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Abstract.  Preventing fire from entering wetland areas during seasonal or prolonged drought, or 9 

suppressing fire once it has entered a wetland, requires consideration of the consequences of the fire 10 

management action on water quality. Two approaches can be taken to suppress such fires: chemical 11 

fire retardants, or the flooding of sediments.  We determine a lack of information relating to the effects 12 

of these approaches for water quality within fire impacted wetlands. The aim of this study was to gain 13 

a preliminary understanding of the effects of three treatments: two chemical treatments and saturation. 14 

Microcosms were established to test sediments from a wetland on the Swan Coastal Plain, Western 15 

Australia, which were exposed to temperatures ranging from 30-800 °C.  The results indicate that one 16 

of the fire retardant chemicals increased the soluble nutrient load present in the water column, as 17 

predicted by the results of other research. However, the same chemical had a minor but important 18 

effect as an acidity buffer when the organic, pyritic sediment was heated but not burnt. The second 19 

chemical treatment did not increase the nutrient load but nor did it buffer the acidity generated by the 20 

heating and burning of the organic sediment. It was virtually indistinguishable from the saturation 21 

treatment in this regard. 22 

Additional Keywords: Phos-Chek, Kilfire, Acid Sulphate Soils. 23 

Suggested running head: Microcosm test of fire suppression and burnt sediment 24 
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 25 

Introduction 26 

The subject of wildland fires and water quality has received some attention over the last two decades, 27 

where research has focussed on the effects of prescribed burning (Stephens et al. 2004), changed fire 28 

regimes (Townsend and Douglas 2004) or extreme fire events (Earl and Blinn 2003). Another 29 

important area of focus has been the way water quality in a wetland ecosystem has responded to 30 

attempts to either extinguish or suppress fire in the wetland or its catchment. Two approaches are 31 

commonly used in these situations: chemical fire suppression and saturation with water.   32 

Fire suppression commonly uses a variety of water-soluble chemicals including long-term fire 33 

retardants (to inhibit combustion), short-term retardants (their effectiveness vanishes with the 34 

evaporation of water), firefighting foams, and wetting agents (to increase the dispersal and penetration 35 

of water) (Kalabokidis 2000). The principal mechanisms by which water quality might be affected by 36 

these applications are through surface runoff, leaching into the soil profile and then subsurface 37 

drainage, or direct deposition of the chemical into the waterbody (Kalabokidis 2000). Reviews of the 38 

literature on the impacts of fire suppression activities on aquatic ecosystems (Backer et al. 2004; 39 

Giménez et al. 2004; Little and Calfee 2002) refer to common features: because the chemicals are 40 

essentially fertilisers they are likely to result in excess nutrient inputs and potential eutrophication.  41 

The second technique considered for extinguishing wetland fires is saturation with water, either 42 

extracted or diverted from a nearby source or from rainwater. Two consequences of this technique 43 

arise for the water chemistry of a wetland. Firstly, the effects of saturation will depend on the chemical 44 

characteristics of the source water used; salts or pollutants may be introduced which might react with 45 

sediment chemistry. The second consequence arises when rehydrating sediments that may have been 46 

chemically altered due to the severe oxidation of the fire, potentially resulting in the release of stored 47 

acidity and the concomitant mobilisation of contaminants into connected ground- or surface waters.  48 
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Indeed one of Little and Calfee’s (2002) conclusions, that the fire-related effects of aqueous leachates 49 

of ash and high temperatures may exceed the effects of fire retardant chemicals, implies that saturation 50 

of an overheated and burning sediment may not be the best solution for water quality and aquatic 51 

ecosystems. 52 

We believe this complication is one that has otherwise not been treated in the literature. Therefore, we 53 

conducted a controlled microcosm experiment to answer the following questions: (i) does the 54 

application of different chemical fire suppression agents to wetland sediments, which have been 55 

mildly to severely oxidised, result in changes in water quality; and (ii) is the response influenced by 56 

the organic content of the sediment and/or the temperature of the burn? 57 

Methods 58 

Sediments were taken from Lake Nowergup on the Swan Coastal Plain of Western Australia 59 

approximately 38 km north of Perth. The lake is bordered by limestone and calciferous sands whilst 60 

the interior of the lake is slowly infilling, comprised of sands and unconsolidated organic matter. 61 

Unlike other wetlands in this bioregion which have suffered from groundwater drawdown and severe 62 

oxidation either as a result of seasonal drying and/or a significant fire event, the sediments of Lake 63 

Nowergup generally have been kept saturated and anaerobic (Loomes et al. 2003). 64 

Stratified random sampling was designed to collect sediments with varying degrees of organic matter 65 

content within the wetland based upon the hydrological zones of lakes (Semeniuk and Semeniuk 66 

2005a): the permanently inundated zone (consisting of relatively deep accumulations of peat; 67 

Sediment Type 1), the seasonally inundated zone (muddy sands; Sediment Type 2) and the seasonal 68 

waterlogged zone (predominantly quartz sands with interstitial biogenic particles; Sediment Type 3), 69 

where sediments are characteristic of internal biogenic processes superimposed on their internal basin 70 

setting in a linear interdunal depression in the Spearwood Dune system (see Semeniuk and Semeniuk 71 

2005a). 72 
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Bulk sediment samples were collected from a depth between 50 and 60 cm by digging a deep pit at 73 

each of three sampling sites. This depth profile was chosen as the sediments at this depth had been 74 

neither burnt, nor impacted by pyrolysis in another way (as evidenced by a lack of macroscopic 75 

charcoal after visual inspection of the sediment profile), nor seriously dried in recent history.  76 

Bulk sediment samples were maintained at field moisture, placed in sealable polyethylene bags, air 77 

purged and stored at 2 °C in the dark.  For each sample site, individual bulk sediment samples were 78 

thoroughly homogenised to obtain a composite representative of the depth profile sampled. Sediment 79 

subsamples (approximately 500 g wet weight) were then allocated to one of five temperature 80 

treatments, field moist (FM), 30 °C (‘air dried’), 300 °C, 550 °C and 800 °C, representing sediment 81 

temperatures likely to be experienced during a fire (Usup et al. 2004; Rein et al. 2008). The 30 °C 82 

samples were dried at temperature in a drying oven (Memmert UFP 800) until a stable weight was 83 

attained. The remaining heat treated sediments were combusted for one hour at each of the three 84 

temperatures using a muffle furnace (ModuTemp WW71A). Heat treatments were applied 85 

concurrently.  86 

Temperature treated sediments were further sub sampled for each of the thermal increments and three 87 

fire suppression methods were applied. Method A is the water that was used to dilute the two 88 

products: double de-ionised (Milli-Q) water. The method is therefore both a control for the other 89 

treatments and a treatment in its own right since it is applied as if burnt sediments are saturated and 90 

rehydrated. Method B is the product marketed as Phos-Chek D-75 (Astaris LLC 2003). The 91 

ingredients are recorded as Diammonium Sulfate (>65 %), Monoammonium Phosphate (>15 %), 92 

Diammonium Phosphate (>5 %), Guar Gum, Hydroxypropyl (<10 %), and Performance Additives + 93 

Trade Secret (<5 %) before mixing with water. Method C is the product marketed as Kilfire™; as a 94 

liquid or powder it is diluted by water; the manufacturers regard the product as both suppressant and 95 

retardant. It has been classified as a non-hazardous and non-dangerous material according to the 96 
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criteria specified by NOHSC; accordingly no disclosure is made concerning the chemical nature of 97 

this product (Benign Technologies 2007) presumably to protect their commercial interests. 98 

Fire retardants were prepared as per the manufacturers’ specifications. The recommended mixing ratio 99 

for Phos-Chek D-75 is 0.144 kg of retardant powder in one litre of water. Kilfire™ is prepared by 100 

mixing 3.3 g of powder in 10 litres of water. Treated sediment was weighed (10 g) directly into a 500 101 

gm black HDPE jar (Cospak 500STB)and 10 mL of either Method A, B or C solution was added to 102 

create a slurry. The slurries were then made up to a 1:50 ratio with Milli-Q water to represent a likely 103 

dilution in the field (microcosm). The microcosms were capped and mixed thoroughly and then let 104 

stand to allow for hydro-chemical equilibration, in the dark with aeration. After 7 days, pH and 105 

electrical conductivity (using an Orion 5-star multiparameter meter) were measured for each 106 

microcosm and a 60 ml water sample was removed. Each sample was filtered, collected and stored, 107 

frozen or acidified as required and kept dark.  Measurement of sediment physico-chemical parameters 108 

(pH and conductivity) were performed using 1: 5 sediment to water extract (note that this is a different 109 

dilution to that used in the experimental procedure above). Additionally, sediment subsamples for each 110 

thermal treatment were digested (using USEPA method 3050B) to establish sediment variability.  111 

Analysis of Al, Cu, Fe, Mg and S was carried out using a Varian Vista-Pro inductively coupled plasma 112 

(ICP) with optical emission spectroscopy (OES) detection. Ammonia, nitrate (includes any 113 

contribution from nitrite) and ortho-phosphate analysis were completed using a Skalar flow injection 114 

analyser. Due to low concentrations and a number of results at or below the limit of detection, Al, Cu 115 

and Fe concentrations were not included in the statistical analysis. 116 

Statistical analysis was performed in Primer (Version 6). Data were transformed where required and 117 

standardised. A multivariate approach was taken to ascertain patterns of discrimination based on 118 

changes in water quality parameters between fire suppression methods and between temperature 119 

treatments. Significant differences among fire suppression methods temperature treatments were tested 120 
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by pair-wise and 2-way permutational analysis of variance (PERMANOVA) (McArdle and Anderson 121 

2001). Where significant differences occurred pair-wise analysis of variance was used to establish the 122 

source of variability.   123 

Principal Component Analysis (PCA) was used to allow groups of variables to be mapped in multi-124 

dimensional space, which may otherwise not be evident in a two-dimensional relationship. Principal 125 

component correlations (PCC) were then used to identify variables with the greatest absolute 126 

coefficients associated with each principal component.  127 

Results 128 

PERMANOVA results (Table 1) show that significant differences in water quality were seen between 129 

suppression methods however, they did not demonstrate a significant difference between heat 130 

treatments. No interaction was seen between suppression method and heat treatment.  131 

Table 1 here 132 

The two-dimensional PCA ordination of the standardised data for all 45 microcosms shows that the 133 

two axes account for 86.6% of the total variability in the dataset (Figures 1a-c). Most of the variation 134 

is accounted for by PC1 that shows a clear separation between the 15 Method B microcosms 135 

(application of the aqueous fire retardant Phos-Chek D-75), with elevated electrical conductivity 136 

associated with increased concentrations of ammonium, nitrate, phosphate and total S in the water 137 

(Figure 1a). Very little difference was evident between Method A (saturation water) and Method C 138 

(aqueous Kilfire solution) with the exception of elevated electrical conductivity at 30 °C for Method 139 

C. A pair-wise comparison between suppression methods shows that Method B is significantly 140 

different from Method A and Method C (PERMANOVA, P < 0.001). The differences in water quality 141 

between Methods A and C were not significant (PERMANOVA, P = 0.94). 142 

Figure 1a-c here 143 
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Another separation occurs along axis PC2 between Sediment type 1 (predominantly organic with loss 144 

on ignition (LOI) values of around 67%) and Sediment types 2 and 3 (predominantly mineral 145 

sediments LOI values of 0.2% - 0.4%). This separation is attributable to a lower pH and a higher level 146 

of Mg for the water in the microcosms containing the organic rich sediment (Figure 1b).    147 

Whilst not considered significant, heat treatments were still capable of instigating a response. The 148 

variability within Sediment type 1 (Figure 1b) is associated with different temperature regimes. This 149 

organic sediment revealed higher levels of acidity at the three lower temperature treatments, and tends 150 

to become neutral at temperatures above 550 °C, when the combustion leads to the volatilisation of 151 

Total S from the sediment and when buffering is made available in the ash leachate and through the 152 

combustion of carbonate minerals (see Figure 1c).  153 

The application of Method B tends to neutralise the acidity at lower temperatures, and dampens the 154 

extremes otherwise shown for the organic rich sediment (Figure 2a).  However, Method B results in 155 

the addition of Total S (likely SO4
2-

) to the water (Figure 2b).  156 

It is interesting to note that in untreated sediments an increase in Mg levels with combustion 157 

temperatures above 550 °C is observed, however there is a general decline in Mg levels of the water in 158 

microcosms with increases in combustion temperature (Figure 2c). Also noteworthy is that Total S 159 

amounts recorded in the sediments are consistently higher than those for the experimental treatments, 160 

and reflects the loss of S on drying and heating due to volatilisation (Figure 2b). 161 

Figure 2a-c here 162 

Discussion 163 

We assume that our method is a reasonable representation of a post hoc application of fire-164 

suppression, and that under these circumstances variable responses will be observed for (in this order 165 
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of magnitude) the method of suppression, the type of sediment exposed, and the temperature to which 166 

sediments have been exposed.  167 

In drawing our conclusions from this study design, we make two further assumptions. The first is that 168 

the water quality of the field moist and heat treated sediments rehydrated with Milli-Q water (Method 169 

A) would provide a response similar to that experienced in the field whereby soluble and loosely 170 

bound ions in the sediment will be leached into solution, representative of the rehydration of dried, 171 

oxidised and combusted sediments following fire.  172 

Our second assumption is that the addition of a particular chemical suppressant will produce a water 173 

quality response that is indicative of the chemicals added, and it will override any inherent chemical 174 

characteristic of the sediment leachate. We controlled for this assumption using Milli-Q water as 175 

above, and by testing across a range of field conditions (temperatures). The fact that we derived 176 

consistent responses from our treatments, and that the results support those of previous findings (see 177 

below) suggests that our assumption has not been violated. Even so we consider that the results 178 

warrant further investigation into the interactions between different sediment types and the chemical 179 

nature of suppressants.  180 

Our work supports the experimental work of others who found that the application of nitrogen based, 181 

phosphate rich retardants can find their way into drainage systems and surface water bodies where 182 

they can influence trophic status (see Angeler and Moreno 2006) and enhance pH buffering, both of 183 

which are consequences of the fire. For example, Stephens et al. (2004) noted (in the absence of fire 184 

retardants) a large increase in ammonium on post-burn soils, and they attributed this to the fire 185 

converting the organic N to this reduced form, which can then become nitrate and enter streams. Pappa 186 

et al. (2008) examined, in experimental pots, the potential for nitrogen to leach into the groundwater as 187 

a result of a retardant application; when added to the soil as ammonium, some was volatilized during 188 
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the fire, but the conversion of large amounts of the applied ammonium into nitrate exceeded what 189 

could be taken up by the vegetation and resulted in mobile nitrogen which leached from the pots.   190 

The degree to which bivalent cations can be detected in solution after sediments have been heated 191 

appears to depend on the thermal intensity (i.e. degree of heating); in low heat microcosms much more 192 

Mg
2+

 was detected in the water than in microcosms subjected to elevated temperatures, which may be 193 

associated with the formation of MgSO4 and precipitation from the water column. Sulphur will be lost 194 

from the sediments due to volatilization in a fire, so fire retardants containing sulphur counterbalance 195 

these losses by supplementing the sulphur that remains in the sediment and water column; the 196 

suggested precipitation of sulphate with Mg
2+

 (and presumably Ca
2+

) will contribute to a buffering 197 

effect on pH. Conversely, the supplementation of sulphur in conjunction with iron species (commonly 198 

found in organic rich sediments) under reducing conditions may lead to the formation of stored 199 

potential acidity in the sediments. Couto-Vázquez and González-Prieto (2006) noted soil pH increases 200 

after the application of fire fighting chemicals and attributed this to the accumulation of ashes, the 201 

reduction of organic acids and the cations supplied by the chemicals. These processes will be 202 

important if fires occur in organic rich, pyritic sediments where the severe heating will dry and crack 203 

the sediments, aerating them and allow fire to enter, resulting in the creation of acidity through 204 

oxidation (Horwitz and Sommer 2005; Semeniuk and Semeniuk 2005a). 205 

A further complication in the study of the effects of fire retardants on organic sediments is whether the 206 

organic matter can bind and assimilate some of the excess inorganic chemicals introduced as a 207 

retardant.  Little and Calfee (2002) were able to show experimentally that the toxicity of retardants 208 

was dramatically reduced by both the presence of organic soils, and pyrolysis of soils with the 209 

retardant. 210 

Finally the negligible effects of Method A (saturation) and the chemically enigmatic Method C 211 

(Kilfire) deserve mention; they were virtually indistinguishable in that they did not introduce 212 
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significant nutrients into the water, and were both unable to buffer the acidity produced at low 213 

temperatures. If pyritic material is present in a wetland sediment, and given that the organic matter in a 214 

wetland will not be completely consumed by the fire, there is the possibility that hydration with either 215 

method will result in an acidification event. Ironically this will depend on the amount of sediment 216 

burnt, the temperature of the burn and the amount of ash available to buffer the sediments. 217 

We note that we have not subjected the fire retardants themselves to very high temperatures, and that 218 

we need to examine organic chemistry responses as well as the inorganic ones shown in this study; 219 

both of which require further testing. 220 

 221 
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Table 1: PERMANOVA analysis of the differences in microcosm water quality associated with the method of 

suppressant and the temperature that sediments were exposed to.  

Factor   Pseudo-F P-value 

Suppressant (Method A, B or C)  27.59 <0.001 

Heat treatment (Field moist, 30 °C, 100 °C, 550 °C or 800 °C)  1.39 0.193 

Suppressant x heat treatment   0.35 0.99 
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Figure 1: PCA ordination of the water data showing the same microcosm separations but labelled according to method (a), site (b) or thermal treatment (c). PC1 and PC2 

combined account for 86.6% of total variability. The ‘environmental’ variables most influencing the ordination are overlain on the ordinations. 
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Figure 2: Microcosm water and sediment concentrations for pH (a), Total S (b) and Mg (c) for sediment type 1(organic) site only. ‘FM’ refers to field moist treatment. 
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The Figures on the next two pages are Figures 1 and 2 – they are in vertical format, not horizontal format (as suggested by Reviewer 1).
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