
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2013 

1-1-2013 

Threats and knowledge gaps for ecosystem services provided by Threats and knowledge gaps for ecosystem services provided by 

kelp forests: A northeast Atlantic perspective kelp forests: A northeast Atlantic perspective 

Dan A. Smale 

Michael T. Burrows 

Philippa J. Moore 
Edith Cowan University 

Nessa O'Connor 

Stephen J. Hawkins 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2013 

 Part of the Terrestrial and Aquatic Ecology Commons 

10.1002/ece3.774 
Smale, D., Burrows, M., Moore, P. J., O'Connor, N., & Hawkins, S. (2013). Threats and knowledge gaps for ecosystem 
services provided by kelp forests: A northeast Atlantic perspective. Ecology and Evolution, 3(11), 4016-4038. 
Available here 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2013/697 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2013
https://ro.ecu.edu.au/ecuworks2013?utm_source=ro.ecu.edu.au%2Fecuworks2013%2F697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/20?utm_source=ro.ecu.edu.au%2Fecuworks2013%2F697&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1002/ece3.774
http://dx.doi.org/10.1002/ece3.774


1 
 

Review submitted to Ecology and Evolution 

 

Threats and knowledge gaps for ecosystem services provided by kelp beds: 

a northeast Atlantic perspective 

 

Dan A. Smale1,2*, Michael T. Burrows3, Pippa Moore4,5, Stephen J. Hawkins6 

 

1Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, 

Plymouth PL1 2PB, UK 

2UWA Oceans Institute & School of Plant Biology, The University of Western Australia, 

Crawley 6009 WA, Australia 

3Department of Ecology, Scottish Association for Marine Science, Scottish Marine 

Institute, Oban, Argyll, PA37 1QA, UK 

4Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, 

Aberystwyth, SY23 3DA, UK. 

 

5 Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup 6027 WA, 

Australia 

 

6School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK 

 

*Correspondence 

Email: dansma@mba.ac.uk  

Fax: +44(0)1752633102 

Phone: +44(0)1752633273 

 

mailto:dansma@mba.ac.uk


2 
 

Abstract:  

Kelp beds along temperate and polar coastlines represent some of most diverse and productive 

habitats on Earth. Here, we synthesize information from >60 years of research on the structure 

and functioning of kelp bed habitats in European waters, with particular emphasis on the coasts of 

UK and Ireland. We also draw on knowledge gained from other systems, in both the wider NE 

Atlantic and further afield, to provide the broader context for this regional research.  We collated 

existing data on kelp distribution and abundance and reanalysed this data to describe the 

structure of kelp beds along a latitudinal gradient spanning more than 10° of latitude. Ecological 

goods and services provided by kelp beds are examined, and we discuss current and future 

threats posed to kelp beds and identify key knowledge gaps. Kelp-dominated habitats along much 

off the NE Atlantic coastline have been chronically under-studied over recent decades in 

comparison with other regions such as Australasia and North America.  The paucity of field-based 

research currently impedes our ability to conserve and manage these important systems. 

Targeted observational and experimental research conducted over large spatial and temporal 

scales is urgently needed to address these knowledge gaps.  
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1. Introduction 

Rapid environmental change is a threat to the functioning of marine ecosystems. Increased 

temperature, storminess and changes in the frequency and magnitude of extreme climatic events 

will influence the distribution of species, community structure and ecosystem functioning (Brierley 

and Kingsford, 2009; Harley et al., 2006). These changes are likely to degrade the ecological 

services that natural systems provide (Hoegh-Guldberg and Bruno, 2010; Sunday et al., 2012). 

The upper layers of the global ocean have warmed at a rate of 0.1°C per decade since the mid-

20th Century, albeit with pronounced regional and seasonal variability (Solomon et al., 2007). The 

NE Atlantic region represents a hotspot of warming, as temperatures have risen at rates of 

~0.3°C to ~0.8°C per decade (Hughes et al., 2010; Lima and Wethey, 2012). Seawater 

temperatures off the west coast of the UK and Ireland are predicted to warm by a further ~2°C by 

2090 (relative to 1990, see Philippart et al., 2011), with major implications for marine ecosystems. 

Other human-derived stressors interact with regional-scale climate change in unpredictable and 

non-linear ways to impact marine ecosystem structure and functioning (Wernberg et al., 2011). In 

developed regions, such as the NE Atlantic, fishing and exploitation of other living marine 

resources including seaweeds, plus coastal land use have impacted nearshore ecosystems for 

centuries. Over the last 150 years diffuse (e.g. eutrophication) and point source chronic pollution 

increased, although recent control measures and de-industrialisation in the last few decades have 

led to improvements. Therefore, the current ecosystem ‘baseline’ is far from pristine and is to 

some degree a product of humankind’s role as the dominant ecosystem engineer and keystone 

predator (sensu sliding baselines,  Dayton et al., 1998). Intensifying anthropogenic impacts over 

recent decades, which will continue into the future (Halpern et al., 2008), dictate that 

comprehensive understanding of ecosystem functioning and resilience is of growing importance. 

This knowledge is needed to enhance sustainability in the use of ecological goods and services 

that coastal zones provide.  

Kelps (large seaweeds of the order Laminariales) dominate rocky reefs throughout the world’s 

temperate seas (Steneck et al., 2002), where they provide ecosystem services to humans worth 

billions of pounds (Beaumont et al., 2008). Kelp forests support high primary productivity, 

magnified secondary productivity, and a three-dimensional habitat structure for a diverse array of 

marine organisms, many of which are commercially important. Dominant kelp genera vary across 

the world’s temperate bioregions, from Laminaria in the North Atlantic to Ecklonia in the Indian 

Ocean through to Macrocystis in the Pacific and South Atlantic. Despite differences in the 

dominant species, kelp forests the world over share some commonality in their structure and 

functioning. For example, dominant canopy-forming kelps influence their environment and other 

organisms, thereby functioning as ‘ecosystem engineers’ (sensu Jones). By altering light levels 

(Clark et al., 2004), water flow (Rosman et al., 2007), physical disturbance (Connell, 2003) and 

sedimentation rates (Eckman et al., 1989), kelps modify the local environment for other 
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organisms. Moreover, through direct provision of food and structural habitat, kelp forests support 

higher levels of biodiversity and biomass than simple, unstructured habitats (Dayton, 1985; 

Steneck et al., 2002) and, in general, kelp forests are hugely important as fuels for marine food 

webs through the capture and export of carbon (Dayton, 1985; Krumhansl and Scheibling, 2012).  

Kelp forests can be highly dynamic systems that exhibit pronounced spatiotemporal variability. 

Kelps are susceptible to physical, chemical and biological changes in the marine environment so 

that significant reduction in kelp habitat over tens to hundreds of kilometres can occur within a 

year (Dayton et al., 1992; Edwards, 2004; Wernberg et al., 2013). Kelp forests within systems 

influenced by upwellings or variable oceanic boundary currents may be particularly dynamic, 

compared with those in more stable systems. Key factors include light, which is in turn influenced 

by latitude, water clarity, epiphytes and weather, as well as temperature, nutrient levels, the 

frequency and intensity of storms, and outbreaks of herbivores. Crucially, recovery from 

perturbations can progress once environmental conditions become favourable; most kelp species 

reach maturity within 1-6 years (Kain, 1975b; Parke, 1948) and entire kelp-associated 

communities can recover within 7-10 years (Christie et al., 1998). Indeed, the recovery of kelp 

canopies and their associated assemblages following physical disturbance can be very rapid, 

occurring within 3 years (Hawkins and Harkin, 1985). However, the resilience of kelp forests to 

perturbation is being eroded through multiple, concurrent chronic and acute stressors. In many 

regions, herbivory (usually by sea urchins) has increased as a result of trophic cascade effects 

associated with the removal of large predators (Estes and Duggins, 1995; Steneck, 1998). 

Increased herbivore pressure can cause phase-shifts from structurally and biologically diverse 

kelp beds to simple, depauperate barrens (Breen and Mann, 1976; Hagen, 1983; Norderhaug and 

Christie, 2009). In Tasmania, the impacts of a climate-mediated range expansion of a sea urchin 

have been compounded by overfishing of large lobsters, which would otherwise have kept the 

urchin population boom in check and limited grazing pressure (Ling et al., 2009). Other kelp 

systems have been degraded following increased nutrient and sediment input from ever-

expanding coastal cities (Connell et al., 2008), or following establishment of non-indigenous 

species (Irigoyen et al., 2011; Krumhansl et al., 2011). Moreover, changing climatic variables, 

including storm frequency (Byrnes et al., 2011), the magnitude of extreme thermal events 

(Wernberg et al., 2013), and increased seawater temperature (Serisawa et al., 2004) have 

recently been attributed to ecologically-significant alterations in kelp bed structure and 

functioning.    

This review is not intended to duplicate existing syntheses on the biology and ecology of kelp 

species (Dayton, 1985; Kain, 1979), the resilience of kelp beds to perturbation (Steneck et al., 

2002), kelps as drivers of detrital food webs (Krumhansl and Scheibling, 2012) or the likely 

responses of kelp and other macroalgae to global environmental change (Harley et al., 2012). 

The aims of the review are threefold: (i) to synthesise existing knowledge on the structure and 



5 
 

functioning of kelp beds, and the ecosystem services they provide, in the NE Atlantic with specific 

focus on the UK and Ireland, (ii) to identify current threats to kelp beds and to assess the likely 

responses of kelp species and their associated biodiversity to key environmental change 

stressors; and (iii) to highlight pressing knowledge gaps and research priorities that will lead to 

improved understanding of the current and future role of kelp dominated habitats within the wider 

ecosystem. This information will ultimately support decision-making processes and feed into 

adaptive management approaches, which are needed to ensure the sustainability and continued 

productivity of natural ecosystems faced with rapid environmental change.       

2. A brief history 

Quantitative research on UK kelp beds began over 60 years ago, following a demand from the 

Ministry of Supply to produce camouflage textiles and other goods from kelp-derived alginates 

during and after the Second World War (Parke, 1948; Woodward, 1951). In the early 1950s, 

attempts were made to quantify the total standing stock of kelp as a potential exploitable 

resource. The total biomass of subtidal kelp around Scotland (mostly Laminaria hyperborea) was 

estimated as 10 million tons over an area of 8000 km2 (Walker, 1953).  This figure was a map-

based estimate derived from detailed surveys of the coastline (Walker and Richardson, 1955)  

over the period 1946-1955, which included aerial photography and quadrat sampling over an area 

of 270 km2 (Walker and Richardson, 1956). Interestingly, the resultant time series depicted high 

inter-annual variability in kelp biomass in Scotland which, at the time, was attributed to an 11-year 

cycle in sunspot activity (Walker, 1956). However, re-examination of the data suggests that the 

highest annual biomass estimates were recorded in years following North Atlantic Oscillation 

(NAO)-positive summers (Folland et al., 2009). As such, it could be that calm, sunny weather led 

to increased biomass, suggesting that decadal and shorter-term NAO variation may be linked to 

kelp productivity.  

Technological advances in scuba diving in the 1960s and 1970s facilitated step-wise progress in 

our understanding of the distribution and ecology of kelp beds in the UK. Perhaps most notable 

were the seminal body of work by Joanna Kain on the ecology of Laminaria on the Isle of Man 

(see Kain, 1979, for overview), and P.G. Moore’s work on faunal assemblages within kelp 

holdfasts in NE England (Moore, 1971, 1973). Moreover, between 1970 and 2000 substantial 

survey work was conducted by the Nature Conservancy Council (NCC) and various successor 

bodies including the Marine Nature Conservation Review (MNCR). During this time, scuba divers 

conducted semi-quantitative surveys along the majority of the subtidal rocky coastline of the UK, 

to benchmark patterns of marine biodiversity. This dataset is freely available through the National 

Biodiversity Network gateway and remains the only large-scale, systematic assessment of 

subtidal rocky reef assemblages in the UK.   
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From the 1980s onwards, changes in attitudes and regulations concerning scientific scuba diving, 

coupled with shifts in research priorities and relatively little commercial interest in kelps, have led 

to a dearth of primary research on kelp beds in UK waters. Subtidal kelp beds persist along 

>12,000 miles of UK coastline yet the volume of directed research in recent years pales in 

significance when compared with kelp studies conducted in other research-intensive nations (Fig. 

1). For example, an ISI listed search of ‘kelp’ papers showed that researchers in Australia and the 

USA published >100 papers on the ecophysiology or ecology of kelps in the last decade, whereas 

just 7 papers originated from the UK (Fig. 1). Indeed, in the period 2002-2011, more kelp ecology 

papers originated from sub-Antarctic regions than from the UK. Similarly, a search of marine 

ecology papers focussing on major habitat types in the UK over the same timeframe shows that, 

compared with work on subtidal rocky reefs, 10 times as much research was conducted on 

intertidal rocky shores, 7 times as much on subtidal soft sediments, and twice as much on 

intertidal soft sediments (Fig. 1). With the notable exception of Norwegian research, kelp 

ecosystems in the wider NE Atlantic have been relatively understudied in recent years (Fig. 1). As 

the structure of, and current threats to, kelp beds off Norway are dissimilar to those further south, 

generalising ecological patterns, processes and predictions to the wider NE Atlantic is 

problematic. Clearly, the lack of focussed process-based research over recent years has resulted 

in significant knowledge gaps concerning the responses of kelp dominated habitats to 

environmental change, the contribution of kelps and their associated biodiversity to marine food 

webs, and the resilience of kelp communities to perturbation.  

3. Kelp bed structure 

In the NE Atlantic, kelps occupy subtidal rocky reefs in all but the most sheltered or turbid 

locations. Dense kelp beds are found from the lower shore to depths >30 m, from northern 

Norway and Iceland through to Portugal and Morocco. Compared with other systems worldwide, 

kelp species diversity in European waters is relatively high, most likely because of the pattern of 

tectonic activities and the development of oceanic circulation patterns over the last 15 million 

years. Kelp species representative of both North Atlantic and North Pacific genera, of warm water 

origin, of cool water origin and of Arctic water origin, are found in the NE Atlantic. Dominant 

canopy formers are generally members of the family Laminariaceae (e.g. Laminaria hyperborea, 

Laminaria digitata, Laminaria ochroleuca), which exhibit an alternation of dissimilar generations; 

an asexual diploid phase (the sporophyte) that is usually of considerable size and a haploid 

dioecious phase (the gametophyte) that is microscopic (Kain, 1979). Sporophytes of members of 

the Laminariaceae comprise a holdfast, a stipe and a blade, which may comprise many digitate 

fronds as in L. hyperborea or a single undivided frond as in S. latissima. The sporophyte 

produces vast numbers of meiotic haploid zoospores from 'sori' on the blade which, when 

released, may disperse metres to kilometres from the parent. The zoospores develop into 

microscopic gametophytes which generally become fertile within a matter of days under 
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favourable conditions. Male gametophytes release motile sperm that fertilize eggs of proximal 

female gametophytes and the resultant zygote develops into the new sporophyte (in unfavourable 

conditions, however, the gametophyte may develop vegetatively). The young sporophyte then 

develops into a mature kelp over the next few years, which may reach up to 4 m in length and, in 

the case of L. hyperborea, live for ~20 years. For further information on the life history and biology 

of Laminariaceae, the reader is referred to comprehensive accounts by Kain (1979) and Lüning 

(1990). 

In the UK and Ireland, suitable rocky reef habitat is found along much of the undulating coastline, 

particularly along the wave-exposed south, west and north coasts. As such, kelps occupy rocky 

reefs and artificial hard structures from the low water mark to, in extreme cases, depths in excess 

of 40 m (e.g. Alaria esculenta off Rockall, Scotland) along most of the coastline of UK and Ireland 

(Fig. 2). Kelp beds in UK waters are complex, as 7 different kelp species co-exist, of which 4 are 

long-lived climax canopy-forming species (Table 1), and their relative abundance is influenced by 

a range of abiotic (e.g. temperature, latitude, wave exposure, light levels, disturbance) and biotic 

(e.g. competition, grazing) factors. Even so, the dominant canopy-former on most subtidal reefs is 

Laminaria hyperborea, which is a ‘stipitate’ kelp species with a rigid stipe (1-3 m long) that holds 

the fronds above the substratum. L. hyperborea is distributed from the Arctic south to northern 

Portugal, and in the UK it persists on all but the most wave-exposed or turbid rocky reefs. The 

sporophyte becomes fertile after 2-6 years and may live for 5-18 years in the UK (Kain, 1979). L. 

hyperborea influences its environment and other organisms by providing food and habitat, and by 

altering light, water motion, sediment deposition and physical disturbance through thallus scour. It 

is, in the truest sense, an ecosystem engineer and functions as the assemblage dominant by 

outcompeting other large macroalgae under most conditions (Hawkins and Harkin, 1985).    

Other members of the genus found in UK waters are Laminaria digitata and Laminaria 

ochroleuca. L. digitata is distributed from Arctic waters to its southern range edge in Brittany, 

France. It is perennial, reaching maturity after 1-2 years and persisting for up to 6 years, and is 

smaller than L. hyperborea, reaching a maximum total length of 3 m. L. digitata tends to dominate 

the low intertidal and immediate subtidal zones, but is outcompeted by L. hyperborea at depths of 

a few metres (Hawkins and Harkin, 1985; Kain, 1975a). In contrast to L. hyperborea its stipe is 

very flexible so that fronds scour the immediate substratum, which facilitates attachment in the 

wave-exposed shallow subtidal zone. L. ochroleuca is a warm-temperate Lusitanian species, 

which is distributed from the south of England to Morocco, and occurs in both the Straits of 

Messina and the Azores. It is very similar in morphology to L. hyperborea and is thought to share 

similar life history traits, although little is known about its biology in UK waters. L. ochroleuca is 

thought to be expanding its range polewards, perhaps in response to ocean warming. It was first 

recorded in the far southwest of England and subsequently progressed along the southwest 

peninsula as far east as the Isle of Wight and northwards onto the north Devon coast (see Blight 
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and Thompson, 2008, and references therein). Long-established populations on the south coast 

are also thought to be increasing in abundance, perhaps at the expense of L. hyperborea (Keith 

Hiscock, pers comm).  

The remaining kelp species are structurally and functionally diverse and can be locally abundant 

and sometimes dominant. Saccharina latissima (formerly Laminaria saccharina) has a short stipe 

and a single, undivided frond (up to 4 m in length) with a ‘frilly’ undulating margin. It is a short-

lived perennial, reaching maturity at 1-2 years and living for up to 4 years. S. latissima is found 

from the Arctic to France (although some isolated populations in northern Portugal may persist) 

and tends to attach to semi-stable substrata (e.g. boulders) or inhabit the margins of dense L. 

hyperborea beds, particularly in sheltered to moderately exposed locations. Alaria esculenta has 

a similar distribution and, in many respects, morphology (having a short stipe and single blade 

with distinct midrib extending to 1-3 m in length), but is restricted to wave exposed conditions and 

attaches to stable substrata. It is fertile in about 1 year and lives for 4-7 years. Both species 

mostly function as  mid-successional species and are outcompeted by members of the genus 

Laminaria, although under extremely wave-exposed conditions A. esculenta may dominate the 

assemblage (Hawkins and Harkin, 1985). Finally, two short-lived, annual kelp species are found 

in waters off the UK and Ireland; Saccorhiza polyschides and the non-native Undaria pinnatifida 

(‘Wakame’). S. polyschides is found from Norway to Morocco, and can be the dominant canopy-

former in warmer waters where Laminaria digitata and Laminaria hyperborea are absent 

(Hawkins and Harkin, 1985). It is particularly abundant off the southwest coast of Ireland and 

common throughout much of the UK (Norton, 1978). It is a fast-growing opportunistic species that 

can tolerate very calm through to very turbulent conditions, attaches to a range of substratum 

types, and is often found at the margins of dense Laminaria beds (Norton, 1969). There has been 

some evidence to suggest that the relative abundance of S. polyschides has increased along the 

south coast of England (Birchenough and Bremmer, 2010, Hawkins pers obs), but reliable data 

are lacking. There is little doubt, however, that the abundance and distribution of the global 

invader Undaria pinnatifida has increased in UK waters in recent decades; having first been 

recorded on the south coast of England in 1994 (Fletcher and Manfredi, 1995) it has now become 

established at a number of locations in the UK (Farrell and Fletcher, 2006). As it can penetrate 

low salinity waters, U. pinnatifida has become common in some marinas and estuaries. Although 

U. pinnatifida is still restricted to artificial substrates, it is anticipated that this species will shortly 

colonise natural intertidal and subtidal habitats.  

The structure of entire kelp beds - in terms of the identity and abundance of kelp species and their 

associated biodiversity - varies considerably in space and time as a function of wave exposure 

(and storm frequency and magnitude), light levels (influenced by depth and turbidity), 

sedimentation and temperature. As a general rule, in moderately exposed conditions dense 

stands of Laminaria digitata will persist from the low water mark to a few metres depth, with the 
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upper limit of Laminaria digitata set by physical stress and competition with Fucus serratus 

(Hawkins and Harkin, 1985) and the lower limit set by competition with Laminaria hyperborea 

which is mediated by wave exposure. Saccharina latissima and Sacchorhiza polyschides 

generally inhabit the immediate subtidal, fringes of rocky reefs or boulders. As the substratum 

extends into deeper water and light becomes limiting, the density of kelps decreases and isolated 

(often large) individuals of Laminaria hyperborea and Sacchoriza polyschides form ‘park land’. In 

some locations, such as off the Isle of Man and in Lough Ine, grazing by sea urchins may control 

the lower depth limit of kelp beds (Jones and Kain, 1967; Kain, 1975a; Kitching and Ebling, 1961). 

While many kelp-dominated systems are dynamic and exhibit pronounced spatio-temporal 

variability at multiple scales (see Smale et al., 2010 for Australian examples; Wernberg and 

Goldberg, 2008), others are relatively more stable. For example, southerly distributed European 

kelp beds (i.e. along the Iberian Peninsula) are more prone to short-term temporal variability 

arising from variations in both the strength of coastal upwelling and recruitment patterns of 

dominant canopy formers (e.g. S. polyschides). Similarly, high latitude kelp beds may exhibit 

considerable temporal variability over years to decades, driven by stochastic (or perhaps cyclical) 

periods of overgrazing by sea urchins, in particular Strongylocentrotus droebachiensis 

(Norderhaug and Christie, 2009). It could be that mid-latitude kelp beds are more stable within 

ecological timescales, although explicit comparisons of variability patterns along broad scale 

latitudinal gradients are lacking.   

At regional spatial scales across the UK and Ireland, there are some general trends in kelp bed 

structure that are primarily driven by the abundance distribution patterns of individual kelp 

species. The occurrence of the cold water kelps Laminaria hyperborea, Saccharina latissima and 

Alaria esculenta generally increases with latitude from southern England to northernmost 

Scotland (Fig. 3), which corresponds with a geographical shift from the southern limit towards the 

centre of these species’ distributions. Broadly speaking, optimal kelp habitat off the west and 

north coasts of Scotland is characterised by dense stands of L. hyperborea  (wave exposed) or S. 

latissima (more sheltered), whereas kelp beds off the south and west coasts of the UK and 

Ireland are more mixed, with a greater relative abundance of Sacchorhiza polyschides and L. 

ochroleuca. This regional-scale shift in kelp bed structure occurs over a latitudinal temperature 

gradient of some 3° C, and may provide some insights into the likely effects of gradual seawater 

warming on kelp bed structure and function (see ‘Climate change’ section below).        

4. Ecological goods and services 

Kelps are hugely important as primary producers (both locally and via export of detritus to nearby 

habitats), as habitats and repositories of marine biodiversity and secondary productivity, as 

natural coastal defence, and as nursery grounds for exploited species (reviewed by Steneck et 
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al., 2002). Specific UK-based examples of these roles are illustrated in Fig. 4 and described in 

detail below.  

i. Biodiversity 

Habitat forming species or ‘engineers’ (sensu Jones et al., 1994), such as kelps and corals, exert 

control over entire communities by modifying the environment and resources available to other 

organisms (e.g. Bertness and Callaway, 1994; Jones et al., 1997). In particular, kelps alter light, 

nutrients, sediments, physical scour, and water flow conditions for proximal organisms while 

providing structural habitat for a wide range of flora and fauna. Within the UK alone, over 1800 

species have been recorded from kelp dominated habitats. As habitat-formers, kelps directly 

provide 3 distinct primary habitats; the holdfast, the stipe, and the lamina. In addition, epiphytes 

(primarily attached to the stipe) provide a secondary habitat for colonisation. Over 40 years of 

descriptive research on kelp-associated faunal assemblages in the NE Atlantic has unequivocally 

demonstrated that kelps harbour considerable biodiversity (e.g. Blight and Thompson, 2008; 

Christie et al., 2003; Edwards, 1980; Moore, 1971, 1973). For example, a study on Laminaria 

hyperborea in Norway by Christie et al. (2003) showed that, on average, a single kelp plant 

supports ~40 macroinvertebrate species represented by almost 8000 individuals. The biogenic 

habitat formed within the kelp holdfast generally harbours the most diverse assemblages, with 

species richness per holdfast typically in the region of 30-70 macrofaunal species (Blight and 

Thompson, 2008; Christie et al., 2003; Edwards, 1980). However, assemblage richness and 

structure is strongly influenced by the volume and complexity of the holdfast habitat, as well as 

external local and regional factors (e.g. turbidity, exposure). The secondary habitat formed by 

epiphytes on kelp stipes is often utilised by a highly abundant and diverse fauna (Christie et al., 

2003), which varies considerably in space (i.e. with location and depth) and time (i.e. with season 

and year). Kelp lamina generally support lower diversity, although epiphyte growth can be very 

extensive under certain conditions. While diversity may be low, the abundance of several 

widespread epibionts of kelp lamina (e.g. the blue rayed limpet, Patella pellucida, Fig. 4 and the 

‘sea mat’ bryozoan Membranipora membranacea) can be locally very high (Christie et al., 2003).  

At spatial scales larger than that of a single kelp plant, multiple individuals form extensive beds 

that provide habitat for a vast array of marine organisms. Rich understorey assemblages of plants 

and animals persist beneath kelp canopies, which ameliorate environmental stressors, and 

provide shelter and food. With respect to understorey macroalgae, more than 40 species 

(principally rhodophytes) are regularly found beneath kelp canopies, although their relative 

abundance varies considerably between biogeographic regions and is strongly influenced by local 

factors such as depth, turbidity, wave exposure and siltation (Maggs, 1986). Studies in other 

temperate regions have indicated that diverse macroalgal canopies may support greater 

biodiversity in understory assemblages compared with mono-specific canopy stands (Smale, 
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2010), perhaps because structurally varying canopy-formers enhance habitat diversification. 

While this has not yet been examined in UK waters, the region represents a tractable model 

system due to the co-existence of several canopy-forming kelp species.  

Kelp beds in the UK and Ireland also provide habitat for large invertebrates, such as gastropod 

molluscs, crustaceans, and echinoderms, some of which have significant ecological (e.g. sea 

urchins, see Jones and Kain, 1967; Kitching and Thain, 1983) or socioeconomic (e.g. the 

European lobster, see Johnson and Hart, 2003) importance. Kelp beds are particularly effective 

nurseries for juvenile invertebrates and fish (e.g. Atlantic cod and pollock), which provide shelter 

from predation. Moreover, kelp beds are key feeding grounds for many NE Atlantic fish species, 

such as Labrus bergylta (Ballan wrasse) and Ctenolabrus rupestris (Goldsinney wrasse), which 

prey on kelp-associated invertebrates (Norderhaug et al., 2005). In turn, elevated fish densities in 

kelp beds attract large piscivores, such as large fish, seals and otters. In general, subtidal rocky 

reefs with extensive stands of Laminaria hyperborea support greater species richness than reefs 

without high kelp coverage (Burrows, 2012). Further analysis indicates that species richness on 

subtdial rocky reefs around the UK generally increases with increasing relative abundances of all 

the major canopy-forming kelp species (Fig. 5).     

The vast majority of work on kelps as habitat formers and repositories of biodiversity has 

focussed on Laminaria hyperborea. What is clear, however, is that different kelp species have 

different morphologies and life histories and, as such, provide structurally varying habitat. This is 

important within the context of environmental change, as any shifts in the relative abundance of 

kelp species may have knock-on effects on their associated biodiversity. For example, 

understorey assemblages associated with Laminaria digitata are distinct from those beneath L. 

hyperborea because the stipe of the former is shorter and less rigid. As a result, the substrate 

near to L. digitata plants experiences greater physical abrasion by lamina such that fewer species 

can inhabit the understorey compared with L. hyperborea (Kain, 1979). However, certain species 

such as the limpet Patella ulyssiponensis and the sponge Halichondria panacea are facilitated by 

‘sweeping’ by L. digitata, as they would otherwise be outcompeted by understorey algae. 

Similarly, subtle differences in morphology (e.g. holdfast volume and complexity, stipe roughness 

and susceptibility to epiphyte growth) can have a strong influence on the structure and richness of 

associated assemblages (e.g. Blight and Thompson, 2008). The nature of inter-specific and 

regional-scale variability in kelps as habitat formers within the UK and Ireland (and the wider 

implications for biodiversity) is poorly understood and remains an important knowledge gap within 

the field of kelp bed ecology.  

ii. Productivity and food webs  

Kelp beds represent some of the most productive habitats on Earth (Mann, 1973, 2000; Reed et 

al., 2008), and are a major source of primary production in coastal zones of temperate and polar 
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oceans worldwide (Steneck et al., 2002). Kelp productivity is strongly correlated with nutrient 

availability, but is also affected by temperature, wave exposure, light and disturbance regime (see 

Reed et al., 2008 for detailed discussion). Extension (i.e. growth) rates of kelp vary considerably 

among species and between geographic regions. In southern California maximum growth rates 

for the giant kelp Macrocystis pyrifera can exceed 30 cm per day (Abbott and Hollenberg, 1976), 

whereas members of the genera Laminaria and Saccharina may exhibit maximum extension 

rates of ~1 cm per day (Parke, 1948). However, extension rates are closely related to morphology 

and growth strategy, and when growth rates are converted to biomass production per unit area 

different kelp species tend to exhibit broadly comparable productivity rates (Fairhead and 

Cheshire, 2004; Krumhansl and Scheibling, 2012; Mann, 1973).    

In the Atlantic, kelp primary production can be in excess of 1000 g C m-2 yr-1, and that from 

Laminaria species has been estimated at between 110 and 1780 g C m-2 yr-1 (Mann, 1973, 2000), 

while primary production from phytoplankton in coastal temperate regions is typically between 

100 and 300 g C m-2 yr-1 (Mann, 2000).  Given these relative rates of production, it is possible to 

approximate the relative proportion of primary production derived from both phytoplankton and 

benthic macroalgae in UK coastal waters.  Walker (1953) estimated an area of 8000 km-2 of kelp 

habitat in Scotland alone, which may produce 10 M t C yr-1 at typical production rates of 1300 g C 

m-2 yr-1 (Dayton, 1985). This compares with a potential phytoplankton production of 13 M t C yr-1 

from 133,000 km2 of sea <20km from the coast within the UK exclusive economic zone (EEZ), 

and 73 M t C yr-1 from the 770,000 km2 of the entire UK EEZ (assuming a rate of production from 

phytoplankton of 100 g C m-2 yr-1). Kelp may therefore account for ~45% of primary production in 

UK coastal waters, and 12% of marine production in the entire UK EEZ. This estimate for annual 

UK kelp production does not include the extensive shallow subtidal rocky reef habitats found off 

England and Wales and may therefore be an underestimate. Moreover, when primary productivity 

rates of intertidal macroalgae are compared with subtidal macroalgae, intertidal production is 

typically 10% of that from the subtidal (Mann, 2000). Although these coarse estimates should be 

interpreted with caution, it is clear that kelps make a substantial contribution to primary production 

in coastal waters off the UK and Ireland.  

Some kelp biomass is consumed directly by herbivorous fish and invertebrates, such as the 

conspicuous blue-rayed limpet Patella pellucida (Fig. 4). However, >80% of kelp production 

enters the carbon cycle as detritus or dissolved organic matter, since little is directly grazed by 

herbivores (Krumhansl and Scheibling, 2012).  Kelps act as ‘conveyor belts’ of biomass 

production, as the meristematic tissue is (generally) located at the junction between the stipe and 

the lamina so older tissue is passed distally with continued growth. At the distal end of the blade, 

tissue is rapidly or gradually eroded to generate detrital fragments ranging in size from small 

particulates to large sections of blade. As kelp blades fragment, dissolved organic matter is 

released, which may account for up to 35% of annual energy production (see Krumhansl and 
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Scheibling, 2012 and references therein). During times of high water motion (i.e. during intense 

storms or at highly exposed locations), whole kelps may be dislodged following detachment at the 

holdfast or breakage at the stipe. The proportion of kelp production that is either eroded as 

fragments or dislodged as whole plants varies amongst species and with morphology and age of 

kelp. For Laminaria spp. and Saccharina spp., however, rates of erosion generally exceed rates 

of dislodgement (Krumhansl and Scheibling, 2011).            

Kelp detritus is either retained within the kelp bed or exported to adjacent habitats by water 

movement driven by currents, tides or waves. Rates of export exhibit pronounced spatiotemporal 

variability as they are governed by a complex, interacting suite of factors including water flow, 

seabed topography, substratum type, and aspects of the detritus itself (e.g. size, buoyancy, 

density, age). Kelp detritus may settle locally and form a food source for a wide range of benthic 

invertebrates (Duggins and Estes, 1989; Norderhaug et al., 2003), or be transported to adjacent 

(Tallis, 2009) or distant habitats (Vanderklift and Wernberg, 2008). Either way, most kelp-derived 

carbon is consumed by suspension feeders, detrital grazers (such as limpets and Littorina 

littorea) and general consumers of organic material in soft sediments (deposit feeders). An 

important, but poorly understood, process relating to kelp detritus consumption concerns the 

interactions between microbes and macrofauna. It is clear that microbial degradation of kelp 

tissue increases palatability for many grazers by reducing C:N ratios and phlorotannin content 

(Norderhaug et al., 2003), but the influence of microbial processes on palatability varies between 

species of kelps (Duggins and Eckman, 1997) and grazers (Norderhaug et al., 2003), and 

microbial degradation may be less important than for angiosperms such as seagrasses (Bedford 

and Moore, 1984).  

Kelp detritus is particularly important as a spatial subsidy of energy into low-productivity habitats. 

The most visible example being the deposition of kelp wrack into sandy beach habitats, where it 

provides a principal food sources for rich and abundant microbial and faunal assemblages (Ince 

et al., 2007). Similarly, exported kelp represents a spatial energy subsidy into seagrass meadows 

(Hyndes et al., 2012; Wernberg et al., 2006), soft sediments (Bedford and Moore, 1984; Vetter 

and Dayton, 1998), subtidal reefs (Vanderklift and Wernberg, 2008) and rocky intertidal habitats 

(Bustamante and Branch, 1996; Tallis, 2009). Kelp detritus may be consumed many kilometres 

from its source (Vanderklift and Wernberg, 2008) and, following offshore transportation, may 

enrich soft sediments at depths of 900 m or more (Vetter and Dayton, 1998). In the UK and 

Ireland, targeted research on kelps as fuels of coastal food webs has been lacking, and specific 

rates of kelp detritus production and export remain almost entirely unknown (but see Johnston et 

al., 1977 for experiment on Saccharina latissima in Scotland). Evidence from elsewhere would 

indicate that kelp biomass is a hugely important source of exported energy which influences 

patterns of secondary production and the distributions of marine organisms. Detritus production 

and export rates are likely to vary considerably between regions and seasons, and the quantity 
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and quality of exported material will vary between kelp species. Using evidence from data-rich 

systems (e.g. northwest Atlantic) will facilitate the formation of testable hypotheses that can direct 

field-based research needed to enhance understanding of trophic processes and, ultimately, 

support management decisions.       

The fraction of carbon fixed by kelps that is effectively removed from the atmosphere over 

decadal to century timescales is as yet poorly understood.  The process of incorporation into 

longer-term stores of carbon may depend on the export of particulate kelp detritus from coastal 

habitats into sediment in deeper water or the export of recalcitrant dissolved carbon into deep 

ocean water, but the potential for such storage (and thereby influence on the carbon budget) is 

not inconsiderable. 

iii. Coastal defence 

Kelp beds, like other biogenic structures in coastal zones (e.g. salt marshes, mangroves), prevent 

and alleviate the damage caused by flooding and storm events. Kelps beds alter water motion 

and provide a buffer against storm surges through wave damping and attenuation, and by 

reducing the velocity of breaking waves (Lovas and Torum, 2001). In doing so, kelp beds reduce 

coastal erosion and the movement of sand and pebbles from adjacent beaches (Lovas and 

Torum, 2001; Mork, 1996). This represents a critical ecosystem service that will become more 

important along many coastlines as the consequences of anthropogenic climate change intensify, 

namely sea-level rise and an increased magnitude and frequency of storms. However, compared 

with other coastal habitat-formers (e.g. mangroves, corals), there is a paucity of information on 

the degree of storm protection offered by kelp beds. It is clear that the magnitude of wave 

damping is strongly influenced by the morphology and drag co-efficient of the dominant kelp 

species and, as such, will vary between biogeographic regions. Moreover, the degree of water 

flow attenuation by kelp beds is correlated with the extent, density and morphology of both the 

canopy-forming kelps (Gaylord et al 2007), and the understorey macroalgal assemblage (Eckman 

and Duggins 1989). Other studies on various submerged vegetation types have also found 

significant relationships between the extent of vegetation and the degree of wave damping and 

coastal erosion (e.g. Türker et al., 2006).  Off Norway, Laminaria hyperborea beds may reduce 

wave heights by as much as 60% (Mork, 1996). As such, Laminaria beds in the UK and Ireland 

may similarly offer some degree of coastal defence and are probably locally important to some 

coastal settlements. Critically, the importance of kelp beds and other biogenic structures for 

coastal defence will be amplified by the ramifications of anthropogenic climate change.  

  

iv. Goods 

Living resources derived from kelp-dominated habitats have long been exploited by humans. 

Indeed, the recently proposed ‘kelp-highway’ hypothesis suggests that kelp forests may have 
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facilitated the movement of maritime peoples from Asia to America some 16,000 years ago. 

Around this time, a deglaciated coastal migration route through the North Pacific – a linear band 

of highly productive kelp forests extending discontinuously from Japan to Baja California – was 

probably used by maritime hunter gatherers that subsisted on shelled invertebrates, fish and large 

mammals inhabiting kelp habitats (Erlandson et al., 2007). Extensive kelp forests would also have 

buffered wave energy, offered secure moorings for boats and assisted with navigation, therefore 

facilitated a coastal, migratory existence (Erlandson et al., 2007). To this day, the magnified 

secondary productivity characteristic of kelp bed habitats is exploited for human consumption. In 

the UK and Ireland, kelp bed habitats are vital for the European lobster, Homarus gammarus, 

where it preys on a variety of molluscs and crustaceans, and are also home to velvet swimming 

crabs (Necora puber) and seasonal spider crab migrants (Maja brachydactyla). The lobster 

fishery is worth ~£30m per year to the UK economy, while the smaller crab fisheries are important 

for both export and recreation (Marine Management Organisation, 2012). Kelp beds also serve as 

a nursery for many fish species, including Atlantic Cod (Gadus morhua), and attract targeted fish 

species such as European sea bass (Dicentrarchus labrax), pollack (Pollachius pollachius) and 

conger eels (Conger conger).  

 

Kelp itself has myriad of uses and applications. The first use of kelps and other macroalgae to 

feed domestic animals may have occurred as early as the 5th millennia BC, soon after the arrival 

of the first domestic herds (Balasse et al., 2005). Most famously, a breed of sheep on North 

Ronaldsay (Orkney Islands, Scotland) feeds almost entirely on beach wrack (principally Laminaria 

hyperborea) for most of the year. Stable isotope analysis suggests that the North Ronaldsay 

breed has been consuming kelp since the 4th millennia BC, during which time it has adapted its 

rumen bacteria to facilitate the breakdown of laminarin (the storage glucan in brown algae), and 

adapted an unusual pattern of grazing and ruminating that follows the tidal cycle rather than the 

(more typical) diurnal cycle (Balasse et al., 2005). More sophisticated methods are now used to 

process kelp for animal feed supplements for both agriculture and aquaculture. Kelp is rich in 

nutrients and alginates which condition soils and, as such, has also long been collected and used 

as a fertiliser (a practice that is still commonplace in parts of Scotland, Ireland and the Channel 

Islands).   

Industrial scale kelp harvesting in Scotland stems back to the 17th Century, when it was collected 

in great quantities and burnt in kelp kilns to produce sodium carbonate. ‘Kelp ash’ was used in the 

manufacture of glass and soap and for pottery glazing, as well as for fertiliser. Since the early 20th 

Century, kelps have principally been harvested for alginates, which are used in foods, textiles and 

pharmaceuticals. Alginates are extracted chemically and used in bulking, gelling, and stabilizing 

processes; about 25,000 tonnes of alginate per year are extracted world-wide (Bixler and Porse, 

2011). Kelp is currently commercially harvested in the northern and western isles of Scotland, 
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while commercial farming of Laminaria digitata has recently been developed off the west coast of 

Ireland. However, the magnitude of kelp harvesting in the UK and Ireland is low in comparison to 

neighbouring France and Norway, where 50,000 tonnes of L. digitata and 200,000 tonnes of 

Laminaria hyperborea respectively are harvested each year (primarily for alginate production).  

The current demand for clean, non-fossil fuel based energy production has thrown kelps into the 

limelight as potential sources of biofuels. Kelps can grow very quickly (up to 50 cm per day), are 

rich in polysaccharides and do not compete with land-based crops for space, fertilisers and water. 

Moreover, recent advances in bioengineering now allow alginate polysaccharides to be degraded, 

metabolised and converted to ethanol (Wargacki et al., 2012). There is, therefore, increasing 

interest in large-scale harvesting and culturing of kelps for biofuels, including in Scotland and 

Ireland. However, a recent cradle-to-grave analysis of the carbon footprint of the production of 

biofuels (ethanol and methane) from seaweeds indicated that other production of biofuels from 

other sources (e.g. corn, wheat, sugar cane) is more efficient (Fry et al., 2012). Clearly, the 

magnitude of kelp production for biofuels would need to be substantial to have any bearing on the 

energy market, which could have wide-ranging implications for coastal ecosystems that remain 

poorly understood (see ‘threats’ section, below).   

Kelp itself has long been directly consumed by humans. In Asian cuisine, kelps such as 

Saccharina japonica (‘Kombu’) and Undaria pinnatifida (‘Wakame’) – now a global invasive pest - 

have been vital ingredients for many centuries. In coastal communities in the UK non-kelp 

seaweeds have been consumed for at least 4000 years, particularly Palmaria palmata (‘Dulse’),  

Chondus crispus (‘Carageen’), Porphyra umbilicalis (‘Purple laver’) and Ulva lactuca (‘Green 

laver’). Although all kelps in the UK and Ireland are edible, Saccharina latissima is considered the 

most palatable due to its sweet taste. Kelp ‘crunchies’ – a cornbread snack flavoured with Alaria 

esculenta – were briefly on the market in the 1980s-90s, but failed to achieve mainstream 

popularity. More recently, kelps including A. esculenta and S. latissima are being marketed as 

‘sea vegetables’ by health food companies, due to their high levels of vitamins and minerals and 

low levels of salt and digestible sugars (alginate has also been touted as an effective slimming 

agent as it reduces fat absorption). As such, some suppliers in Scotland and Ireland harvest kelps 

for human consumption but these operations are currently fairly small scale.  

v. Socio-economic importance 

Coastal marine biodiversity in the UK and Ireland is of significant socio-economic importance. For 

example, Beaumont et al. (2008) calculated that the leisure and recreation industries directly 

reliant on coastal marine biodiversity contribute >£11 billion to the UK economy each year. In 

addition to this monetary value, engagement with marine life has considerable benefits for human 

health and wellbeing and has directly influenced cultural and economic activities for thousands of 

years. Kelps as primary producers and habitat providers play a key role in the maintenance of fish 
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stocks and ecosystem structure and, therefore, indirectly help to sustain regional fisheries and the 

coastal communities they support (see ‘Goods’ section above for examples). Diverse, healthy 

kelp-dominated habitats offer a range of recreational activities which significantly contribute to 

regional economies and have wider benefits from human health and wellbeing. Key recreational 

activities associated with kelp beds include snorkelling, scuba diving, free diving, kayaking, 

wildlife watching and angling.  

In Lyme Bay (a medium-sized embayment off the south coast of England) recreational scuba 

diving – much of which is conducted on submerged kelp-dominated rocky reefs – contributes 

>£2.5 million per year to the local economy and supports ~10 independent dive operators (Rees 

et al., 2010). With regards to sea fishing, the total expenditure by anglers resident in England and 

Wales is estimated at £538 million per year from 12.7 million angler days (estimate for 2004, see 

Beaumont et al., 2008). Although this activity is not wholly focused on or near kelp beds, 

submerged rocky reefs are often favoured by anglers targeting demersal species and, as such, a 

substantial component of that valuation relies on kelp bed biodiversity. The socio-economic 

importance of kelp bed habitats is magnified in isolated coastal regions such as the Western Isles 

of Scotland and the Isles of Scilly. The vast kelp beds along the north and west coasts of 

Scotland support abundant wildlife, such as sea birds, seals and otters, and the value of this 

biodiversity to local economies through ‘green’ tourism has long been recognised. Similarly, 

tourism accounts for 85% of the economy of the Isles of Scilly, primarily though coastal based 

activities like sea angling, seal and bird watching and scuba diving (Beaumont et al., 2007). Much 

of this is based around the widespread shallow water kelp beds that extend from the islands.  

Finally, there are myriad of non-monetary benefits derived from kelp bed biodiversity. There is 

growing appreciation for the ‘feel good’ or ‘warm glow’ benefits which are derived from marine 

organisms without using them (Beaumont et al., 2007). Kelp-associated species, from seaweeds 

to sea stars to seals, have inspired artists, facilitated educators and fascinated tourists for many 

generations.  

 

5. Threats and knowledge gaps  

i. Climate change 

In Europe, marine plants and animals have undergone climate-driven shifts in their distribution, 

and major changes in assemblage structure and ecosystem function are projected to occur as a 

result (Hawkins et al., 2009; Helmuth et al., 2006). Ecological responses to recent warming in the 

NE Atlantic have included shifts in the distributions of plankton (Beaugrand et al., 2009; Pitois and 

Fox, 2006), intertidal invertebrates (Hawkins et al., 2003; Mieszkowska et al., 2006) and fish 

(Genner et al., 2004), as well as phenological and behavioural changes (Edwards and 
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Richardson, 2004; Moore et al., 2011; Sims et al., 2001). For plankton, intertidal invertebrates and 

fish, access to long-term historical data has facilitated robust examinations of temporal shifts in 

assemblage structure in response to climate. Whilst patterns of ecological change, and the 

processes driving them, have been well documented in both intertidal (Hawkins et al., 2009; 

Helmuth et al., 2006) and pelagic (Richardson and Schoeman, 2004) systems, there is currently 

limited information from subtidal benthic systems, especially from hard-bottom habitats that 

cannot be routinely trawled, dredged or cored. This was highlighted by the recent ‘Marine Climate 

Change Impacts Knowledge Gaps’ report, which stated that “’knowledge of large scale benthic 

species distributions within UK waters is required, to detect changes over large areas of the 

seabed and patterns of benthic response to climate change”. This understanding is urgently 

needed to maintain “healthy and biologically diverse seas” (MCCIP, 2012).   

Kelps are cool-water species that are stressed by high temperatures (Steneck et al., 2002), so 

that seawater warming will affect the distribution, structure, productivity and resilience of kelp 

beds (Dayton et al., 1992; Harley et al., 2012; Wernberg et al., 2010). Poleward range 

contractions have been predicted for several more northerly-distributed kelp species (e.g. Alaria 

esculenta, Laminaria digitata, Laminaria hyperborea) in response to ocean warming in the Atlantic 

(Hiscock et al., 2004; Muller et al., 2009). It is evident that the relative abundance of several kelp 

species changes with latitude along NE Atlantic coastlines, which corresponds to a regional-scale 

temperature gradient, and that several habitat-forming kelps are at their range edge in the UK and 

Ireland (e.g. Laminaria ochroleuca at its northernmost limit, A. esculenta at its southernmost limit, 

Fig.3). Because of these distribution patterns, and because the distributions of some intertidal 

species have shifted, several authors have predicted that relatively southerly-distributed species 

will increase in abundance while more northerly-species will decrease in abundance and/or 

undergo range contractions in the UK and Ireland (Breeman, 1990; Hiscock et al., 2004). There is 

some evidence to suggest that more southerly-distributed kelp species (e.g. L. ochroleuca and 

Saccorhiza polyschides) have increased in abundance and have undergone poleward range-

edge expansions while, conversely, northern species (e.g. A. esculenta) have decreased in 

abundance in response to recent warming (Birchenough and Bremmer, 2010; Simkanin et al., 

2005). However, the evidence base is largely based on anecdotal reports and unpublished survey 

data, and detailed historical examinations of distribution patterns are lacking.  

In conjunction with ocean warming, observed and predicted increases in storminess (Lozano et 

al., 2004; Weisse et al., 2005) will impact kelp beds, as canopy-forming macroalgae may be 

damaged and dislodged during periods of intense wave action. Increased storminess and canopy 

removal will affect the structure and functioning of entire kelp habitats, by altering patch dynamics 

(Dayton and Tegner, 1984) and potentially driving ecological phase shifts (Dayton et al., 1999; 

Wernberg et al., 2011). Crucially, multiple concurrent stressors do not act in isolation but often 

combine synergistically in their effects, so that the total impact is far greater than the sum of 



19 
 

individual factor effects (Crain et al., 2008; Harvey et al., 2013). Synergism can cause ‘ecological 

surprises’, where unexpected regime shifts occur quickly because a tipping point is exceeded 

(Crain et al., 2008). In kelp beds, multiple stressors can cause irreversible shifts from complex, 

biologically diverse habitats to simple turf-dominated ‘barrens’ (Dayton and Tegner, 1984; Ling et 

al., 2009).  

As changes in the identity and abundance of habitat-forming species can have wide-ranging 

consequences for community structure and ecosystem functioning (Jones et al., 1994), there is a 

pressing need to examine climate-driven distribution shifts and their wider implications. For 

example, if a cool water habitat-former is replaced by a warm water species that is functionally 

and structurally similar, it is plausible that the wider community or ecosystem will be relatively 

unimpacted (e.g. Terazono et al., 2012). Conversely, if a structurally or functionally dissimilar 

species becomes dominant, or habitat formers are lost and not replaced, then widespread 

changes in biodiversity patterns and ecological processes are likely to ensue (Ling, 2008). In the 

UK and Ireland, a range contraction of Alaria esculenta, the dominant species on very exposed 

shores and an important mid-successional species in more sheltered locations (Hawkins and 

Harkin, 1985), would impact community structure and functioning as there is no warm water 

equivalent. A. esculenta is particularly susceptible to climate fluctuations, having disappeared 

from much of the English Channel during a warm period in the 1950s, and not recovering as 

conditions became cooler in the 1960s. Replacement of Laminaria hyperborea with Laminaria 

ochroleuca, which are more similar both structurally and functionally, may have less knock-on 

effects, although subtle differences in kelp species traits have been shown to influence local 

biodiversity patterns (Blight and Thompson, 2008). Most dramatically, the predicted increase in 

the relative abundance of Saccorhiza polyschides (Birchenough and Bremmer, 2010) could have 

major implications for kelp bed structure and functioning as it is a fast-growing, annual species 

with distinct morphological and ecological traits (Table 1). As kelps make a significant contribution 

to coastal primary production, facilitate export of carbon from high to low productivity systems, 

and fuel entire food webs, changes in the quality or quantity of detrital material resulting from 

climate-driven changes in kelp species identity, abundance or productivity could have far-

reaching consequences (Krumhansl and Scheibling, 2012). In the UK and Ireland the wider 

implications of shifts in kelp species identity and abundance for kelp bed productivity, trophic 

linkages and ecosystem functioning are almost entirely unknown.  

It may be possible to predict the future structure of kelp beds under continued ocean warming in 

the UK and Ireland by examining the current structure of kelp beds under warmer conditions 

further south. For example, coastal waters off northern Portugal are some ~3°C warmer than off 

southern England and some ~5°C warmer than northwest Scotland, which is within the projected 

range of NE Atlantic warming within the next 50-80 years (Philippart et al., 2011). The structure of 

kelp bed habitats off northern Portugal and Spain is strikingly different to those in UK waters 
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(Fernandez, 2011; Hawkins and Harkin, 1985; Tuya et al., 2012). Most obviously, the 

geographical range of Laminaria digitata does not extend further south than France and therefore 

does not form dense stands in the low intertidal and shallow subtidal zones. Laminaria 

hyperborea is present southward to north Portugal, but is generally much smaller and lower in 

abundance, forming ‘parks’ rather than dense canopies under warmer conditions. Conversely, 

Laminaria ochroleuca is more abundant and often larger, while Sacchoriza polyschides is 

generally more abundant across a wider depth range. Recent observations indicate that 

Sacchoriza polyschides and (Fernandez, 2011), probably, Laminaria ochroleuca (Fernandez, 

2011) and L. hyperborea (Tuya et al., 2012) have undergone range contractions in recent 

decades in response to warming off the Iberian Peninsula. In contrast, Lima et al. (2007) suggest 

that the southern distribution limits of L. hyperborea and Saccharina latissima have not shifted in 

response to ocean warming over 50 years, based on historical surveys of intertidal habitats. It is 

very likely that kelp bed biomass and productivity will be diminished under warmer, stormier 

conditions (Krumhansl and Scheibling, 2012), although direct measurements of kelp bed 

structure, biodiversity, productivity, detritus production and export, and resistance and resilience 

to perturbation along a regional scale temperature gradient along the NE Atlantic coastline are 

lacking. Comparative experimental work along regional scale temperature gradients is a 

promising approach in climate change ecology and can yield critical information on the mediation 

of ecological processes by ocean climate (Wernberg et al., 2012; Wernberg et al., 2010). 

Comparative kelp research along a regional scale temperature gradient along Western Europe, 

spanning from Portugal (average sea temperature ~16°C) to Norway (average sea temperature 

~8°C), would significantly enhance our understanding of climate change impacts on kelp bed 

structure and functioning.  

Finally, two key knowledge gaps concerning the climate change ecology of kelp beds. First, there 

is a paucity of information on the capacity of local kelp populations to acclimatise or even adapt to 

climate mediated change. It is clear that kelp populations can maintain physiological processes 

under a wide range of environmental conditions through local adaptation (e.g. Delebecq et al., 

2013), but the rate at which kelp species can respond to rapidly changing temperatures and other 

localised stressors is unclear. Second, seaweed populations are particularly susceptible to short 

term extreme warming events (Dayton and Tegner, 1984; Smale and Wernberg, 2013; Wernberg 

et al., 2013), which may increase in magnitude and frequency as a consequence of 

anthropogenic climate change (Feng et al., 2013; Jentsch et al., 2007). Short-term climate 

variability may pose greater threat to kelp populations at lower latitudes (i.e. towards range 

edges) than those within mid-latitude temperate regions. For example, southerly-distributed kelp 

beds off Spain and Portugal, which are subjected to environmental variability driven by the 

strength of coastal upwelling, comprise edge-of-range species with dynamic distributions 

(Fernandez, 2011; Tuya et al., 2012). Anomalous warming events also have the potential to 
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cause step-wise changes in the structure and functioning of kelp beds in mid-latitude systems, 

and greater understanding of the resistance and resilience of kelp populations and their 

associated communities to such events is of ever-growing importance.  

ii. ‘Top down’ processes 

Overgrazing by invertebrate herbivores, particularly sea urchins, can decimate kelp forests and 

cause phase shifts from structurally and biologically diverse habitats to depauperate ‘barrens’ 

(reviewed by Steneck et al., 2002). Sea urchin populations are kept in check by a wide range of 

predators, including lobsters (Ling et al., 2009), fish and sea otters (Estes and Duggins, 1995), 

and by disease outbreaks (Scheibling, 1986). Conversely, sea urchin population booms have 

been attributed to overfishing of sea urchin predators (Jackson et al., 2001; Ling et al., 2009), 

climate change (Ling, 2008) and episodic recruitment events (Hereu et al., 2004; Valentine and 

Edgar, 2010). Following the formation of urchin barrens, a complex suite of interacting factors and 

feedback mechanisms affect the persistence of barrens and the likelihood of kelp bed recovery 

towards a pre-perturbed state (Norderhaug and Christie, 2009). In the North Atlantic, the green 

sea urchin Strongylocentrotus droebachiensis has deforested extensive areas of kelp forest in 

eastern Canada (Mann, 1977), Iceland (Hjorleifsson et al., 1995) and northern Norway (Leinaas 

and Christie, 1996), with major consequences for ecosystem structure and functioning (Steneck 

et al., 2002). At lower latitudes, the importance of grazing by the purple sea urchin Paracentrotus 

lividus on macroalgal assemblages has been recognised along Mediterranean and Atlantic 

coastlines (Bulleri et al., 1999; Hereu et al., 2004; Tuya et al., 2012).  

In the UK and Ireland, the extent of deforestation by urchin grazing is generally restricted and 

patchy, although heavily grazed areas are more common in Scotland. Urchin grazing can 

certainly be important in setting local distributions of macroalgae, including kelps. Some of the 

earliest grazing work was conducted in the Isle of Man (Jones and Kain, 1967), which showed 

that the edible sea urchin Echinus esculentus may determine the lower depth limit of Laminaria 

hyperborea stands through intense grazing of young sporophytes. Similarly, Paracentrotus 

lividus, which is relatively common along the west coast of Ireland, influences the distribution of 

macroalgae within Lough Ine through grazing activity (Kitching and Thain, 1983; Norton, 1978). 

The green sea urchin Strongylocentrotus droebachiensis, which is only found in the north of 

Scotland, may also cause restricted patchy deforestation, but extensive barren formation has not 

been attributed to this species.   

Unlike many other temperate regions of the world, including Nova Scotia, the Gulf of Maine, 

eastern Australia, Alaska and Northern Japan (reviewed by Steneck et al., 2002), there is little 

evidence for the formation of extensive, widespread sea urchin barrens off the UK and Ireland. 

Some of the most dramatic impacts of sea urchin grazing have been documented in regions 

where sea urchin predators, such as large lobsters (Ling et al., 2009) and sea otters (Estes and 
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Duggins, 1995), have recently been removed through human activity. The consequent trophic 

cascade effects have, in some cases, led to widespread destruction of kelp forests and 

diminished biodiversity. In the UK and Ireland, apex predators (especially large finfish) have been 

overfished for centuries, so that large predatory crabs have become the dominant predators in 

many coastal ecosystems. As such, the likelihood of sea urchin population explosions resulting 

from removal of apex predators is probably low (see Sivertsen, 2006 for Norwegian context). 

However, trophic interactions in kelp forests off the UK and Ireland are poorly understood and 

targeted research is required to address the level of threat posed by top down processes, which 

will be influenced by environmental change in complex and non-linear ways.  

iii. Harvesting and cultivation 

The demand for kelp for human consumption, alginate production, aquaculture feed and 

(potentially) biofuel has increased in recent decades and will almost certainly continue to grow. 

Direct removal of kelps has major implications for kelp population structure, whole community 

dynamics and wider ecosystem functioning (Christie et al., 1998; Krumhansl and Scheibling, 

2012; Vásquez, 2008). There is some evidence to suggest that, due to the rapid recruitment and 

growth of kelps and their associated species, industrial-scale wild harvesting of kelps can be 

achieved sustainably. For example, in both Norway and Chile some 130,000 to 200,000 tonnes 

are extracted annually, and have been for some time (Vásquez, 2008; Vea and Ask, 2011). 

However, while a limited natural harvest may be sustainable if properly managed with appropriate 

fallow periods, the potential for impact on the other services provided by kelp may be 

considerable. Although kelps recruiting into harvested areas may reach pre-perturbed densities 

and sizes within a few years, their associated assemblages may take considerably longer to 

recover (Christie et al., 1998). Kelp harvesting also negatively impacts the abundance of gadoid 

fishes and reduces the area of habitat preferred by foraging seabirds (Lorentsen et al., 2010), for 

example.  

Within the UK and Ireland, the potential for kelp biomass to be used for conversion to biofuels has 

reignited interest in large scale kelp production. A realistic contribution to energy markets through 

bioethanol production may require more kelp than can be wild harvested from natural habitats, 

prompting efforts to develop methods of farming kelp. Mariculture of kelps is commonplace in 

Asia, particularly in China, where demand for seaweeds for human consumption is high. It is clear 

that kelp farming can impact local patterns of water movement, and may cause organic 

enrichment of sediments and anoxia (Krumhansl and Scheibling, 2012). However, many 

researchers are championing integrated aquaculture practises that utilize kelps as bio-filters 

within multi-trophic farming operations (Neori et al., 2004; Troell et al., 2009). Within the UK 

context, the Crown Estate recently commissioned an independent investigation into the wider 

ecological effects of proposed seaweed mariculture off the west coast of Scotland (Aldridge et al., 
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2012). Using ecosystem-based modelling approaches, the authors concluded that; “the effects of 

the proposed farming activity on nutrient concentrations are expected to be 'marginally 

significant'......and “might become 'certainly significant'......The observable effects of nutrient 

removal would be a lower nutrient concentration in the water, decreased productivity and energy 

fluxes through the pelagic system, decreased flux of organic material to the seabed, and subtle 

alteration to community structure.” (Aldridge et al., 2012). It is beyond doubt that large scale kelp 

production, through both wild harvesting and mariculture, has the potential to impact kelp 

populations, their associated benthic communities, and wider ecosystem structure and 

functioning. While it is recognised that a conservative ecosystem-based management approach is 

a pre-requisite for achieving sustainable production, the baseline knowledge on the structure and 

functioning of kelp ecosystems at regional scales needed to underpin such an approach is 

currently lacking. 

6. Conclusions  

Global emissions of greenhouse gases are tracking the high emission scenarios considered by 

the IPCC, suggesting that future climate impacts will be more severe than widely acknowledged 

in policy (New et al., 2011). A robust appreciation of the likely ecological consequences of climate 

change is therefore increasingly urgent. Moreover, coastal ecosystems, dominated by highly 

productive seagrass and macroalgal habitats, provide ecosystem services valued at ~US$19,000 

ha-1 yr-1, making them the third most productive systems globally in terms of value per hectare 

(Costanza et al., 1997). In the UK alone, the estimated direct economic value of coastal marine 

ecosystems exceeds £15 billion per year (Beaumont et al., 2008). As such, any changes in 

productivity as a result of either the direct effects of anthropogenic change on ecologically 

important species, or through climate mediated changes in the strength and direction of 

ecological processes, could lead to broad scale implications for the goods and services coastal 

ecosystems provide. There is a paucity of large scale benthic distribution data for UK waters, 

especially for subtidal rocky reef habitats, which hinders our ability to detect changes in species 

distributions across large spatial scales. Such information, when combined with experimental 

studies of the effects of climate warming and predictive modelling approaches, will allow us to 

confidently describe and forecast responses to environmental change and human activities such 

as harvesting.  

Pre 1980s, the marine biological community of Britain and Ireland significantly contributed to the 

wider understanding of kelp bed structure and function through world-leading research. However, 

in recent decades, following rising costs associated with scuba diving and shifts in research 

priorities, subtidal kelp-dominated habitats have been strikingly understudied despite their 

fundamental role in coastal food webs and ecosystems. In contrast, research on Macrocystis 

forests in California has yielded critical information on the relative importance of ‘top down’ versus 
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‘bottom up’ factors in structuring marine benthic communities (Byrnes et al., 2011; Foster et al., 

2006; Guenther et al., 2012; Halpern et al., 2006), shed light on regional-scale variability in 

environmental drivers (Edwards, 2004; Reed et al., 2011), and informed management actions 

such as the implementation of MPAs (see White et al., 2011 and references therein). Similarly, 

intense field-based research on Eckonia beds in Australia has yielded novel insights into scale-

dependency in species interactions (Irving and Connell, 2006) and biodiversity patterns (Smale et 

al., 2010), the connectivity of populations (Coleman et al., 2011) and habitats (Wernberg et al., 

2006), as well as the resilience of kelp beds to perturbations including increased herbivory (Ling, 

2008; Ling et al., 2009), short-term climate variability (Wernberg et al., 2013), and physical 

disturbance (Wernberg et al., 2010). In the UK, there is considerable scope for cutting-edge 

research on ecological resilience, functional ecology and range-edge dynamics because (i) a 

number of habitat-forming kelp species co-exist, (ii) some kelp species are found at the edge of 

their range, and (iii) the northwest Atlantic region has warmed at rates above the global average. 

However, the current state of knowledge is poor and even basic information on species 

distributions, kelp bed biodiversity, and species interactions is lacking (but see Burrows 2012). 

The current evidence-base is largely anecdotal and entirely inappropriate for informing 

management decisions, while process-based knowledge acquired from realistic field-based 

observations and experiments is completely absent. We strongly urge that (i) funding agencies 

and marine management organisations acknowledge these knowledge gaps and provide the 

resources needed to begin to fill them, (ii) researchers and institutions adopt the collaborative 

approach needed to share the financial and logistical burden of conducting field-based research 

in UK waters, and (iii) researchers develop close alliances with kelp ecologists in knowledge-rich 

regions (e.g. Australasia and North America) in order to adopt contemporary, cross-disciplinary 

approaches to kelp bed research in UK waters, which will expedite progress and facilitate 

comparative work across contrasting systems. In this manner, significant progress can be made 

in understanding the resilience of kelp beds to rapid environmental change, which will ultimately 

improve our ability to manage and conserve these important habitats.     
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Table 1. Kelp species in UK waters. The geographical range and approximate depth range, 

mature sporophyte length and lifespan of kelps in UK waters are shown. Also indicated is the 

predicted change in abundance and/or range of each species in response to continued 

environmental change. aThe lifespan of L. ochroleuca in UK waters in unknown and is estimated 

based on its close affinity with L. hyperborea.  

 

Species   Distribution  Depth range Length  Lifespan           Change(?) 

Laminaria hyperborea Arctic-Portugal  0-30 m  2-4 m  5-18 yrs decrease 

Laminaria digitata Arctic-France  0-15 m  2-3 m  4-6 yrs  decrease 

Laminaria ochroleuca UK-Morocco  0-30 m  2-4 m  5-18 yrs
a
 increase 

Saccharina latissima Arctic-France  0-30 m  1-4 m  2-4 yrs  decrease 

Alaria esculenta  Arctic-France  0-35 m  1-3 m  4-7 yrs  decrease 

Saccorhiza polyschides Norway-Morocco 0-35 m  2-4 m  1 yr  increase 

Undaria pinnatifida Global NIS  0-15 m  1-3 m  1 yr  increase 
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Fig. 1: (a) Number of kelp ecology papers by nation (ISI Web of Science search on ‘kelp’, 

2002-2011, n = 402 ecology papers). (b) Number of ecology papers focussed on each 

major benthic marine habitat type in the UK (2002-2011, n = 187 papers); I-R = Intertidal 

rocky, S-S = subtidal soft, I-S = intertidal soft, S-R = subtidal rocky.  
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Fig. 2: Dark grey hatching indicates the recorded distributions of kelp species in the UK 

and Ireland (data reproduced from MarLIN, with permission).   
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Fig. 3. Habitat-specific probability of occurrence for dominant kelp species in UK waters, 

for both western regions (A) and eastern regions (B), along a latitudinal gradient (~49-

59°N). Probabilities derived from subtidal habitat surveys conducted at 0-10 m depth 

(data from Marine Nature Conservation Review, 1977-2000, see Burrows 2012 for more 

methodological details and geographical limits of regions), which used ACFOR values (a 

semi-quantitative abundance scale) to quantify benthic organisms. The number of 

independent surveys per region (i.e. n), ranged from 300 to 734.   
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Fig 4. The kelp Laminaria hyperborea is a dominant canopy-former on both subtidal (a) 

and intertidal (b) rocky reefs around the UK and the wider NE Atlantic. Kelp forests 

provide habitat for a wide range of flora and fauna, including the hydroid Obelia 

geniculata (c) and the commercially important European Lobster Homarus gammarus (d). 

Although kelps and their epiphytes are grazed directly, by the blue-rayed limpet Patella 

pellucida for example (e), the majority of kelp production is consumed as detritus (f).    

 

  



38 
 

 

Fig. 5. Kelp species abundance and local species richness. Box plots show 10th, 25th, 

50th, 75th and 90th percentiles of species richness data for each modified SACFOR 

category of kelp species abundance. For each SACFOR category, n, which is the number 

of independent surveys conducted during the Marine Nature Conservation Review (1977-

2000), is given.  
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