64 213.87 0 149.36 399 249.66 389.48 140.39 122.11 91.04 92.14 91.78 124.44 98.81 159 80.62 111.88 104.74 

399 88.21 352.55 171.21 285.9 8.76 9.25 29.77 180.88 165.12 0 200.03 216.25 167.42 40.15 178.18 384.58 209.33 399 148.77 89.4 79 58.89 94.09 91.11 106.5 149.44 100.73 113.6 79.67 

280.71 0 399 0 255.25 20.22 25.75 13.91 199 180.97 87.55 247.95 399 196.89 0 153.4 271.73 226.35 379.86 163.41 54.51 79.13 96.43 100.69 40 116.27 159 94.17 154.97 79 

399 125.05 337.79 80.2 0 4.48 9.15 17.68 196.77 169.52 85.41 224.88 298.01 195.73 206.63 244.75 399 198.51 241.3 151.94 61.37 93.84 45.28 107.5 47.4 107.66 157.02 86.52 90.41 114.89 

253.48 149.25 307.57 55.63 72.16 16.51 9.01 28.77 192.32 179.14 21.91 215.23 199.22 193.07 271.2 195.96 328.14 214.28 399 139 99.51 84.42 72.02 95.32 107.51 106.5 152.71 93.62 98.82 94.91 
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Appendix E.8 

Last Population of the Anchorage Protection Scenario in CEACFH (Section 7.3.2) 
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137.72 291.61 189.08 108.36 152.22 40 227.89 244.45 70 70.4 200.06 178.61 149.9 43.72 154.74 96.48 101.01 96.1 
            

161.99 281.72 241.58 115.75 136.66 40 264.3 143.92 122.96 75.17 232.86 214.3 130.61 76.09 142.02 92.43 99.59 127.69 
            

124.38 305.33 250.1 147.31 137.71 45.05 157.67 212.58 70 109.22 307.21 164.18 106.68 73.63 137.08 159 89.33 86.92 
            

260.16 228.74 329 151.29 110.37 40 220.98 159.36 70 116.99 235.36 264.39 159 44.26 159 126.55 127.93 66.66 
            

138.53 329 222.83 139.15 159 41.26 242.2 169.21 254.87 292.99 70 226.43 59.96 104.65 104.93 131.01 149.47 111.24 
            

120.21 287.61 197.8 108.36 157.18 124.63 113.93 161.4 190.79 241.08 248.61 146.4 132.36 93.03 139.51 76.77 94.44 127.69 
            

229.58 268.75 304.97 159 133.05 58.14 93.05 306.8 215.9 205.39 268.98 192.69 123.93 54.36 72.86 93.14 93.16 86.51 
            

138.53 265.97 250.85 139.15 159 41.26 242.2 196.76 260.02 292.99 70 226.43 59.96 104.65 108.14 131.01 130.02 111.24 
            

188.03 166.49 230.67 112.5 71.15 150.14 139.82 280.06 238.47 227.37 147.5 222.4 159 84.87 42.56 92.18 120.54 75.97 
            

107.51 265.97 260.12 137.07 134.77 41.26 233.6 196.76 262.66 262.46 70 226.43 91.22 104.65 108.14 131.01 130.02 104.96 
            

89.35 242.19 234.95 158.05 138.66 52.24 190.12 162.85 70 104.45 316.37 175.21 112.65 84.59 137.55 158.32 159 107.21 
            

124.38 293.78 281.2 158.1 138.66 40 176.69 201.2 70 110.14 329 220.14 113.44 81.25 145.48 130.43 98.21 40 
            

196.53 307.54 322.58 51.5 51.69 70.07 117.26 329 100.71 70 270.12 118.14 156.61 108.3 159 96.49 108.38 125.9 
            

187.19 329 236.1 134.49 113.36 70.94 187.31 264.69 70 77.19 201.76 78.94 156.88 64.66 44.04 50.54 95.59 96.23 
            

162.37 201.71 293.6 100.38 151.73 91.45 241.7 179.09 167.07 271.66 253.02 71.24 133.75 159 159 84.34 81.52 99.43 
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53.97 177.54 394.92 399 386.2 19.46 10.63 2.39 178.03 187.71 290.83 259 349.17 171.79 350.8 174.89 158.42 235.06 0 162.07 159 119 98.01 100.75 129.96 86.33 77.46 102.37 159 104.61 

0 0 399 399 399 7.35 4.99 0 180.79 199 268.61 213.3 234.29 150.69 84.23 190.17 273.42 164.31 292.76 174.34 121.07 79.08 159 80.17 68.63 93.16 42.73 84.63 143.19 97.42 

21.46 33.56 295.1 290.38 0 10.96 1.64 13.18 172.99 176.36 399 217.64 330.63 236.44 38.86 222.98 333.59 193.39 327.11 193.64 133.94 119 68.09 119 131.7 94.39 80.62 93.52 159 117.3 

46.61 135.5 395.63 399 341.56 18.53 10.86 6.98 167.48 199 399 258.56 386.65 198.19 399 163.31 139.25 240.14 0 178.39 146.99 117.64 73.32 119 126.75 90.34 92.45 104.02 150.57 109.43 

17.1 10.39 380.38 321.97 265.51 22.24 26.87 0 167.37 176.94 83.09 252.84 251.58 209.41 154.17 164.15 16.94 253.14 0 172.18 140.18 118.19 133.16 85.81 75.89 82.62 60.97 92.63 134.73 80.11 

44.46 138.39 252.88 399 387.81 15.94 14.73 23.05 176.28 177.89 212.51 256.25 275.77 144.37 43.47 201.27 0 258.55 343.62 220.09 135.27 102.54 71.57 107.79 142.96 94.31 74.99 97.54 159 113.38 

50.77 10.81 303.21 296.1 15.17 11.07 0 13.24 177.01 172.28 399 214.4 277.03 171.79 350.8 174.89 157.01 241.96 0 162.07 159 119 98.01 100.75 129.96 86.33 77.46 102.37 159 104.61 

87.32 135.08 323.67 362.42 341.56 7.78 10.63 9.33 165.66 199 399 257.4 382.54 181.93 355.78 145.78 205.36 139 378.99 199.72 75.45 87.97 138.69 98.3 137.24 102.52 83.99 104.25 119.12 79.34 

0 9.73 340.5 399 354.34 14.16 10.63 10.82 165.19 195.39 399 259 399 174.19 286.41 171 62.24 238.07 0 229.06 47.17 87.43 147.48 103.55 53.35 101.81 133.3 85.37 154.27 106.02 

0 120.78 375.02 160.81 0 9.41 3.92 0.99 165.86 196.36 282.72 248.25 383.22 156.34 399 223.27 176.46 233.99 9.12 163.98 63.62 99.35 114.15 85.99 127.81 93.28 60.88 111.91 104.16 86.06 

37.08 41.24 399 399 228.5 6.45 15.49 25.39 195.68 172.99 365.32 215.44 100.06 201.21 0 209.74 96.31 237.16 0 171.38 104.78 117.61 50.22 119 72.43 84.05 60.97 94.56 132.66 91.81 

17.95 22.47 339.67 308.06 0 25.67 9.04 0.93 163.26 188.68 399 259 345.18 176.87 292.86 251.38 54.36 154.82 201.04 254.71 73.86 81.84 159 91.5 109.7 109.61 40 96.32 141.34 79 

1.68 157.2 335.5 293.43 300.5 31.53 2.77 0.44 183.7 180.61 365.45 171.12 130.06 198.32 162.2 177.18 135.45 139 53.26 217.64 145.37 79 129.96 97.64 159 103.37 140.17 102.08 138.4 109.34 

0 99.71 366.81 343.78 350.06 25.76 26.71 0 162.15 181.9 83.09 252.84 217.79 209.41 167.82 169.2 16.67 235.06 24.15 182.66 152.84 119 133.16 89.97 83.34 82.62 64.99 97.57 98.11 84.85 

55.64 177.54 394.92 399 386.2 11.59 8.75 2.39 178.03 190.19 265.74 259 349.17 205.06 140.8 222.98 308.75 177.13 181.38 189.26 101.46 87.43 144.37 102.72 53.35 103.96 133.3 87.53 153.1 105.58 



261 

 

 


	Coevolutionary algorithms for the optimization of strategies for red teaming applications
	Recommended Citation

	Coevolutionary algorithms for the optimization of strategies for red teaming applications

