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Moving beyond Tyrosine Hydroxylase to define Dopaminergic Neurons for use in Cell Replacement 
Therapies for Parkinson’s Disease 

Robert B White1*, Meghan G Thomas1,2 
1Parkinson’s Centre (ParkC), Edith Cowan University; 2Experimental and Regenerative Neuroscience, 

University of Western Australia 

Abstract: 

Cell replacement therapies are an attractive mode of treatment for neurodegenerative disorders as they have the 
potential to alleviate or modify disease symptoms and restore function. In Parkinson’s disease, the cell type 
requiring replacement is dopamine-producing neurons of the midbrain. The source of replacement cells is 
contentious, with opinion still evolving. Clinical trials have previously used fetal brain tissue, however this will 
likely be superseded by the use of embryonic or induced pluripotent stem cells, due to their greater availability 
and homogeneity. One significant caveat in the use of any cell sources for therapy is that cells must first be 
adequately characterised and purified. The gold standard marker in the identification of dopaminergic neurons is 
tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis, catalyzing the conversion of L-
tyrosine to L-DOPA.  However there are multiple ways of measuring TH readout, and potential flaws in the 
fidelity of TH expression. This review will look at the complex regulatory mechanisms that govern different 
facets of TH expression, including reported differences in TH expression in vitro and in vivo. We will also 
examine the regulation of the TH gene; assessing the which, the where and the when of TH expression. We will 
look at how knowledge of regulation of the TH gene can be utilised to enhance research efforts. And, finally we 
will delve into the transcription factors that govern elements of TH expression, and which may prove more 
effective for defining appropriate dopaminergic neuron precursor cells.   
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INTRODUCTION 

Cell replacement therapy (CRT) for neurodegenerative disorders is an experimental treatment approach that 
aims to modify disease progression by replacing disease-vulnerable, dead or damaged cells. A prominent 
example has been Parkinson’s disease (PD), where the aim has been to replace a specific population of 
dopamine producing (dopaminergic) neurons. Now with over 30 years of experimental data and human clinical 
trials using fetal tissue, it is apparent that the subtle differences in apparently similar cells translate into 
functional differences upon transplantation [1]. With the emergence of embryonic stem (ES) and induced 
pluripotent stem (iPS) cells, the ability to differentiate, sort and select specific cell types has taken on a renewed 
level of importance.  

In the case of CRTs for PD, identification of the requisite characteristics of specific populations of dopaminergic 
neurons is essential. The gold standard marker used to identify a dopaminergic neuron is the presence of 
tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine, catalyzing the conversion of 
L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA).  However there are multiple ways of measuring TH 
readout and some studies are beginning to uncover potential flaws in the fidelity of associating TH expression 
with post-mitotic dopaminergic neurons. As TH is also necessary for the catalysis of precursors to other 
catecholamines, its presence is clearly not specific to dopaminergic neurons alone. Further, transplantation 
studies have demonstrated that fetal tissue taken from the dopaminergic precursor rich regions of the midbrain, 
the substantia nigra (SN) or the ventral tegmental area (VTA), have different abilities to integrate into the host 
environment.  This prompts the question of when, where, and indeed whether TH is an appropriate marker for 
transplantable dopamine cells?  

 

GENERATION OF THE NEUROTRANSMITTER DOPAMINE 

Three distinct catecholamine molecules are utilised as neurotransmitters in the nervous system: dopamine, 
noradrenaline (norepinephrine), and adrenaline (epinephrine). These three neurotransmitters are synthesized in 
catecholamine-producing (catecholaminergic) neurons from the common metabolite tyrosine, via DOPA, 
dopamine and noradrenaline, to adrenaline. Four enzymes are sequentially involved in the biosynthesis of 
adrenaline: (1) tyrosine hydroxylase (TH, aka tyrosine 3-mono-oxygenase); (2) aromatic L-amino acid 
decarboxylase (AADC, or DOPA decarboxylase, DDC); (3) dopamine beta-mono-oxygenase (dopamine beta-
hydroxylase, DBH); and (4) noradrenaline N-methyltransferase (phenylethanolamine N-methyltransferase, 
PNMT) (Figure 1) [2]. As TH catalyzes the first and rate-limiting step of catecholamine synthesis, its expression 
is necessary for neurotransmitter specification of all catecholaminergic neurons. The expression and activity of 
the enzymes DBH and PNMT is only essential for the adrenergic phenotype. 

 

PD symptoms, pathology and traditional dopamine replacement strategies 

PD is a chronic and progressive condition characterised by the cardinal motor symptoms of resting tremor, 
rigidity, bradykinesia and postural instability [3, 4]. However, a substantial proportion of people with PD also 
experience a range of non-motor symptoms such as impairments of executive functions (defined as the ability to 
plan, organise, and regulate goal directed behaviour) and visuo-spatial processing, as well as a depression and 
anxiety.  

Pathologically, time course studies [reviewed in 4] have demonstrated that neurodegeneration in PD first 
touches select populations of dopaminergic neurons in the hindbrain (dorsal motor nuclei of the hypoglossus and 
vagus nerves), the midbrain (giganto-cellular and dorsal part of the raphe nuclei) and the forebrain (anterior 
olfactory nucleus and olfactory bulb) regions, before extending into the midbrain areas of the SN and VTA [4]. 
However it is the degeneration of SN dopaminergic neurons - which results in the depletion of striatal dopamine 
levels - that is recognised as the core pathological event in PD.  

 



While dopamine itself is unable to cross the blood-brain-barrier, treatments have focused on using dopamine 
precursors or agonists to replace dopamine levels in the striatum. The mainstay of PD pharmaceutical therapy is 
L-DOPA, first prescribed by George Cotzias in the late 1960s. L-DOPA is very effective in the early stages of 
PD as it can cross the blood brain barrier (even though only a small percentage of administered L-DOPA 
actually does). Then, all that is required in situ is its conversion to dopamine by the enzyme DOPA 
decarboxylase (DDC), a reaction catalysed by vitamin B6 (Pyridoxal phosphate). Unfortunately, with time, the 
efficacy of L-DOPA treatment wanes and patients develop on-off fluctuations with drug induced dyskinesias [5, 
6].  Thus CRTs for PD have long held promise as a disease modifying treatment option.  

 

Dopamine replacement via cell therapies  

Similar to pharmaceutical approaches, CRTs developed for PD have focused on delivering dopamine producing 
cells to the striatum. The typical approach using grafts of fetal tissue has been to isolate recently differentiated 
dopaminergic neurons derived from the ventral mesencephalon (VM) of 6- to 8-week-old human embryos and 
engraft the tissue into the striatum of PD patients. The VM is not a homogenous population, and contains 
various cell types which are known to produce both morphologically and functionally distinct dopamine neurons 
[7, 8] and other neurotransmitter cell types. This is important, as it has clear implications for the progression of 
PD CRT: upon grafting into the adult striatum, dopaminergic-precursor neuroblasts derived from the ventral 
midbrain display different abilities to survive and innervate the striatum and surrounding tissues [9, 10]. For 
example, in a manner reflective of their adult projection pathways, SN precursor cells are able to form 
connections with the host striatum, whilst VTA grafts tend to form synapses within the graft but do not extend 
into the surrounding host striatum [9]. Transplantation of an undefined and heterogeneous population of cells 
can, in the best case simply lead to low survival of grafted cells, and in the worst case lead to unregulated 
dopamine release or even teratoma formation. 

Thus, the identification, isolation and separation of progenitor or newly post-mitotic dopaminergic neurons that 
will differentiate into fully mature SN dopaminergic neurons is necessary for the clinical advancement of CRTs 
for PD. Which brings us back to TH, the presence of which is still the gold standard marker of a dopamine 
neuron.   

 

TH EXPRESSION AS A MARKER OF DOPAMINE NEURONS 

Mutation studies and expression patterns  

There is no doubt that TH is critical for dopamine production and consequently plays an important role in PD. 
Severe mutations in the TH gene lead to infantile Parkinsonism, with patients being profoundly disabled from 
infancy (<6 months) [11]. TH gene mutations can also cause progressive infantile encephalopathy, in which 
children have persistent encephalopathy coupled with motor disability. In some cases, no benefit is observed 
even following directed treatment with L-DOPA [12, 13]. 

TH expression and its co-localisation with dopaminergic neuronal differentiation has been covered in-depth by 
many other excellent review articles [14-16], and it is not our intention to revisit this in any detail here. Rather 
we note that: during development, TH expression is widely accepted to first occur around 10.5 days of 
embryonic (mouse) development in cells of the intermediate zone of the developing neural tube [17]; BrdU-
pulsing demonstrated that TH is expressed before or during withdrawal of a cell from the cell cycle in SN 
dopamine neurons [18]; and in the ventral midbrain its expression occurs at 11-12 days of embryonic 
development, which coincides with the appearance of the first postmitotic dopaminergic neurons which migrate 
to form the SN and VTA over coming developmental days [19, 20]. Thus during development TH expression 
coincides with cells that are still mitotic or very early postmitotic.  

 

TH based cell sorting strategies  



Given the limitations of current cell culture differentiation protocols, which at best generate in the order of 20% 
dopaminergic neurons [21, 22], fluorescence-activated cell sorting (FACS) could be used to enrich or isolate the 
cells of interest. Given its expression patterns, TH has been seen by the scientific community as an ideal 
candidate sorting marker. One such strategy would be to insert a fluorescent gene downstream from the TH 
promoter and then use FACS to isolate the cells of interest. Kessler et al. [23] generated transgenic mice with 
green fluorescent protein (GFP) expression under control of the TH promoter, randomly inserting a TH 
promoter-GFP plasmid into the genome. Unfortunately, although GFP was expressed in midbrain dopamine 
neurons, it was also expressed in noncatecholaminergic cells. It may be more appropriate to use a gene that is 
more specific for dopamine neurons, such as the dopamine transporter (DAT), and the scientific community has 
starting to explore this alternative; DAT-GFP knock-in ES cells have been used to create DAT-GFP knock-in 
mice [24]. Dopamine neurons recovered from these DAT-GFP embryonic mouse brains can be purified by 
FACS and survive replating in tissue culture [24]. Of course, cell source is of critical importance here. What 
may be an appropriate marker for sorting pre-differentiated ES cells may be totally inappropriate for sorting 
cells from VM tissue, due to the structural and supportive limitations imposed by a mature neuron in situ. 

 

Is TH an appropriate marker of potential dopamine production capability in PD CRTs? 

Given that TH expression in vivo occurs in both committed precursors and mature dopamine cells, it has proven 
useful in identifying early stage cells appropriate for grafting, as well as for characterising the dopamine 
production capabilities of mature cells. As already discussed, there is a pressing need to differentiate and select 
specific progenitor cells predestined to differentiate into specific subtypes of dopamine neurons (i.e. those 
characteristic of the SN) for the development of effective CRTs for PD. While selecting a marker based on its in 
vivo role, it needs to be taken into consideration that cells removed from the constrictions imposed by being part 
of the developmental milieu within the embryo will be subject to different constraints upon expression of genes, 
and this of course includes TH. Unfortunately, extrapolating the usefulness of TH as a marker of specific cell 
types in highly manipulated circumstances is unlikely to be straightforward.  

The TH gene has to be responsive to cues to guarantee adequate and appropriate homeostatic expression and 
function of its enzyme and through this, the production of catecholamine neurotransmitters. This responsiveness 
occurs developmentally, defining when and where TH expression occurs during brain and peripheral nervous 
system formation; it occurs on a cell-specific basis, defining exactly which neurons express TH and thus 
synthesise catecholamines; and it occurs on an even finer scale, with TH expression levels adapting to changing 
conditions within the environment of the adult nervous system.  This distinction is particularly important with 
the advent of iPS cells and other distinct types of progenitor cells, themselves with distinct origins and range of 
differentiation capabilities. Within this context, is TH the best marker? To understand the role of TH, and 
evaluate its potential for defining dopaminergic cells suitable for transplantation in PD, it is essential to 
understand the regulation of TH expression. 

 

CONTROLLING TH EXPRESSION 

Growth and other factors 

Expression levels of TH are highly responsive to signalling molecules, both in vivo and in vitro. Glial cell line-
derived neurotrophic factor (GDNF), on top of its well-described role in dopaminergic neuron survival, will also 
induce expression of a TH transcriptional reporter, as well as endogenous mRNA and protein expression in a 
panel of human neuroblastoma cell lines [25]. Adding strength to this being a direct mechanism, this induction 
only occurred in the cellular fraction expressing the Ret receptor tyrosine kinase (a GDNF receptor). The histone 
deacetylase (HDAC) inhibitor, sodium butyrate, a short chain fatty acid, likewise also regulates TH gene 
expression [26]. Fibroblast growth factor (FGF) signalling also plays a role; FGF1,2,4, and 9 all induce TH 
expression, mediated at least in part via MAPK phosphorylation. Certainly, MEK/ERK inhibitors are sufficient 
to block TH expression [27].  



Perhaps not surprisingly, TH gene-expression is homeostatically responsive to dopamine levels, and its 
transcription is inhibited by dopamine. The dopamine antagonist haloperidol elevates both number and density 
of TH-positive cells within the pars reticulata of the SN within 8 hours of administration, although the dopamine 
receptor agonist quinripole showed no alteration in TH staining [28]. The antipsychotic/antihypertensive 
reserpine (a vesicular monoamine transporter antagonist that inhibits, among other things, dopamine transport) 
actively decreases transcription from TH, as shown by nuclear run-on experiments in rat phaechromatoma PC12 
cells, and after injection of reserpine into the rat locus ceruleus and adrenal medulla [29]. 

Homeostatic response mechanisms and hormone levels regulate TH expression. Progesterone, acting most 
efficiently through the PR-B receptor, stimulates TH transcription [30]. Hypoxia too activates TH transcription 
[31, 32]; nicotine administration causes a constant increase in TH gene transcription [33, 34] and a transitional 
increase in noradrenergic cells of the locus ceruleus; immobilisation stress even activates TH gene transcription 
in the locus ceruleus and adrenal glands. Furthermore, this relationship is dependent upon the duration of the 
stress [35-37].  

These regulators of TH expression have direct implications for the use of TH as a marker in vitro. In any cell 
culture environment, cells are exposed to a suite of different growth factors, many of which will influence the 
expression of TH, either aberrantly or otherwise. This phenomenon may be transient, with TH expression 
disappearing following growth factor withdrawal, or more permanent, signifying a conversion to a TH-
expressing cellular phenotype and the cell’s commitment to differentiate along a particular lineage. Either way, 
for CRTs to be successful, this issue requires greater attention than it has been given to date. 

 

Epigenetic control mechanisms  

As with many non-constitutively expressed mammalian genes, chromatin remodelling regulates the activity of 
the TH promoter. Both nucleosome repositioning and alterations in histone acetylation patterns are associated 
with changes in promoter activity in distinct cell lines [38]. The HDAC inhibitors, trichostatin A (TSA) and 
sodium butyrate, induce human TH promoter activity both in neuronal and non-neuronal cell lines [39]. 
Methylation, too, plays an important role in regulating TH expression. CpG island cytosine residues are 
specifically methylated in neural stem cells (with low TH expression) but not in SH-SY5Y neuroblastoma cells 
[40]. Treatment of TH-negative cells with the demethylating agent 5-Azacytidine increases the fraction of TH-
expressing cells in human neuroblastoma CHP212 cells [41] and human neural stem cells [40]. Thus it is clear 
that epigenetic programming plays an important role in regulating expression from the TH gene. 

 

Cis-elements within the TH promoter & enhancers 

The TH gene is subject to highly complex mechanisms of transcriptional regulation. It is a single copy gene, 
encoded in human DNA on chromosome 11p15. The human TH gene encodes 14 exons, and is expressed as at 
least 9 alternate transcripts, the consequence of using alternate exons and additional donor sites, and resulting in 
tissue-specific splicing [15]. Enzymatic properties of different alternate isoforms can vary by as much as 40% 
[42]. Multiple studies have provided a finely detailed understanding of the cis-regulatory elements that are 
required for the spatio-temporal and cell specific instigation, maintenance, and perturbation of level of TH 
expression.  

Mutations, bioinformatics, reporters and deletion constructs have identified multiple elements that drive the 
expression of TH. Promoter elements in the region inclusive of 9 kilobases (kb) upstream of the TH 
transcriptional start site (TSS) are sufficient to drive a tissue- and developmental stage-specific expression of the 
gene in transgenic mice [43]. These same elements drive TH-GFP expression in most midbrain dopaminergic 
neurons of transgenic mice, at least during early development [19]. Interestingly, even the mammoth 9kb 
promoter region does not drive exactly the same pattern of endogenous TH expression, as GFP expression is 
rapidly lost during foetal development, to be re-established to adult levels later [44]. The cellular distribution of 
TH-eGFP, when compared to TH antibody staining, is far from perfectly faithful: with an 80 to 94% overlap in 
the SN pars compacta, and a 60 to 85% overlap in VTA [44]. Ectopic TH-reporter-driven GFP expression is also 



observed in 8 to 13% of cells that do not label with TH antibody [19]. This indicates the existence of multiple 
control elements that are required for accurate and faithful TH expression; some of which are present within the 
9kb upstream of the TSS, and others that clearly are not (at least in a rat TH promoter being driven in mouse). 

Smaller promoter/enhancer regions also recapitulate certain aspects of TH expression. Two 100 base pairs (bp) 
elements within 3kb of the TH TSS function as bidirectional enhancers, supporting long term, neuron-specific 
expression [45]. TH expression in most catecholaminergic neurons in vivo is conveyed by a 4.5kb region 5′ of 
the TSS of the rat TH promoter [44]. Activity of shorter deletion constructs of the TH promoter has been also 
characterized using transgenic mice [46, 47], while these constructs do recapitulate some aspects of TH 
expression, the aberrations are rife. 

Promoter mutation and analysis has been instrumental in identifying several distinct regions within the relatively 
proximal promoter region. These response elements control different aspects of TH expression (Figure 2). 
Interestingly, transgenic reporter mice have shown that enhancer elements directing region-specific expression 
exist as spatially separated functional elements within the TH promoter. A hypothalamus regulatory element was 
localised between -2.5 and -3.4kb of the rat TH promoter and a midbrain-specific regulatory element has been 
localised to between -0.8 and -2.5kb of the TSS [46]. Olfactory bulb-specific elements have not yet been 
identified and are potentially located outside the 6.0kb assayed in this study [46]. Promoter segment analysis has 
also defined and localised response elements in a precise manner. Initially, this showed that differing expression 
of distinct promoter elements was observed in distinct cell lines. Cell lines with differing permissiveness to TH 
expression either did, or did not, express elements from different locations relative to the TH TSS. Human 
neuroblastoma BE(2)-C-16 cells (which are 50% immuno-positive for TH expression) and human renal 
carcinoma 293FT cell (which are not permissive for TH expression) will both express some promoter elements 
together, whereas other promoter elements will only express in the cells permissive to endogenous TH 
expression [38]. Thus there is a spatial separation of TH promoter elements necessary for different aspects of 
basal expression, cell-type specificity, maintenance and responsiveness. 

Kim et al. [48] bioinformatically scoured the 5.5kb fragment of human genomic DNA immediately upstream of 
the TH coding region, and located sequences corresponding to a TATA box as well as multiple consensus sites 
for transcription factors. Consensus binding sequences for both basal (TATA and CRE), and dopaminergic 
neuron-specific (NBRE and BBE) transcription factors were all readily identified. Two regions within the 5′ 
flanking region displayed exceptionally high homology. Domains encompassing -2384 to -2323bp and -23 to -
65bp relative to the TSS contain NBRE, BBE, CRE elements, which are known to play important roles in 
dopaminergic neurogenesis [48]. There are several BBE cassettes in promoters of the human, mouse, and rat TH 
genes [49]. The proximal promoter contains multiple transcriptional elements that regulate expression, including 
response elements to AP-1, AP-2, cyclic AMP, and NGFI-B, as well as an E-box, responsive to rlTF2 and 
CDP2 [50-55] (Figure 2). 

Bioinformatic analyses have been validated in cultured cells and reporter assays. By fusing a luciferase reporter 
gene to a 3301bp human TH promoter fragment (-3174 to +127bp), Kim et al. [48] demonstrated activity in 
human SH-SY5Y neuroblastoma cells, but minimal luciferase activity in human F3 neural stem cells. Deletion 
analysis identified a repressor element, not active in SH-SY5Y cells, 1.2kb upstream of the TSS, which was 
responsible for repressing promoter activity by 85% in neural stem cells [48]. The same group [56] later 
showed, functionally, that a specific NRSE/RE1 site within the human TH promoter, located between 
nucleotides −204 and −184bp relative to the TSS, is critical for repression of TH gene expression (deletion 
studies showed only one of three NRSE/RE sequences was functional).  NRSE/RE1 sites are occupied by 
NRSF/REST protein, which inhibits the transcription of neuron-specific genes in both undifferentiated neuron 
precursors and cells of non-neuronal origin [56]. NRSF/REST represses expression from the TH gene through 
this cis-element, demonstrated using a NRSF/REST mutated reporter [56]. TH expression is also responsive to 
retinoic acid induction, and this occurs via AP2 binding to multiple functional sites in the TH promoter [55]. 
The HDAC complex participates in TH gene regulation through a cis-element within the human TH promoter, 
located between nucleotides −204 and −184bp, revealed by experiments using HDAC inhibitors and normal and 
mutated reporter constructs [56].  

 



Outside the proximal promoter 

The first intron of the mouse TH gene also contains control elements that result in it being an important mediator 
for tissue-specific gene expression, as shown by a recent report based on enhanced yellow fluorescent protein 
(eYFP) knock-in mice reporter system [57]. In this study, eYFP was placed, via homologous recombination, 
under the control of the endogenous mouse TH promoter and used to generate a mouse stem cell line and, from 
this, knock-in mice. Importantly, in this reporter model, eYFP replaced the first exon and first intron of the 
mouse TH gene, while the other allele continued to express endogenous TH. Analysis of this reporter showed 
that eYFP and endogenous TH gene expression were not completely overlapping, both in embryonic stem cell-
derived neurons and in brain tissues isolated from knock-in mice, in spite of having the entire endogenous 
mouse TH promoter driving the expression of the reporter gene [57]. Per se, such a finding indicates that the 
deleted region of the mouse TH gene encodes for cis-acting regulatory sequences, which are necessary to confer 
an accurate tissue-specific TH gene expression.  

 

TRANSCRIPTION FACTORS CONTROLLING TH EXPRESSION 

Transcription factors are a hot topic in the conversion of precursor cells to dopaminergic neurons for use in 
CRTs: they have the power to reprogram the cellular transcriptional platform from the gene level, driving cells 
to adopt specific and characteristic phenotypes. Transcription factors are nuclear proteins that regulate the 
transcription of downstream target genes, dictating when and where many genes are switched on or off, and 
adjusting levels of transcription. Loss-of-function studies have clearly defined an essential role for the 
transcription factors nuclear receptor-related subfamily 1 (Nurr1), Foxa2, pituitary homeobox 3 (Pitx3), 
engrailed (En1) and orthodenticle homologue 2 (Otx2), and others, in dopaminergic neuron differentiation [58-
62]. Interestingly, many of the sequence-specific transcription factors that specify and drive differentiation of 
midbrain dopaminergic neurons also function as direct upstream activators of the TH gene.  

Nurr1: The TH promoter contains three Nurr1-binding motif sequences (NBREs) and TH promoter deletional 
analysis indicates that less than 1.0kb relative to the TSS of upstream sequence, encompassing the NBRE-like 
motifs, is responsible for the effects of Nurr1 transactivation of TH [63] (Figure 1). Nurr1 activation of TH 
occurs in a cell type-dependent manner and is specific to neural cells, and in a grand act of synchrony in 
dopaminergic neurogenesis, Nurr1 also regulates the dopamine transporter (DAT), and the vesicular monoamine 
transporter 2 (VMAT2) genes necessary for dopaminergic neuron functionality [64]. In hippocampal cells 
overexpressing Nurr1, TH is ubiquitously expressed. In proliferating cells TH expression occurs at low levels 
and is upregulated in differentiating conditions. This suggests that Nurr1 overexpression activates TH in 
undifferentiated cells and, additively, in a fully activated neuronal differentiation program. Alternatively, in non-
neuronal cells, such as rat FF12 primary skin fibroblast and human 293 kidney cell lines, over expression of 
Nurr1 fails to activate TH expression [53]. These data indicate that Nurr1 alone is not sufficient to activate TH 
in every cellular background (such as non-neural cell lines).  

Foxa2: Foxa2 directly binds to the TH promoter and dose-dependently activates TH gene transcription, which is 
induced by Nurr1 [65]. Foxa2 promotes TH expression only in a subset of neural progenitor cells that express 
endogenous Nurr1. Furthermore, Foxa2 and Nurr1, simultaneously overexpressed in neural progenitor cells 
promote TH expression in a synergistic fashion.  

Pitx3: Pitx3 is a homeodomain-containing protein that recognizes the bicoid binding element in the promoter 
sequence of TH. Co-transfection of Pitx3 with a TH reporter construct identified Pitx3 as a trans-acting factor 
that activates or inhibits reporter gene transcription depending on the permissivity of the cell line to TH 
expression (TH-positive or TH-negative type). However it is thought that Pitx3 functions to activate TH 
expression in vivo, as initiation of Pitx3 transcription coincides with the initiation of TH expression [49]. 
Regulation of the TH gene by Pitx3, at least in mice, differs between two distinct dopaminergic midbrain 
regions, the SN and the VTA [66]. Like Foxa2, Pitx3 also acts in concert with Nurr1; the cooperation of Nurr1 
and Pitx3 is necessary, but not entirely sufficient, to induce a dopaminergic phenotype in midbrain neurons [53, 
67]. Messmer et al. [68] showed that simultaneous overexpression of Nurr1 and Pitx3 proteins does not have an 
additive effect on TH transcription, as the level promoted independently by each of the factors in the non-



neuronal human HEK293 cells or mouse D3 ES cells was equivalent to that promoted by simultaneous 
overexpression of both. Pitx3 also recognizes specific binding elements in the promoter sequences of Map2, 
DAT and VMAT2 genes. 

Co-regulatory proteins that activate/repress TH: DJ-1 (also known as PARK7) [69] regulates TH action at 
two levels, initially transcriptionally and then later to increase the enzyme’s activity [70]. PTB-associated 
splicing factor (PSF) is a transcription repressor that upon binding to the promoter region of the TH gene, 
represses its expression. However, DJ-1 can bind to PSF and in doing so sequesters the PSF/co-repressor 
complex, resulting in the induction of TH gene expression in cultured human cells [69]. 

 

Discrepancies between species 

One monumental task that must be accomplished is the assimilation of TH regulation data from distinct species. 
These studies have predominantly been conducted on the TH genes from human, mouse and rat, so it is apt to 
first ask, how similar are human, mouse and rat TH cis-regulatory sequences? Perhaps not unsurprisingly, 
sequence analysis shows low overall homology between human, mouse and rat TH promoter regions [48]. 
Comparative analysis of the sequences of the human, mouse and rat TH promoters revealed only five small 
evolutionary conserved regions of high homology [23, 48]. The degree of homology between the human and 
mouse TH promoters is 46.6% [38], whereas the human and rat TH promoters share only a 30% degree of 
homology [48, 71]. The five conserved regions are upstream of the first –194bp from the TSS of the human TH 
promoter and the first 35bp of the untranslated messenger RNA leader of the human TH gene [38]. This human 
TH minimal promoter was linked to GFP and transduced into human neuronal progenitor cells (hNPCs) and 
mouse primary striatal and SN cells. Transduced cells were then treated in vitro with a mixture of differentiating 
agents to enhance TH expression. Interestingly, the human TH minimal promoter carrying the five conserved 
regions exhibited a significant degree of specific gene expression only in induced TH-positive hNPCs [38], 
while it failed to do so in TH-positive differentiated mouse primary striatal cells and in differentiated mouse SN 
cells. This finding is consistent with differences in the mechanism of TH gene regulation between the human 
and mouse systems. Another striking difference between the human and murine models was observed in a more 
recent study on Nurr1, which did not affect human TH gene expression in hNPCs, in contrast to the mouse and 
rat systems [72]. Nurr1 is required to transactivate mouse TH minimal promoters [54, 63]. However, TH gene 
expression did not depend on a direct Nurr1-mediated transactivation in the human model [72]. 

Endogenous TH gene expression and TH enzymatic activity are reduced only in human cells following DJ-1-
knockdown; this manipulation has no effect in mouse cells [73]. The transcriptional co-repressor PSF is 
sequestered away from the promoter region by DJ-1 in human cells. Similarly, mouse DJ-1 associates with 
mouse PSF; however, as this complex does not target the mouse TH promoter, the mouse TH gene is not 
repressed by PSF in mouse cells. Consequently, neither DJ-1 nor PSF have any effect on the regulation of 
mouse TH, but both are critical for the correct regulation of human TH. 

 

IS TH ENOUGH? 

There are important reasons to continue to explore the complex mechanisms of TH gene regulation. Aberrant 
TH expression could lead to the incorrect assumption that a cell is a fully functional post-mitotic dopamine 
producing neuron. However, as previously expounded, this may not be the case: induced expression of 
controlling transcription factors also activates TH expression without necessarily inducing dopaminergic 
neuronal differentiation. For instance  over-expression of Pitx3, Nurr1, or both together, induces endogenous TH 
expression as well as a TH promoter-reporter construct in a human non-neuronal and mouse embryonic stem 
cell lines [68]. In hippocampal cells, Nurr1 overexpression elevates TH expression 60-fold in proliferating cells 
and 7-fold above controls following induced differentiation. Surprisingly, Nurr1 had little effect on the 
proliferation of cells or on the expression levels of markers of dopaminergic differentiation (Pitx3, AADC, c-Ret, 
GFR-α1, D2R and VMAT2). Indeed TH expression can be aberrantly induced in developing striatal neurons via 
the synergistic interaction of acidic fibroblast growth factor (aFGF) and a coactivator (dopamine, protein kinase 



A, or protein kinase C activator) [27]. Furthermore, isolated bone marrow mesenchymal stem cells express 
detectable levels of TH after several passages with no specific neural induction [74].  

There are many cases of precursor cells expressing TH and other supposed markers of terminal dopaminergic 
differentiation and never obtaining electrophysiological maturity. For example, when human embryonic stem 
cells are induced to differentiate into dopaminergic neurons using a step-wise procedure, TH mRNA and protein 
expression is strongly induced at the neural precursor expansion stage prior to the withdrawal of mitogenic 
growth factors. Cells at this stage still express high levels of the proliferative marker ki67 [75].  

Alterations in TH expression can also occur in a finely temporally regulated manner. Just because a cell is not 
currently expressing TH does not mean that it does not have the ability to. Likewise, it does not mean that the 
given cell will not express TH at another point in time. Indeed, TH gene-expression can be activated through a 
dopamine receptor-mediated mechanism [28]. So in a population of TH-negative neurons in the SN, dopamine 
agonists can increase the number of TH expressing cells. Thus TH expression waxes and wanes even in mature 
committed dopaminergic cells, and because of this, cells may be mislabelled as a consequence.   

Finally dopaminergic neurons from different brain regions are anatomically, electrophysiologically and 
synaptically distinct. The ability to sort regionally distinct dopaminergic cells (beyond TH expression) will take 
on a further level of importance in terms of CRTs, in particular in context of ES and iPS cells.  

 

CONCLUSIONS AND PERSPECTIVES 

Appropriate release and uptake of dopamine is essential for normal motor function. For the restoration of 
synaptic connections and a correctly-regulated dopamine neurotransmitter supply in PD, CRT donor cells need 
to be equipped with all of the required machinery to appropriately produce, store and release dopamine 
(including TH, but also AADC, V-MAT2, DAT, and a precise suite of other proteins).  

Whilst TH expression is clearly useful for dopaminergic neuron identification at a first glance, to obtain the 
required cells for CRT purposes requires a far more in-depth analysis. The success of future cell replacement 
therapies is likely to depend on cell sorting technology (FACS) with multiple markers capable of selecting the 
optimal cells to maximise clinical benefit [76].  

 

ABBREVIATIONS  

bp: Base pairs 

CRT: Cell replacement therapy 

DAT: Dopamine transporter 

DDC: DOPA decarboxylase  

DBH: Dopamine beta-hydroxylase  

ES: Embryonic stem (cell) 

eYFP: Enhanced yellow fluorescent protein 

FACS: Fluorescence-activated cell sorting 

GFP: Green fluorescent protein 

HDAC: Histone deacetylase 

hNPC: Human neuronal progenitor cell 

iPS: Induced pluripotent stem (cell) 

kb: kilobase pairs 

L-DOPA: L-3,4-dihydroxyphenylalanine 



PD: Parkinson’s disease  

PNMT: Phenylethanolamine N-methyltransferase  

RE: Responsive element 

SN: Substantia nigra 

TH: Tyrosine hydroxylase  

TSS: Transcriptional start site 

VTA: Ventral tegmental area 

VM: Ventral mesencephalon 
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FIGURES 
 

 

Fig. 1. Generation of catecholamine neurotransmitters. L-Tyrosine is converted to L-DOPA (catalysed by 
tyrosine hydroxylase), dopamine (catalysed by DOPA decarboxylase), noradrenalin (catalysed by dopamine 
beta-hydroxylase, DBH), and finally adrenaline (catalysed by phenylethanolamine N-methyltransferase, PNMT) 
(Figure 1). Shown below are the expression patterns of enzymes and their resultant reactions according to 
neuronal phenotypes (neurotransmitter production) (References in text).  

 



 

Fig. 2. Response elements (REs) involved in the regulation of TH gene expression. TSS: transcriptional start 
site; RE: response element; CRE: cyclic AMP-response element; CaRE: Ca2+ response element; ERE: Estrogen 
response element; NBRE: Nerve growth factor responsive element; BBE: bicoid-type binding element; NRSE: 
neuron restrictive silencer element; HDAC: histone deacetylase; AP1/2RE: activating transcription factor 1/2 
response element (References in text). Measurement is in DNA kilobases (kb), relative to the TH transcriptional 
start site (TSS). 
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