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Abstract—In objective-based data farming, decision variables /\

of the Red Team are evolved using evolutionary algorithms such Multi-obicctive otimization Simulation

that a series of rigorous Red Team strategies can be generated to using Evolflﬁonarypc()mputaﬁon Numerous simulation executions
assess the Blue Team’s operational tactics. Typically, less than 10 using HTC facilities
decision variables (out of 1000+) are selected by subject matter
experts (SMES) based on .the_lr. past experience and intuition. Modelling ‘ Red Team ‘
While this approach can significantly improve the computing Ehcatmestisy shmulkom mwits

efficiency of the data farming process, it limits the chance of ~ Simulate red vs blue using
discovering “surprises” and moreover, data farming may be used distillation agent based simulation

models

only to verify SMEs’ assumptions. A straightforward solution is Evaluate ﬁ?:gf;soutcomes

simply to evolve all Red Team parameters without any SME to drive evolutionary search | Blue Team |
involvement. This modification significantly increases the search

space and therefore we refer to it as high-dimensional objective ’\

based data farming (HD-OBDF). The potential benefits of HD-
OBDF include: possible better performance and information
about more important decision variables. In this paper, several
state-of-the-art multi-objective evolutionary algorithms are -
plied in HD-OBDF to assess their suitability in terms of con-
vergence speed and Pareto efficiency. Following that, we proposeagainst Blue’s operational tactics are retained. Theseéned

two approaches to identify dominant/key evolvable parameters strategies can provide SMEs with alternative views regaydi
in HD-OBDF - decision variable coverage and diversity spread. the various vulnerabilities in the Blue’s operational test
(Fig. 1). Complex Agent System Evolver (CASE), inspired
by Automated Red Teaming (ART) [5] is an evolutionary
Data farming is an iterative experimental process whicdnd modular framework to automate the process of OBDF.
relies on the repeated execution of stochastic simulatiod-m It was constructed in a modular manner to accommodate with
els to expose major portions of the problem landscape [4ase the user’s specific requirements (e.g., use of differen
One critical aspect of data farming is that it can generatesanulation engines or evolutionary algorithms). In CASg t
wide range of possible outcomes. For instance, a simulatioodelling and analysis steps of data farming can be carried
model with only 5 parameters each of which taking on oreut dynamically such that the manually intensive involvaime
of 100 values, can producé!® combinations. Typically, the of SMEs can be relieved.
data farming process starts with a trial and error seleation However, CASE also relies on the domain knowledge of
evolvable parameters in which subject matter experts (SMESMEs to select evolvable parameters based on their past expe
modelers, analysts and decision-makers screen the pamameaience and intuitions. These parameters often focus ominert
and identify important ones. Then, using High Throughpuaispects of the scenarios, with less than 10 parameters se-
Computing (HTC) facilities, numerous simulation execo$io lected (whereas a simple Map Aware Non-Uniform Automata
are conducted. Finally, the analyses are conducted by hunitANA) model [10] may contain 1000+ parameters). This
experts which may be assisted by computer tools to gdimits the chance of discovering “surprises” and moreover,
insights into outliers, nonlinearities and intangiblebeTnher- data farming may be used only to verify SME assumptions.
ent steps of this iterative process are repeated until grific A straightforward solution to this issue is to simply evolve
insights to a problem are gained. all Red Team parameters using EAs without any SME in-
Objective-based data farming (OBDF) is a variant of datalvement. This modification significantly increases tharsk
farming. In OBDF, decision variables are evolved using evepace and therefore we refer to it as high-dimension obgecti
lutionary algorithms (EASs) such that a series of rigorousl Réased data farming (HD-OBDF). The potential benefits of HD-
Team strategies can be generated to assess the Blue Team'©®DF include: 1. Possible better performance: By evolving a
erational tactics. The strategies that perform exceeglingll larger set of decision variables, more sophisticated ReanTe

Fig. 1. Schematic representation of computational red teaming

I. INTRODUCTION



attacking strategies can be explored. Decision variabldshw urban operations scenario which involves the defense of an
appear to be uncorrelated may derive surprisingly effectiurban area controlled by the Red Team. Their work showed
tactics and even obtain better performance. 2. Informatitimat ART was able to discover solutions which were useful
about more important decision variables: By investigatimg for analysts to refine and design their strategies and tkiereb
spread of the decision variables, more important decisiensuring robustness of plans and higher mission success rat
variables can be identified and further experiments can Beother work on ART was performed by Sim et al. [12] on a
carried out to exploit the effects of these key factors. maritime defence scenario. The maritime scenario invalves

In this paper, to assess the suitability of different multidefence of a coastline by three Blue ships against attaoks fr
objective evolutionary algorithms (MOEAS), several state five Red ships. Experimental results showed that ART was able
the-art MOEAs are applied in HD-OBDF using an anchorage generate tactics that were unintuitive to the authorsnwhe
protection scenario simulation model. These MOEAs inclugeerforming MRT. Wong et al. [14] extended the work by Sim
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17], Nonet al. by evaluating ART's effectiveness using an anchorage
dominated Sorting Genetic Algorithm Il (NSGAII) [8], Hyper protection scenario. Similarly, their findings showed tART
volume Estimation Algorithm for MO Optimization (HYPE)is a useful tool for complementing the Manual Red Teaming
[2] and Multi-objective Differential Evolution (MODE). In effort by providing useful and non-intuitive tactics.
addition, the strategies, obtained using normal OBDF and HD However, as mentioned earlier, these experiments focused
OBDF, are compared and the issue of local optima and eag certain aspects of the scenarios with less than 10 evelvab
convergence in HD-OBDF are discussed as well. FO||0WiI’IQa_rameters selected. For instance, in Yang et al. [15], ten
that, two parameter filter approaches are discussed toifilentiifferent decision variables representing the charasttesi of
dominant evolvable parameters in HD-OBDF. personalities are evolved for the Red Team in six different

The remainder of the paper is structured as follows: Agcenarios. In Choo et al. [5], the study focuses on how iritang
overview of related work is first provided in Section Il. Thenples could lead Red to break Blue with 8 evolvable parameters
Section Il describes the CASE framework, followed by abrige.g., Red Squad Aggressiveness and Red Squad Cohesion).
introduction on multi-objective evolutionary algorithmghe Sim et al. [12] evolved 5 decision variables to exploit thelRe
experiments comparing MOEAs in HD-OBDF and discussiofeam’s behaviour (e.g., Aggressiveness and Cohesiveness)
on different parameter filter approaches are documentedTihis evolvable parameter selection approach can significan
Section IV. Finally, Section V concludes with a summary oinprove the computing efficiency of the OBDF process. But it
the paper. limits the chance of discovering “surprises” and moreosgtata
farming may be used only to verify SMEs’ assumptions. In
this paper, HD-OBDF is explored using the CASE framework.

In the domain of objective-based data farming, exanx flowchart and the features of the CASE framework are
ple systems include: Irreducible Semi-Autonomous Ada&pti\hresented in the next section.

Combat (ISAAC) [9], Automated Red Teaming [13], Warfare
Intelligent System for Dynamics Optimization of Mission
(WISDOM) [15] and Automated Red Teaming developed by I1l. THE CASEFRAMEWORK
DSO National Laboratories, Singapore (DSO-ART) [5].
1) ISAAC: llachinski [9] adopted a simple genetic algo-
rithm using a single point crossover, mutation, elitist and Termination criterion
truncation selection operator to identify and evolve th&lRe | PFweeen > O erment
Team’s behavioral parameters. A no|  ¥eS

2) WISDOM: Yang et al. [15] first utilize a (1+1) Evolution o
Strategy (ES) and rely on the use of the linear combination OL @ iz

IIl. RELATED WORK

objectives approach to tackle the multi-objective optatian »

problems. Later, WISDOM was extended with NSGAIl to Simulation Model EC module
improve the evolutionary dynamics as well as the range of engine generator
best solutions. Their studies showed that objective-bds¢al * |

farming could provide better understanding of warfare.

3) DSO-ART: Automated Red Teaming (ART) is an auto-
mated process that augments Manual Red Teaming (MRT),
which is a technique frequently used by the Military Opera- To automate the process of OBDF, Complex Adaptive
tional Analysis community to uncover vulnerabilities inevp- Systems Evolver (CASE) was constructed. CASE was inspired
tional tactics. ART makes use of multi-objective evoludion by the Automated Red Teaming (ART) [5] framework. In
algorithms such as SPEA2 and NSGAII to effectively fin€CASE, the modeling and analysis steps of data farming can be
a set of non-dominated solutions from a large search spacatried out dynamically based on EAs such that the manually
ART has been applied on several military based scenariggensive involvement of SMESs can be relieved. The threenmai
Choo et al. [5] demonstrated the capability of ART using atomponents of CASE are distinguished as follows:

Fig. 2. Flowchart of CASE Framework.



TABLE | TABLE I

LIST OF EVALUATED MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS. MANA SETTINGS FORRED AND BLUE FORCES IN MARITIME
Algorthm Ref ANCHORAGE PROTECTION SCENARIO
Non-dominated Sorting Genetic Algorithm 11 (NSGAII) [8] Unit Qty.| Speed | Detectior] Weapon Weapon  hit
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17] range range probability
Hypervolume Estimation Algo. for MO Optimization (HYPE) [2] Inner-Blue | 3 16 6 nm 2 nm 80%
Multi-objective Differential Evolution (MODE) #1 patrol knots
Outer-Blue | 4 16 6 nm 2 nm 50%
patrol knots
Green ves-| 20 | N/A N/A N/A N/A
A. The model generator sels
This component takes as inputs a base simulation mogeed forces | ° &gots 2.nm 2nm (Blue) | 5% (Blue)
specified in the eXtended Markup Language (XML) and a set 1nm (Green)| 100% (Green)

of model specification text files. According to these inputs,
novel XML simulation models are generated and sent to the

simulation engine for evaluation. the above algorithms are utilized to assist this researchmx
for MODE?, which was implemented by the authors).

In CASE, the set of simulation results and associated model
o ) - . : ecification files are received by the MOEAs, which, in
_by the_stochashc simulation engine. Each simulation MOGHm, process the results and produce a new “generation” of
IS repllgated a number of times to account for statisticgl e specification files. The generation of these new model
ﬂuctu.at|ons.. A set of result files det.a|||ng the outcomes %fpecifications is driven by the user-specified (multi)otijes
the simulations (in the form of numerical values for ins&nc (e @ maximize Blue casualties and minimize Red cassjltie

are generated. The;e measure.ments are useq to evaluate”g ealgorithm iteratively generates models which would in-
generated models, i.e., these figures are the fitness (or Ce?émentally

values utilized by the EA.

B. The simulation engine
The set of XML simulation models is received and execut

through the evolutionary search, best ekitigi
desired outcome behavior. The model specification files are
C. The multi-objective evolutionary algorithm sent back to the model generator; this completes the search

EAs are stochastic population-based search techniquesiﬁﬁ[,atri]on' The aiovz corl?ponints are depictgd in Figure 2
spired by real phenomena occurring in nature. EAs simulé‘f’@'c presents the flowchart of a CASE experiment.

natural evolution through the variation (i.e., chromosbma IV. EXPERIMENTS
recombinations and gene mutations) of genetic material an
selection of fittest (from a phenotypic viewpoint) candalat
solutions. A wide variety of EAs has been developed and th

qn this section, a maritime anchorage protection scenario i
amined. Previous OBDF using this scenario conducted in
differ from each other on the specification and implement £2], [14] evolved Iess_ than 10 decision parameters with pa-
tion of common properties: problem representation, viarat rameter space prg—defmed by SMEs. In this study, the MOEAs
and selection of candidate solutions. In contrast with Is'ingevow.e a much wider range of the Red Team para'rr.leters. In
e first case study, CASE evolves waypoint positions (33

objective EAs (using linear combination techniques such . o
the weighted sum of objectives), Pareto-based multi-disiec parameters) and personality weightings for the Red Team (27

EAs (MOEA licitl Itipl tentiall : '
s (MOEAs) address_explicitly multiple (and potentia yjc{:)hosen. In the second case study, for each Red vessel, the

conflicting) objectives. Table | lists the MOEAs (which are . . ) o .
representative of the state of the art in the area) evaluate umber of intermediate waypoints (up to five) is evolved.sThi
this comparative study results in a total of 80 evolvable parameters with an evagelar

' search space. Firstly, four MOEAs (NSGAII, SPEA2, HYPE

The key algorithmic differences between these algorith d MO}P E) are gpﬂlgd()lgéf;esée two dlcase studies to ?r_slsess
depend in the specification of the selection schemes whi I performance in HL- - Secondly, two parameterilte

determine the most promising candidate solutions to be Coqpprogches (deC|s!on Vgrlables_ coverage and diversigadpr .
served/evolved during the search. Several computatiecéal t are discussed to identify dominant evolvable parameters in

niques exist to select the most “promising” candidate smhst HD-OBDF.,

whilst considering the above conflicting objectives: NSGAI

and MODE utilize the “crowding distance” (i.e., an estimati A  Maritime Anchorage Protection Scenario
of the density) of the solution points. HYPE employs the

h . ; In this scenario, a Blue Team (composed of 7 vessels)
ypervolume of the solution space dominated by the Paréto (S:Snducts atrols to protect an anchorage (in which 20 Green
approximation (these algorithms employ differing impleme P P 9

tations to approximate the hypervolume indicator valudle T 10pE is partially based on a DE variant proposed in [1]. MODE
variation (e.g., recombination and mutation) of solutidos introduces an external archive to promote the effect ofseliti Moreover,

NSGAIl. SPEA2 and HYPE are conducted using the simulataglike other multi-objective differential evolution algims where the indi-
bi ' SBX ! 61 wh MODE utili vidual solution sets are selected to generate offspringtisol sets from the
Inary crossover ( ) operator [ ] whereas UtZES,rrent population, MODE selects them from the archive {@ioimg the best

weighted difference vectors. The PISA [3] implementatiohs candidate solutions found so far).



TABLE Il TABLE IV

EVOLVABLE RED PARAMETERS IN MARITIME ANCHORAGE PROTECTION SUMMARY OF SIMULATION PROPERTIES
SCENARIC. Case study] Number of dimensions Search space sizg

Red property Abbreviation Min Max 1 60 8.62 x 10133

Way Point Position 2 80 2.07 x 10187

Team 1 initial position (x,y) | RedHX, RedHY (0,0) (399,39)

Team 2 initial position (x,y) | RedHX, RedHY (0,160) | (399,199)
Intermediate waypoints (x,y}] RedMX, RedMY | (0,40) (399,159)
Team 1 final position (x,y) | RedFX, RedFY | (0,160) | (399,199)| escapes from the anchorage following successful attacks.

Team 2 final position (x,y) | RedFX, RedFY (0,0) (399,39) . Lo . . .
RedAggression | -100 100 Personality weightings contain several personality prige

RedCohesiveness| -100 100 (e.g., attraction or repulsion to enemies, enemy threailid
_ . RedDetermination| -100 | 100 enemy, friends, neutrals, concealment) which can be varied
Personality Weightings ﬁ:xigﬁgws BT B between -100 and 100. The weighting value corresponds to
EasyTerrain -100 100 the degree of attraction or repulsion. Previous studies [5]
Centre -188 188 [12], [14] focus on the Red Team's attacking behaviors (e.qg.
etc -

Aggressiveness, Cohesiveness, Attrition and Deternaingti
and set other behavior parameters (e.g., Easy Going, Cover,

. . Alternative Waypoint, Neutrals and Unknowns) to be a ndutra
commercial vessels are anchored) against threats. Reelsfofc " . .

\ value of zero. In the maritime anchorage protection scenari
(5 vessels) attempt to break Blue's defense strategy atn

inflict damage to anchored vessels. The aim of the study tiere are 27 personality weighting parameters availatsléhi

' . Iised team and only 7 are listed in Table Ill. Two case studies
to discover Red’s strategies that are able to breach Blue’s : : - :

. . ; . . : are devised based on this model. The first case study tries
defensive tactic. Figure 3 depicts the scenario which was

modeled using the agent based simulation platform MAN 0 exploit the Red team's personality properties by evgvin

. . . .all Red team personality weighting parameters. In the stcon
The Blue patrolling strategy is composed of two layers: an i
case study, more waypoints are added to evolve more complex

outer (with respect to the anchorage area, 30 by 10 nm) ar} acking trajectories. The number of dimensions (evdévab

inner patrol. The outer patrol consists of four smaller bl?tarameters) and search space size for each case study are
faster boats. They provide the first layer of defense where3a . . P y

i A summarized in Table IV.
the larger and heavily armored ships inside the anchorage ar

the second defensive layer. Table Il summarizes the modef) C@S€ study oneAll Red Team personality weightings
are subject to evolution without any domain knowledge. This

roperties. !
prop results in a total of 60 evolvable parameters selected for an
° Red squad | inital area e e . extremely large search space.
ot - ~ P ’ 2) Case study two:For each Red vessel, the number of
%, . intermediate waypoints (up to five) is evolved. This enables
“ o\ Green commercial” Y Yy the evaluation of more complex trajectories. To promote the
o e . . . .
} s SHTa < ey Intermediate  Anchorage . emergence of more advanced Red trajectories (involvingemor
g - iti . . . . .
¢ EE Iy potien area than a single intermediate waypoint), the anchorage area is
“Anchorage aréa S . « expanded (doubled) and simulation time limit increaseon(fr
o Blue patrolling paths ‘ . , 250 to 1200 discrete time steps). This results in a total of 80
¢ .
oo & Redsquad 2 initial area = , Final position L | evolvable parameters with an even larger search space.

A) (B)

B. MOEAs evaluation in HD-OBDF
Fig. 3. MANA model of the maritime anchorage protection scema@\):
Three of the Red vessels (squad 1) are set up to initiate atteick from the Four MOEAs (NSGAH, SPEA2, HYPE and MODE) are
north while the remaining two attack (squad 2) from the soithe initial applied in these two case studies to assess their perfoemanc
positions of Blue vessels are fixed. In contrast, the 20 Gmnmercial |
vessels’ initial positions are randomly generated withia ginchorage area at in HD-OBDF. The default and most commonly-used parameter
each MANA execution. (B): Example Red trajectories. settings (as reported in the literature [11], [5]) for these
algorithms are employed in the experiments as shown in

In CASE, each candidate solution is represented by a vecifhle V. Two Measures of Effectiveness (MOEs) were used
of real values defining the different evolvable Red behaliortg evaluate a given solution. The two MOEs are:
parameters. The home and final positions together with the. Mean Red Casualty (Minimize)
intermediate waypoint define the trajectory of each distinc . Mean Green Alive (Minimize)
Red vessel. Three of the Red craft (Team 1) were set up

to initiate their attack from the north while the remaining=ach algorithm was configured to perform a maximum of
two attack (Team 2) from the south. This allows Red t40.000 evaluations on the scenario. The MOEs obtained for

perform multi-directional attack on the anchorage. In iddj €ach solution is the mean value computed from the end state
the final positions of the Red craft are constrained to tid 30 replications of the simulation in MANA.
opposite region (with respect to the initial area) to sirteila



TABLE V

THE SETTINGS FOR THEMOEAS. Case study two
Settings NSGAIl | SPEA2 | HYPE | MODE -5 ;

Population Size 100 100 100 100 NSGAIl ——
Number of Generationg 100 100 100 100 -10 & SPEA2 1

Crossover rate 0.9 0.9 0.9 N/A -15 : HYPE - ol

Crossover index 20 20 20 N/A MODE e

Mutation rate 0.1 0.1 0.1 N/A -20 ¢

Mutation index 20 20 20 N/A 25 |

Case study one

Hypervolume indicator value

NSGAIl —— 45 ‘ ‘ ‘ ‘

SPEA2 1 0 20 40 60 80 100
HYPE e ] ;
MODE s Generation

Fig. 5. The MOEASs’ hypervolume dynamics over 100 generationsase
study two.

) -MANA - newBaseModel1 @@@

File Setup Display Wiew Data Outputs Help

# MultiRun| 14 Reset
Step Delay[ms]

& M‘»ﬂ h

Seed

Lock [ |3327B0885

Hypervolume indicator value

45 \ \ ‘ o
0 20 40 60 80 100

Generation

Fig. 4. The MOEASs’ hypervolume dynamics over 100 generationsaise
study one.

Tertain Type Land added

There are two goals in multi-objective optimization (MOP)
convergence and diversity. The hypervolume indicator icbns
ers both by measuring the volume of the dominated portion By =
the objective space [18]. As it possesses the highly ddsiral [
feature of strict Pareto compliance, hypervolume has béen | ST L, i T
exceptional interest in recent MOP studies. For the hype! |ENEEENSTEE i S e
volume indicator, if the Pareto set A dominates the Pare i
set B, the hypervolume of A should be higher than that g
B. In our study, the Weighted Hypervolume Indicator (WHI)
package developed by Zitzler et al. [16] is utilized to COP@PA .. arrse omr st PO
the MOEs generated by MOEAs over 100 generations. To
make the output consistent with the other indicator toolBig. 6. Surprising attacking strategies obtained in HD-®BD which the
WHI outputs negative hypervolume so a lower indicator valuZed t€am does not follow attacking trajectory.
corresponds to a better approximation set. The MOEAS’
hypervolume dynamics over 100 generations are presented
in Figures 4 and 5. In terms of the final generation ParetoFurthermore, for HD-OBDF, many surprising attacking
performance, we can observe that for case study one, HYBtEategies and behaviours are observed in the final geoerati
achieves the best performance (NSGAII: -42.44505, SPEAsbpulation. Previous OBDF experiments using the anchorage
-41.76637, HYPE: -44.42332, MODE: -41.72772) whereanodel always derive high positive waypoint personalityueal
in case study two, SPEA2 (-44.07501) outperforms all otherhich effectively enforces the Red team to follow the gen-
MOEAs (NSGAII: -41.66205, HYPE: -40.20002, MODE: -erated attacking trajectories. In HD-OBDF, negative waypo
43.01387). In terms of convergence speed, in both caseestugiersonality value is observed which simply means that the
one and two, HYPE converges much faster than the othHeed team avoids the waypoint. With the combination of high
MOEAs. As we can observe, before generation 40, theredtraction to the central area and other personality ggsttin
a clear advantage of HYPE and by using the decision spacesurprising behaviour is obtained as demonstrated in &igur
diversity running performance metric [7], we find that th&. And unexpectedly, the Red Team manages to kill half of
decision variables of HYPE converge and stabilise at aroutite green vessels without a single red causality. This type
generation 40 whereas other MOEAs reach convergence ma€hstrange yet efficient attacking behaviour has never been
later. observed in normal OBDF.




C. Parameter filter approaches

TABLE VI
WIDE AND NARROW SPREAD DECISION VARIABLES

As mentioned earlier, selecting more decision variables Wide spread variables

[ Narrow spread variables

to evolve cannot guarantee that better performance in HD-\éaTjaéﬂf(S g‘i” 3’“9%" \F/{ar(i,agets — fz‘g” ng‘
. . . . . e el etermination

OBDF can t_)e achieved. In this §ect|9n, we investigate two ociavx 0 399 | inorgfriends 100 | 100

parameter filter approaches to identify the key factors t0 Redimyi 40 | 159 | inorgunknowns -100 | 100

evolve in OBDF for case study one. Since HYPE can always 'nqggthlfea@ '188 188 Red‘t‘hFYf_ § 0100 igo

. . eniaeal - orgotheririen -

converge relatively faster than other MOEAs, we examine the pe g1y 0 399 | nextwaypoint 100 | 100

solution set generated by HYPE at generation 20 and extrattaliveEnemy -100 | 100 | Red5MY1 40 | 159

dominant/key decision variables based on their spread and_R?d“gfx_ g 0100 ?gg ;asdyztaf)f(am 6100 égg

.. . injuredfriends | - e

thes_e further sfelect_ed decision var_|abl_es are evolved fh@m orgsquadfriend| -100 | 100 | Red4MY1 20 159

beginning again using NSGAII which is the most commonly| enthreatlhigh | -100 | 100 | Red3MY1 40 159

used benchmark MOEA. Red2HY 0 39 Red2MX1 0 399
.. . . . centre -100 | 100 | Red3FX 0 399

. 1) Decision variables coverqg@n this gpproach, we inves- | redsFx 0 399 | RedlHY 0 39

tigate the coverage of the decision variables. The coveisage | Red4HY 160 | 199 | aliveFriends -100 | 100

basically the spread of decision variables over the valigjea

It is calculated through dividing the range of the decision 5

variable in the population by the valid range of that pattcu o wide spread

decision variable, (max-min)/range. In our study, 15 deois 3 -10 - narrow spread 1

. . - . S wide and narrow spread (30 variables) e

variables with high coverage are selected to run the exgetim > ;g |t )

again. To compare the effect of converged decision varsable £

we also chose 15 decision variables from the bottom which.g "<~ |

are converged in the early generation to repeat the expetime .S

of case study one. All other non-evolvable decision vaeabl

are set to a neutral value of zero. These decision variableg ~
are shown in Table VI and their hypervolume performanceg -35 1

me

is displayed in Figure 7. Intuitively, decision variablefieh < a0 & e,

are irrelevant to the objective values should behave rahdom T

throughout the evolutionary optimization process and Benc ~ -45 : : : :

achieve a wider spread. Yet, the simulation results aretigxac 20 40 60 80 100
Generation

opposite as shown in Figure 7. The decision variables which
converge relatively early are not key/dominant factorse TlFig.

7. Hypervolume performance of case study one using widenarrow

two sets of decision variables have a huge difference ingerfipread decision variables.

of hypervolume (wide spread: -29.35675, narrow spread: -
22.42101). Finally, both wide and narrow spread decision
variables (30 decision variables) are subject to evolution
using NSGAII again and a hypervolume value of -40.7704
is obtained. This Pareto-performance is slightly worsentha
the hypervolume (NSGAII: -42.44505) achieved by evolving
60 decision variables.

cell i. The valueh(i) of thei‘" elements is derived using
Equation 1.

,if cell i contains a representative point
, otherwise

1)

o Step 2: Assign a value, m() to each cell i depending on

2) Diversity Approach:In the diversity approach, instead
of simply looking at the coverage, we try to explore the
decision variables’ diversity spread. The diversity perfance
is derived as follows:

Given the minimal and maximal boundary values, the hy-
perplane is thus divided into a number of grid cells (popaiat
size divided by the number of objectives). The diversity
performance metric is based on whether each cell contains
a solution point or not. The best diversity performance is
achieved if all cells contain at least a solution point. Tteps
to calculate the diversity are as follows.

« Step 1: Calculate diversity array.
The number of integer variables in the diversity array is
equal to the number of cells in the hyperplane. Each vari-
able in the diversity array corresponds to one particular

its neighboring cells’h() values in the diversity array.
The value of the*” cell is calculated as shown in Table
VII.

For example let us consider the grid pattepps010 (i.e.,

h(i —1) =0, h(i) = 1 andh(i + 1) = 0 and p,=101.
According to Table VII, we obtain mp) = m(p2) = 0.75
which represents a good periodic spread pattern. Whereas
if we considerp;=110, we obtain m{3)= 0.67 meaning
that p; covers a smaller spread.

« Step 3: For each dimension in the decision and objective

space, calculate the diversity measudig by averaging
the m() values.

S number ot 8y (h(i — 1), h(i), h(i + 1))

Number of Grids

dm = 2



TABLE VII TABLE VIII
MAPPING TABLE TO ASSIGN A VALUE TOm/(). (ADAPTED FROM[7]) HIGH AND LOW DIVERSITY DECISION VARIABLES.

RGi—1) | h() | R+ 1) | m(h(i — 1), h(i), hGi + 1)) [ High diversity variables [ Low diversity variables ]
0 0 0 0.00 Variables min | max | Variables min max
0 0 1 0.50 Red4MX1 0 399 | cover -100 | 100
1 0 0 0.50 orgknowns -100 | 100 | Red2HY 0 39
0 1 1 0.67 injuredfriends -100 | 100 | Red5MY1 40 | 159
1 1 0 0.67 Red1MX1 0 399 | inorgfriends | -100 | 100
0 1 0 0.75 Red1HY 0 39 | Red3FX 0 399
1 0 1 0.75 Red4HX 0 399 | Red5MX1 0 399
1 1 1 1.00 concealment -100 | 100 | Red1HX 0 399
Red5FY 0 39 nextwaypoint | -100 | 100
Red2MXx1 0 399 | enideal -100 | 100
_ ) ) Red4MY1 40 | 159 | Red2HX 0 399
To illustrate the procedure to calculate the diversity | inorgthreat2 -100 | 100 | Red5HY 160 | 199
measure, an examp|e is presented in Figure 8. Red Cohesiveness -100 | 100 | aliveneutrals | -100 | 100
Red3MX1 0 399 | Red4FX 0 399
Red1FY 160 | 199 | orgneutrals -100 | 100
24 min h() m() Red4HY 160 | 199 | aliveEnemy | -100 | 100
1
max
.\ 1110
) variables has a much better initial performance than the one
1{10 L . . X
with high diversity; however, as the evolution progresshs,
* 1 ]0.67 evolutionary process using high diversity decision vddab
0 [075 produces better hypervolume performance (low diversity: -
] 1 os 33.56768, high diversity: -36.13803). But this time, thé& di
[ ] . . . .
® ¢ min ference between the two is not as obvious as the one in the
f 1 decision coverage approach. Then, we combine both high and
hoLL 1 0 0 ) . B low diversity decision variables and form a new set of 30

decision variables. By evolving these 30 decision vargble
the experiment is repeated. As demonstrated in Figure 10,
the set of experiments evolve fewer (30) decision varigbles
yet achieves better results (Diversity approach (30 vie&b

In this example, a two-dimensionfi( and f») diversity -42.81468, NSGAII (60 variables):-42.44505, Variable eov

measure is examined. The solution points are marked 3¢ (30 variables): -40.77040). . _
points. Suppose the population size is 10, we divide theHence, it seems that the diversity of decision variables
range of f; and f» values into 10/2 = 5 grids. Then,iS & more promising approach to identify dominant decision
for each grid, the value ofi() is calculated based onVariables. The high diversity decision variables can fté
whether the grid contains a representative solution poiPloration of the search space whereas the low diversity
or not. Then, the value of:() and the diversity measuresdecision variables can exploit the Pareto front and further
are calculated based on a sliding window containiniﬁqprOVe the quality of the solution sets. In addition, our
three consecutive grids. Thg) values of the imaginary intuitive guess that irrelevant decision variables shdngbave
boundary grids are always 1 as shown in the shaded gri{gr)domly whereas key/dominant one should converge early is

Firstly, the f, = O plane is used as the reference planedisproved in HD-OBDF.
(1) = 0.67 +0.50 4+ 0.50 + 0.67 + 1 — 0.668 V. CONCLUSION
Then, thef, = 0 plane is selected as the reference plan .In this paper, the first preliminary work on high-dimensibna
' gata farming is explored. Firstly, to assess the suitgbdit

m()| 067 05 05 067 10

Fig. 8. Example of computing the diversity metric

dp(fs) = 1+1+067+075+067 _ o¢ different MOEASs, several state of the art MOEAs (NSGAII,
5 SPEA2, HYPE and MODE) are applied in HD-OBDF using an
So clearly decision variablgf; has a better diversity anchorage protection scenario simulation model. In terifis o
spread than decision variabfe. nal generation Pareto performance, we can observe that HYPE

performs the best in case study one whereas in case study two,
Based on the diversity metric described above, the decisiBREA2 outperforms all other MOEAs. In terms of convergence
variables at generation 20 are ranked. The top and bottomski®ed, in both case studies one and two, HYPE converges
decision variables are chosen to run further experimerntgyusmuch faster than other MOEAs. This feature is significantly
case study one as listed in Table VIII. All other non-evoleab desirable for very complex stochastic models which require
decision variables are set to a neutral value of zero. Théing time to run and multiple replications to consolidate th
hypervolume dynamics over 100 generation are presenteddata. By evolving a larger set of decision variables, more
Figure 9. As shown, the evolution using low diversity demisi complex attacking strategies and behaviour can be explored
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selected decision variables. [12]

and decision variables which appear to be uncorrelated nias!
derive surprisingly effective tactics and even obtain drett
performance. Secondly, by investigating the spread of theyj
decision variables, more important decision variables lwan
identified. Intuitively, decision variables which are leeant [15]
to the objective values should behave randomly throughwmut t
evolutionary optimization process and hence, achieve &mwid
spread. Yet, the simulation results show the exact oppos
Both evolutions of wide spread and high diversity decision
variables obtain much better performance than the expatsne
evolving the early converged decision variables. Two pazFarT{N]
ter filter approaches are presented in this work. Based on our
preliminary experiments, the diversity spread approacfuite
promising. The high diversity decision variables can ftai¢
exploration of the search space whereas the low diversity
decision variables can exploit the Pareto front and further
improve the quality of the solution sets. By selecting both
high diversity and low diversity decision variables, it rages

to achieve better hypervolume performance than evolving a
complete set of decision variables.

(18]
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