
238

Thirdly, this theoretical framework describes the integration of two dimensions,

namely agile techniques and cultural agile attributes, in relation to software project

implementation. Understanding the cultural mindset that a team is working within is as

important as managing the methodology used for projects. Thus, this research has

encompassed these two major areas of the modern software industry.

Another important aspect of this research is the contribution of the research to

agile techniques. The framework and research results provide a basis for practitioners to

select and use techniques most suited to the needs of the project and project team. The

collation of different techniques of agile methods will help practitioners to combine

different agile techniques to cater for the needs of different projects.

While the research conclusions have contributed to the software engineering

field, it is evident that there are many directions in which this research can be extended.

8.4 Conduct of the Research

This section covers the stages and steps involved in the research. Different

stages of the research were shown in Chapter Five and the same figure is used again to

discuss the stages, steps and outcomes in detail.

239

Figure 8-2: Stages in the research.

Table 8-1 maps the stages of figure 8-2 to the research outcomes.

- Study Agile
methods
- XP
- Scrum
- DSDM
- FDD
- Crystal
- Lean

- Study Agile
principles
and
values IndiaAustralia

UK

A
g

il
e

 A
tt

ri
b

u
te

s

H
o

fste
d

e
 a

n
d

 H
a

ll C
u

ltu
ra

l
D

im
e

n
sio

n
s

-Study Hofstede
and Hall’s
Cultural
dimensions

Study cultures
- Australia
- India
- UK

Literature
Search

Literature
Search

Research
Design

Research
Design

Framework for implementing
agile methodology
In different cultures

Literature search
Analyse project success and failure factors

A
g

il
e

 A
tt

ri
b

u
te

s

Data analysis and findings

• Can agile methodology resolve these issues?
• What cultural changes are required for

implementing agile?
• What are the cross cultural challenges?

Stage 1 – Software project success and failure factors analysed in context with agile principles

Stage 2 – Study
agile methods and
identify common
agile techniques

Stage 3 – Study and identify
cultural dimensions in
relation to agile method
implementation

Study agile techniques and
cultural dimensions

Stage 4 – Collate cultural agile attributes
from agile techniques and cultural

dimensions

Stage 5 – Prepare for interviews and
finalise interview questions

Stage 6 - Conduct interviews
and observations

Stage 7 – Data analysis and findings

240

Table 8-1: Stages and outcomes of research.

Agile principles [P] Agile techniques [T] Cultural dimensions [C]

Stages in the research Steps How? Where? Conclusion Outcome
Stage 1 – Software project success
and failure factors analysed in
context with agile principles

Study current software project success
and failure

Literature
search

Chapter 2 –
section 2.3.5

Study agile principles from the Agile
Manifesto

Literature
search

Chapter 2 –
section 2.3.4

Analyse how agile principles can be used
to overcome current project failure factors

Self analysis Chapter 2 –
section 2.3.5

Agile principles help resolve
current software failure
factors

Agile principles
[P]

Stage 2 – Study agile methods and
identify common agile techniques

Study agile methods and understand
process, and attributes of each agile
method

Literature
search

Chapter 2 –
section 2.4.2
and appendix

Consolidate and compile agile techniques
for six commonly used agile methods

Self analysis Chapter 2 –
section 2.4.2
and appendix

There are common and
specific agile techniques
among the agile methods

Agile techniques
[T]

Stage 3 – Study and identify
cultural dimensions in relation to
agile method implementation

Study cultural dimensions from different
cultural authors

Literature
search

Chapter 3 –
section 3.3.2

There are many cultural
dimensions from different
authors

Justification and selection of cultural
dimensions from different authors

Literature
search and self
analysis

Chapter 3 –
section 3.3.3

Five cultural dimensions from
Hofstede and Hall were
selected

Cultural dimensions suited for
agile implementation selected
[C]

Stage 4 – Collate cultural agile
attributes from agile techniques
and cultural dimensions

Match agile techniques to relevant
cultural dimensions

Self analysis Chapter 3 –
section 3.3.8

Each agile technique can be
matched to one or more
cultural dimension

Collate cultural agile attributes based on
agile principles [P], agile techniques [T]
and cultural dimensions [C]

Self analysis
and feedback
from agile
experts

Chapter 3 –
section 3.5.1

 Cultural agile attributes collated
and used as a basis for data
collection

Match cultural agile attributes to cultural
dimensions

Self analysis Chapter 3 –
section 3.5.1

All cultural agile attributes
selected can be matched to a
cultural dimensions

241

Stage 5 - Prepare for interviews
and finalise interview questions

Comparison and selection of suitable
research method

Literature
search and
analysis

Chapter 4 –
section 4.4.5 to
4.5.3

Case study -interviews was
selected as appropriate data
collection method

National culture selection Self analysis Chapter 5 –
section 5.7.1

Australia, India and the UK
were selected

Respondents selection based on specific
criteria

Self analysis Chapter 5 –
section 5.7.2

Reasonable number of
participants selected for
interviews based on specific
criteria

Finalise interview questions Self analysis Chapter 5 –
section 5.7.4

Interview questions were
compiled based on collated
cultural agile attributes from
stage 4

Interview questions finalised
based on cultural agile attributes

Stage 6 – Conduct interviews and
observation

Collated cultural agile attributes are
briefly described

Self analysis Chapter 6 –
section 6.2.1

Interviews conducted in Australia, India
and the UK

Self analysis Chapter 6 –
section 6.3.1 to
6.3.5

Data collected and
transcribed into cultural
dimensions and cultures
Australia, India and the UK

Data collected and transcribed

Stage 7 – Data analysis and
findings

Data Analysed and findings were
tabulated and described

Self analysis Chapter 7 –
section 7.4.1.1
to 7.4.1.6

Cross-cultural challenges in
adopting agile methods are
discussed and reflected in a
figure

A theoretical framework to
manage cross-cultural
challenges across Australia,
India and the UK software
development teams working
collaboratively to adopt and
implement agile methodology
[RESEARCH QUESTION 1]

Self analysis Chapter 7 –
section 7.4.2

Cultural changes needed for
cultures Australia, India and
the UK compiled

Specific cultural changes
required in a software
development team in Australia,
India and the UK are identified to
help implement successful agile
methods
[RESEARCH QUESTION 2]

242

8.5 Limitations of the Study

Despite the contributions of this study, a number of limitations are recognised.

Many of these limitations represent opportunities for future research.

The data collection was in some cases limited to a specific location due to the

difficulty in getting participation contacts. For example, in Australia most data collected

were from Western Australia and in India, data were collected in Chennai, Bangalore,

Hyderabad and Coimbatore. In the United Kingdom, data collection was conducted

solely in London. Though the participants who were interviewed had worked in other

cities in their specific culture, participants from other areas in a country may have

provided different data. The researcher is convinced that the data collected

demonstrated the evidence that attributes data collected reflected the culture. A cross

reference was also made to the literature to verify this.

The multicultural nature of countries such as Australia and the United Kingdom

could have created data discrepancies which were undetected. An assumption was made

that, even if the participant originally belongs to a different culture, if the participant has

lived in another culture for at least five years then the participant was considered to

belong to the new culture. These are the complexities that exist in different cultures

which have to be studied in natural setting. Thus the assumption of what is a

homogeneous culture could be considered as a limitation. These differences may have

been seen comparatively higher in Australia and the UK as there are more migrants

when compared to India.

Another limitation might be the size of the organisation. Depending on the size

of the organisation, the cultural agile attributes could be different. Thus separate studies

for small, medium and large organisation may have resulted in different outcome.

8.6 A Critical Review of the Research Process

There are many difficulties and challenges in a research programme. Looking

back at the study and critically self evaluating the process has revealed some ideas that

could have been considered.

Although the interviews were organised and participants were engaged in casual

settings, there were couple of interviews where the managers insisted on being

243

presented during the interview of the team member. Inclusion of management in

interviews with staff participants may have had some influence, i.e., the presence of

managers may have influenced the answers. But as an observation, due to this action a

strong hierarchy was noted and recorded in field notes. An approval to have team

members being interviewed without the presence of the managers could have been an

option that would have helped avoid this situation. Surveys were not considered

appropriate for this study programme, but in situations as described above, may be an

additional survey form may have been useful in the data collection for triangulation of

results.

As part of consolidating cultural agile attributes, agile experts were individually

asked for feedback. Their comments were incorporated into the final list. Focus group

or group discussion with a panel of agile experts may have resulted, a more in-depth

list. This may have provided a richer list of cultural agile attributes. Focus groups also

help to build up on other’s ideas in the group. Delphi technique is also another option to

have considered for this process. Delphi technique helps keep attention directly to the

issue and to be able to gather broad range of ideas and views.

Some interview data gathering had to be done using note taking. For security

reasons, some organisations in India refused to allow electronic equipment. Thus taking

notes, asking questions and listening had to be done at the same time. This was

challenging and during that process, some of the follow-up questions could have been

unknowingly omitted.

8.7 Further Research Opportunities and Directions

While this research effort breaks new ground in verifying the link between agile

adoption and cultural changes, there is still a need for more research in this area. Given

the evidence and discussions provided in this thesis, there are several avenues open for

future work.

1. More attributes can be investigated: In this study, the cultural agile attributes

were collated based on a combination of culture and agile methods. These

cultural agile attributes were validated by agile experts to confirm the list

was comprehensive. There may be other attributes that can be included in

future.

244

2. More cultures can be investigated: Cultures that were studied in this thesis

were Australia, India and the United Kingdom. There are several cultures

that can be added to this thesis to further validate the framework. Similar

data collection techniques as this research or other relevant techniques could

be used to collect data in other cultures keeping the cultural agile attributes

as the foundation.

3. Practical analysis: This study provides a theoretical framework. Subsequent

research could validate the framework in multiple cultures and in practice.

Different cultures can be studied in detail based on the theoretical

framework, and other methods such as action research and case studies can

be used in different organisations.

Figure 8-3 shows some possible future research opportunities.

United
kingdom

Australia

India

Foundation
Research
Question

RQ 1 –
Inter Team

RQ 2 –
Intra team

Implementation of Agile Methods

Add more

Cultures

Data

collection

using other

methods

Add more

Attributes

Figure 8-3: Future research opportunities

245

8.8 Conclusion

The literature has recognised the importance of managing the success of

software development projects. Using agile methodologies is seen as a way that may

result in improved project success. Cultural impacts and influences are also recognised

and to be known a critical factor in successful projects. The growing need to work

between cultures have also been identified as an important factor.

The aim of this research is to determine the extent to which agile methodology

can be adopted within and among different cultures, to provide a framework to assist

practitioners and researchers to work in global teams, and to understand and manage

cross-cultural challenges. This research through investigation has summarised

negative/positive influence of cultural agile attributes in implementing agile methods in

different cultures and provided a theoretical framework to manage cross-cultural

challenges.

246

References

Abe, J., Sakamura, K., & Aiso, H. (1979). An Analysis of Software Project Failure.

Paper presented at the Proceedings of 4th Software Engineering Conference.

Abernethy, K., Kelly, J., Sobel, A., Kiper, J. D., & Powell, J. (2000). Technology

Transfer Issues for Formal Methods of Software Specification. Paper presented

at the 13th Conference on Software Engineering Education and Training, USA.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software

development methods - Review and Analysis: University of Oulu.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New Directions

on Agile Methods: A Comparative Analysis.

Adolph, S. (2005). Are we ready to be Unleashed? A Comparative Analysis between

Agile Software Development and War fighting. Paper presented at the

Proceedings of the Agile Development Conference.

AgileAlliance. (2001). Manifesto for Agile software development., Retirved 20 March

2009

Ahmed, F., Capretz, L., Bouktif, S., & Campbell, P. (2012). Soft Skills Requirements in

Software Development Jobs: a Cross-cultural empirical Study. Journal of

Systems and Information Technology, 14(1), 58 - 81.

Ashworth, P., & Lucas, U. (2000). Achieving empathy and engagement: a practical

approach to the design, conduct and reporting of phenomenographic research.

Studies in Higher education, 25(3), 295-308.

Avison, D. E., & Fitzgerald, G. (2000). Information Systems Development:

Methodologies, Techniques and Tools. England: The McGraw-Hill Companies.

Avison, D. E., & Wood-Harper, A. T. (1990). Multiview. Oxford, UK: Blackwell

Scientific publications.

Avital, M., & Vandenbosch, B. (2000). The relationship between psychological

ownership and IT-driven value. Paper presented at the Proceedings of the twenty

first international conference on Information systems Brisbane, Queensland,

Australia

Awad, M. A. (2005). A Comparison between Agile and Traditional Software

Development Methodologies. UWA, Perth.

Babbie, E. (2002). The basics of Social Research. USA: Wadsworth Thomson learning.

Barbour, R. (2008). Introducing Quality Research - A Student Guide to the Craft of

Doing Qualitative Research. London: Sage Publications.

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S. (2003). Is

Internet-Speed Software Development Different. IEEE software, 70 - 77.

Bazeley, P. (2009). Analysing Qualitative Data: More Than Identifying Themes.

Malaysian Journal of Qualitative Research, 2, 6-22.

Beck, K. (2000). Extreme Programming explained: Embrace Change. Massachusetts:

Addison-Wesley.

Beck, K., & Andres, C. (2005). Extreme Programming explained: embrace change.

Boston: Addison-Wesley.

247

Beck, K., & Fowler, M. (2001). Planning Extreme Programming. Boston: Addison-

Wesley.

Begel, A., & Nagappan, N. (2007a). Usage and Perceptions of Agile Software

Development in an Industrial Context: An Exploratory Study.

Begel, A., & Nagappan, N. (2007b). Usage and Perceptions of Agile Software

Development in an Industrial Context: An Exploratory Study. Paper presented at

the First International Symposium on Empirical Software Engineering and

Management.

Beise, C. M. (2004). IT project management and virtual teams Paper presented at the

Proceedings of the 2004 SIGMIS conference on Computer personnel research:

Careers, culture, and ethics in a networked environment Tucson, AZ, USA

Berger, H. (2007). Agile Development in a bureaucratic Arena - A Case Study

experience. International Journal of Information Management, 27, 386 - 396.

Boehm, B. (2006). A view of 20th and 21st century software engineering. Paper

presented at the Proceeding of the 28th international conference on Software

engineering, Shanghai, China.

Boehm, B., & Turner, R. (2003). Using Risk to Balance Agile and Plan-driven methods.

IEEE software, 36(6), 57 - 66.

Boehm, B., & Turner, R. (2004). Balancing Agility and Discipline: Evaluating and

Integrating Agile and Plan-Driven Methods. Paper presented at the 26th

International Conference on Software Engineering (ICSE).

Brewer, J. D. (2000). Ethnography. Philadelphia, USA: Open University Press.

Bryman, A., & Bell, E. (2003). Business Research Methods. Oxford: Oxford University

press.

Burns, R. B. (1997). Introduction to Research Methods. South Melbourne, Australia:

Longman.

Burrell, G., & Morgan, G. (1979). Paradigms and organisational analysis. London:

Heinemann.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile

development methodologies. European Journal of Information Systems, 18, 332-

343.

Cerpa, N., & Verner, J. M. (2009). Why did your project fail? Communications of the

ACM, 52(12), 130 - 134.

Chand, D. (2004). Is an understanding of national cultures essential for Global IT

Managers?

Chatzoglou, P. D., & Macaulay, L. A. (1996). Requirements capture and IS

methodologies. Information systems journal, 6(2), 209 - 225.

Checkland, P. B. (1981). Systems Thinking, Systems Practice. Chichester, UK.

Cheney, P. H. (1988). Information Systems Skills Requirements: 1980 & 1988.

Cho, L. (2009). Adopting an Agile Culture. Paper presented at the Agile 2009.

Chong, H. G. (2008). Measuring performance of small-and-medium sized enterprises:

the grounded theory approach. Journal of Business and Public affairs, 2(1).

Cockburn, A. (2002). Agile Software Development. Boston: Addison-Wesley.

248

Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People

Factor. Software Management, 131 - 133.

Coghlan, D. (2001). Insider action research projects: Implications for practising

managers. Management Learning, 32(1), 49-60.

Conboy, K., & Morgan, L. (2011). Beyond the Customer: Opening the agile Systems

Development Process. Information and Software Technology, 53, 535-542.

Cook, T. D., & Reichardt, C. S. (Eds.). (1979). Beyond qualitative versus quantitative

methods: Qualitative and quantitative methods in evaluation research. Bverly

Hills: CA: Sage.

Cooper, R. B. (2000). Information Technology Development Creativity: A Case study

of Attempted Radical Change. MIS Quarterly, 24, 245.

Coram, M., & Bohner, S. (2005). The Impact of Agile Methods on Software Project

Management. Paper presented at the Proceedings of the 12th IEEE International

Conference and Workshops on the Engineering of Computer-based systems.

Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., et al. (2008). An

Agile Development Methodology Applied to Embedded Control Software under

Stringent Hardware Constraints. ACM SIGSOFT Software Engineering, 22(1).

Costello, P. (2003). Action Research. New York: Continuum.

Cozzetti, S. B., Anquetil, N., & Oliveira, K. M. (2005). A Study of the Documentation

Essential to Software Maintenance. Paper presented at the SIGDOC United

Kingdom.

Cresswell, J. W. (1998). Qualitative inquiry and research design: choosing among five

traditions: Thousand oaks, CA: Sage publications.

Creswell, J. W. (2003). Research design: Qualitative, quantitative, qualitative and

mixed method approaches (2nd ed.). CA: Sage publications.

Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative

research designs: Selection and implementation

Cronholm, S. (2008). Using Agile Methods? Expected effects. Paper presented at the

17th International conference on Information Systems Development, Paphos,

Cyprus.

Dahiya, D., & Jain, P. (2010). Enterprise Systems Development: Impact of Various

Software Development Methodologies. International Journal of Advancements

in Computing Technology, 2(4).

Denning, S. (2013). Why Agile can be a game changer for managing continuous

innovation in many industries. Emerald, 41(2), 5-11.

Denzin, N. K., & Lincoln, Y. S. (2003). Strategies of qualitative inquiry (2nd ed.). CA:

Thousand Oaks, Sage Publications.

Denzin, N. K., & Lincoln, Y. S. (2005). Introduction: The discipline and practice of

qualitative research (3rd ed.). CA: Sage publications.

Dorfman, P., & Howell, J. (1988). Dimensions of national culture and effective

leadership patterns: Hofstede revisited. Advances in International Comparative

management.

Doshi, C., & Doshi, D. (2009). A Peek into an Agile Infected Culture. Paper presented at

the 2009 Agile Conference.

249

DSDM. (2010). Dynamic Systems Development Method. from www.dsdm.org

Dyba, T., & Dingsoyr, T. (2008). Empirical studies of Agile software Development: A

systematic review. Information and Software Technology, 833-859.

Earley, P. C., & Erez, M. (1997). Introduction in PC. New perspectives on International

In dustrial/Organisational Psychology. San Francisco: The new Lexington

Press.

Ellis, R. A., & Losch, M. (1999). Software Project Failure Lessons Learned.

Communications of the ACM, Vol 42, No11.

Elo, S., & Kyngas, H. (2007). The qualitative content analysis process. Journal

compilation.

Emam, K. E., & Koru, G. A. (2008). A Replicated Survey of IT Software Project

Failures. IEEE software, 84 - 90.

Eriz, M. (1997). A culture based model of work motivation. San Francisco: Jossey-Bass.

Eveleens, L., & Verhoef, C. (2010). The Rise and Fall of the Chaos Report Figures.

IEEE software.

Ezzy, D. (2002). Qualitative Analysis - Practice and Inovation. NSW, Australia: Allen

& Unwin.

Farhan, S., Tauseef, H., & Fahiem, M. A. (2009). Adding Agility to Architecture

Tradeoff Analysis Method for Mapping on Crystal. Paper presented at the WRI

World Congress on Software Engineering 2009.

Ferreira, J., Sharp, H., & Robinson, H. (2011). User Experience Design and agile

Development: Managing Cooperation through articulation work. Software -

Practice and Experience, 41(963-974).

Fichman, R. G., & Kemerer, C. F. (1993). Adoption of software engineering process

innovations: The case pf object orientation. Sloan Managemen Review, 24(2), 7 -

22.

Fitzgerald, B. (1997). The use of systems development methodologies in practice: a

field study. Information Systems Journal, 7(3), 201 - 212.

Fitzgerald, B. (2000). Systems Development Methodologies: The Problem of Tenses.

Information technology and People, 13(3), 174 - 185.

Floyd, C. (1986). A comparative evaluation of systems development methods. Paper

presented at the Proceedings of the IFIP WG 8.1 Conference on Information

Systems design Methodologies: Improving the practices.

Ford, G., & Gelberblom, H. (2003). The Effects of Culture on Performance Achieved

through the use of Human Computer Interaction. Paper presented at the

SAICSIT '03 Proceedings of the 2003 annual research conference of the South

African institute of computer scientists and information technologists on

Enablement through technology.

Galliers, R. D. (1990). Choosing Appropriate Information Systems Research

Approaches: A Revised Taxonomy. Paper presented at the IFIP TC8 WG8.2

Conference.

Gallis, H., Asisholm, E., & Dyba, T. (2003). An initial framework for research on pair

programming. Paper presented at the Procedings on International symposium on

Empirical Software Engineering.

http://www.dsdm.org/

250

Gat, I. (2006). How BMC is Scaling Agile Development. Paper presented at the

Proceedings of AGILE 2006 Conference.

Given, L. (2006). Qualitative research in evidence-based practice: A valuable

partnership. library Hi Tech News, 24(3), 376-386.

Glaser, B. G. (1978). Theiretical Sensitivity. Mill Valley, CA: Sociology Press.

Glaser, B. G. (1992). Basics of Grounded Theory analysis. Mill Valley, CA: Sociology

Press.

Glaser, B. G. (2001). Doing Grounded Theory. Grounded Theory review, 2, 1-18.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of Grounded Theory. Chicago:

Aldine.

Gobo, G. (2008). Doing Ethnography. Bologna, Italy: Sage

Gomes, J. (2012). Agile, Aligned and Adept. Training Journal, 43-46.

Good, J. M. (2003). A Pragmatic Approach to the Implementation of Agile Software

Development Methodologies in Plan-Driven Organisations. Lincoln University.

Gottschalk, P., Christensen, B. H., & Watson, R. T. (1997). Key Issues in Information

Systems Management Surveys: Methodological Issues and Choices in a

Norwegian Context. Scandinavian Journal of Information Systems, 9(2), 57-66.

Graham, I., Henderson-Sellers, B., & Younessi, H. (1997). The open process

specification. Harlow, England: Addison-Wesley.

Guba, E. G., & Lincoln, Y. S. (1994). Handbook of qualitative Research. USA: Sage

Publishers.

Guba, E. G., & Lincoln, Y. S. (2005). Paradigmatic controversies, contradictions and

emerging confluences: Thousand Oaks, CA: Sage Publications.

Gupta, R. K. (2002). Towards the optima Organisation: Integrating Indian Culture and

Management. New Delhi: Excel Books.

Hall, E. T. (1976). Beyond Culture. New York: Anchor Press-Doubleday.

Hamel, J. (1993). Case Study Methods: Qualitative Research Methods. Thousand Oaks:

Sage Publications.

Hammersley, M. (1990). Reading Ethnographic Research: A Critical Guide. Essex,

England: Longman London and New York.

Hammersley, M., & Atkinson, P. (2006). Ethnography: Principles in Practice. New

York, USA: Routledge Taylor and Francis Group.

Hanks, B., & McDowell, C. (2004). Program quality with pair programming in CS1.

Paper presented at the Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in Computer science education ITiCSE 04.

Hardy, C. J., Thompson, J. B., & Edwards, H. M. (1995). The use, limitations and

customisation of structured systems development methods in the United

Kingdom. Information and Software Technology, 37(9), 467 - 477.

Hass, K. B. (2007). The Blending of Traditional and Agile Project Management.

PMWorldToday, IX(V). Retrieved from

file:///C:/Anu's%20Studies/PhD%20Research/Reference%20Papers/3.%20Meth

odology/Hass-5-07.pdf

251

Hayes, S. (2003). Presentation: Incremental Introduction of Agile Methods. Paper

presented at the Agile Development Conference 2003.

Heimgartner, S. (2006). A Tale of Two Writing Teams. Paper presented at the

Proceedings of AGILE 2006 Conference.

Herbsleb, J. D. (2007). Global Software Engineering: The Future of Socia-technical

Coordination. Paper presented at the Future of Software Engineering.

Hidding, G. J. (1997). Reinventing methodology: who reads it and why?

Highsmith, J. (2002a). Agile Software Development Ecosystems. Indianapolis: Addison-

Wesley.

Highsmith, J. (2002b). What is Agile Development? The journal of Defense Software

Engineering.

Hirschheim, A. R., Iivari, j., & Klein, K. H. (1997). A comparison of Five alternate

approaches to Information Systems Development. AJIS, 5(1), 3 - 29.

Hofstede, G. (1980a). Culture's consequences: International differences in work-related

values. Newbury Park, CA: Sage.

Hofstede, G. (1980b). Culture's consequences: International differences in work related

values: Beverly Hill, CA, Sage.

Hofstede, G. (1997). Culture and Organisations: Software of the Mind. New York:

McGraw-Hill.

Hofstede, G. (1998). Attitudes, Values and Organisational Culture: Disentangling the

concepts. Organisational studies, 19(3), 477.

Hofstede, G. (2001). Culture's consequences: comparing values, behaviors, institutions,

and organizations across nations. California, USA: Sage Publications.

House, R. J., Wright, N. S., & Aditya, R. N. (1997). Cross cultural research on

International Industrial/ Organisational Psychology. San Francisco: New

Lexington Press.

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004). Software Quality and Agile

Methods. Paper presented at the Proceedings of the 28th Annual International

Computer Software and Applications Conference.

Iivari, J., Hirschheim, R., & Klein, H. K. (2000). A Dynamic Framework For

Classifying Information Systems Development Methodology. Journal of

Management Information Systems, 17(3), 179.

Iivari, J., & Huisman, M. (2007). The relationship between organisational culture and

the deployment of systems development methodologies. MIS Quarterly, 31(1),

35 - 58.

Iivari, J., & Iivari, N. (2011). The Relationship between Organisational Culture and the

Deployment of Agile Methods. Information and Software Technology, 53, 509 -

520.

Imamoglu, O., & Gozlu, S. (2008). The Sources of Success and Failure of Information

Technology Projects: Project Manager's Perspective. Paper presented at the

PICMET 2008 Proceedings.

Ingalls, P., & Frever, T. (2009). Growing an Agile Culture from Value Seeds. Paper

presented at the Agile 2009.

252

Jaeger, A. M. (1990). The applicability of Western Management techniques in

developing countries: a cultural perspective: New York: Routledge.

Jayaratna, N. (1994). Understanding and Evaluating Methodologies NIMSAD: A

systematic Framework. London: McGraw-Hill.

Johnstone, D., Huff, S., & Hope, B. (2006). IT Projects: Conflict, Governance, and

Systems Thinking. Paper presented at the Proceesings of the 39th Hawaii

International Conference on System Sciences.

Jones, M. L. (2007). Hofstede - Culturally questionable? : University of Wollongong.

Kankanhalli, A., Tan, B. C. Y., Wei, K., & Holmes, M. C. (2007). Cross-Cultural

Differences and Information Systems Developer Values.

Kanungo, R. P. (2006). Cross culture and business practice: are they coterminous or

cross-verging? Cross cultural Management: An International Journal, 13(1),

23-31.

Kaplan, A. (1964). The conduct of inquiry: Methodology for behavioral science: San

fransisco, CA:Chandler.

Kautz, K., & Pries-Heje, J. (1997). Systems Development Education and Methodology

Adoption.

Kaye, R., & Little, S. (1996). Strategies and Standards for Cultural Interoperability in

Global Business Systems. Paper presented at the Proceedings of the 29th Annual

Hawaii International Conference on System Sciences.

keaveney, S., & Conboy, K. (2005). Cost estimation in agile development projects.

Keil, M., Cule, E., Lyytinen, K., & Schmidt, C. (1998). A Framework for identifying

software project risk. Communication of the ACM, 41(11), 76 - 83.

Kluckhohn, F., & Strodtbeck, F. (1961). Variation in value orientations. Evanston, IL:

Peterson.

Krebs, J. (2009). Agile portfolio management. Redmond, Washington: Microsoft Press.

Kroeber, A., & Kluckhohn, F. (1963). Culture: A critical review of concepts and

definitions. New York: Vintage.

Krogstie, J. (1995). Use of Development Methodology and Case tools in Norway:

Results from a survey. Paper presented at the CASE '95 proceedings of the

Seventh International Workshop on Computer Aided Software Engineering.

Kwantes, C. T. (2003). Organizational Citizenship and Withdrawal Behaviors in the

USA and India: Does Commitment Make a Difference? International Journal of

Cross Cultural Management, 3(1), 5 - 26.

Lee, O., Banerjee, P., Lim, K. H., Kutnick, D., Hillegersberg, J. V., & Wei, K. K.

(2006). Aligning IT components to achieve Agility in globally distributed

system. Communication of the ACM, 49(10), 48 - 54.

Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems

research: toward a theory of information technology culture conflict. MIS

Quarterly, 30(2), 357 - 399.

Leonard, A. (2002). Enabling End Users To Be More Efficient During Systems

Development. Paper presented at the Proceedings of SAICSIT 2002,.

Liamputtong, P., & Ezzy, D. (2005). Qualitative Research Methods. South Melbourne,

Victoria: Oxford University Press.

253

Linberg, K. R. (1999). Software developer perceptions about software project failure: a

case study. Journal of systems and software, 49, 177-192.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry: Newbury park, CA: Sage

Publications.

Livari, J., & Huisman, M. (2007). The relationship between organisational culture and

the deployment of systems development methodologies. MIS Quarterly, 31(1),

35 - 58.

Livermore, J. A. (2007). Factors that Impact Implementing an Agile Software

Development Methodology. Paper presented at the Proceedings of the IEEE

Southeast Conference.

Loftus, C., & Ratcliffe. (2005, June 27-29). Extreme Programming Promotes Extreme

Learning? Paper presented at the ITICSE '05, Monte de Caparica, Portugal.

Lucas, H. C. (1971). A User-Oriented Approach to Systems Design. Paper presented at

the Proceedings of the 1971 annual conference. Retrieved from

file:///C:/Anu's%20Studies/PhD%20Research/Reference%20Papers/3.%20Meth

odology/p325-lucas.pdf

Lytinnen, K., & Rose, G. M. (2003). The disruptive nature of information system

innovation: The case of internet computing. Information Systems Journal, 13(4),

301 - 330.

MacGregor, E., Hsieh, Y., & Kruchten, P. (2005a). Cultural Patterns in Software

Process Mishaps: Incidents in Global Projects. Paper presented at the Human

and Social Factors of Software Engineering (HSSE), Missouri, USA.

MacGregor, E., Hsieh, Y., & Kruchten, P. (2005b). Cultural Patterns in Software

Process Mishaps: Incidents in Global Projects. Paper presented at the Human

and Social Factors of Software Engineerin g (HSSE), Missouri, USA.

Maddison, R. N. (1983). Information Systems Methodologies. Chichester: Wiley

Keyden.

Maples, C. (2009). Enterprise Agile Transformation: The Two-Year Wall. Paper

presented at the Agile Conference.

Marshall, C., & Rossman, G. B. (1989). Designing Qualitative Research. California:

Sage Publications.

Martinsons, M. G., & Davison, R. M. (1998). Cultural Considerations in Business

Process Change.

McAvoy, J., & Butler, T. (2009). A Failure to Learn By Software Developers:

Inhibiting the Adoption of an Agile Software Development Methodology.

Journal of Information Technology Case and Application Research, 11(1), 23.

McHugh, O., Conboy, K., & Lang, M. (2011). Agile Practices: The Impact on Trust in

Software Project Teams. IEEE, 29(3), 71-76.

McNiff, J., & Whitehead, J. (2006). All you need to know about action research:

London: Sage publications.

McSweeney, B. (2002). Hofstede's model of national cultural differences and their

consequences: A triumph of faith - a failure of analysis. Human relations, 55, 89

- 118.

Merriam, S. B. (1988). Case study research in education: A qualitative approach. San

Fransisco: Jossey Bass Publishers.

254

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education.

San Fransisco: Jossey-Bass Publishers.

Mertler, C., A. (2009). Action Research" Teachers as Researchers in the Classroom.

London, United Kingdom: Sage Publications.

Metcalf, L. E., Bird, A., Peterson, M. F., Shankarmahesh, M., & Lituchy, T. R. (2007).

Cultural Influences in Negotiations: A Four Country Comparative Analysis.

International Journal of Cross Cultural Management, 7(2), 147 - 168.

Miles, M. B., & Huberman, A. M. (1994). An expanded sourcebook - Qualitative Data

Analysis (Second ed.). California, USA: Sage Publlications.

Miller, K. W., & Larson, D. K. (Winter 2005). Agile Software Development: Human

Values and Culture. IEEE Technology and Society Magazine.

Misra, S., Kumar, V., & Kumar, U. (2010). Identifying some critical changes required

in adopting agile practices in traditional software development projects.

International Journal of Quality & Reliability Management, 27(4), 451-474.

Misra, S. C., Kumar, U., Kumar, V., & Grant, G. (2007). The Organizational Changes

Required and the Challenges Involved in Adopting Agile Methodologies in

Traditional Software Development Organizations. Paper presented at the 1st

International conference on Digital Information Management.

Mnkandla, E., & Dwolatzky, B. (2006). Defining Agile Software Quality Assurance.

Paper presented at the Proceedings of the International conference on Software

AEngineering Advances.

Morien, R. (2005). Agile Management and the Toyota way for Software project

management. Paper presented at the 3rd IEEE International conference on

Industrial Informatics.

Murauskaite, A., & Adomauskas, V. (2008). Bottlenecks in Agile Software Development

Identified Using Theory of Constraints (TOC) Principles. Chalmers University

of Technology and University of Gothenburg, Sweden.

Myers, M. D. (1999). Investigating information systems with ethnographic research

Communications of the Association of Information Systems, 2(23), 1-18.

Nah, F. F.-H., Lau, J. L.-S., & Kuang, J. (2001). Critical factors for successful

implementation of enterprise systems. Business process management journal,

7(3), 285-296.

Nandhakumar, J., & Avison, D. E. (1999). The Fiction of Methodological

Development: A Field Study of Information Systems Development. Information

technology and People, 12(2), 175 - 191.

Nandhakumar, J., & Jones, M. L. (1997). Designing in the dark: the changing user-

developer relationship in information systems development. Paper presented at

the Proceedings of the eighteenth international conference on Information

systems

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of Migrating to Agile

Methodologies. Communication of the ACM, 48(5), 73 -79.

Neuman, W. L. (2003). Social Research Methods - Qualitative and uantitative

approaches (Fifth Edition ed.). USA: Allyn & Bacon.

Ng, S. I., Lee, J. A., & Soutar, G. N. (2007). Are Hofstede's and Schwartz's value

frameworks congruent? International Marketing Review 24(2), 164-180.

255

Olie, R. (1995). The culture factor in Personnel and orgnisation plocies. International

Human Resource management: An integrated approach. London: Sage

publications.

Olson, G., & Olson, J. S. (2000). Distance matters: Human computer interactions. 15,

139 - 178.

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in

organisations: Research approaches and assumptions. Information systems

research, 2(1), 1-28.

Paivi, E., & Kovalainen, A. (2008). Qualitative Methods in Business Research: Sage

Publications.

Passivaara, M., & Lassenius, C. (2006). Could Global Software Development Benefit

from Agile Methods? Paper presented at the IEEE International Conference on

Global Software Engineering.

Patton, M. Q. (2002). Qualitative Research and evaluation methdos. Thousand Oaks,

CA: Sage Publications.

Paul, K. (2013a). What's wrong with Agile Development: Culture, People top the list.

InfoWorld.

Paul, K. (2013b, Feb 26, 2013). What's wrong with Agile Development: Culture, People

top the list. InfoWorld.

Piety, P. (2011). Educational Data Use: A Sociotechnical Process. 9, 217-221.

Pikkarainen, M., & Passoja, U. (2005, June 18-23). An Approach for Assessing

Suitability of Agile Solutions: A Case study Paper presented at the 6th

International conference of eXtreme Programming and agile process in software

engineering, Sheffield Universiity, UK.

Poppendieck, M. (2001). Lean Software Development. Paper presented at the 29th

International Conference on Software Engineering (ICSE '07).

Poppendieck, M. (2002). Principles of Lean thinking. Retrieved 27thMay 2010, from

http:www.poppendieck.com/papers/LeanThinking.pdf

Raghavan, S. A., & Chand, D. R. (1989). Diffusing software engineering methods IEEE

software(July), 81 - 90.

Rahim, M. M., Seyal, A. H., & Rahman, N. A. (1999). Software Piracy among

Computing students: A Bruneian Scenario. Computers and Education, 32, 301-

321.

Rasmusson, J. (2006). Agile Project Initiation Techniques - The Inception Deck and

Boot Camp. Paper presented at the Proceedings of the AGILE 2006 Conference.

Reason, P., & Bradbury, H. (2006). Handbook of Action Research. London: Sage

Publications.

Reel, J. S. (1999, May June 1999). Critical Success Factors In Software Projects. Focus,

18-23.

Rehman, I. U., Ullah, S., Rauf, A., & Shahid, A. A. (2010). Scope Management in Agile

Versus Traditional Software Development Methods. Paper presented at the

NSEC '10, Pakistan.

Reifer, d. J. (2002). How good are agile methods? manager.

http://www.poppendieck.com/papers/LeanThinking.pdf

256

Rivard, S., Raymond, L., Bergeron, F., & Aubin, M. C. (1998). Project Managers'

Influence Tactics and Authority: A Comparison.

Rogers, E. M., Hart, W. B., & Mike, Y. (2002). Edward T Hall and the history of

Intercultural Communication: The United States and Japan. Keio

Communication Review, 24.

Rubinstein, D. (2007, October 15, 2007). Spreading the Agile Practices. Software

Development Times, Vol 184, 41.

Ruhnow, A. (2007). Consciously Evolving and Agile Team. Paper presented at the Agile

2007.

Saarnak, S., & Gustafsson. (2003). A Comparison of lifecycles - Agile software

processes vs. projects in non-Agile software companies. Blekinge Institute of

Technology, Ronneby.

Salo, O. (2005). Systematical Validation of Learning in Agile Software Development

Environment. VTT.

Sanders, D. (2002). Student Perceptions of the Suitability of Extreme and Pair

Programming, Boston.

Schein, E. (1992). Organisational Cuclture and Leadership (2nd ed.). San Fransisco:

Jossy-Bass Publishers.

Schwartz, B., Hwang, B. W., & Hwang, C. J. (1995). A workplan for business process

reengineering and a challenge for information science and technology. Paper

presented at the Proceedings of the 1995 ACM 23rd annual conference on

Computer science, Nashville, Tennessee, United States.

Shaw, E. K. (1978). Understanding the Curriculum: The Approach through Case

Studies. Journal of Curriculum studies, 10(1), 1-17.

Shine Technologies. (2003). Agile methodologies - Survey results. Retrieved 27th

May 2010, 2010, from

http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-

17.pdf

Siakas, K., & Siakas, E. (2007). The agile Professional Culture: A Source of Agile

Quality. Software Process Improvement and Practice, 12, 597-610.

Sidky, A., & Arthur, J. (2007). A Dsiciplined Approach to Adopting Agile Practices:

The Agile Adoption Framework.

Silverman, D. (2004). Qualitative Research: Theory, Method and Practice: Sage

Publisher.

Singh, N., & Krishnan, V. R. (2007). Transformational Leadership in India: Developing

and Validating a New Scale Using Grounded Theory Approach. International

Journal of Cross Cultural Management, 7(2), 219-236.

Sinha, J. B. P. (2000). Patterns of work culture: Cases and Strategies for Culture

Building. Sage publications.

Snider, P. D. (2003). Exploring the Relationships between Individualism and

Collectivism and Attitudes towards Counseling among Ethnic Chinese,

Australian and American University students Murdoch University.

Soares, A. M., Farhangmehr, M., & Shoham, A. (2007). Hofstede's dimensions of

culture in international marketing studies. Journal of Business Research, 60(3),

277.

http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf

257

Sornes, J., Stephens, K. K., Saetre, A. S., & Browning, L. D. (2004). The Reflexivity

between ICTs and Business Culture: Applying Hofstede's Theory to compare

Norway and the United States. Information Science Journal, 7.

Standish Group. (2004). 2004 Third Quarter Research Report. West Yarmouth, MA,

USA: The Standish Group International.

Strauss, A. L., & Corbin, J. (1990). Basics of Qualitative Research: Grounded theory

procedures and techniques. Newbury Park, CA: Sage Publications.

Strauss, A. L., & Corbin, J. (1994). Grounded Theory methodology and overview.

Thousand Oaks, CA: Sage publications.

Stringer, E. T. (2007). Action Research (3rd ed.). Los Angeles: Sage Publications.

Strode, D. E. (2005). The Agile Methods: An Analytical Comparison of Five Agile

Methods and an investigation of their target environment., Massey University,

Palmerston, NewZealand.

Strode, D. E., Huff, S. L., & Tretiakov, A. (2009). The Impact of Organisational

Culture on Agile Method Use. Paper presented at the Proceedings of the 42nd

Hawaii International Conference on Systems Sciences.

Suadamara, R., Werner, S., & Hunger, A. (2010, August 19-20 2010). Cultural

influence on User Preference on Groupware Application for Intercultural

Collaboration. Paper presented at the ICIC 10 Denmark.

Tamas, A. (2007). Geert Hofstede's Dimensions of Culture and Edward T. Hall's Time

Orientations.

Tan, S. (2011). How to increase your IT Project success rate. Gartner.

Taras, V., Kirkman, B., & Steel, P. (2010). Examining the Impact of Culture's

Consequences: A Three-Decade, Multilevel, Meta-Analytic Review of

Hofstede's Cultural Value Dimensions. Journal of Applied Psychology, 95(3),

405 - 439.

Taylor, C., & Gibbs, G. R. (2010, 19th February 2010). How and what to code.

Retrieved 25th april 2011, from

http://onlineqda.hud.ac.uk/Intro_QDA/how_what_to_code.php

Theunissen, W. H. M. (2003). A case-study based assessment of Agile software

development. University of Pretoria.

Trauth, E. M. (2001). The Choice of Qualitative Methods in IS Research: Hershey, PA,

Idea Group Publishing.

Triandis, H. (1994). Culture and Social behaviors. New York: McGraw-Hill.

Trochim, W. M. K. (2002). Deduction & Induction. In Research method knowledge

base. Retrieved August 26,2004, from

http://www.socialresearchmethods.net/kb/dedind.htm

Trompenaars, F., & Hampden-Turner, C. (1997). Riding the waves of culture:

understanding cultural diversity in business. London: Nicholas Brealey.

Truex, D., Baskerville, R., & Travis, J. (2000). Amethodological Systems Development:

The Deferred meaning of Systems Development Methods. Accounting

Management and Information Technologies, 10, 53 - 79.

http://onlineqda.hud.ac.uk/Intro_QDA/how_what_to_code.php
http://www.socialresearchmethods.net/kb/dedind.htm

258

Valencia, R. E. G., Olivera, V., & Sim, S. E. (2007). Are Use Cases Beneficial for

Developers Using Agile Requirements? Paper presented at the Fifth International

Workshop on Comparative Evaluation in Requirements Engineering.

Van Lamsweerde, A. (2000). Requirements engineering in the year 00: a research

perspective. Paper presented at the Proceedings of the 22nd international

conference on Software engineering. Retrieved from

file:///C:/Anu's%20Studies/PhD%20Research/Reference%20Papers/1.%20Proje

ct%20Management/p5-van_lamsweerde.pdf

Vatrapu, R., & Perez-Quinones, M. A. (2006). Culture and Usability Evaluation: The

Effects of Culture in Structured Interviews. Journal of Usability studies, 1(4),

156-170.

Vavpotic, D., & Bajec, M. (2009). An approach for concurrent evaluation of technical

and social aspects of software development methodologies. Information and

Software Technology, 51, 528-545.

Visconti, M., & Cook, C. R. (2004). An ideal process model for agile methods. Paper

presented at the 5th International conference on product focussed software

process improvement PROFES.

Vishnu, V., Craig, S., & Sridhar, N. (2006). Can Agile and Traditional Systems

Development Approaches Coexist? An Ambidextrous View. Information

Systems Management, 23(3), 31-43.

Vogel, D., Davison, R., & Shroff, R. (2000). Sociocultural Learning in Globally

Distributed Teams. Working paper 00/03(Department of Information Systems,

City University of Hong Kong).

Walsham, G., Robey, D., & Sahay, S. (2007, June 2007). Forward: Special Issue on

Information Systems in Development Countries. MIS Quarterly, 31, 317-326.

Wan, J., & Wang, R. (2010). Empirical Research on Critical Success Factors of Agile

Software Process Improvement. Journal of Software Engineering and

Applications, 3, 1131 - 1140.

Wendorff, P. (2002). Organisational Culture in Agile Software Development. Computer

and Information Science, 145 - 157.

Whitworth, E., & Biddle, R. (2007). The social nature of Agile Teams. Paper presented

at the Agile 2007.

Wolcott, H. F. (1992). Posturing in Qualitative Inquiry: The handbook of Qualitative

Research in Education. Orlando: Academic Press.

Wong, E. Y. (2001). The Chinese At work: Collectivism or Individualism? :

HKIBS/WPS.

Xiaohua, W., Zhi, W., & Ming, Z. (2008). Relationship between Dvelopers and

Customers in Agile Methodology. Paper presented at the International

conference on Computer Science and Information Technology 2008.

Yin, R. K. (1994). Case study research: Design and methods (2nd ed.): Newbury Park,

CA: Sage Publications.

Yin, R. K. (2003). Case study Research: Design and methods (3rd ed.). Thousand Oaks,

CA: Sage Publications.

Yourdon, E. (1986). What ever happend to structured analysis?

259

260

APPENDIX A

List of abbreviations and Glossary of Terminology used in the Thesis

List of abbreviations

AM Agile Modelling

ASD Adaptive Software Development

CASE Computer Aided Software Engineering

CRIS Comparative Review of Information Systems

DSDM Dynamic Systems Development Method

ETHICS Effective Technical and Human Implementation of Computer-based systems

FDD Feature Driven Development

HCI Human Computer Interaction

ICT Information and Communication Technology

IDV Individualism

ISO International Standards Organisation

IE Information Engineering

IS Information Systems

IT Information Technology

JSD Jackson Systems Development

LD Lean Development

LTO Long time Orientation

MAI Masculinity Index

MAS Masculinity

MERISE General-purpose modelling methodology in Information Systems

NICTA National Information and Communication Technology Institute of Australia

OOA Object Oriented Analysis

PDI Power Distance Index

RAD Rapid Application Development

SDLC Software Development Life Cycle

SE Software Engineering

SSADM Structured Systems Analysis and Design

SSM Soft Systems Methodology

STRADIS Structured Analysis, Design and Implementation of Information Systems

UML Unified Modelling Language

UAI Uncertainty Avoidance Index

XP eXtreme Programming

YSM Yourdon Systems Method

261

Glossary of terminology

Term Meaning
Agile methods (Light
weight methods)

Method based on iterative and incremental development, where requirements
are solutions that evolve through collaboration between self-organising, cross
functional teams. Good examples of agile methods include eXtreme
Programming, SCRUM, DSDM, FDD, Crystal, Lean etc.

Agile principles Agile methods are developed based on some core principles defined by the Agile
Manifesto and these are termed as agile principles

Agile techniques

Agile techniques are techniques that are specific to agile methods and are
collated based on process and methods used in agile methods

Cultural agile
attributes

A list of attributes that are used in this research program to identify common
attributes that are cross referenced by agile techniques and cultural dimensions.

Monochronic

Monochronic cultures just do one thing at a time and they value certain
orderliness

Pair programming

Pair programming is an agile technique where two developers work together
side-by-side on one work station, one acting as the developer and the other as
an observer. The two developers switch role frequently.

Polychronic

Polychronic cultures like to do multiple things at the same time

Refactoring

Improving design of existing code in smaller increments to improve functionality

Software development
methodology

Software development methodology or systems development methodology in
software engineering is a framework that is used to structure, plan, and control
the process of developing information systems

System metaphor

This is a simple share story that explains how the system works and involves
handful of classes and patterns that help the flow of the systems being
developed.

Traditional methods
(heavy weight
methods, Plan driven
methods, waterfall
method)

A classically linear and sequential approach to software design and systems
development.

Test driven
development

Test-driven development is a technique which involves short development cycles
with automated unit tests

User participation

Involvement of users including business and other stake holders to help develop
the system

262

APPENDIX B

Data Collection - Notes

Culture Analysis – Australia

Individualism/collectivism in Australia

Ref Cultural agile

attributes

Coding Comments

A1 Team

Collaboration

Teamwork We need to work together to successfully

manage the projects

In most cases we work together – but at times,

we prefer to work independently to get things

done

A1 Team

collaboration

Group /

culture

awareness

Team’s collaboration – it is almost like

cultural relationships are formal. On personal

level that is not enough for collaboration, on

single team level commitment is good.

We are fun loving and cheerful culture

A1 Management

support

Commitment Business stake holders need to contribute –

need money and time and the main area is

commitment from business and stake holders

A1 Open and

honest

communication

Openness Most members in my team are open in

discussing any issues. During meetings we

discuss issues openly and try to resolve them

A1 Self organising

Team

People

Oriented

But I can’t see someone trying to go out of the

way to resolve someone else’s problem

A1 Dedicated

Team

Work life

balance

We are trying to give a balance to work/life.

We have policies in place to cover immediate

family requirements

394

Scrum - Process

Figure 2-7: Scrum process diagram (Abrahamsson, et al., 2002)

The pre-game phase is a preliminary phase, which contains two sub-phases;

planning and high level architecture design. In planning phase the system is defined and

a list of currently known requirements is created and this is called product backlog list.

The requirements are prioritized and efforts are estimates. The items in backlog are

constantly reviewed and kept up-to date and new ones can be added. Planning also

includes defining the project team, tools and other resources, risk assessment and

management, training needs and verification management approval. The Scrum team

reviews the updated backlog at every sprint phase to gain their commitment for the

sprint. In the design architecture phase the high level design and architecture is done

based on the current items in the backlog list. After this, a design review meeting is held

and decisions of the implementation are done on the bases of this review. Also

preliminary plans for the contents of the releases are prepared.

The development phase is treated as a ‘black box’, where unpredictable changes

are expected. This means that all the environmental and technical variables are

identified, observed and controlled through scrum practices during the sprints. The

development team and the Product Owner then cycle through the process until the

395

planned features fit with the available resources for the Sprint. One final piece of the

planning process is to develop a Sprint goal which is a business purpose for the Sprint.

Without this goal, the team may lose track and become overly focused on tasks. In

addition, keeping the goal in mind encourages the team to work towards the same goal.

Team members’ sign up for tasks that have been identified in the 30-day Sprint and

everyone works towards this Sprint goal and everyone participates in a daily Scrum

meeting. It is also observed that during the Sprint the priorities don’t get changed. The

daily scrum meeting energizes a Sprint. According to Highsmith(2002a) the daily scrum

meetings are quickly considered as a positive approach by the people because they find

these short meetings efficient and effective.

At the end of the Sprint iteration, a Post-Sprint meeting is held to review

progress, display functionality to the customers and review the project from technical

perspective. This phase also includes tasks like integration, system testing and

documentation. Each day the developers record the days and hours invested in a task

and its percent completion. This is a useful tool to monitor project progress.

Scrum identifies different roles with different responsibilities and these are listed

in table 2-7.

Table 2-7: Roles and responsibilities in Scrum

Role Responsibility

Scrum Master Takes interest and care to make sure the project is carried through according to the

Scrum rules and practices

Is responsible for removing any impediments from the process

Product Owner Takes responsibility for the project, managing, controlling and making sure the product

backlog list is visible.

Scrum Master, the customer and the management selects the product owner.

Makes the final decisions regarding the Product Backlog

Participates in creating estimates and turns the backlog items into features to

implement.

Scrum Team Has the authority to organize and make the necessary decisions to achieve the goals of

each sprint.

Is involved in the estimation, creating the Sprint Backlog, reviewing the Product Backlog

list and suggesting the impediments that need to be removed from the project.

396

Customer Participates in the tasks related to Product Backlog items.

Management Responsible of the final decisions along with the charters, standards and conventions to

be followed in the project. Participates also in setting the goals and requirements for the

project, in gauging the progress, in selecting the Product owner and reducing the

backlog with the Scrum Master.

Scrum - Practices

Scrum focuses more on management practices rather than providing any specific

software development practices (Abrahamsson, et al., 2002). Following are the list of

management practices required by Scrum.

Product Backlog contains everything that is needed in the final product based

on the current knowledge. It defines all the work with priority and gets updated

constantly. Product backlog can contain items such as features, functions, bug fixes,

defects, requested enhancements and technology upgrades. The Product Owner is

responsible of maintaining the Product Backlog.

Effort estimation is an iterative process, where the effort estimates get refined

and updated more accurately when further information is available. The Product Owner

and the scrum Team(s) are together responsible for the effort estimation.

Sprint is the procedure of adapting to the changing environmental variables

such as requirements, time frame, resources etc. The Scrum team organizes itself to

produce a new executable product increment in a Sprint that takes time from one week

to one month.

Sprint planning meeting is a two-phase meeting organized by the Scrum

master. In the first phase of a Sprint planning meeting the customers, users,

management, product owner and scrum team decide the goals and the functionality of

the next sprint. In the second phase, the Scrum master and the scrum team focus on how

the product increment is implemented during the sprint.

Sprint Backlog is a list of product backlog items that are selected to be

implemented in the next sprint. The items are chosen by the Scrum team with the Scrum

Master and the Product Owner in the Sprint Planning meeting, based on priority and

goals set for the Sprint. Unlike the Product backlog, the Sprint backlog is stable until the

397

Sprint is completed. The new iteration of the system is delivered on when all the items

in the Sprint backlog are completed.

Daily scrum meetings are held to keep track of the progress of the Scrum team

continuously and to solve any problems that have arisen during the sprint. All the

members of the Scrum team must attend this meeting. The other interested can also

attend but they must remain silent; only members of the Scrum team and the Scrum

master are allowed to speak. The meeting lasts approximately 15 minutes, and every

member of the Scrum Team tells what he/she has done since the previous meeting, what

problems he/she may have encountered and what he/she will do before the next scrum

meeting. Scrum meetings are arranged by the Scrum Master.

Sprint Review meeting is held on the last day of the Sprint. The results of the

sprint are presented to the management, customers, users and the Product Owner by the

Scrum team and the Scrum Master. The participants evaluate the results and make

decision what to do next.

Scrum - Techniques

Scrum techniques are listed below in table based on the features identified for

Scrum: product backlog, Sprint, Sprint goal, Sprint backlog, Sprint planning meeting,

Daily scrum, Sprint review meeting, Release backlog, Customer on-site, Work space

configuration, Daily builds and tests, testing (all types), Metrics – Product backlog

graph, Sprint backlog graph.

Table 2-8: Agile technique with XP and Scrum

Agile Technique

X
P

S
cr

u
m

Daily builds of complete system

Iterative development

Iteration of fixed length

Stand-up meeting

Customer on-site

Frequent delivery

Whole team works same location

Dedicate meeting place

Daily team meetings

Testing is integrated

PM emphasis

Communication

Collaboration

Coordination

Knowledge sharing

Working with uncertainty

398

Empowered to make decisions

Courage to make mistakes

Requirements as prototypes rather than text

40 Hours week

Pair programming

Refactoring

Small software product releases

Collective ownership of code

Champion role

DSDM

Dynamic Systems Development Method (DSDM) was developed in the United

Kingdom in the mid-1990s. The DSDM features the best supported training and

documentation of any agile software development methods, at least in Europe

(Highsmith, 2002b). Based on best practices gathered DSDM framework was defined

by member of DSDM Consortium since 1990 (DSDM, 2010). The DSDM is a

nonprofit, independent organization which owns and administers DSDM framework

(DSDM, 2010). According to DSDM more projects fail because of people issues than

technology. One fundamental assumption is that nothing is built perfectly first time

(DSDM, 2010). Due to the reasoning of the changing business requirements DSDM

assumes that all previous steps can be revisited later and the current step need to be

completed only enough o move to the next step (DSDM, 2010).

DSDM - Process

Figure 2-8: The lifecycle of a DSDM project (DSDM, 2010)

399

Figure 2-8 shows the life cycle of a DSDM project. The five phases of DSDM

process are: Feasibility study, Business study, Functional model iteration, Design and

Build iteration and Implementation. Feasibility study phase is first assessed if DSDM is

the right approach for the project. If DSDM is chosen to be used, the problem is

defined, cost evaluated, technical feasibility analyzed, and duration is maintained

relatively short. The Business study phase is also short. During feasibility study and

business study the requirements are prioritized.

During the Functional Model Iteration phase the requirements are analyzed

further and a function model is created. Based on an initial list of priorities, the

functional model iteration takes place by gathering and prototyping functional

requirements. Nonfunctional requirements are also specified during this phase.

Functional model includes functional prototypes, class models and data models with

documentation. Functional model iteration is the first iterative phase in the process. The

Design and Build iteration is the phase where the system is iterated to a sufficient level

to be handled to the users. The agreed requirements in this phase are then tested and this

does not have to fulfill all the requirements. Testing is done throughout the phase and is

not treated as a separate activity. In the Implementation phase the system is transferred

from development environment to production environment. This phase includes training

users, completing documentation, and creating the increment review document.

DSDM - Practice

DSDM specifies different roles and responsibilities. In DSDM a developer

always works with a user in a pair and this helps creating strong user/developer

partnership (DSDM, 2010). In addition to the common roles as executive sponsor,

project manager, team leader, tester, scribe and developer, there are other user roles

‘visionary’, ‘ambassador’, ‘advisor’. While the ambassador user should understand the

business process and goals of the business process being automated, visionary user

makes sure that the high level intend and vision for the product are not lost. The advisor

user role brings day-to-day knowledge of business details to the development team.

DSDM focuses on establishing and managing the proper culture for a project. Teams are

empowered to make decisions, 100 percent dedication to the success of the project,

Performers are quickly identified and easily rewarded, and collaboration and

cooperation are encouraged between all individuals and work groups.

DSDM principles are explained in the DSDM Consortium and emphasize user

participation. DSDM is a user centered method which involves active user involvement.

400

It is insisted that the users should be closely involved in the development and be part of

decision making. DSDM teams consist of both developers and users, and they must be

empowered to make decisions. The focus is on frequent delivery of products in agreed

period of time. This helps the team to select the best possible solution that can be

achieved in the given timeframe. Deliverables are accepted based on how fit the

essential criteria to business purpose. Traditionally the focus has been on fulfilling the

listed requirements, even if it is changing. Iterative and incremental development allows

system to grow based on feedback from the users. All changes during development are

reversible but the ability to reverse changes is limited to current increment only. Testing

is not treated as a separate activity, but is integrated to the development process. During

the development the system is reviewed and tested by users incrementally and

developers follow the right direction based on advice from business. A collaborative

and co-operative approach between all stakeholders is essential.

DSDM – Techniques

Based on the above two sections, the DSDM method is analyzed and a list of

techniques are ticked.

Table 2-9: Agile techniques with XP, Scrum and DSDM

Agile Technique

X
P

S
cr

u
m

D
S

D
M

Daily builds of complete system

Iterative development

Iteration of fixed length

Stand-up meeting

Customer on-site

Frequent delivery

Whole team works same location

Dedicate meeting place

Daily team meetings

Testing is integrated

PM emphasis

Communication

Collaboration

Coordination

Knowledge sharing

Working with uncertainty

Empowered to make decisions

Courage to make mistakes

Requirements as prototypes rather than text

40 Hours week

Pair programming

Refactoring

Small software product releases

Collective ownership of code

401

Champion role

Feature Driven Development (FDD)

Feature Driven Development (FDD) addresses the problem of response time to

shorter and shorter business cycles. Managers have a way to plan that includes

meaningful milestones and risk reduction due to frequent, tangible results. Clients see

plans with milestones that they can understand. This is a five stage process: Develop an

overall model, build a features list, plan by feature, and design by feature, and build by

feature where design and build are conducted iteratively. The iterative design and build

by feature part supports agile development by quickly adapting to late changes in

requirements or business needs (Abrahamsson, et al., 2002). This is shown in figure 2-9.

Figure 2-9: Sequential process for FDD (Abrahamsson, et al., 2002)

FDD - Process

When the Development begins, the domain experts are aware of the scope,

context and requirements of the system to be built. The domain experts present a

walkthrough to the team members and the chief architect. The domain is further divided

into separate domain areas and a more detailed walkthrough is held for each domain

areas. Further to the walkthrough the teams continue to work in small groups to create

object models for domain areas. Based on the consolidated object models an overall

model for the whole system gets developed. The next process Build a features list

consists of identifying client valued functions that need to be included in the system.

The list is divided into major feature sets, which include functions for a certain domain

area. The features list is reviewed by the users and the sponsors to assure its

completeness and validity. During the Plan by feature process feature sets are sequenced

according to priority and dependencies. These feature sets also assigned to Chief

Programmers who are responsible of the smaller teams implementing these features.

Classes that were identified get assigned to individual developers and they become the

402

‘class owners’ for the classes. Schedule and milestones are set for the project. Schedule

and major milestones are set considering the interdependencies between features,

workload across different teams and class owners, risk factors involved in implementing

the features etc. Design by feature and Build by feature are iterative processes, and

during these stages features are designed and implemented. The length of iteration is

from few days to a maximum of two weeks. A small group of features are identified and

teams are formed to develop the selected features. There can be multiple feature teams

working concurrently. The iterative process includes design, design inspection, coding,

unit testing, code inspection and integration. If the iteration is successful the completed

tasks are promoted and a new iteration begins with new set of features from the feature

set.

Table 2-10: Roles and Responsibilities for FDD

Role Responsibility

Project Manager Administrative and financial leader of the project, protects the team from

outside distraction and provides appropriate working conditions. Has the

ultimate say on the scope, schedule and staffing of the project.

Chief Architect Responsible for the overall design of the system. This role can be divided

into domain architect and technical architect.

Development

Manager

Leads daily development activities and solves conflicts among the team

and handles resources.

Chief

Programmer

Is responsible and takes leadership of small teams in the analysis, design

and development of the new features. Participates in the requirement

analysis and design of the projects. Selects the features to be developed in

the next iteration from the features list and identifies classes and class

owners.

Class Owner Is responsible for the development of the class assigned to own; works

under the guidance of the chief programmer. Tasks include designing,

coding, testing and documenting new features.

Domain Experts A user, client, a sponsor, a business analyst or a mixture of these.

Understand well the knowledge of the real world and they pass the

knowledge to the developers to ensure that a good system is developed.

Domain Manager Leader of the domain experts and tasks include resolving arguments that

may arise within the experts

403

Release Manager Controls the process of the progress from one environment to another.

Language Lawyer

/ Language Guru

A team member who possesses a thorough and advanced knowledge of a

certain programming language or technology.

Build Engineer Responsible for setting up, maintaining and running the build process.

Manages the version control system and publishes documentation.

Toolsmith Builds tools for the development, test and data conversion teams, may also

maintain database and websites.

System

Administrator

Configures, manages and troubleshoots the servers, workstations and

different environments that are needed in the project.

Tester Verifies that the system will meet the requirements of the customer

Deployer Participates in deploying the system

Technical writer Prepares the user documentation

Above table reflects the details of roles and responsibilities needed for FDD.

FDD – Practice

‘Feature teams’ are formed to encourage doing design activities in small,

dynamically formed teams to encourage evaluating multiple design options before one

is chosen. Class or code ownership is a practice seen in FDD and an individual is

assigned the responsibility for the conceptual integrity of that piece of code. There is

also an owner assigned to a feature to make sure the feature is developed properly.

Depending on the size of the project the build is fixed to regular intervals, weekly, daily

and others continuously. A regular build ensures that there is always an up to date

system that can be demonstrated to the owners of that system.

Regular builds are planned to help solve all synchronization issues as early in

the process as possible. Configuration management to ensure easy way to

identify/revert/change any versions of the completed source code are practiced in FDD

(Murauskaite & Adomauskas, 2008). There is also an accurate progress reporting at all

levels seen.

404

FDD – Techniques

Based on the above study the techniques are evaluated and the following ticks

indicate the techniques used in FDD.

Table 2-11: Agile techniques with XP, Scrum, DSDM and FDD

Agile Technique

X
P

S
cr

u
m

D
S

D
M

F
D

D

Daily builds of complete system

Iterative development

Iteration of fixed length

Stand-up meeting

Customer on-site

Frequent delivery

Whole team works same location

Dedicate meeting place

Daily team meetings

Testing is integrated

PM emphasis

Communication

Collaboration

Coordination

Knowledge sharing

Working with uncertainty

Empowered to make decisions

Courage to make mistakes

Requirements as prototypes rather than text

40 Hours week

Pair programming

Refactoring

Small software product releases

Collective ownership of code

Champion role

Crystal

Crystal family was proposed by Cockburn in 2001 and revised in 2002 and 2006

(Farhan, et al., 2009). Crystal’s main theme is that there may be slightly different

policies and conventions for each and every project (Farhan, et al., 2009). Cockburn

compares Crystal Clear with XP, both light, simple, low ceremony approaches as

below:

XP pursues greater productivity through increased discipline, but it is

harder for a team to follow. Crystal clear permits greater individuality

within the team and more relaxed work habits. Crystal clear may be

easier for a team to adopt, but XP produces better results if the team

can follow it. A team can start with Crystal clear and move itself to

405

XP. A team that falls off XP can back up to Crystal clear(Highsmith,

2002a)

Crystal clear operates based on thinking about how software development

should be done and then repeat based on past experimentation. This methodology also

extracts the key issues of people and communication based on trust. Another aspect of

crystal is to choose the practices that work for different domains, what works for a

military project may not work for web content project. Many methodologies articulate

the need to tailor methodologies to an organization or a project (Highsmith, 2002a).

Crystal – Process

Cockburn (2002) focuses on people, interaction, community, skills, talents and

communication as first order effects on performance, process remains important but

secondary. A project that is short on trust is in trouble in more substantial ways than just

the weight of the methodology (Highsmith, 2002a). Cockburn proposes a set of

methodologies from which team can select a starting point and then further tailor it to

the needs of the project (Highsmith, 2002a). According to Highsmith (2002), the work

‘Crystal’ refers to the various facets of a gemstone, each a different face of the

underlying cores of values and principles. Crystal methods are for designing a

methodology to suit a specific project (Strode, 2005). Crystal is characterized by 2

techniques: incremental delivery and self-adaptation. It is based upon incremental

delivery not exceeding more than four months. To cope with this constrained time a

light weight documentation and heavy intercommunication between stake holders are

recommended (Farhan, et al., 2009).

Cockburn defined a matrix to suggest a methodology for use in a given project

and depends on number of people required for the project on x axis and hardness or

criticality on y axis (Theunissen, 2003). The indexed values are: loss of life, essential

money, comfort etc. The cross point indicates which methodology to use and these are

coded based on colour.

Crystal – Practice

Automated regression testing is unique to Crystal methods (Strode, 2005).Users

are actively involved in these methods (Strode, 2005). Key practices of Crystal include:

pair programming, iterative development, writing test cases etc. Methodology size

indicates the number of control elements in the methodology (Theunissen, 2003).

Members of the Crystal family of methodologies share a common set of practices as

406

well as the tuned practices adopted according to situations. Another practice followed

by Crystal is they are versatile. This means that the project team is not restricted to work

on a specific method but may select parts from another method like XP (Theunissen,

2003).

Crystal clear is one of the methods in the family of crystal methodologies. There

are others such as Crystal Orange, Crystal yellow, Crystal orange web etc. As part of

this research these details are not specified in the thesis. Since the formation of the agile

alliance, Cockburn has addresses the question of how his methodologies are classifiable

as agile and how some of the other agile methodologies fit into his matrix (Cockburn,

2002).

Crystal – Techniques

Table 2-12: Agile techniques with XP, Scrum, DSDM, FDD, Crystal

Agile Technique

X
P

S
cr

u
m

D
S

D
M

F
D

D

C
ry

st
al

Daily builds of complete system

Iterative development

Iteration of fixed length

Stand-up meeting

Customer on-site

Frequent delivery

Whole team works same location

Dedicate meeting place

Daily team meetings

Testing is integrated

PM emphasis

Communication

Collaboration

Coordination

Knowledge sharing

Working with uncertainty

Empowered to make decisions

Courage to make mistakes

Requirements as prototypes rather than text

40 Hours week

Pair programming

Refactoring

Small software product releases

Collective ownership of code

Champion role

407

Lean Development

Lean Development (LD) is a term that emerged from the manufacturing realm of

lean production in the 1980s. LD embodies the concept of dynamic stability, the ability

to adapt quickly and effectively to a wide range of customer demands, combined with

the ability to build stable, continually improved internal processes that are general

purpose and flexible across a wide range of products (Highsmith, 2002a).

Lean - Process

The 12 principles of LD can be defined as follows: Meeting customer

expectation, software should provide the best value for money, active customer

participation, multi-disciplinary team effort, adapt to changes and requirements,

software that is applicable across multiple domains, buy rather than build, an 80 percent

solution today rather than 100 percent solution tomorrow, eliminate waste by

minimizing paperwork, small teams etc., choose technology according to the project

objectives, understand business impact, and understand the category of problems that

LD is designed to handle. According to LD principles, excessive documentation does

not add value but only takes up resources and time.

Table 2-13: The seven wastes of software development (Poppendieck, 2002)

The Seven Wastes of Software Development

Overproduction Extra features, unnecessary features, gold plating. Develop according to requirements

statements; develop according to immediate client requirements.

Inventory System requirements waiting to be developed, excessive documentation. Develop code not

documentation, deliver frequently, don’t accumulate code

Extra processing

steps

Code directly from user statements, get clarification directly from clients, implies clients are

an integral part of the development team.

Motion Remove extra lines of communication, have developers together with clients in close

proximity.

Defects Test early and test often. Release nothing until it has been thoroughly tested. Test-driven

development.

Waiting Don’t make clients wait, deliver frequently, fast iteration cycles, reduce decision-making

time, communicate face-to-face for immediate understanding and decision making.

408

Transportation Deliver work directly to the client, avoid hand-offs between participants (eg: analyst to

programmer to tester to implementer to customer)

Table 2-13 is a list of seven wastes that can be seen in a software development

project. The company ‘Toyota’ was focused to adapting market demands by reducing

system response time and that helped the system capable of responding quickly and lean

method was used for this (Morien, 2005). This is a good example of how agile can be

used in a successful project.

Lean – Practice

Lean discusses about eliminating anything that does not add value to the final

product. Te value of each document to be produced is evaluated to minimize the

inventory of documentation. The concept of reducing cycle times and iterative

development are practiced. ‘Decide as late as possible’ is another concept practiced here

allowing the customers current needs are reflected in the system and further adjusted

depending on the requirement changes. Developers are allowed to do what they do best

and are always empowered. A test driven approach is also practiced in Lean

development with test cases written before implementation. Lean also creates a culture

of continuous improvement. The above details were gathered from Poppendieck(2001).

Lean – Techniques

Techniques used in Lean have been analyzed and the following table explains

them with a tick.

Table 2-14: Agile techniques with XP, Scrum, DSDM, FDD, Crystal and Lean

Agile Technique

X
P

S
cr

u
m

D
S

D
M

F
D

D

C
ry

st
al

L
ea

n

Daily builds of complete system

Iterative development

Iteration of fixed length

Stand-up meeting

Customer on-site

Frequent delivery

Whole team works same location

Dedicate meeting place

Daily team meetings

409

Testing is integrated

PM emphasis

Communication

Collaboration

Coordination

Knowledge sharing

Working with uncertainty

Empowered to make decisions

Courage to make mistakes

Requirements as prototypes rather than text

40 Hours week

Pair programming

Refactoring

Small software product releases

Collective ownership of code

Champion role

These techniques will be analyzed further and a list of agile attributes will be

defined by the researcher. These are discussed in detail in Chapter Five.

410

APPENDIX H

Hofstede’s cultural dimensions - Overview

Key differences between Collectivist and Individualistic cultures (Hofstede, 1997)

Collectivist Individualist

People are born into extended families or

other in-groups which continue to protect them

in exchange of loyalty

Everyone grows up to look after him/herself

and his/her immediate family only

Identity is based in the social network to which

one belongs

Identity is based in the individual

Harmony should always be maintained and

direct confrontations avoided

Speaking one’s mind is a characteristic of an

honest person

High context communication Low context communication

Relationship employer-employee is perceived

in moral terms, like a family link

Relationship employer-employee is a contract

supposed to be based on mutual advantage

Hiring and promotion decisions take

employees’ in-group into account

Hiring and promotion decisions are supposed

to be based on skills and rules only

Management is management of groups Management is management of individuals

Relationship prevails over task Task prevails over relationship

Key differences between small and large power distance index cultures (Hofstede,

1997)

Small Power Distance Large power distance

Inequalities among people should be

minimized

Inequalities among people are both expected

and desired

There should be, and there is to some extent,

interdependence between less and more

powerful people

Less powerful people should be dependent on

the more powerful; in practice, less powerful

people are polarised between dependencies

and counter dependence

411

Teachers expect initiatives from students in

class

Teachers are expected to take all initiatives in

class

Teachers are experts who transfer impersonal

truths

Teachers are gurus who transfer personal

wisdom

Hierarchy in organizations means an

inequality of roles, established for

convenience

Hierarchy in organizations reflects the

existential inequality between higher-ups and

lower-downs

Subordinates expect to be considered Subordinates expect to be told what to do

The ideal boss is a resourceful democrat The ideal boss is a benevolent autocrat of

good father

Privileges and status symbols are frowned

upon

Privileges and status symbols for managers

are both expected and popular

Key differences between weak and strong uncertainty avoidance index cultures

(Hofstede, 1997)

Weak Uncertainty avoidance Strong uncertainty avoidance

Uncertainty is a normal feature of life and each

day is accepted as it comes

The uncertainty inherent in life is felt as a

continuous threat which must be fought

Low stress: subjective feeling of well being High stress: subjective feeling of anxiety

Aggression and emotions should not be

shown

Aggression and emotions may at proper times

and places be ventilated

Comfortable in ambiguous situations and with

unfamiliar risks

Acceptance of familiar risks, fear or

ambiguous situations and of unfamiliar risks

Time is a framework for orientation Time is money

Comfortable feeling when lazy; hard working

only when needed

Emotional need to be busy; inner urge to work

hard

Precision and punctuality have to be learned Precision and punctuality come naturally

Tolerance of deviant and innovative ideas and

bahaviour

Suppression of deviant ideas and behaviour;

resistance to innovation

412

Motivation by achievement and esteem or

belongingness

Motivation by security and esteem or

belongingness

Key differences between feminine and masculine societies (Hofstede, 1997)

Feminine Masculine

Dominant values in society are caring for

others and preservation

Dominant values in society are material

success and progress

People are warm and relationships are

important

Money and things are important

Work in order to live Live in order to work

Managers use intuition and strive for

consensus

Managers expected to be decisive and

assertive

Stress on equality, solidarity, and quality of

work life

Stress on equity, competition among

colleagues, and performance

Resolution of conflicts by compromise and

negotiation

Resolution of conflicts by fighting them out

Summary of distinction between long term and short term orientation (Hofstede, 2001)

Short term orientation Long term orientation

Immediate gratification of needs expected Deferred gratification of needs accepted

Traditions are sacrosanct Traditions adaptable to changed

circumstances

Short-term virtues taught: social consumption Long term virtues taught: frugality,

perseverance

Spending Saving, investing

The bottom line Building a strong market position

Analytical thinking Synthetic thinking

