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Abstract 

Pomacentridae is one of the most representative families of herbivorous fishes 

inhabiting both tropical and temperate reefs, yet the vast majority of studies examining 

feeding within this family have been undertaken in tropical rather than temperate 

regions. Despite the high abundances of the pomacentrid Parma mccullochi in 

temperate waters of Western Australia, and their likely importance in removing algae 

from reefs in the region, there is a lack of information on their diet and their impact on 

the reef algal community. This study aims to determine the role of Parma mccullochi as 

an ecosystem engineer on temperate algal-dominated reefs in the metropolitan waters of 

Perth, Western Australia. To achieve this, the diet of P. mccullochi and any ontogenetic 

differences, and its impact on the reef in terms of algal composition and algal 

recruitment were determined. P. mccullochi in the temperate reefs of Western Australia 

was found to be a strict herbivore, with its diet comprising almost entirely red foliose 

and filamentous algae such as Hypnea spp., Ceramium sp. and Brongniatrella sp., and 

showing no ontogenetic shift. Based on electivity indices, P. mccullochi showed a 

positive selection for specific algal taxa such as Brongniartella sp., Dasyclonium sp., 

Hypnea spp. and Dictyopteris spp. The species composition of macroalgae differed 

significantly between inside and outside P. mccullochi territories (P = 0.010), and a 

caging experiment in P. mccullochi territories indicated a moderate effect on the 

composition of recruiting algae (P = 0.067). Algal assemblages inside the territories 

were characterised by Hypnea spp. and Dasyclonium spp., while those outside the 

territories were characterised by the brown algae Ecklonia radiata and Sargassum spp., 

the foliose red alga Rhodimenia sonderi and the coralline red alga Amphiroa anceps. 

Total algal biomass was significantly lower (P = 0.0126) while species richness was 

higher (P = 0.0114) inside compared to outside territories. This study, therefore, 

provides the evidence to refute the theory that temperate Pomacentridae have a low 

impact on the temperate reefs (Jones 1992). P. mccullochi has the capacity to structure 

the benthic composition of reefs and maintain high biodiversity patches within kelp 

canopies. This effect is amplified by the high abundances of the species observed in 

Perth metropolitan waters, and can therefore be considered an ecosystem 

engineer/landscaper of temperate algal dominated reefs, highlighting its importance in 

ecosystem processes of temperate reefs in the region. 
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Chapter 1 

Introduction 

1.1 Herbivory 

Herbivores are major consumers of primary producers in temperate and tropical 

ecosystems, making herbivory an important energy pathway in food webs (Huntly 

1991; Levenbach 2008). Herbivory is a vital process in the natural environment and is 

one of the major forces controlling the evolution, distribution and abundance of plants 

in marine and terrestrial ecosystems (Huntly 1991). Herbivores can influence the 

abundance of sympatric primary producer species and create habitat separation in plant 

communities or cause morphological changes in plants (Holt 1984; Karban and Baldwin 

1997; Ohgushi 2005). Among the factors that influence herbivory, the most important is 

the direct positive relationship with primary production (McNaughton et al. 1989). 

1.2 Herbivory in marine ecosystems 

Herbivory rates are much higher in the ocean than on land. For example, for a given 

level of primary production, aquatic herbivores showed to consume about 300% more 

food than terrestrial herbivores (Cyr and Pace 1993). Several factors influence this 

process in marine ecosystems. Firstly, herbivory increases rapidly when the most 

important factor, primary productivity, is high (McNaughton et al. 1989). Latitude is 

another influential factor, as the abundance and the richness of herbivorous species are 

inversely related to latitude, and directly related to the sea surface temperature (Floeter 

et al. 2005). Herbivory is also influenced by predation as, in presence of a strong trophic 

cascade, predators are more abundant and herbivory rates are lower (Hairston et al. 

1960). For example, between 1950 and 1970 along the coast of southern California, the 

forests of giant kelp Macrocystis pyrifera collapsed because the predators of sea 

urchins, such as sheephead wrasse and spiny lobsters, had been overfished (Foster and 

Schiel 2010). Due to the low presence of predators, the abundance of sea urchins 

increased, such as the amount of kelp consumed, causing the collapse of the kelp forest. 

This is also a clear example of the impact that herbivores can have on the algal 

composition of the reef. In fact, high rates of herbivory have been shown to affect reef 

assemblages both in tropical and temperate environment (Andrew and Jones 1990; 
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Ceccarelli 2007; Doropoulos et al. 2011). For example, Doropoulos et al. (2011) 

showed that the exclusion of large herbivores in tropical coral reefs had a positive 

impact on algal recruitment. Moreover, high rates of herbivory can change the 

physiology of plants and induce morphological adaptations, or the production of 

secondary chemicals which can influence the palatability of a plant to herbivores or 

decrease herbivory rates by attracting predators (Price et al. 1980; Huntly 1991). The 

primary herbivores in marine systems are crustaceans, molluscs, fishes, echinoderms, 

reptiles, and mammals (Huntly 1991). A range of these groups, including herbivorous 

fishes, can play an important role in seagrass systems, particularly in tropical regions 

(Bjorndal 1980; Valentine and Heck 1999; Masini et al. 2001); (Valentine and Duffy 

2006). Furthermore, herbivorous fishes are considered particularly important for coral-

reef environments (Gaines and Lubchenco 1982), as their grazing activity can determine 

the biological structure of coral reefs and strongly influence carbon flow (Horn 1989; 

Verges et al. 2011). As Connel et al. (2007) showed, the high grazing activity of 

herbivorous fishes in tropical coral reefs plays a key role in the regeneration of corals, 

by controlling algal growth.  

Most of the dietary and feeding activity studies on herbivorous fishes focus on tropical 

regions, where their main food resources comprise filamentous and turf seaweeds, 

epiphytic microalgae, invertebrates, other aquatic plants, associated meiofauna and 

detritus (Elliott and Bellwood 2003; Ceccarelli 2007; Castellanos-Galindo and Giraldo 

2008; Kramer et al. 2013). This assemblage of materials is called the epilithic algal 

matrix (EAM) (Wilson et al. 2003); however, they may also ingest some animal 

material, which is a good protein source (Tolentino-Pablico et al. 2008). Herbivorous 

fishes in coral-reef systems have been categorised into four functional groups: 

scrapers/small excavators, large excavators/bioeroders, grazers/detritivores and 

browsers (Green and Bellwood 2009). The first functional group feeds on coralline 

algae, algal turf and epilithic algal matrix (EAM, sensu (Wilson et al. 2003), and 

includes scraping species such as parrotfishes (Bellwood et al. 2004). They take non-

excavating bites and scrape material from the surface of the substratum. Large 

excavators/bioeroders are similar to the first group, but they also feed on coralline algae. 

Unlike scrapers, they take deeper excavating bites and remove greater parts of substrata 

with each bite (Bellwood and Choat 1990; Hoey and Bellwood 2008). This group 

includes all large individuals (>35cm SL) of excavating species of parrotfish such as 
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Bolbometopon muricatum and all species of the genus Chlorurus (Bellwood and Choat 

1990). Grazers/detritivores feed on epilithic algal turf and detritus, and with their 

intense grazing activity they can limit the growth of macroalgae on the reef (Hughes et 

al. 2007). In contrast with excavators, they don’t scrape or excavate the reef substratum 

when they feed (Green and Bellwood 2009). This group includes most species of 

rabbitfish, small angelfish such as Centropyge spp., and surgeonfish such as Acanthurus 

spp. (Green and Bellwood 2009). Grazers also include large vertebrates such as turtle 

and dugongs, which can have a strong impact on the biomass and species composition 

of tropical seagrasses in shallow water (Connell and Vanderklift 2007). The latter 

group, browsers, feeds on large fleshy macroalgae and foliose algae (Bennett and 

Bellwood 2011).  

Compared to tropical systems, herbivory in temperate ecosystems is considered to be 

dominated by large invertebrates such as sea urchins, which graze intensively on erect 

algae (Foster and Schiel 2010), and gastropods, which feed on foliose algae (Connell 

and Vanderklift 2007). The number of herbivorous fish species is considered to be 

relatively low (Tolentino-Pablico et al. 2008), but they are likely to play an important 

role due to high number of herbivorous fishes present in temperate regions (Jones 

1992). Despite this, few studies have been undertaken on this group of animals in 

temperate environments, highlighting a lack of understanding of fish herbivory in 

temperate systems.  

1.3 Herbivory in temperate ecosystems 

Key groups of herbivores appear to differ among different temperate ecosystems.  In 

seagrass ecosystems, small invertebrates play a key role due to their high herbivory 

rates and huge abundance (Heck and Valentine 2006). Herbivorous fishes can also play 

an important role in these systems (MacArthur and Hyndes 2007; Wressnig and Booth 

2008). The herbivorous fish Sarpa salpa in the Mediterranean Sea feeds mainly on the 

seagrass Posidonia oceanica (Prado et al. 2010). Labridae such as Odax acroptilus 

(MacArthur and Hyndes 2007) and Monacanthidae (Wressnig and Booth 2007; 

Wressnig and Booth 2008) also play an important role in the removal of seagrass and 

associated epiphytic algae in temperate seagrass systems. In comparison, intertidal 

rocky shores are dominated by gastropods, whose feeding impacts greatly on foliose 

algae, thereby playing a key role in the distribution of algae in this ecosystem 
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(Underwood 1980). In subtidal rocky habitats, sea urchin grazing activity is intense 

along the coast of California (Levenbach 2009) and eastern Australia (Fletcher 1987; 

Andrew 1993; Vanderklift and Kendrick 2004). For example, the black sea urchin 

Centrostephanus rodgersii removes virtually all erect algae along the coast of central 

and southern New South Wales (Fletcher 1987; Andrew 1993). Herbivorous fishes are 

also abundant in subtidal reefs and they prefer habitats with kelp or seagrasses than 

nearby habitat without vegetation (Harman et al. 2003; Thomson et al. 2012). These 

open-gaps between kelp canopies or other macroalgae are dominated by territorial 

species such as Parma spp.  (Harman et al. 2003; Thomson et al. 2012). Within these 

patches they establish their territories defending them from the other herbivorous 

species competing for the same food sources, which usually are red filamentous and 

foliose algae (Jones and Norman 1986; Buckle and Booth 2009). Even though fish 

herbivory is lower in temperate reefs, compared to coral reefs, it still is still considered 

to play a key role in structuring the plant community (Andrew and Jones 1990).  

However, there is far less known about fish herbivory in temperate versus tropical reefs. 

The most common and abundant families of herbivorous fishes in temperate reefs are 

Kyphosidae, Labridae, Aplodactylidae, Pomacentridae and Monacanthidae (Jones 1992; 

Meekan and Choat 1997). However, not all the species within these families are 

herbivorous. Kyphosidae and Pomacentridae are the most abundant families in algal 

reef systems and feed on different species of red and green turf algae (Jones 1992). In 

particular, Pomacentridae dominates the red algal zone in the patches among kelp 

canopy, where they establish their territories and chase other species, particularly those 

in Monacanthidae (leatherjacket) inhabiting the same area. On reefs, species of 

Monacanthidae feed on red algae in spaces between Pomacentridae territories and on 

epiphytic red algae growing on kelp (Jones 1992; MacArthur and Hyndes 2007). In 

comparison, Labridae feed directly on kelp (Ecklonia radiata) and seagrass, and are 

closely associated with the kelp forest (Jones 1992). 
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1.4 Ecology of Pomacentridae: their role in tropical and temperate reefs 

The Pomacentridae is one of the most representative families of herbivorous fishes 

inhabiting both tropical and temperate reefs (Allen 1991; Aguilar-Medrano et al. 2011), 

though not all the species are herbivores (Ceccarelli 2007). Most species are tropical, 

but some species are very abundant in temperate waters and are distributed worldwide 

(Aguilar-Medrano et al. 2011). The family includes 29 genera and more than 350 

species, which differ in habitat, feeding strategy and behaviour (Allen 1991; Aguilar-

Medrano et al. 2011). The life cycle of Pomacentridae involves a planktonic larval stage 

resulting in pelagic dispersion, after which individuals settle into reef habitats (Leis et 

al. 2002). 

Pomacentridae can be aggressive and territorial, protecting algal food sources and 

shelter in their territories (Low 1971), which can cover >50% of the substrata across a 

reef (Ceccarelli 2007). Tropical pomacentrid species are usually smaller compared to 

their temperate counterparts, and they feed within a smaller area (Ferreira et al. 1998; 

Hata and Kato 2004). For example, the temperate Parma mccullochi feed in an area of 9 

m2 (Saunders 2011), whereas the tropical Stegastes fuscus have a mean territory size of 

2.1 m2 (Ferreira et al. 1998), and Microspathodon dorsalis has a mean territory size of 

0.51 m2 (Montgomery 1980).  

Pomacentridae play an important role in shaping benthic reef communities (Ceccarelli 

et al. 2001) and they can affect the algal composition of the reef in 3 different ways: (1) 

directly feeding on algae; (2) with their weeding and farming activities; and (3) 

indirectly excluding other competitive herbivorous fishes. For example, with their 

farming activities, territorial damselfishes allow turf algae to develop into bigger 

macroalgae within their territories (Hata and Kato 2004). Moreover, they can have a 

direct local impact on the reef because they exclude other herbivores from their 

territories (Brawley and Adey 1977) and can also exercise “farming activities” such as 

providing nutrient fertilization and selective weeding (Ceccarelli et al. 2001; Jones et al. 

2006). In addition, their territorial behaviour facilitates survival of corals within the 

territories by chasing possible predators (Gochfeld 2010). The algal composition of 

Pomacentridae territories can vary between species, depending on the their behaviour 

(Hata and Kato 2004). For example, Hoey and Bellwood (2010) showed that S. 
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nigricans removes the undesirable algae and chases other fishes from their territories. 

With this behaviour, each fish maintains a small territory (0.3 m2) dominated by 

Polysiphonia sp., which is a red filamentous alga. In contrast, Stegastes obreptus does 

not “weed” undesirable algae from its territory and their chasing activity is lower than 

that of S. nigricans. Territories of this species are larger (6.3 m2) and contain a diverse 

assemblage of fleshy macroalgae (Hoey and Bellwood 2010). In addition, tropical 

Pomacentridae can have a strong impact on recruiting algae. In fact, their presence 

significantly increased turf algal cover whereas fleshy macroalgae were found in the 

herbivory exclusion treatment (Doropoulos et al. 2011). Due to these different 

behaviours affecting the structure of algae in the reef, territorial Pomacentridae could be 

compared to ecosystem-engineers or landscapers. Ecosystem engineers are organisms 

that have the capacity to modify the environmental conditions, and affect other species 

without direct trophic interactions (Jones et al. 1994). For example, the massive coral 

Montastraea annularis, which is a dominant frame-work builder of Caribbean coral 

reef, change the environment with its own physical structures (Foster et al. 2013). 

Seagrasses are also generally known as ecosystem engineers, as they modify the 

physical environmental parameters, for example reducing flow velocities in their 

canopies (Bos et al. 2007; Bouma et al. 2009).  Pomacentridae, like ecosystem 

engineers, could shape temperate reef ecosystems through creating this characteristic 

patchy structure. Despite this, only one study has tested the effect of Pomacentridae on 

algae assemblages in temperate reefs, and didn’t show any significant effect (Saunders 

2011).   

The diet of Pomacentridae usually shifts from zooplankton as larvae (Leis et al. 2002), 

to a combination of zooplankton and/or macrophytes as juveniles and adults, depending 

on the species (Allen 1991). For example, juvenile S. nigricans feed on invertebrates 

and algae, while adults consume mainly red turf algae and detritus (Letourneur et al. 

1997; Wilson and Bellwood 1997). The diet of tropical Pomacentridae can vary 

between different species (Letourneur et al. 1997; Ceccarelli 2007; Castellanos-Galindo 

and Giraldo 2008; Frederich et al. 2008), but they usually feed on red foliose and 

filamentous algae (Ceccarelli 2007; Feitosa et al. 2012). However, animal material and 

detritus can be also found in their diet (Letourneur et al. 1997; Ceccarelli 2007; Feitosa 

et al. 2012). Moreover, some species are selective towards certain food items indicating 

specialist feeding habits (Castellanos-Galindo and Giraldo 2008). The feeding rates of 
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territorial herbivorous fishes of tropical environments increase in the afternoon 

(“afternoon foraging”) (Horn 1989; Ferreira et al. 1998), probably because the 

nutritional content of algae on coral reefs is higher in the afternoon (Zemke-White et al. 

2002). In comparison, Parma spp. in temperate reefs have not shown a shift in the 

feeding rates over the day (Buckle and Booth 2009) and different species of temperate 

Pomacentridae have similar diets, mostly comprising red filamentous and foliose algae 

(Jones and Norman 1986; Buckle and Booth 2009). In contrast with their tropical 

counterparts, animal material is mostly found in juvenile’s diet, with the percentage of 

ingested animal material negatively correlated with the body size (Buckle and Booth 

2009). However, most studies on Pomacentridae have been done on species in tropical 

reefs, whereas the role of this family of fishes and its impact on temperate reefs has not 

been clearly studied and understood. 

The most abundant genus of Pomacentridae inhabiting rocky temperate reefs is Parma 

(Moran and Sale 1977; Choat 1982). Due to their territorial behaviour and their high 

feeding rates, this genus of herbivorous fishes appears to play a vital role in this 

temperate habitat (Buckle and Booth 2009). The most common species of Parma 

inhabiting temperate reefs of Western Australia is P. mccullochi, in particular (Saunders 

personal communication), followed by P. occidentalis, P. victoria and P. bicolor (Allen 

1991; Gommon et al. 1994). In comparison, P. microlepis and P. unifasciata are the 

most common species in temperate reef of eastern Australia (Moran and Sale 1977; 

Allen 1991; Gommon et al. 1994). Most of the studies on temperate Pomacentridae 

have focused on two species of Parma: P. microlepis, common in New South Wales, 

and P. victoriae, mainly in Victoria and South Australia (Moran and Sale 1977; Jones 

and Norman 1986). In contrast, few studies have focused on the most common Parma 

mccullochi.  

1.5 Parma genus in temperate reefs 

Parma species are limited in their distribution to Australasian waters (Allen and Hoese 

1975). Like tropical Pomacentridae species, temperate Parma spp. are territorial and 

aggressive (Sounders 2011(Moran and Sale 1977)). Adults are mainly herbivores, 

feeding on algae and associated benthic invertebrates (Moran and Sale 1977). In 

contrast with most of the tropical species, Parma spp. seem to have a minimal effect on 

the algal composition of the reef. For example, Jones (1992) showed that the feeding 
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activity of P. victoriae doesn’t have a significant impact on the species composition of 

the mixed algal turf. However, Parma spp. can affect the algal composition of the reef 

within the nesting sites through weeding activity (Saunders 2011).  

The few studies that have been done on the diet and feeding ecology of Parma spp. in 

temperate regions showed that they feed mostly on red foliose algae, and the diet 

changes between juveniles and adults (Jones and Norman 1986; Buckle and Booth 

2009). In fact, there is a positive correlation between the percentage of ingested algae 

and the body size (Buckle and Booth 2009). Furthermore, the bite rates decrease with 

body size but the feeding activity does not show significant differences during the day 

(Shepherd et al. 2008; Buckle and Booth 2009). Juveniles of Parma spp. appear to 

ingest more detritus and animal material, such as small invertebrates, than adults 

(Buckle and Booth 2009), probably to satisfy their energy and nitrogen demands (Choat 

1991) and the difficulty in digesting macroalgae (Horn 1989). As Buckle and Booth 

(2009) showed, the diet of Parma spp. can vary between different species. For example, 

the diet of adults P. microlepis comprises 67% of algal material, 18% polychaetes, 10% 

molluscs and 5% crustaceans, which contrasts to the adults of P. unifasciata whose diet 

contains more algal material (94%), and a small percentage of animal material (4% 

polychaetes and 2% crustaceans). 

1.6 Thesis aims and significance  

Parma mccullochi is highly abundant in temperate waters of Western Australia, 

especially in the area around Perth (Saunders personal communication), and displays 

strong territorial and farming behaviour (Saunders 2011). As a result, this species is 

likely to have a significant influence on the algal composition on temperate reefs in the 

region. Despite this, there is a lack of information on its dietary composition and its 

impacts on reef algae. The broad aim of this study is, therefore, to determine the role of 

P. mccullochi as an ecosystem engineer on temperate algal-dominated reefs. The results 

of this study will provide a better understanding of the processes driving the diversity 

and productivity of macroalgal assemblages on temperate reefs that will feed into better 

management and planning of Marine Protected Areas of Western Australia. To achieve 

this, the study will address the following research questions: 
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1 What is the dietary composition of P. mccullochi and does it shift between life 

history stage and time of year?  

 

2 Does the feeding activity of P. mccullochi affect the algal composition and 

recruitment on temperate reefs? 
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Chapter 2 

Study sites and methods 

2.1 Study Area  

The study focused on marine waters adjacent to Perth, Western Australia, and 

specifically, in four different sites in the Marmion Marine Park (31°50’S, 115°42’E) 

(Fig. 2.1). The marine park is characterized by a series of parallel subtidal limestone 

reefs, dominated by the kelp Ecklonia radiata, associated with red algae inhabiting 

the understory (Toohey et al. 2004). The reef system runs parallel to the coast line 

for 15 km between 3 and 5 km offshore and is exposed to the swells coming from 

the open ocean, and also to the warm waters of the Leeuwin Current that flow south 

along the coast of Western Australia (Wernberg et al. 2003; Toohey et al. 2004). 

The reefs are separated by sandy patches and seagrass meadows dominated by 

Posidonia spp., Halophila spp. and Amphibolis spp. (Pearce 1991; Kirkman 1997). 

Parma mccullochi is an abundant species on the reefs in the region, where 

individuals maintain large territories chasing other species away (Saunders 2011).  

Four sites (Fig. 2.1) were randomly chosen to represent the reef habitats where P. 

mccullochi is abundant. These four sites were used to address each aim of the study. 
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                                                                                                                   2 Km 

  

Fig. 2.1 Map showing the location of the Marmion Marine Park in Western Australia 

and the location of the Study sites in Marmion Marine Park (adapted from Department 

for Planning and Infrastructures W.A.)   
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2.2 Impact of the feeding activity of P. mccullochi on algal composition of reefs 

The effect of Parma mccullochi feeding activity on the algal community was 

determined by examining the algal composition inside and outside Parma feeding 

territories (both adults and juveniles). While scuba diving, the observer (F. Vitelli) 

examined the presence of the fish and its feeding behaviour for 15 minutes (Altmann 

1974; Saunders 2011) to identify the boundaries of a range of Parma feeding territories 

at the above four sites. Eight areas inside and eight areas outside eight different Parma 

feeding territories were randomly chosen within each site, and the biomass of different 

taxa of algae within each area was determined by collecting algae within a 25 x 25 cm 

quadrats from the 15th to the 26th of February 2012. All the algae present in each quadrat 

were removed manually, cutting all algae at the base with a knife and, if necessary, 

scraping with a wiper tool (Adey 1977). Each algae sample was placed in a cotton bag 

and returned to the boat, where it was placed on ice. On return to the laboratory, the 

samples were frozen for subsequent processing. Subsequently, each sample was rinsed 

with water to remove any sediment and spread on a white sheet. The algal taxa were 

separated, dried in an oven at a temperature of 80�C for 48 hours, and the biomass of 

each taxon was weighed to 0.001 g (dry weight).  

Differences in the algal composition between inside and outside the territories were 

analysed using a nested PERMANOVA (Anderson et al. 2008), with sites (4 levels, 

random factor) nested in territory (2 levels, fixed factor).  Analyses were conducted 

using 9999 permutations, based on a Bray-Curtis similarity matrix using square root 

transformed data. nMDS plots based on a Bray-Curtis similarity matrix were generated 

to visually represent relative similarities (Anderson et al. 2008) in algal composition 

between inside and outside territories. Nested PERMANOVA test, with sites (4 levels, 

random factor) nested in territory (2 levels, fixed factor) was used to test total biomass 

(all species together) and species richness differences between inside and outside 

territories and among sites. These univariate analyses were undertaken using Euclidean 

distance measures; which produces estimates of sums of squares equal to parametric 

ANOVA, but the use of permutation allows for significance to be tested without the 

assumption of normality (Anderson et al. 2008). All data were tested for homogeneity 

using a sphericity test (Mauckly-test). Biomass data were Log-transformed to achieve 

homogeneity. The algal species likely to be driving the algal composition of the 
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territories and outside the territories were determined by their correlations (Spearman 

correlation coefficient set at r > 0.6) with the canonical axes of the nMDS. All tests 

were conducted with PRIMER 6. 

 

2.3 Dietary composition of juvenile and adult Parma mccullochi!

Five juveniles (size class: 0-20 cm; recognisable for their shiny blue stripe on the back) 

and five adults (size class: >20 cm; totally black/dark brown with no blue stripes) fish 

were collected randomly from each of the four sites at the same time of day by spear 

fishing on two sampling occasions (April and September 2012). The fish were collected 

at a time of day just after their highest feeding activity (between 11:00 and 14:00, 

determined from pilot work for the feeding activity study, which represents the time 

when the gut fullness is greatest and dietary items are the least digested. Once on the 

boat, the fish were placed in a slurry of ice and returned to the laboratory for processing 

(Buckle and Booth 2009). In the laboratory, each fish had its total length (to the nearest 

1 mm) and weight (to the nearest 0.1 g) recorded. Its stomach was then removed, 

weighed to the nearest 0.1 g and frozen for later examination. The stomach fullness was 

determined from the stomach weight index based on the stomach weight divided by the 

somatic weight of the fish and expressed as a percentage and also represented as an 

index from 1(empty) to 5 (full).  

For dietary analyses, the stomach content was examined under a dissecting microscope 

to determine the taxa of algae present in each gut and their proportions following the 

procedures of (Buckle and Booth 2009). In summary, the material present in the 

stomach was placed into petri dish filled with water and the gut content was evenly 

spread on a grid. The taxon present at each of 100 systematically placed points was 

identified to species level when possible, and the percentage of each food item was 

determined. The percentage of each food item was expressed as percentage volume, 

based on the number of points on which it was found for each gut.  

Feeding selectivity was also examined, based on comparing the percentage of each 

taxon of algae in the diets with the percentage of that taxon in the territories. The 

percentage of each taxon in each replicate quadrat in the territory at each site was 

determined by dividing the biomass of each taxon by the total biomass of all taxa in 

each quadrat and expressed as a percentage. The average percent of each taxon was then 
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calculated across all sites. This comparison used Ivlev’s electivity index (Ivlev 1961) 

due to its simplicity and its suitability for dietary studies (Jones and Norman 1986). The 

formula is Ei=(ri-pi)/(ri+pi), where ri is the percentage of the “i” algal species in the diet 

and pi is the percentage of the same “i” species in the field. Values of the index range 

from -1 (lowest selectivity for the species) to +1 (maximum selectivity). The value 0 

indicates random feeding on the food item (Ivlev 1961). 

Percent dietary data were compared between juveniles and adults (Life stage), and 

among sites (Site) nested in Life stage using PERMANOVA (Anderson et al. 2008). 

Life stage was considered as a fixed factor with two levels, while Site was considered as 

a random factor with four levels. All data were square root transformed to reduce the 

effect generated by different orders of magnitude in the percentage values and achieve 

homogeneity, and analyses were based on 9999 permutations from the Bray-Curtis 

similarity matrix (Anderson et al. 2008). Non-metric Multidimensional Scaling (nMDS) 

plots were run to visually represent relative similarity of samples from each factor. The 

algal species likely to be driving the diet composition of P. mccullochi were determined 

by their correlations (Spearman correlation coefficient set at r > 0.6) with the canonical 

axes of the nMDS. All tests were conducted with PRIMER 6. 

 

2.4 Impact of feeding on algal recruitment 

 

Within each of the four sites described above, 12 roughened PVC tiles (25x25 cm) 

(Smale et al. 2011) were set up inside the Parma territories (on tile for each territory) 

for a period of 6 months (from March 2011 to September 2012), which is a sufficient 

period of time needed for this type of experiment (Pech et al. 2002; Doropoulos et al. 

2011). Each tile was attached to a concrete tile (40x40 cm) by 2 galvanised screws, 

which was fixed onto the reef by scuba divers using pegs and ropes.  For the 

experiment, 4 tiles were caged (5 X 5 cm mesh size and 27.5 X 27.5 cm cage base by 40 

cm height) to prevent feeding activity of Parma, 4 were without a cage and 4 were 

partially caged (with 2 sides of the cage open to let the fish go through it and feed on the 

tile) as cage controls (Fig. 2.2). During the 6-month deployment, tiles and cages were 

inspected and maintained (i.e. to replace cable ties) every 10 days (Smale et al. 2011). 

At the end of 6 months, all the panels were collected and returned to the laboratory, 

when a high-resolution digital image of each panel was taken for reference, and then 
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each panel was frozen for subsequent laboratory processing. For processing, each tile 

was thawed and rinsed with water to remove any sediment. The algae from each panel 

were scraped, and the different algal taxa separated and oven dried at 800C for 48 hours, 

after which the biomass of each taxon was measured to 0.001 g (dry weight) 

  A                                                      B C 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Three different treatments for the recruitment experiment: Uncaged PVC tile 

(A), Caged (B) and half caged control (C). Tiles were deployed for a period of 6 

months. 

 

 

 
Fig. 2.3 Diagram of the recruitment experiment design. 
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Biomass differences in the algal composition among treatments (caged, partially caged 

and uncaged tiles) were analysed using nested PERMANOVA+ (Anderson et al. 2008), 

with sites (4 levels, random factor) nested within treatment (3 levels, fixed factor). 

Analyses used 9999 permutations, based on a Bray-Curtis similarity matrix from square 

root transformed data. Data were square root transformed to reduce the effect generated 

by different orders of magnitude in the values and achieve homogeneity. nMDS plots, 

based on a Bray-Curtis similarity matrix, were generated to visually represent relative 

similarities in algal composition among treatments (caged, uncaged and controls, and 

sites). Nested PERMANOVA test (Anderson et al. 2008), with treatments (3 levels, 

fixed factor) and sites (4 levels, random factor) nested in treatments was used to test 

total biomass (all species together) and species richness differences between treatments 

and between sites. These univariate analyses were undertaken using Euclidean distance 

measures; which produces estimates of sums of squares equal to parametric ANOVA, 

but the use of permutation allows for significance to be tested without the assumption of 

normality (Anderson et al. 2008). The algal species likely to be driving the algal 

composition on the recruitment tiles were determined by their correlations (Spearman 

correlation coefficient set at r > 0.6) with the canonical axes of the nMDS. All data were 

tested for homogeneity using a sphericity test (Mauckly-test). All data were Log-

transformed to achieve homogeneity. All tests were conducted with PRIMER 6.  
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Chapter 3 

Results 

 

Photograph: Juvenile Parma mccullochi 
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3.1 Gut contents and diet analysis. 

The range of collected fish sizes for juveniles was 10.5-19.8 cm, and for adults 22-30.4 cm. All 

stomachs of Parma mccullochi were found full (mean fullness ≥4), with a mean gut 

weight index exceeding 2 % of the somatic weight of fish (Table 3.1), and food items 

inside were not digested. As a consequence, food items were easily identified, apart 

from some of the smallest fragments of algae, which were grouped under broad 

categories such as red, brown or green and filamentous or foliose algae. A variety of red 

(Rhodophyta), green (Chlorophyta) and brown (Phaeophyta) algae were found inside 

the stomachs of both juvenile and aduls P. mccullochi during the two sampling 

occasions (April and August). The most frequently consumed species was Hypnea spp., 

followed by Ceramium sp., Champia spp., Derbesia sp., Dictyopteris sp., Dasyclonium 

sp., Hinksia sp., red foliose algae, and Ulva lactuca (Table 3.1). 

 

Fig. 3.1 Stomach contents of P. mccullochi. 

PERMANOVA showed that there were significant temporal differences in the diet of P. 

mccullochi (Table 3.2). This was also highlighted by a clear separation of samples from 

April and August in the nMDS plot (Fig. 3.2). PERMANOVA also showed that there 

was no significant difference in the dietary composition between juvenile and adult P. 

mccullochi, but there was a significant difference among sites (Table 3.2). This was 

highlighted by a general separation of samples from sites 3 and 4 and from sites 1 and 2 

from each other (Fig. 3.5A and B). Based on Spearman rank correlations, in April, the 

most recurrent species of algae found in the stomachs were Hypnea spp., Derbesia Sp. 

and Dasyclonium spp.; these three dominant food items were still present in the stomach 

contents from August but with a smaller percentage. In comparison, Ceramium sp. and 

red foliose algae were the most characteristic algae in the diets during August (Fig. 3.2).  

The main differences in the diets were found between offshore (1 and 2; 12 m deep) and 

inshore (3 and 4; 5 m deep) sites. Based on Spearman rank correlations, in April, 

Dasyclonium spp. was the species characterizing the diet of the fish collected within 
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sites 1 and 2 (offshore). On the other hand, Hypnea spp. and Ulva lactuca were 

characteristic of inshore sites (3 and 4) (Fig. 3.3A). In August, Dasyclonium spp. and 

red foliose algae were characterizing the diet of the fish collected within offshore sites 

(1 and 2), and Ceramium sp. was characteristic particularly within the inshore shallow 

site 3 (Fig 3.3B). 

In April, the main differences in the diets between offshore (1 and 2; 12 m deep) and 

inshore (3 and 4; 5 m deep) sites were the percentage of the two dominant food items 

Hypnea spp. and Dasyclonium spp. (Fig. 3.3B). The first was more abundant in the 

stomachs of fish collected at sites 3 and 4 (inshore), and Dasyclonium was much less 

abundant, while fish collected within sites 1 and 2 (offshore) consumed more 

Dasyclonium spp. reducing the percentage of Hypnea spp. Ingested (Figs 3.3 and 3.4). 

The species driving the differences between sites 3 and 4 was Ulva lactuca, which was 

found more abundant at site 3 (Fig. 3.4A). In August, Hypnea spp. showed relatively 

consistent contribution to the diets across sites, whereas Brongniartella sp. ranged from 

59.96-52.04 % at sites 1-2 compare to 0 % at sites 3-4 (Fig. 3.4B). Fish collected within 

inshore sites 3 and 4 were shown to feed more on red foliose algae (max: 58.09% - site 

3) and Ceramium sp. (max: 88.55% - site 4) (Fig. 3.4B). 

Feeding selectivity of P. mccullochi 

Ivlev’s electivity index, calculated on percentage of algal species in the stomachs of 

Parma mccullochi and their percentages inside the territories from the first sampling 

occasion (April), showed that certain species were preferred to others (Table 3.1). In 

fact, species with a high electivity index, such as Brongniartella sp., Dasyclonium sp., 

Hypnea spp. and Dictyopteris spp. (Table 3.1), also made the greatest contributions to 

the diet of fish in April (Fig. 3.4). However, species found in low biomass in the Parma 

territories (e.g. Heterodoxia sp., Champia spp.) and in low percentages in the guts 

showed a high electivity index (Table 3.1). In contrast, species such as Pterocladia 

lucida, Dictyomenia spp. and Ceramium sp., which were present in high biomass in 

territories but low proportions in stomachs, had electivity indices close to -1 (Table 3.1). 
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Table 3.1 Mean percentage volume (%V), frequency of occurrence (%F) and Ivlev’s 

Electivity index (Ei) of dietary items in the stomachs of juvenile and adult Parma 

mccullochi, with mean gut index as a weight standard and gut fullness. Data have been 

pooled from two sampling occasions (April and August) and four sites. 

  JUVENILES  ADULTS 

Gut weight index 
(%) 

2.7671±0.002  2.3317±0.001  

Gut fullness (1-5) 4±0.2 4.5±0.2  

Species % F % V Ei % F % V Ei 

Rhodophyta 72.52 86.34   80.19 89.54   

Foliose  22.8 31.67   22.58 16.18   

Dictyomenia sonderi 11.1 0.47 -0.56 23.1 1.53 -0.44 

Dictyomenia tridens  13.9 3.17 0.27 0 0.10 -1 

Heterodoxia sp. 16.7 1.91 0.89 23.1 2.19 0.88 

Rhodimenia sonderi 30.6 1.51 -0.37 30.8 1.13 -0.39 

Unidentified  41.7 24.60 0 35.9 11.24 0 

Corticated 26.38 17.4   35.03 30.18   

Asparagopsis sp

Botrocladia sp. 8.3 0.37 -0.36 5.1 0.08 -0.81 

Champia spp. 33.3 2.33 0.87 61.5 3.14 0.81 

Hypnea spp. 91.7 13.89 0.4 92.3 24.02 0.64 

Pterocladia lucida 8.3 0.25 -1 10.3 0.55 -0.31 

Pterocladia 
rectangularis 

11.1 0.28 0.57 20.5 0.88 0.83 

Filamentous 23.34 37.27   22.58 43.18   

Ceramium sp. 38.9 9.53 -1 43.6 18.06 -1 

Brongniartrella sp. 38.9 15.97 0.6 15.4 20.35 0.62 

Dasyclonium sp. 13.9 10.94 0.98 2.6 1.26 0.77 

Polysiphonia sp. 11.1 0.52 0.39 12.8 0.51 0.05 

Erythrimenia minuta 13.9 0.32 -0.13 38.5 3.00 0.83 

Phaeophyceae 64.87 6.79   53.8 6.63   
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Foliose 23.17 3.67   28.2 5.18   

Dictyata dichotomia 13.9 1.02 -0.56 15.4 0.48 -0.08 

Dictyiopteris sp. 50 2.46 0.39 56.4 4.31 0.66 

Sargassum spp.  5.6 0.20 -1 12.8 0.39 -1 

Filamentous 41.7 3.12   25.6 1.45   

Hinksia spp. 41.7 3.12 0 25.6 1.45 0 

Chlorophyta 80.5 6.87   76.9 3.73   

Foliose 33.3 5.01   48.7 2.56   

Ulva spp. 33.3 5.01 0.59 48.7 2.56 0.16 

Filamentous 47.2 1.86   28.2 1.17   

Cladophora sp. 47.2 1.86 0.98 28.2 1.17 0.98 

Seagrasses 0 0   10.2 0.1   

Amphibolis spp. 0 0 -1 10.2 0.10 -1 
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Fig. 3.2 nMDS plots based on a Bray-Curtis similarity matrix of stomach contents of 

Parma mccullochi collected in April and August 2012, highlighting differences between 

the two sampling occasions. Vectors represent the species characterizing the 

composition of the diet during the two sampling occasions (April and August 2012), 

(Spearman correlation=0.6). Data were square root transformed. 

 

Table 3.2 Results of nested PERMANOVA testing life stage (juveniles or adults) and 

temporal differences in the diet of Parma mccullochi. Mixed design with sites (Random 

factor, 4 levels) nested in treatments (Fixed factor, 2 levels), and time of the year (Fixed 

factor, 2 levels). Fish were collected in April and August 2012, data were square root 

transformed.  

 

 df      MS          Pseudo-F  P(perm)   perms         Comp Var       
 
Life Stg (L)  1    4913.5        0.54617  0.6253   1667             -112.17 
Month (M)  1    33726 8.7986  0.0023   9946               821.27 
S(L)  6    9084.8 7.8285  0.0001   9880               861.12 
L x M  1    4681.7 1.2214  0.3139   9954                 46.631 
S (L)x M  6    3863.3 3.3291  0.0001   9826               587.42 
Res            59       1160.5                
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    A 

 

    B   

 

Fig. 3.3 nMDS plots based on a Bray-Curtis similarity matrix representing stomach 

contents of Parma mccullochi collected in April 2012 (A) and August 2012 (B), 

highlighting the differences between sites. Vectors represent the species characterizing 

the composition of the diet (Spearman correlation=0.6). Data were square root 

transforme 
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(A)   

 

(B) 

 

Fig. 3.4 Mean percentage contribution of the various algal species to the diet of Parma 
mccullochi collected in April (A) and August (B) 2012, within each of the four sites. 
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3.2 Impact of the feeding activity of P.mccullochi on the algal composition of the 

reef 

PERMANOVA showed that the species composition of macroalage differed 

significantly between inside and outside Parma mccullochi territories (Table 3.3) and 

this was supported by samples representing the species composition generally forming 

clusters associated with inside or outside territories on the nMDS plot (Fig. 3.5). Algal 

assemblages inside the territories were characterised by Hypnea spp. and Dasyclonium 

spp., while those outside the territories were characterised by the brown algae Ecklonia 

radiata and Sargassum spp. and the foliose red alga Rhodimenia sonderi (Fig. 3.5). The 

coralline red alga Amphiroa anceps also displayed a high correlation, but this was not 

associated with a pattern in the species composition between inside and outside 

territories. Species composition also differed among the four sites (Table 3.3).  

Total algal biomass was significantly lower inside compared to outside the territories of 

P. mccullochi, but there was no significant difference among sites within treatment 

(Table 3.4, Fig. 3.6). In comparison, species richness was higher inside than outside the 

territories, but again, there was no difference among the four sites (Table 3.4, Fig. 3.6).  
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Fig. 3.5 nMDS plots based on a Bray-Curtis similarity matrix representing the algal 

composition inside (triangles) and outside (squares) the territories of Parma mccullochi. 

Vectors represent the genera characterizing the algal composition of the samples 

(Spearman correlation=0.5). Data were square root transformed. 

 

Table 3.3 Results of nested PERMANOVA testing the differences in terms of algal 

composition between inside and outside Parma mccullochi territories. Nested design 

with Sites (Random factor, 4 levels) nested in Treatments (Fixed factor, 2 levels). Data 

were square root transformed.  

 

 

 

 

 

 

 

 DF                   MS                   Pseudo- F                       p     

Treatments 1   33892  7.723                         0.0103 

Sites (Treat) 6                      4397.2 1.6031                        0.0022 

Residual 53  2742.8 
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Fig. 3.6 Mean total biomass (A) and species richness (B) of algae inside and outside the 

territories of Parma mccullochi at four different sites. Error bars to one SE. 

 

Table 3.4 Results of nested PERMANOVA testing the differences in terms of total 

biomass and species richness of algae inside and outside Parma mccullochi territories. 

Nested design with sites (Random factor, 4 levels) nested in treatments (Fixed factor, 2 

levels). Species richness data were square root transformed, and biomass data were Log 

(X+1) transformed.  

  Total Biomass Species richness 

 DF         MS             Pseudo- F                p           MS             Pseudo- F                p     

Treatments 1 3382.3         18.161        0.0126       3228.3         36.832       0.0114 

Sites (Treat) 6 186.18         208.4          0.5123 87.654          1.017        0.4325 

Residual 54 208.4 86.187 
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3.3 Impact of Parma mccullochi feeding activity on algal recruitment. 

Due to adverse weather conditions, including storms producing 5-6 m swell, the results 

of this experiment have been heavily compromised. The strong swell destroyed many 

cages, and therefore, several replicates (14) were lost. A storm on August 2012 

produced a 6 m swell and 40 knot wind, which resulted in the metal mesh of many 

cages falling apart and scratching the surface of the PVC tiles. Therefore, to better 

represent the real impact of the feeding activity of Parma mccullochi on the recruitment 

of algae, only those tiles scratched over <15% of the surface area were included in the 

analyses. Biomass and percentage cover were calculated from the sections of tiles that 

were not scratched. This experiment is being repeated during the summer/autumn 

(January to May 2013) when the weather is likely to be less extreme. However, the data 

were not available for this thesis, and rely on the earlier, compromised experiment.  

Total biomass of algae did not differ among treatments or sites within treatment (Table 

3.5). In terms of species richness, PERMANOVA showed significant differences among 

sites within treatment, but not among treatments (Table 3.5).  However, algal 

composition was close to being significantly different among treatments (P = 0.066) and 

significantly different among sites (Table 3.6). This was highlighted by the overlap of 

samples from caged, uncaged and controls in the nMDS plot (Fig. 3.8A), but a general 

separation of samples from sites 1 and 3 (Fig. 3.8B).  

Based on the Spearman rank correlations, Laurencia sp. Hypnea spp., Hinksia sp. and 

Ceranium sp. provided the highest correlations with the samples in the nMDS (Fig. 3.8 

A-B). However, these species did not reflect any of the patterns across treatments or 

sites in that plot. Furthermore, the biomass of all three of these species did not differ 

significantly among treatments, and only Hinksia spp. differed among sites (Table 3.7). 

Hinksia sp. tended to have greater biomass at the inshore sites 3 and 4 (Fig. 3.9).   
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Fig. 3.7 Mean (+SE) total biomass of algae (A) and species richness (B) on recruiting 

algae on tiles within caged, uncaged and controls at four sites in Marmion Lagoon, 

examining the effect of Parma mccullochi feeding activity on recruiting algae.!Error 

bars to one SE.!

 

Table 3.5 Results of nested PERMANOVA testing the effect of Parma mccullochi 

feeding activity on recruiting algae. Nested design with Sites (Random factor, 4 levels) 

nested in Treatments (Fixed factor, 3 levels). Species richness data were square root 

transformed, and biomass data were Log transformed. 

  Total Biomass                                   Species richness 

 DF         MS             Pseudo- F                p        MS             Pseudo- F                p  

Treatments 2 388.22                1.0259                 0.39  118                    0.48853             0.6242 

Sites (Treat) 9 387.02                1.2803                0.2837 256.03                 2.2628             0.0476 

Residual 24 302.29 113.15        
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A 
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Fig. 3.8  nMDS plots based on a Bray-Curtis similarity matrix representing the species 

composition of algal recruits on PVC tiles, highlighting the differences among 

treatments (A) and sites (B). Vectors represent the species characterizing the algal 

composition (Spearman correlation>0.6). Data were square root transformed. 
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Table 3.6 Results of nested PERMANOVA testing the differences in the composition 

of recruiting algae on tiles among treatments (caged, uncaged and controls) and sites. 

Nested design with sites (Random factor, 4 levels) nested in treatments (Fixed factor, 3 

levels).  

 DF                   MS                   Pseudo- F                       p     

Treatments 2                    4671.6  1.6627                       0.0664  

Sites (Treat) 8                     2996.5                   1.7643                     0.0025 

Residual 18                  1698.4 
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Fig 3.9 Mean biomass (g) of the different algae species found on the PVC tiles in 

treatments (caged, uncaged and controls) deployed inside Parma mccullochi territories 

at four different sites on the reef for a period of 6 months. Error bars to one SE. 
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Table 3.7 Results of nested PERMANOVA testing the differences in the biomass of the 

three characteristic species of algal recruits (Ulva lactuca, Ceramium spp. and Hinksia 

spp.) among sites (Fixed factor, 4 levels) nested in treatments (Fixed factor, 3 levels). 

 Ulva lactuca Ceramium spp. Hinksia spp. 

 DF                    MS         Pseudo- F           p    MS         Pseudo- F         p    MS         Pseudo- F       p 

Treatments 2                    5.765         9.42      0.9165 0.45134      1.6303      0.2432 0.82771  0.89526      0.409 

Sites (Treat) 9 0.6173     1.4064          0.2215 0.27542     0.84954      0.5813 0.94096    2.479    0.0338 

Residual 26                   0.43893    0.3242 0.37957 
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Fig. 3.10 Visual differences in representative replicates for the treatments of the algal 

recruitment experiment two months after deployment: differences in the algal recruits 

can be noticed between uncaged (B), controls (A) and caged (C) PVC tiles. 
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Chapter 4 

Discussion 

4.1 Diet of Parma mccullochi 

This study provides one of the few accounts of the diets of Pomacentridae in the 

temperate environment. Parma mccullochi in the temperate reefs of Western Australia 

is predominantly an herbivore, with its diet mostly comprising red foliose and 

filamentous algae such as Hypnea spp., Ceramium sp. and Brongniatrella sp. This was 

similar to the diets of the few species of Pomacentridae whose diets have been 

examined in temperate reefs (Jones and Norman 1986; Buckle and Booth 2009). For 

example, the diet of Parma victoriae was mostly composed of the red algae Champia 

spp., Hypnea sp., Rhodoglossum sp., and Dictymenia sp. (Jones and Norman 1986), and 

Parma microlepis and P. unifasciata also fed on red foliose algae (Buckle and Booth 

2009). Animal material was also found in the diet of temperate Pomacentridae, 

especially in the juveniles (Buckle and Booth 2009). For example, Buckle and Booth 

(2009) showed that the diets of adult P. microlepis comprised 67% algal material and 

33% of animal material. In contrast, only a minimum percentage of animal material was 

found in the stomachs of P. mccullochi, probably ingested by mistake while feeding on 

algae. This was similar to P. unifasciata in temperate eastern Australia, which ingested 

95% plant material (Buckle and Booth 2009). Thus, P. mccullochi appears to be 

essentially a strict herbivore in temperate reefs of Western Australia, and therefore one 

of the few herbivorous fish species in temperate environments, where only 3% of fish 

species are considered to be herbivorous (Tolentino-Pablico et al. 2008). In comparison, 

other temperate herbivorous fish families such as Blennidae and Kyphosidae feed 

selectively on filamentous and fleshy turf algae (Tolentino-Pablico et al. 2008). For 

example, the diets of Girella spp. (Kyphosidae) and Sarpa salpa (Sparidae) have been 

shown to mostly comprise Chlorophyceae of the genera Cladophora, Enteromorpha and 

Ulva, while Kyphosus spp. (Kyphosidae) consumed Phaeophyceae in the genera 

Sargassum and Dictyota (Tolentino-Pablico et al. 2008). However, Sarpa salpa in the 

Mediterranean Sea feeds mainly on the seagrass Posidonia oceanica (Prado et al. 2010). 

Labridae such as Odax acroptilus (MacArthur and Hyndes 2007) and Monacanthidae 

(Wressnig and Booth 2007; Wressnig and Booth 2008) also play an important role in 

the removal of seagrass and associated epiphytic algae in temperate seagrass systems, 
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but less is known about their role in temperate reefs. Moreover, the diet of P. 

mccullochi is also different from herbivorous invertebrates, such as sea urchins, which 

feed mostly on laminarian algae such as kelp (Foster and Schiel 2010). 

Like Parma mccullochi in temperate Western Australia, foliose red algae such as 

Hypnea are the most dominant genus in the diet of many species of tropical 

Pomacentridae (Ceccarelli 2007). However, their diet can vary between different 

species (Letourneur et al. 1997; Ceccarelli 2007; Castellanos-Galindo and Giraldo 2008; 

Frederich et al. 2008). For example, Ceccarelli (2007) showed that different species of 

tropical Pomacentridae in the same fish community ranged from being herbivores to 

detritivores and omnivores. Many tropical Pomacentridae also ingest large quantities of 

invertebrates (Letourneur et al. 1997). For example, animal material such as amphipods 

and copepods make up a significant contribution to the diet of Stegastes nigricans in 

Reunion island (Letourneur et al. 1997) and Abudefduf concolor in the western coast of 

Colombia (Castellanos-Galindo and Giraldo 2008), and few species of Pomacentrus 

(Ceccarelli 2007).  

No significant ontogenetic differences were found in the diet of Parma mccullochi. This 

is in contrast with other tropical and temperate Pomacentridae (Letourneur et al. 1997; 

Castellanos-Galindo and Giraldo 2008; Buckle and Booth 2009). For example, the 

proportion of algae in the diet of P. microlepis and P. unifasciata was positively related 

to the body size (Buckle and Booth 2009). In tropical Pomacentridae, the amount of 

animal material ingested was significantly higher in the juveniles compared to adults of 

Stegastes nigricans (Letourneur et al. 1997). Head shape and mouth morphology are 

two key factors influencing the feeding behaviour and diet of Pomacentridae (Frederich 

et al. 2008; Aguilar-Medrano et al. 2011). Furthermore, species can display an 

ontogenetic increase in the length of digestive tract as they display an ontogenetic shift 

in their diet to macroalgae (Buckle and Booth 2009). Thus, the mouth morphology and 

relative gut length of juvenile and adult P. mccullochi may be similar and might help 

juveniles ingest and digest red foliose and filamentous algae. Collection of such 

morphometrical data would be required to test this hypothesis, but no studies have been 

done on this topic for P. mccullochi yet. Juvenile herbivorous fishes ingest more detritus 

and animal material, such as small invertebrates, than algae to satisfy their energy and 

nitrogen demands (Choat 1991) and overcome the difficulty in digesting this material 
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(Horn 1989). In contrast, animal material was not present in the stomachs of juvenile P. 

mccullochi. This study provides the first evidence of temperate Pomacentridae species 

being herbivorous as both juveniles and adults. It is possible that this reflects sufficient 

food availability due to the high abundance of food present in the territories. In addition, 

it is possible that both juvenile and adult P. mccullochi have endogenous enzymes that 

help them digest rhodophytes. This occurs in other herbivorous species, such as 

Kyphosus sydneyanus, which rely on endogenous enzymes for the digestion of 

chlorophytes and rhodophytes for their energy (Moran and Clements 2002). However, 

no studies have shown these enzymatic activities in P. mccullochi.  

Temporal differences were found in the diet of Parma mccullochi; they still consumed 

red foliose and filamentous algae, but the species ingested differed slightly between 

April and August. Temporal differences in their diet may suggest a shift in availability 

of different foliose and filamentous species in the territories during the year. However, 

seasonal differences in algal composition were found to be small in Marmion Lagoon 

(Wernberg et al. 2003), where this study was carried out. Similar patterns in temporal 

dietary shifts were found in tropical territorial Pomacentridae (Letourneur et al. 1997). 

However, Castellanos (2008) showed that there were no temporal differences in the diet 

of Abudefduf concolor, suggesting that different species exhibit different feeding 

behaviour. Indeed, as stated earlier, tropical Pomacentridae display highly diverse diets 

and algal compositions within territories (Ceccarelli 2007).  

 

4.2 Impact of Parma mccullochi on temperate reefs 

In this study, Parma mccullochi had a significant impact on the algal community of 

temperate reefs, by influencing the algal assemblages in their territories and algal 

recruitment (even it if was only close to being significant). P. mccullochi maintained a 

higher species richness and a different algal species composition inside compared to 

outside territories, which is similar to tropical Pomacentridae. For example, tropical 

territorial damselfish Eupomacentrus planifrons have a direct impact on the algal 

composition of the reef by excluding other herbivorous fish from their territories, where 

they maintain a higher algal biomass and biodiversity, while the algae on flat reef 

outside the territories are heavily grazed by the other herbivorous species (Brawley and 

Adey 1977). In contrast, the biomass of algae inside P. mccullochi territories was lower 
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compared to outside the territories, which is dominated by the kelp Ecklonia radiata. 

This suggests that P. mccullochi has an impact on the algal community of the reef by 

maintaining patches with high algal diversity within the canopy of the kelp. These open-

gap patches within kelp canopies are usually created by natural events such as storms 

(Kennelly 1987), and previous studies have shown that the abundance of territorial 

Pomacentridae increases within these open-patches, where they establish new territories 

on cleared patches (Jones 1992; Thomson et al. 2012). In contrast, Saunders (2011) 

showed that the exclusion of P. mccullochi from their algal feeding area did not have 

any significant effect on the algae. However, this exclusion experiment was run for only 

6 weeks, which is likely to be too short to see an effect on algal composition.  

Feeding activity of Parma mccullochi was shown to have a moderate effect on 

recruitment of algae, with the effect close to being significant (P = 0.06) in the caging 

experiment. The loss of cages and tiles during a winter storm reduced the number of 

replicates (48 to 34), and therefore, reduced the power of the test to detect a significant 

effect at P<0.05. Thus, it is highly likely that the experiment would have produced a 

significant effect at this level if all replicates were retained. No studies have been done 

on the impact of temperate Pomacentridae on algal recruitment. However, tropical 

Pomacentridae have a large impact on recruiting algae, significantly affecting the algal 

composition on recruitment tiles (Doropoulos et al. 2011). We suggest that P. 

mccullochi could have the same role in the temperate environment. This could have a 

significant impact on temperate algal dominated reefs, especially when P. mccullochi 

establishes new territories on cleared patches. As the results on the impacts of feeding 

activity on algal recruitment were only close to being statistically significant in this 

study, further investigation should be done to test this hypothesis. 

Based on electivity indices, Parma mccullochi could show a positive selection for 

specific algal taxa such as Brongniartella sp., Dasyclonium sp., Hypnea spp. and 

Dictyopteris spp., and this is one of the mechanisms considered to promote the growth 

of the preferred algae inside territories (Klumpp et al. 1987; Jones 1992). The 

abundance of prominent species such as the kelp Ecklonia radiata inside the territories 

was very low, and no kelp was found in the diet of P. mccullochi. Therefore, this could 

be a strong indication that gardening is taking place. In support, Saunders (2011) 

showed that P. mccullochi exercised farming activities such as scraping the reef, 

tidying, and weeding unwanted algae from their territories. This study supports the role 
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of P. mccullochi as a landscaper/engineer of temperate reefs, and I suggest that P. 

mccullochi, with their feeding and farming activities, maintain distinct algal 

communities inside the territories. In support, other temperate territorial Pomacentridae 

have a highly selective diet and showed similar farming behaviours (Montgomery 1980; 

Jones et al. 2006; Ceccarelli 2007). In fact, Jones and Norman (1986) showed that 

Parma victorae fed mostly on a few preferred red algae species and this selectivity 

increased with the territory size. In addition, the tropical Pomacentridae Stegastes 

nigricans maintains a monoculture of Polysiphonia sp. inside the territories, which is 

also the most abundant food item in the diet (Hata and Kato 2004). 

This study provides the evidence to refute the theory that pomacentrid fishes have a low 

impact on temperate reefs (Jones 1992). Indeed, feeding and farming activities of 

territorial Parma mccolluchi have an impact on reefs that is similar to territorial species 

of Pomacentridae in tropical reefs, where they have been shown to be an important 

factor in shaping benthic communities (Barneche et al. 2009). P. mccullochi can be 

compared to an engineer/landscaper of temperate algal dominated reefs, showing the 

capacity to structure the benthic composition of the reef and maintaining these high 

biodiversity patches within the kelp canopy. In addition, its effect on the reef is 

amplified and highly noticeable due to their large abundance, especially in Perth 

metropolitan waters, where they reach a mean abundance of 53.6 fish/1000 m2 

(Saunders 2011; Turco, not published). Considering that each P. mccullochi feeds in an 

area of 9 m2 (Saunders 2011), they impact approximately half of the reef’s substrata 

(482 of 1000 m2). As a consequence, the structure, morphology and, overall biodiversity 

of temperate algal dominated reefs of Western Australia are most likely strongly 

influenced by P. mccullochi. The term “Engineer of the reef” can suit other herbivorous 

animals such as sea urchins, which can also have the capacity of modelling the algal 

structure of the reef (Ling et al. 2010). However, the impact of sea urchins has been 

shown to be minimal in temperate reefs of Western Australia, as they consume mainly 

detached kelp (Ecklonia radiata) (Vanderklift and Wernberg 2008). In addition, 

Vanderklift et al. (2009) showed that their abundance and intensity of herbivory was 

very low, especially within offshore reefs (Vanderklift et al. 2009). In contrast, the 

abundance of P. mccullochi is high in both inshore and offshore reefs (Turco, 

unpublished data) and the current study has shown a similar impact on algal 

composition in both inshore and offshore reefs. In conclusion, like tropical 
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Pomacentridae, P. mccullochi has an impact on the benthic community of the temperate 

reefs, and this impact could be via three different ways that are not mutually exclusive: 

(1) directly feeding on algae; (2) weeding and farming activities; and/or (3) excluding 

other competitive herbivorous fishes (Brawley and Adey 1977; Hata and Kato 2004; 

Hoey and Bellwood 2010; Saunders 2011).  

Implications and future research 

In summary, this study showed that Parma mccullochi is essentially a strict herbivore, 

feeding mainly on red foliose and filamentous algae. These forms of algae also 

contribute to the diets of other temperate Pomacentridae, but in contrast to those 

species, P. mccullochi did not show any ontogenetic differences in the diet. Moreover, 

this species had a local impact on the algal composition, and a likely impact on algal 

recruitment, on temperate reefs. The species maintains patches with high species 

richness of algae within kelp canopies, and therefore plays an important role as an 

ecosystem engineer or landscaper of reefs by maintaining a high biodiversity and lower 

biomass of macroalgae in its territories on temperate algal dominated reefs through their 

feeding and territorial behaviour.  

This study provides a better understanding of the ecological importance of the abundant 

Parma mccullochi in the temperate reefs of Western Australia. These results will allow 

management authorities, such as Department of Environment and Conservation (DEC) 

to include this new knowledge of P. mccullochi and its associated ecological processes 

in the management of marine parks of temperate Western Australia.  In fact, one of the 

most important strategic objectives of conservation for DEC in marine parks is 

‘maintaining marine biodiversity and ecological integrity’ (Kendrick et al. 2010). 

Moreover, DEC’s research priorities in relation to enhancing knowledge of marine 

biodiversity for conservation are: 

•  Describing WA’s marine biodiversity; 

•  Understanding the patterns of WA’s biodiversity, both spatially and temporally, 

and what is causing these patterns; 

•  Understanding the key ecological processes that sustain WA’s marine 

biodiversity; and 

•  Understanding human use (including climate change impacts) on and benefits of 

WA’s marine biodiversity (Kendrick et al. 2010).  
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Given the potentially broad impact of Parma mccullochi herbivory on algal 

communities at a landscape scale, this species is likely to provide a key ecological 

process that influences temperate algal-dominated reefs of WA, in particular by 

sustaining marine biodiversity. Therefore, this species should be considered an 

important component of the ecosystem, and needs to be considered in the planning and 

management of temperate marine reserves where these fishes and algal communities are 

prominent. In addition, given the high abundance of P. mccullochi on temperate reefs of 

WA, and their role in sustaining biodiversity of the reef, this study could give a positive 

input to DEC to expand the size of existing sanctuary zones or creating new zones. It is 

vital that future DEC management plans for marine reserves aim to provide 

management zoning that ensures protection of adequate algal-dominated temperate reefs 

and their associated flora and fauna to ensure the conservation of this key ecological 

process.  However, additional information on the likely direct and indirect human 

impacts to this herbivory process would be required, in to ensure the most appropriate 

type of zoning be implemented to best protect this process.  

Future studies should be undertaken to better understand the ecology of Parma 

mccullochi on a larger temporal scale, to understand whether or not its impact on the 

reef is significant throughout the whole year, and if there are any significant seasonal 

differences in the diet of this species. In fact, the impact study was carried out only in 

one time of the year, but the diet showed temporal differences. Moreover, since this 

study only analysed the diet during two times during the year (April-August), a broader 

temporal analysis of the diet throughout the whole year would be useful to gain a more 

comprehensive understanding of its diets. Another point which future studies should 

focus on is to understand why there are no ontogenetic differences in the diet of P. 

mccullochi. A study of the head and mouth morphology, gut length and digestive 

processes, which typically shift with size of herbivores (Frederich et al. 2008), could 

provide an understanding of the reasons for a lack of ontogenetic differences in the diets 

of the species. In addition, a comprehensive study on the abundance of temperate 

Pomacentridae across a broad spatial and temporal scale would be extremely helpful to 

determine the actual extent of their impact on temperate reef of Western Australia. Due 

to the importance of P. mccullochi in maintaining biodiversity in temperate algal 

dominated reefs, and to their high abundance, it is critical to determine the interactions 

of this species with other key species occupying reefs in the region, particularly those 
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species that predate on P. mcccullochi. Shifts in predator abundance have been shown to 

have top-down impacts on the lower-order consumers and ecosystem processes (Foster 

and Schiel 2010). Thus, any top-down effect could have an impact on the ecological 

processes by which P. mccullochi influences WA’s marine biodiversity. 
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