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Abstract 

The severe bank stresses of the Global Financial Crisis (GFC) have underlined the 

importance of understanding and measuring extreme credit risk. The Australian economy is 

widely considered to have fared much better than the US and most other major world 

economies. This paper applies quantile regression and Monte Carlo simulation to the Merton 

structural credit model to investigate the impact of extreme asset value fluctuations on default 

probabilities of Australian companies in comparison to the USA. Quantile regression allows 

modelling of the extreme quantiles of a distribution which allows measurement of capital and 

PDs at the most extreme points of an economic downturn, when companies are most likely to 

fail. Daily asset value fluctuations of over 600 Australian and US investment and speculative 

entities are examined over a ten year period spanning pre-GFC and GFC. The events of the 

GFC also showed how the capital of global banks was eroded as defaults increased. This 

paper therefore also examines the impact of these fluctuating default probabilities on the 

capital adequacy of Australian and US banks. The paper finds highly significant variances in 

default probabilities and capital between quantiles in both Australia and the US, and shows 

how these variances can assist banks and regulators in calculating capital buffers to sustain 

banks through volatile times.  
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Banks 
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1. Introduction 
 

From a credit perspective, there is generally considered to be strong evidence to demonstrate 

the resilience of Australian banks during the extreme conditions of the GFC. The 4 largest 

Australian banks remained profitable throughout the GFC (for example, showing collective 

profits of USD $18 billion in 2008), and all 4 are among only 8 banks in the world to be rated 

AA, maintaining these ratings throughout the GFC. No Australian banks failed over this 

period.  In contrast, US banks experienced capital shortages, losses (for example, nearly $50 

billion by the 5 major banks in 2008) and rating downgrades. Several banks failed (25 banks 

in 2008 and 140 in 2009), most notably Lehman Brothers. In 2009, impaired assets of 

Australian banks were less than 1%, as compared to 8.8% in the US.  All this paints a sound  

credit risk picture in Australia compared to the US. Nonetheless, Table 1 shows that, whilst at 

lower levels than the US, Australian bank impaired assets increased 5 fivefold during the 

GFC, not very different from the US. The share markets in Australia plunged around 55%, 

similar to the US, having a severe impact on the market value of corporate assets.  

 
Table 1. Impaired Assets – Australian and US Banks 

 
Australian figures are calculated from RBA Statistics (2009) for all banks operating in  Australia. Non-bank 

entities (Building Societies and Credit Unions) are not included. Australian Bank impaired assets refer to non-

accrual (income may no longer be accrued ahead of its receipt because there is doubt about the ultimate 

collectability of principal and/or interest) and restructured assets (modified to provide for concessions of interest 

or principal exposures), both on- and off-balance sheet, plus any assets acquired through the enforcement of 

security conditions. US figures include commercial banks as classified by the Federal Reserve Bank (FRB), and 

all figures are obtained from FRB (2009) statistical reports. The US impaired asset figures comprise loans 

classified as delinquent, which are loans past thirty days or more and still accruing interest as well as those in 

non-accrual status, measured as a percentage of end-of period loans. 

Australia US
Mar-2000 0.61% 1.85%
Mar-2001 0.59% 2.13%
Mar-2002 0.69% 1.94%
Mar-2003 0.58% 1.64%
Mar-2004 0.41% 1.41%
Mar-2005 0.27% 1.36%
Mar-2006 0.21% 1.46%
Mar-2007 0.19% 2.35%
Mar-2008 0.34% 4.79%
Mar-2009 0.95% 8.80%
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Against this background, the research question addressed by this paper is how do the asset 

value fluctuations of Australian companies over both pre-GFC and GFC periods compare to 

those of the US, and what are the implications for capital buffers in both markets? Using 

quantile regressions, we show how despite having fared better than global peers, based on 

fluctuating asset values the default probabilities of Australian corporates were severely 

impacted during the GFC, as was the case in the US.    

Many prevailing credit models were designed to measure credit risk on the basis of ‘average’ 

credit risks over a period, or credit risk at a specific point in time. The problem with these 

approaches is that they are not designed to measure the most extreme losses, i.e. the tail of the 

credit loss distribution. It is precisely during these extreme circumstances when firms are 

most likely to fail. Some examples of well known models in this category include the z score 

developed by Altman (1968 and revisited Altman, 2000) which uses five balance sheet ratios 

to predict bankruptcy; Moody’s KMV Company (2003) RiskCalc model, which uses 11 

financial measures to provide an Estimated Default Frequency (EDF) for private firms; 

Ratings agencies which provide credit ratings based on customer creditworthiness, but which 

are not designed to ratchet up and down with changing market conditions; CreditMetrics 

(Gupton, Finger, & Bhatia, 1997) which incorporates credit ratings into a transition matrix 

that measures the probability of transitioning from one rating to another, including the 

probability of default; and the Basel Accord standardised approach which measures corporate 

credit risk for capital adequacy purposes by applying risk weightings to customers on the 

basis of their external credit rating. 

Other models use Value at Risk (VaR), which is one of the most widely used approaches for 

measuring credit and market risk by banks, on the basis of risks falling below a pre-

determined threshold at a selected level of confidence, such as 95% or 99%. A key shortfall 

of this approach is that it says nothing of risk beyond VaR and it is usually based on a normal 

distribution Gaussian approach which does not adequately capture tail risk. Critics have 

included Standard and Poor’s analysts (Samanta, Azarchs, & Hill, 2005) due to inconsistency 

of VaR application across institutions and lack of tail risk assessment. Artzner, Delbaen, 

Eber, & Heath (1999; 1997) found VaR to have undesirable mathematical properties (most 

notably lack of sub-additivity), whereas Pflug (2000) proved that Conditional Value at Risk 

(CvaR), which looks at losses beyond VaR does not have these undesirable properties.   In 
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assessing why existing credit models failed in the credit crisis, Sy (2008) finds that most 

existing credit models are based on a reduced form linear approach which have typical 

reliance on having large amounts of statistical data coming from a quasi-equilibrium state, 

and that this approach is ineffective in making even short-term forecasts in rapidly changing 

environments such as in a credit crisis. The study finds that such inductive models have failed 

to predict what would happen just when they were most needed to. Hedge fund returns have 

also been found to deviate from the VaR Gaussian approach (Bali, Gokcan, & Liang, 2007; 

Gupta & Liang, 2005). Jackson, Maude & Perraudin (1998) found that VaR estimates based 

on a simulation approach outperformed VaR estimates based on a Gaussian approach. Ohran 

and Karaahmet (2009) found that VaR works well when the economy is functioning 

smoothly, but fails during times of economic stress, because VaR is ignorant of the extreme 

losses beyond VaR.  

The Merton / KMV model (Crosbie & Bohn, 2003; Merton, 1974), does measure fluctuating 

risk over time using a combination of the structure of the customer’s balance sheet and 

movements in market asset values to calculate default probabilities. However, again this is 

based on an ‘average’ over the time period measured, and does not highlight the extreme 

quantiles within the measured period. 

 Credit models which do not adequately measure tail risk for corporates could lead to banks 

having underprovisions or capital shortages during extreme economic circumstances. During 

the GFC, many global banks were not adequately prepared to deal with the extent of defaults 

and increased impaired assets occurring during this time, and were left scrambling for capital 

and funding just when it was most difficult to obtain. Per the International Monetary Fund 

(Caruana & Narain, 2008), “it (Basel) does emphasize that banks should address volatility in 

their capital allocation and define strategic plans for raising capital that take into account their 

needs, especially in a stressful economic environment”. The Basel Committee on Banking 

Supervision (2008) stated that capital adequacy requirements should include “introducing a 

series of measures to promote the build-up of capital buffers in good times that can be drawn 

upon in periods of stress”. Indeed, recently announced changes to Basel II (i.e. Basel III) 

include requirements for such capital buffers.  

Whereas existing models focus on ‘average risk’ or risk below a defined threshold, we use 

quantile regressions to divide the data into different tranches, enabling the researcher to 

isolate and model the most risky tranches. Quantile regression, as introduced by Koenker and 

Bassett (1978) has successfully measured extreme market risk (share prices) as it is more 
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robust to the presence of outliers than other prediction methods such as Ordinary Least 

Squares. Quantile regression has been applied to a range of market risk models, notably by 

Nobel economics laureate Robert Engle, who together with Manganelli (Engle & Manganelli, 

2004) applied them to a suite of CAViaR (Conditional Autoregressive Value at Risk) models. 

The authors make the point that modelling techniques must be responsive to financial 

disasters, and that existing VaR techniques are inadequate as they only focus on one 

particular quantile. By not properly estimating risk, financial institutions can underestimate 

(or overestimate) the risk, consequently maintaining excessively high (low) capital. Their 

CaViaR models are unique in that instead of modelling a single distribution, they can directly 

model different quantiles, including the tail of the distribution.  

Section 2 discusses the Merton / KMV model (and its associated Distance to Default and 

Probability of Default measures). Section 3 explains the quantile regression techniques used. 

Section 4 includes Data and Methodology. Results are presented in Section 5, followed by 

Conclusions in Section 6. 

   

2. Distance to Default (DD) and Probability of Default (PD) 
 

The Merton / KMV approach (which we use in this study, but modify to incorporate 

quantiles) provides an estimate of distance to default (DD) and probability of default (PD). 

The model holds that there are 3 key determinants of default: the asset values of a firm, the 

risk of fluctuations in those asset values, and leverage (the extent to which the assets are 

funded by borrowings as opposed to equity). The firm defaults when debt exceeds assets, and 

DD measures how far away the firm is from this default event. KMV (Crosbie & Bohn, 

2003), in modelling defaults using their extensive worldwide  database, find that firms do not 

generally default when asset values reach liability book values, and many continue to service 

their debts at this point as the long-term nature of some liabilities provides some breathing 

space. KMV finds the default point to lie somewhere between total liabilities and current 

liabilities and therefore use current liabilities plus half of long term debt as the default point. 

 
T

TFVDD
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where 

V  =  market value of firm’s assets 
F =  face value of firm’s debt (in line with KMV, this is defined as current liabilities 

plus one half of long term debt)  
µ  =  an estimate of the annual return (drift) of the firm’s assets (we measure µ as the 

mean of the change  in lnV of the period being modelled as per Vassalou & Xing  
(2004) 

N  =  cumulative standard normal distribution function. 

 

To estimate asset volatilities and arrive at DD, we follow an  intensive estimation, iteration 

and convergence procedure, as outlined by studies such as Bharath & Shumway (2009), 

Vassalou & Xing (2009), and Allen and Powell (2009).  

 

3. Quantile Regression. 
 

Quantile regression per Koenker & Basset  (1978) and Koenker and Hallock (2001) is a 

technique for dividing a dataset into parts. Minimising the sum of symmetrically weighted 

absolute residuals yields the median where 50 percent of observations fall either side. 

Similarly, other quantile functions are yielded by minimising the sum of asymmetrically 

weighted residuals, where the weights are functions of the quantile in question per equation 3. 

This makes quantile regression robust to the presence of outliers. 

min𝜀𝜀∈𝑅𝑅 ∑ 𝑝𝑝𝑟𝑟(𝑦𝑦1 − 𝜀𝜀)           (3) 

 

where pτ(.) is the absolute value function, providing the τth sample quantile with its solution.  

 

Figure 1  Illustrative Quantile Regression Example  

Figure 1 (Andreas Steiner, 2006) 

illustrates the quantile regression 

technique. The x and y axes represent 

any two variables being compared 

(such as age and height; or market 

returns and individual asset returns). 
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The 50 percent quantile (middle line) is the median, where 50 percent of observations fall 

below the line and 50 percent above. Similarly, the 90 percent quantile (top line) is where 10 

percent of observations lie above the line, and 10 percent quantile (bottom line) has 90 

percent of observations above the line. The intercept and slope are obtained by minimising 

the sum of the asymmetrically weighted residuals for each line. Quantile Regression allows 

direct modelling of the tails of a distribution rather than ‘average’ based techniques such as 

ordinary least squares or credit models which focus on ‘average’ losses over a period of time. 

The technique has enjoyed wide application such as investigations into wage structure 

(Buschinsky, 1994; Machado & Mata, 2005), production efficiency (Dimelis & Lowi, 2002), 

and educational attainment (Eide & Showalter, 1998). Financial applications include Engle & 

Manganelli (2004) and Taylor (2008) to the problem of VaR and Barnes and Hughes (2002) 

who use quantile regression analysis to study CAPM in their work on stock market returns. 

In a stock market context Beta measures the systematic risk of an individual security with 

CAPM predicting what a particular asset or portfolio’s expected return should be relative to 

its risk and the market return.  The lower and upper extremes of the distribution are often not 

well fitted by OLS. Allen, Gerrans, Singh, & Powell (2009), using quantile regression, show 

large and sometimes significant differences between returns and beta, both across quantiles 

and through time. These extremes of a distribution are especially important to credit risk 

measurement as it at these times when failure is most likely. We therefore expand these 

quantile techniques to credit risk by measuring Betas for fluctuating assets across time and 

across quantiles, and the corresponding impact of these quantile measurements on DD. This 

is shown in Figures 1 and 2 in the results section, where our y axis depicts the asset returns 

for the quantile being measured (we measure the 50 percent quantile which corresponds 

roughly to the standard Merton model, and the 95 percent quantile), and the x axis represents 

all the asset returns (all quantiles) in the dataset.  

Using actual returns provides us with only a limited number of extreme returns with which to 

model the quantiles. To increase the richness of the data we use Monte Carlo simulation to 

generate 20,000 simulated asset returns for every company in our dataset. This is done by 

generating 20,000 random numbers based on the standard deviation and mean of historical 

asset returns.   

 



8 
 

4. Data 
 

Data is divided into two periods: Pre-GFC (2000 – 2006, 7 years aligning with Basel Accord 

advanced model credit risk requirements) and GFC (2007 – 2009).   

We obtain daily prices from Datastream (approximately 250 observations x 10 years = 2500 

observations per company).  Required balance sheet data, which includes asset and debt 

values, is also obtained from Datastream. To ensure a mix of investment and speculative 

entities for both Australia and the US, we use two data sources for each market. US data 

includes entities from the S&P500 index as well as Moody’s Speculative Grade Liquidity 

Ratings list (Moody's Investor Services, 2010). For Australia, we use entities from the 

ASX200 and from S&P/ASX Emerging Companies Index. In each case we only include rated 

entities, for which equity prices and Worldscope balance sheet data are available in 

Datastream. Entities with less than 12 months data in either of the 2 periods are excluded. 

This results in 378 US entities consisting of 208 S&P 500 companies and 170 speculative 

companies, and 234 Australian Entities consisting of 118 ASX200 companies and 116 

emerging entities.   

 

5. Results 
 

Results are summarised in Figure 1 (Australia) and Figure 2 (US). The graphs show the asset 

value fluctuations (σ), the associated Beta (β) and DD. The graphs show large differences in 

DD between the quantiles for both countries, although the spread is somewhat lower for 

Australia than the US.  For example, the 95% GFC quantile has a DD more than 3x lower 

than the US 10 year 50% quantile DD.  The difference between asset value fluctuations at the 

95% quantile compared to the 50% quantile is significant for both countries at the 99 percent 

confidence level using F tests for changes in volatility. This has significant implications for 

banks. Provisions and capital calculated on ‘average’ or below the threshold measurements 

for a portfolio of corporate assets will clearly not be adequate during periods of extreme 

downturn. . 
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Figure 1. Australian Quantile Results 
 

 
 
Figure 2.   US Quantile Results 
 

 
 

The figures show the results of the Quantile Regression  Model for the 50 percent and 95 percent 
quantiles for pre- GFC and GFC periods. The pre-GFC period is the 7 years from 2000 – 2006 whereas 
the GFC period is the 3 years between 2007 – 2009. The y axis is calculated on the asset fluctuations (σ), 
using the Merton model, for the quantile in question. The x axis is the median σ for the entire 10 year 
period. Thus the Beta( β) for the 50 percent Quantile for the 10 year period is one. Where σ for a 
particular quantile is less (greater) than the median for the 10 year period,   β<(>)1, and DD increases 
(reduces) accordingly. 

 

DD 9.16 β 0.80
σ  0.00570

DD 7.32 β 1.00
σ  0.00713

DD 5.49 β 1.33
σ  0.00948

DD 3.79 β 1.93
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DD 5.98 β 1.0
σ  0.00789

DD 8.09 β 0.74
σ  0.00584

DD 3.81 β 1.57
σ  0.0124

DD 2.81 β 2.13
σ  0.0168

DD 1.84 β 3.26
σ  0.0258
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The above graph shows that the ‘median’ DD  (based on how the standard Merton structural 

model calculates DD) over the 10 year study period  was 5.98 for US banks (7.32 for 

Australia) with an asset value standard deviation (σ) of 0.00789 (0.00713 for Australia).  As 

asset value σ is the denominator of the DD equation (equation 1), as σ increases (reduces) 

from one level to another (i.e. from σ1 to  σ2) DD reduces (increases) by the same proportion. 

Thus the numerator of the equation (a measure of capital – the distance between as assets and 

liabilities) needs to increase to restore DD for these Corporates back to the same level, i.e. 

capital will need to increase by the same proportion as the change in DD (approximately 3x 

for both Australia and the US).   

Of course, the capital buffer needed by banks will depend on how much capital banks held in 

relation to problem loans in the first place. US collective bank capital ratios at the start of the 

GFC were 7.1% (calculated from Datastream) against impaired assets of 2.4% per table 1 

(3:1 ratio). With a threefold increase in market asset values fluctuations and a fivefold 

increase in impaired assets, any existing capital buffer is eliminated. Australian Bank capital 

on the other hand was 6.2% against impaired assets of 0.19% (32:1 ratio). This is why 

Australian bank capital could much more easily weather the fivefold increase in impaired 

assets and trebling market asset value fluctuations of corporate borrowers than the US.  

 

6. Conclusions 
 

This paper demonstrated how Monte Carlo simulation and Quantile Regression can be 

applied to credit risk models to measure extreme risk in the Australian and US markets, as 

well as measure the extent of capital buffers required to deal with that risk. The US and 

Australia both showed significant (and similar) increases in asset value fluctuations and 

impaired assets. However, Australian banks had a much lower impaired asset position (and 

thus in-built capital buffer) to start with and were therefore much better placed to weather the 

storm than their US counterparts. Therefore Australian banks required no additional capital 

buffer, whereas the US banks did. 
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