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ABSTRACT

Modulation classification of digital communications signals plays an important role in
both military and civilian sectors. It has the potential of replacing several receivers with
onc universal recciver. An automatic modulation classifier can be defined as a system
that automatically identifies the modulation type of the received signal given that the
signal cxists and its parameters lic in a known range. This thesis addresses the nced for
a universal modulation classifier capable of classifying a comprchensive list of digital
modulation schemes. Two classification approachcs arc presented: a decision-theoretic

(DT) approach and a neural nctwork (NN) approach. /

First classifiers arc introduced that can classify ASK, PSK, and FSK signals. A
decision tree is designed for the DT approach and a NN structure is formulated and
trained to classify these signals. Both classifiers use the same key features derived from
the intcrcepted signal.  These fcatures arc based on the instantaneous amplitude,
instantancous phase, and instantancous frequency of the intercepted signal, and the
cumulants of its complex cnvelope. Threshold values for the DT approach are found
from the minimum total error probabilities of the extracted key featurcs at SNR of 20 to
—5dB. Thec NN paramcters are found by training the networks on the same data. The
DT and NN classifiers are expanded to include CPM signals. Signals within the CPM
class are also added to the classifiers and a separate decision tree and new NN structure
are found for these signals. New key features to classify thesc signals arc also

introduced.

The classificrs are then expanded further to include multiple access signals, followed by
QAM, PSKS8 and FSKB8 signals. New featurcs are found to classify these signals. The
final decision tree is able to accommodatc a total of fiftecn differcnt modulation types.
The NN structure is designed in a hicrarchical fashion to optimise the classification

performance of these fiftcen digital modulation schemes.

Both DT and NN classifiers are ablc to classify signals with more than 90% accuracy in

the presence of additive white Gaussian within SNR ranging from 20 to 5dB. Howevecr,



the performance of the NN classifier appears to be more robust as it degrades gradually
at the SNRs of 0 and —5dB. At -5dB, the NN has an overall accuracy of 73.58%,
whereas the DT classifier achicves only 47.3% accuracy. The overall accuracy of the
NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to
84.56% for the DT classificr.

Finally, the performances of these classifiers are tested in the presence of Rayleigh
fading. The DT and NN classifier structures are modified to accommodate fading and
again, ncw key features are introduced to accomplish this. With the modifications, the
overall accuracy of the NN classifier, over the combined SNR range of 20 to —5dB and
120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier.
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CHAPTER 1

Introduction

Modulation identification plays an important part in both covert and overt operations. The
main aim in communication intelligence (COMINT) applications is the perfect monitoring
of the intercepted signals. The modulation type of the intercepted signal is one of the
parameters that affects perfect monitoring. In the past, radar and communication systems
have relied on operator interpreted measured parameters to classify and identify signals. In
modern warfare, there are dense electromagnetic environments and automatic processing
techniques are required for rapid response. Therefore, automatic modulation classification
is necessary.  Modulation classification exploits several classical communication
disciplines that include detection and estimation. It has recently attracted interest from both
the military and commercial sectors due to its capability of replacing several receivers with
one universal receiver. This has practical application for example in a network
environment where 1t is required for an incoming signal to be routed to an appropriate
processor. An automatic modulation classifier can be defined as a system that automatically
identifies the modulation type of the received signal given that the signal exists and its
parameters lie in a known range. This chapter is organised as follows: first the objectives
of the thesis are described next, followed by the major contributions of the thesis. A
description of the thesis organization is presented in Section 1.3, and finally the

publications arising from this research are listed in Section 1.4.

1.1 Objectives of the Thesis

There has been some research conducted into the area of automatic modulation
recognition by Azzouz and Nandi [Azzouz and Nandi, 1996]. They proposed modulation

classifiers capable of recognising certain analogue signals and a limited number of digital



modulation schemes. However, they tested their algorithms on signals with SNR values

greater than or equal to 10dB. With the advent of new technology using digital

transmission, the proposed modulation classifiers described in this thesis are designed for

digital communication signals only. Therefore, the objectives of this thesis are:

To design a modulation classifier thal is able to classify a comprehensive list of
digital modulation schemes

To use two types of classifier implementations - the decision-theoretic (DT)
approach and the neural network (NN) approach.

To be able to classify digitally modulated signals in the presence of additive white
Gaussian noise (AWGN) at SNR values down to —5dB.

To design classifiers that can handle a different environment than the AWGN

channel, such as a Rayleigh fading channel.

1.2 Major Contributions of the Thesis

The major contributions of this thesis are:

A new decision tree design for the classification of ASK, PSK and FSK signals
using different key features from those proposed by Azzouz and Nandi.

The decision-theoretic and neural network modulation classifier capabilities are
extended to include the classification of CPM, BPSK DS-SS, QPSK DS-SS, FH S8,
TDMA, FSK8, PSK8, QAMS, and QAM 16 signals.

New key features are found to classify these signals.

Signals within the CPM class can be classified as full response, partial response or
GMSK and an associated decision tree is developed for that. Also two neural
network designs have been proposed for the classification of CPM signals.

The classifiers’ capabilities are extended to signals affecled by Rayleigh fading.
The developed decision tree and neural network are modified to accommodale

faded signals with a Doppler spread of 120Hz.



1.3 Organization of the Thesis

The structure of the thesis is as follows;

1.

Chapter 2 gives an overview of literature related to digital modulation classification.
The different techniques related to modulation classification will be described and
the modulation types that can be classified by each technique will be discussed.
The main classification techniques discussed are the maximum likelihood approach,

the pattern recognition approach, and the neural network implementations.

Chapter 3 describes the theory behind the classification process for the decision-
theoretic approach. The Bayes decision rule for minimum error is described as well
as a method to derive the Bayes error. Threshold determination is described using
an example. Classifier accuracy, confidence intervals, statistical power and

statistical significance are also discussed.

Chapter 4 presents the theory behind the classification process for the neural
network implementation. The general concepts of neural networks including the
different classes of neural networks and their structures, training algorithms and
learning paradigms are discussed. An example of classification using neural

networks is also presented.

In chapter 5, the classification of ASK, PSK, and FSK signals is presented using the
decision-theoretic and neural network approaches. New key features are introduced
and an alternate decision tree design is devised. This new tree is compared to the
design of [Azzouz and Nandi, 1996] and the performances of both these DT
classifiers are compared. A neural network using the same key features used in the
devised decision tree is also designed and tested. The performances of both the NN

and DT classifiers are compared and some conclusions are made.

Chapter 6 expands the DT and NN modulation classifiers proposed in chapter 5 to
accommodate continuous phase modulated (CPM) signals. These classifiers are

able to distinguish between CPM signals and other modulation types (ASK, PSK,



and FSK). The classifiers can also identify signals within the CPM class - the
signals are recognised as partial response, full response or Gaussian minimum shift
keying (GMSK) signals. The performances of the DT and NN classifiers are also

compared with some concluding remarks.

. Chapter 7 presents an extension to the capabilitics of the modulation classifiers
described in chapter 6 to include multiple access signals. These signals are direct
sequence spread spectrum (DS S58) or code division multiple access (CDMA),
frequency hopped spread spectrum (FH SS), and time division multiple access
(TDMA). They are very commonly used in the military for their low probability of
interception and also in civilian areas, such as in mobile networks to reduce call
dropouts and interference. These different types of signals are included in the
modulation classification algorithms, which employ the decision theoretic and
neural network approaches. The results are compared and presented for each

classifier with some conclusions,

. Chapter 8 completes the development of the modulation classifier structure. In this
chapter, PSK8, FSK8 QAMS, and QAMI6 signals are added to the modulation
classifiers. These modulation classification algorithms employ the decision
theoretic and neural network approaches. This results in two types of modulation
classifiers that are capable of distinguishing fifteen types of digitally modulated
signals. The performances of the DT and NN classifiers are tested and compared in
the presence of additive white Gaussian noise (AWGN). Estimates of the
classification accuracy are derived for SNR (signal-to-noise ratio) ranging from
20dB to -5dB.

. Chapter 9 tests the performances of the developed classifiers in the presence of
Rayleigh fading. Both classifier structures are modified slightly to accommodate
fading and the performances of the modified classifiers are compared to the results
in an AWGN channel.



9.

Chapter 10 presents some concluding remarks about the thesis. Some suggestions

for further research are also presented in this chapter.

10. The thesis also includes a number of appendices where tables of results are

presented for the classifiers developed in Chapters 5-9.

1.4 Publications Arising From PhD Research

1.

Ramakonar, V., Habibi, D. and Bouzerdoum, A., “Avtomatic Recognition of
Digitally Modulated Communications Signals”. Proceedings of ISSPA ‘99, pp. 753-
756, August 1999.

Arulampalam, G., Ramakonar, V., Bouzerdoum, A., and Habibi, D., “Classification
of Digital Modulation Schemes Using Neural Networks”, Proceedings of ISSPA
'99, pp. 649-652, August 1999.

Ramakonar, V., Habibi, D. and Bouzerdoum, A., “Classification of bandlimited
FSK4 and FSK8 signals”. Proceedings of ISSPA 2001, August 2001.

Ramakonar, V., Habibi, D. and Bouzerdoum, A., “New Algorithm for Classification
in Rayleigh Fading Channels of Spread Spectrum Communications Signals”.
Proceedings of ISC 2001, pp 530-535, November 2001.

Ramakonar, V., Habibi, D. and Bouzerdoum, A. “New Methods for Classification
of CPM and Spread Spectrum Communication Signals”. Communications World

(Electrical and Computer Engineering Series), pp303- 308, 2001.






CHAPTER 2

Classification of Digital Modulation

Schemes: A Review

2.1.  Imtroduction
This chapter presents a review of the literature relevant to modulation classification. There

have been a number of articles published in this area, which describe classifiers that can
recognise a limited number of modulation types [Azzouz, 1998; Wei, 2000; Jondral, 1994,
Swami, 2000].  There is no comprehensive reference for a classifier encompassing many

modulation schemes. This serves as the motivation for this thesis.

There are many types of modulation classification methods and a description of each
scheme and relevant publications will be presented. The chapter is organised as follows:
Classification using the maximum likelihood approach is outlined first followed by a
description of the paftern recognition approach to classification. Finally modulation

recognition using neural networks is discussed.

2.2, Maximum Likelihood Approach

With the maximum likelibood (ML) approach, the classification is viewed as a multiple
hypothesis testing problem. This is where a hypothesis, «, is arbitrarily assigned to the ith
modulation type of m possible types. The conditional pdf p(X|a), (i = 1, ..., m) determines
the ML classification and X is an observation, eg a sampled frequency component. If the
observation sequence X[k], £ = 1, ..., n is independent and identically distributed (i.i.d), the
likelihood function (LF), L(X]a) can be expressed as [Stark, 1994]:



px10) =TT p(x k@)= L(X |a) @)

The ML classifier outputs the jth modulation type based on the observation whenever
LX|wy) > LX|w),j#1; j,i=1, ..., m. The log-likelihood function (LLF) can be used if
the likelihood function is exponential due to the monotonic nature of the exponent function.
It is common for the expressions of the pdf to be approximations and assume prior
information of the symbol rate and SNR. Therefore quasi-optimal rules are defined. A

general ML classifier is shown in Figure 2.1.
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Figure 2.1. General maximum likelihood classifier.

We will outline general maximum likelihood classification techniques first, followed by a
description of a ML classifier capable of recognising MPSK schemes based on the exact
phase distribution. Classifiers that are based on the likelihood functions are then presented
and we will describe how the ML function is used to classify continuous phase modulation

(CPM). Finally a ML classifier using constellation shape is discussed.

2.2.1. General Maximum Likelihood Methods

A classifier capable of recognising digital amplitude modulated signals was proposed by
Wei and Mendel [Wei, 1995]. The method was based on the ML approach and is
applicable to any constellation based modulation type in an additive white Gaussian noise

(AWGN) channel. The theoretical performance of the ML classifier under ideal conditions



was reported and this in turn serves as an upper bound of performance for any classifier. It

was assumed that all signal parameters are known.

The classifier in [Wei, 1995] was extended to include PSK and QAM signals in [Wei,
2000]. It was shown that the [-Q domain data were sufficient statistics for modulation
classification. A generic formula for the error probability of a ML classifier was obtained
and an asymptotic performance study was carried out. The theoretical performance was
derived under an ideal situation where all signal parameters as well as the noise power are
known. The data symbols are independent and the pulse shape is rectangular. The classifier
can accommodate any finite set of distinct constellations with zero error rate when the
number of data symbols approaches infinity. Simulations were performed with SNR

ranging from 0 to 15 dB.

A maximum likelibood classifier for QAM and PSK signals was proposed by Sills [Sills,
1999]. The classifier algorithms were designed for coherent and noncoherent conditions.
The algorithm’s performance was evaluated for PSK2, PSK4, PSK8, QAM16, QAM32 and
QAMG64 signals and compared with a psuedo maximum-likelihood noncoherent
classification technique in terms of error rate, false alarm rate, and computational
complexity. It was stated that the coherent ML classifier makes less than one error in ten
across all six modulation types provided that the SNR is greater than or equal to 10dB. For
the noncoherent ML classifier, there is less than one emor in ten across the tested
modulation types for SNR greater than or equal to 13dB. It was found that using a large
number of symbols in the likelihood ratio reduces the probability of error and probability of

false alarm.

A general ML classifier based on an approximation of the likelihood function was
developed by Boiteau and Le Martret [Boiteau, 1998). Equations were derived for the case
of linear modulation and applied to MPSK signals. It was shown that the tests are a
generalisation of the previous methods using the ML approach discussed in section 2.2.3.
It was found that the likelihood function of an observation can be approximated by

measuring the correlation between the higher-order statistic (or true temporal) and the



empirical. Thus, this type of classifier provides a theoretical foundation for systems that
exploit cyclostationary properties to classify signals as well as many other empirical

classification systems.

2.2.2. MPSK Classifier Based on the Exact Phase Distribution

The classification of MPSK signals using an asymptotic optimal algorithm has been
achieved by Yang and Liu [Yang, 1998]. The same results but with slightly different test
statistics were also published ecarlier by Yang and Soliman in [Yang, 1991] and [Yang,
1997]. The exact phase distribution of a reccived MPSK signal was expressed in terms of
the Fourier series expansion to develop the classification algorithm. The classifier was
capable of recognising CW, BPSK, QPSK, and 8PSK signals. A multiple hypothesis
classification rule was developed using the maximum a posteriori (MAP) probability rule,
which was consequently reduced to a ML classifier. This is because the hypotheses were
assumed cqually likely. The SNR was assumed to be known and the classifier was shown

to outperform the classifiers proposed in [Yang, 1991] and [Yang, 1997].

2.2.3. Classifiers Based on the Likelihood Functions

There are six publications based on classification using likelihood functions that will be
discussed. The first article describes a quasi log-likelihood classifier. The second
publication performs a comparison on the performance of a M™-law classifier and a qum-rule
classifier. Thirdly, an average log-likelihood classifier is discussed, followed by a
description of a multiple hypothesis classifier. The fifth article, describes classification in
unknown ISI environments using a LF. Finally we outline classification (based on

likelihood functions) of QAM signals using the DFT of phase histograms.

2.2.3.1. Quasi Log-Likelihood Ratio Classifier

Polydoros and Kim [Polydoros, 1990] derive and analyse optimal and suboptimal decision
rules for the detection of constant envelope quadrature digital modulations in the presence
of noise. No timing or frequency uncertainty was assumed and signal parameters such as

carrier frequency, initial phase, symbol rate and SNR were assumed to be known. The
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effect of various stochastic models for the carrier phase was examined. The modulation
classifier was for BPSK/QPSK signals based on an approximation of the likelihood
function. A comparison between three classifiers for MPSK signals was introduced. The
three classifiers were a phase based classifier (PBC) that is based on the phase histogram, a
square law classifier (SLC) that is based on the fact that squaring an MPSK signal results in
another MPSK signal with M/2 states, and finally the quasi-log-likelihood ratio (qLLR)
which is derived by approximating the likelihood ratio functions of phase modulated digital
signals in white gaussian noise. The authors have proved analytically that the last method
performs better than conventional phase-based and square-law classifiers particularly for

lower signal-to-noise ratios (SNR).

2.2.3.2. M*-law Classifier Versus q-Rule

A maximum likelihoed classifier based on the likelihood function of MPSK and MQAM
signals in AWGN noise was proposed by Hwang and Polydoros [Hwang, 1991].
Simplified versions of the likelihood function for each modulation type are represented by
the qu statistic. The qum classifier is similar to a synchronous pulse-shaped matched filter.
Its performance was compared with other M™law methods and the correct classification
probability was found by having a long observation time (N >> 1 symbols) and estimated
for a low SNR (SNR << 0dB). For the M™-law classifier to have comparable performance,
the SNR had to be more than 2dB greater than the SNR for the qy classifier, All signal
parameters such as symbol rate, initial phase, carrier frequency and SNR were assumed to

be known and the qu classifier was only valid for SNR less than 0dB.

2.2.3.3. Average Log-Likelihood Ratio Classifier

The low SNR methods in [Hwang, 1991] were modified to accommodate higher SNR by
Long, Chugg and Polydoros [Long, 1994]. The Qwm - rule, based on the average log-
likelihood ratio (ALLR) was developed. An approximate expression for the pdf of the Qum
statistic was also developed for medium and high SNR environments. It was found that the
approximation of the ALLR had better performance than the qy rule in [Hwang, 1991].

The performance was evaluated for four different cases including CPFSK interference. All
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signal parameters were assumed to be known and the classifier was developed for binary

hypothesis testing,.

2.2.3.4. Multiple Hypothesis Classifier

The maximum likelihood classifier had been extended to estimate power and threshold
setting automatically by Long, Chugg and Polydoros [Chugg, 1995]. The classifier also
included more than two hypothesised modulation types. These modulation types were
BPSK/QPSK/OQPSK. The modulation classification was based on the average likelihood
function (ALF) and the threshold setting was based on the quasi log-likelihood ratio test.
An estimate for the signal power based on the maximum likelihood function was derived.
It was found that a reliable power estimate is hard to obtain when only in-band

measurements are available.

2.2.3.5. Classification in Unknown ISI Environments

A classification method for signals affected by intersymbol interference (ISI) was proposed
by Lay and Polydoros [Lay, 1995]. It was assumed that the channel impulse response is
known. An average likelihood ratio test (ALRT) and a generalised likelihood ratio test
(GLRT) were derived. The channel identification was carried out simultaneously using
per-surviving processing (PSP).  Simulations were carried out for 16-ary digital
modulations in known and unknown channels. It was found that the ALRT outperforms the
GLRT but requires explicit knowledge of the signal power and noise variance of the
channel. On the other hand, the GLRT only requires the ML estimate of the transmitted
data, The Viterbi algorithm reduces the computational load of the decision statistics
considerably, however the simultaneous classification and channel estimation is a time
consuming task that may affect the classification tests detrimentally, This classifier was
developed for binary hypothesis testing and it is assumed that all signal parameters are

available except the impulse response.
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2.2.3.6. QAM Classification using DFT of Phase Histogram Combined With Modulus
Information

A method to classify various QAM signal constellations by analysing the DFT of the phase
histogram and applying the magnitude distribution has been proposed by Schreyogg and
Reichert [Schreyogg, 1997]. The likelihood functions were derived as well as a rule to
combine them for classification. The LF was phase based and the pdf of the DFT bins of
the phase histogram was used to derive the function. A LF based on the modulus was also
derived and computed from the pdf of the constellations magnitude. The performance of
the classifier was evaluated for a few different QAM constellations as well as BPSK,
QPSK, and 8PSK signals.

2.24. CPM Classification using ML Function

Classification of CPM signals according to their modulation indices has been reported in
[Chung, 1994] and [Huang, 1992]. Two classification rules based on the log likelihood
function (LLF) for CPM signals in low SNR were proposed in [Huang, 1992]. The signals
are passed through an AWGN channel and the classifier can differentiate two single-index
CPM signals with different modulation indices k; and k. The rule e(h,, ) is equivalent to
an energy comparator and the second rule ¢(h;, /) has an original form. It was found that

the second rule performs better than the first rule with short observations.

2.2.5. Classification Using Constellation Shape as A Robust Signature

A classification technique which uses the signal constellation shape as a stable modulation
signature was proposed by Mobasseri, [Mobasseri, 1999]. The algorithm was designed for
an AWGN channel and accounts for the presence of carrier recovery errors. The recovered
constellations were modelled by binomial nonhomogenous spatial random fields.
Experimental results were shown for various modulation standards including V.29,
V.29_fallback, PSK8 and QAMI16. It was stated that the PSK8 signal can be correctly
classified 90% of the time at SNR of 0dB. It was also stated that for the V.29, the classifier
achieves performance levels exceeding 90% in the presence of large peak phase lock error
and SNR of 3dB.
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2.3.  Pattern Recognition Approach

Generally, a pattern recognition system consists of sensing, feature extraction and decision
procedures [Tou, 1974]. Each measurement, observation or pattern vector x = (X[1], X[2],
X [n])'th describes a certain characteristic of the object or pattern. The size of the pattern
vectors can be reduced because they often contain redundant information. This reduction in
size of the pattern vectors is referred to as the feature extraction or preprocessing stage.
The decision procedure can be a neural network, decision function, or distance function.

The block diagram of a pattern recognition system is shown in Figure 2.2,

Feature Pattern
Vectors Classes

Decisi
ecision
Rule

Measurements

Signal . Feature
——»{ Sensing ——» Extraction F————»

(Prcproccssing)

Figure 2.2. General pattern recognition system.

This section will be divided into three parts. The first part describes a pattern recognition
approach using envelope-based methods, the second part describes a classification
technique based on higher-order statistics, and the final part describes other methods of

classification using the pattern recognition approach.

2.3.1. Envelope-Based Methods

Classification using envelope-based methods can be accomplished using the ratio of
different envelope statistics or deviations of instantaneous properties. Both techniques will

now be discussed.

2.3.1.1. Ratio of Different Envelope Statistics

A classifier based on the ratio (R) of the variance of the envelope to the square of the mean
of the envelope has been proposed in [Chan, 1989]. The classification method was based
on four modulation types (AM, DSB, FM and SSB) and the equations for R were derived as

a function of the carrier-to-noise ratio (CNR). The signal was classified according to where
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the value of R lies. It was found that the length of the signal segment and the computation

time were short making this method desirable for real time applications.

The classifier in [Chan, 1989] was extended to include more features based on the analytic
envelope and on an approximation of the envelope, extracted by different means that did
not require the Hilbert transform. The authors in [Druckmann, 1998] employ ratios of
different statistics of these two envelopes to extract key features. The classification rule
uses two features and the success rate of classification was reported to be 99% for a CNR

of 10dB. This method, however, was not suitable for complex envelope representation.

An adaptive technique for classifying some types of digital modulations (ASK2, PSK2,
PS5K4 and FSK2) was introduced by DeSimio and Glenn [DeSimio, 1988]. Key features
were derived from the signal envelope, signal spectra, the square of the signal, and the
fourth power of the signal. These key features are the mean and the varance of the
envelope, the magnitude and location of the two largest peaks in the signal spectrum, the
magnitude of the spectral component at twice the carrier frequency of the signal squared,
and the magnitude of the spectral component at four times the carrier frequency. The
classification procedure was as follows:

1) feature vectors extraction,

2) weight vectors generation for each signal type, and

3) modulation classification.

The LMS algorithm is an adaptive technique that was used to generate decision functions.
Also, the decision rule used was similar to that applied to pattern recognition algorithms.
The classifier was trained using the values of the extracted key features at 20dB SNR. The
classifier has the ability to discriminate between PSK2 and PSK4 signals at an SNR of 5dB.

2.3.1.2. Deviations of Instantaneous Properties

One of the first authors to publish on modulation classification was Liedtke [Liedike,
1984]. His work covers modulation recognition of digital signals. The modulation
schemes covered were ASK2, PSK2, PSK4, PSK8, FSK2 and CW and use the universal
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demodulator technique. To distinguish between different signals, key features such as the
amplitude histogram, the phase difference histogram, the frequency histogram, the
frequency variance and the amplitude variance were used. The classification procedure
involves approximate signal bandwidth estimation, signal demodulation and parameter
extraction, statistical computation and finally automatic modulation classification. It was
claimed that when the signal’s parameters are exactly known, the signal could be

recognised at SNR values greater than or equal to 18dB.

Nandi and Azzouz have devised two algorithms for modulation classification [Azzouz,
1995]. Their algorithm encompasses both analog and digital signals. The first algorithm
uses the decision-theoretic (DT} approach in which a set of decision criteria is developed
for identifying different types of modulation. The second algorithm utilises artificial neural
networks (ANN) as a4 new approach to modulation recognition [Azzouz, 1998]. Through
simulations it was found that for the decision-theoretic algorithm, the overall success rate
was over 94% at SNR of 15dB. The ANN algorithm had an overall success rate of over
96% at SNR of 15dB. All key features were considered simultaneously in the ANN
approach whereas with the DT approach, each feature was considered one at a time against
a certain threshold value. The success rate depends on the order of the features in the
branches of the decision tree. This would imply that the ANN approach gives better results
and this was found to be true. This research is based on these authors’ work as it serves as

a foundation to design a classifier that is capable of recognising a large range of modulation

types.

A modulation recogniser using a pattern recognition approach was proposed by Jondral
{Jondral, 1984]. The key features were extracted from the instantaneous amplitude,
frequency and phase. These key features are the instantaneous amplitude, phase difference
and frequency histograms. The received signal was divided into two adjacent sets called
the learning set and the test set and the signal segment length was 4096 samples. Real
signals had been used and the classification success rate was greater than or equal to 90%

except for SSB (83%) and FSK4 (88%).
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Aisbett [Aisbett, 1997) had developed a classifier that utilises signal parameters A%, AA’
and A°0’ where A is the signal envelope derivative and ©’ is the instantaneous frequency.
The key features used were the peak and tail values of the parameters A%, AA’ and A%9' as
well as the variance of the squared instantaneous amplitude minus its squared mean. The
types of signals that could be classified were ASK2, PSK2, DSB, AM, FM, and CW. The

performance was claimed to be good for signals with higher SNR.

A modulation classifier that can recognise analog and digital signals has been proposed by
Dominiguez et al [Dominiguez, 1991]. The recogniser can differentiate ASK2, ASK4,
PSK2, PSK4, FSK2, FSK4, AM, DSB, FM, SSB, CW and noise. The number of samples
per segment needed for the performance evaluation is 3000. There were three subsystems
in the recogniser:

1. pre analysis,

2. features extraction,

3. classifier subsystem.

The key features were extracted from the histograms of the instantaneous amplitude,
frequency and phase. It was claimed that for SNR values greater than or equal to 40dB, all
modulation types were classified correctly. At SNR of 10dB no digitally modulated signals

were classified correctly.

A modulation recogniser for multichannel systems was introduced by Nagy [Nagy, 1994].
With this modulation detector, the analysed signal was divided into individual components
and each signal component was classified using a single — tone classifier. The signals that
can be recognised are CW, ASK2, PSK2, PSK4 and FSK2. The classification process was
as follows:
1. Each signal component in the estimated amplitude spectrum is detected and filtered,
for eg the FSK2 signal is considered as two correlated ASK2 signals.
2. The differential phase is calculated to discriminate between the different types of
single — tone signals.
3. Finally, all ASK2 signals are correlated to detect the FSK2 signals.

The single - tone classifier carries out the following tasks:
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1. The amplitude histogram is used to discriminate the ASK2 signal from the CW, PSK2
and PSK4 signals.
2. The phase histogram is used to distinguish between CW, PSK2 and PSK4 signals.
It was stated that CW, PSK2 and PSK4 signals have been classified with greater than 98%
success rate at 10dB SNR and the ASK?2 signal with success rate of 87%.

A modulation recogniser for AM, FM, CW, ASK2 and FSK2 signals has been proposed by
Martin [Martin, 1990]. The key features were extracted from the IF signal spectrum, its
derivative and the instantaneous amplitude. These key features were the signal bandwidth,
amplitude histogram and the relationship between spectral components. The signals have

been classified with a success rate greater than 90% except for FM with 80% success rate.

Taira and Murukami [Taira, 1999] describe a modulation classification technique for
analogue modulated signals including phase continuous FSK signals.  For the
discrimination between frequency modulation signals and amplitude modulation signals
and for classification among the amplitude modulated signals, the statistical parameters of
the signal envelope were used. For classification among the frequency modulated signals,
the compactness of instantaneous frequency distribution was used. It was reported that
good classification possibility has been ascertained by simulation when SNR is greater than
or equal to 10dB. Discrimination between analogue and digital modulation schemes was

accomplished via block processing.

2.3.2. Higher-Order Statistical Methods

Six different methods for classification using higher-order statistics will be discussed in the
following sections. The first method employs higher-order statistics to classify MPSK
signals. The second method exploits the differences in higher-order moments, while the
third method utilises cyclic temporal cumulants for classification. The fourth technique
discussed uses time-domain higher-order correlations to classify FSK signals. Fourth-
order cumulants are used to recognise certain digital modulation schemes in the fifth
reviewed publication, and finally the time-average of the complex envelope is employed in

the sixth classification method using higher-order statistics.
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2.3.2.1. Even Moment Based MPSK Classifier

Soliman and Hsue [Soliman, 1992] investigate signal classification using statistical
moments. The type of signals they considered were M-ary PSK signals. They show that
for M-ary PSK signals, the nth moment (n even), of the phase of the signal is a monotonic
increasing function of M. From this, an analytic expression for the probability of a
misclassification was derived. A decision rule and a general hypothesis test were also
developed. The classification procedure was as follows:

1) the instantaneous phase is extracted,

2) even order moments are calculated,

3) threshold comparison, and

4} modulation recognition.

All the signal parameters were assumed to be known. The performance of the algorithm
was demonstrated by two examples. It was found that the eighth moment is adequate to
identify BPSK signals with reasonable performance at low CNR. The suggested algorithm
was compared to the gLLLR method in [Polydoros, 1990] and also the square-law and
phase-based methods. The qLLR method outperformed the proposed algorithm at low
CNR but the latter was comparable to the square-law classifier and was better than the
phase-based classifier. However, the gLLR classifier is only valid at CNR less than 0dB
and can only be used to distinguish between BPSK and QPSK signals whereas the

moments algorithm is more general.

Yang and Soliman {Yang, 1995] modified the modulation detector in [Soliman, 1992] by
approximating the probability distribution function of the instantaneous phase. Instead of
using the Tikhonov probability density function to approximate the exact phase
distribution, the Fourier series expansion was used. The modification improved the results
by 2dB for 99% success rate of modulation recognition. Also the computation for the n™

order moments was simpler than that proposed in [Soliman, 1992].

2.3.2.2. The M™-law Based Classifier
A classification method, which exploits the differences in the higher-order moment-spaces

of the discrete-time modulating process, was proposed in [Reichert, 1992]. The carrier
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frequency and symbol rate were assumed to be unknown so these differences in the higher-
order moments confribute speciral lines associated with these unknown parameters. The
spectral lines were detected by periodogram analysis and their existence, position and
amplitude contribute 1o robust key features. It was possible 1o classify ASK2, PSK2,
PSK4, MSK and FSK2. A complete statistical analysis of the classification performance
was reported in terms of the probability of delection and false alarm rate. The theoretical
performance figures were verified with simulations. A disadvantage of this method is that
it is unsuitable for the complex envelope representation and the periodogram analysis is

quite complex.

2.3.2.3. Cyclic Multi-correlation Based MPSK Classifier

A multiple hypothesis QAM modulation classifier, utilising decision theory, was proposed
by Marchand et al [Marchand, 1997 Marchand, 1998]. The same features have also been
mentioned in [Le Martret, 1997] but a slightly different structure has been used. The
proposed feature comprises a combination of fourth-order and squared second-order cyclic
temporal cumulants. This combination was used to counter the uncertainty in the signal
power. Simulations were carried out for 4QAM, 16QAM, and 64QAM signals. The
performance was evaluated for SNR of 5dB and 10dB and it was found that the success rate
was poor for sample sizes less than 1024 symbols. It was also stated that the authors are the

only people to classify QAM signals exploiting cyclostationary properties.

2.3.2.4. Time-Domain Higher-Order Correlation MFSK Classifier

A modulation classifier for MFSK signals was proposed by Beidas and Weber [Beidas,
1995]. The classifier was usced to distinguish between MFSK signals and is based on the
time — domain higher-order correlations. Two types of classifiers were presented:
channelised and non-channelised. The channelised classifier was made up of a bank of
matched filters and a set of successive correlators. Each matched filter was tuned to one of
the designated frequency locations. In the non-channelised classifier, each signal was
divided into three adjacent subbands — lower, middle and high. There were also three

parallel processes assigned to each subband. Three algorithms were considered for the non-
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channelised classifier which were: 1) a first-order correlation based classifier where three
energy processors and three correlators were used, 2) a second-order correlation based
classifier (type 1) where six correlators were used and 3) a second-order correlation based
classifier (type 2) where three energy processors and six correlators were used. The log-
likelihood function compared to a suitable threshold was used to decide about the number
of levels of an MFSK signal. It was stated that the non-channelised classifiers can detect

exact frequency locations perfectly.

2,3.2.5. C(lassification Using Fourth-Order Cumulants

Swami and Sadler devise a classification method based on elementary fourth-order
cumulants for digital modulation schemes [Swami, 2000]. These statistics are said to
characterise the shape of the distribution of the noisy baseband I and Q samples. It was
shown that cumulant-based classification is particularly effective when used in a
hierarchical scheme, This enables separation into subclasses at low SNR with small sample
size which makes it appropriate for a preliminary classifier. The computational complexity
is of order N, where N is the number of complex baseband samples. This method has been
shown to be robust in the presence of carrier phase and frequency offsets and can be
implemented recursively. Theoretical arguments were verified with simulation results and
compared with existing approaches. The modulation schemes that can be classified are M-
ASK, M-PSK and QAM signals. Results show that the classifier performs with 100%
accuracy for 500 samples and SNR of 10dB even in the presence of carmer phase and

frequency offsets.

Akmouche has proposed a classifier that discriminates single carrier modulations from
multi-carrier modulations of QOFDM type [Akmouche, 1999]. It was stated that multi-
carrier methods are asymptotically Gaussian and therefore the proposed detector uses the
statistical test of [Giannakis, 1990] based on fourth-order cumulants. The test was adapted
by Akmouche to the specific case of digital modulations which reduces the algorithm
complexity. Simulations were provided and show that for the worse case (filtered QAM-
256 versus 32-OFDM), the detector achieves a probability of detection Pp of 0.99 for a
probability of false alarm Pga equivalent to 0.01.
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2.3.2.6. Classification Based on Time Average of Complex Envelope.

Rosti has addressed the feature extraction process of modulation classification [Rosti,
1998]. Useful characteristics and representations of communications signals were
presented as well as the relevant knowledge of statistical signal processing. First and
second order statistics of digital modulated signals were studied and a novel feature was
proposed. This novel feature was based on the time average of the complex envelope
representation of the digital signal. Previous methods and this novel feature were compared
by investigating their discrimination performance through Matlab simulations. Modulation

types that can be classified are: AM, DSB, SSB, FM, CW, PSK2, PSK4, FSK2 and FSK4.

2.3.3. Other Methods

Other methods for modulation classification using the pattern recognition approach will be
outlined in the following sections. The first method employs the zero-crossing technique
for classification. The second approach uses a modulation model and the third method
classifies signals using distance functions. CPM signals are classified in the fourth
publication using the sum of squared envelopes. The fifth technique discussed utilises time-
frequency methods for signal recognition and the sixth and seventh approaches employ the
discrete Fourier transform and the Wavelet transform respectively, for classification.
Power moment matrices are employed in the eighth publication, and finally spread

spectrum signals are classified using a modulation domain measurement technique.

2.3.3.1. Classification Using Zero-Crossings

Hsue and Soliman use a zero-crossing technique for classification and report the findings in
[Soliman, 1989] and [Soliman, 1990]. The zero-crossing sampler has the advantage of
providing accurate phase transition information over a wide frequency range. The
modulation recognition was achieved by utilising features such as phase difference and
zero-crossing histograms.  Signal parameters such as zero-crossing variance, carrier-to-
noise ratio (CNR) and carrier frequency were estimated. The modulation detection was
achieved by the following steps:

1) extraction of the zero-crossing sequence, the zero-crossing interval sequence and the

zero-crossing interval difference sequence,
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2) inter-symbol transition detection and carrier frequency estimation, and finally

3) modulation detection.

The zero-crossing sequence, the zero-crossing difference sequence and the zero-crossing
interval difference sequence were all used to derive the phase and frequency information.
The modulation type was decided from the vaniance of the zero-crossing interval sequence
as well as the phase and frequency histograms. The types of signals considered were CW,
MPSK and FSK signals. The recogniser first distinguishes between single-tone (CW and
MPSK) and multi-tone signals (FSK) by comparing the variance of the zero-crossing
difference sequence in the non-weak intervals of the signal with a suitable threshold. Then
the number of levels (M) in a single-tone signal was found by measuring the similarity of
the normalised phase difference histogram. The number of levels in a multi-tone signal
was found based on the number of hills in the zero-crossing interval difference histogram.
From simulation results the authors found that a reasonable average probability of correct

classification was possible for CNR greater than or equal to 15 dB.

Callaghan et al [Callaghan, 1985] have utilised the envelope and zero-crossing
characteristics of the intercepted signal in their modulation classifier. A phase-locked loop
(PLL) was used for carrier recovery in the weak intervals of the signal segment. In signals
with modulation types such as MPSK, AM and DSB, the carrier frequency may be absent
or severely suppressed and this is equivalent to having a signal with a Jow SNR. Therefore
a high SNR is not required for accurate frequency estimation if a PLL is used for carmier
recovery. If the receiver was not perfectly tuned to the carrier frequency then the
performance of the recogniser deteriorated. The types of signals that could be recognised
are AM, FM, FSK2, and CW. For comrect recognition, the SNR must be greater than or
equal to 20dB. The noise on the weak intervals of the signal segment caused incorrect
estimate of the instantaneous frequency, and thus DSB and MPSK signals could not be

discriminated.

Petrovic et al [Petrovic, 1989] has designed a modulation recogniser based on the zero-

crossing rate and parameter variations of the AM detector output. In addition the parameter
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variations in the FM detector output were also considered. The classification procedure
was as follows:

1. AM and FM demodulation,

2. key features extraction,

3. modulation classification.

The signals that could be recognised are ASK2, FSK2, AM, FM, CW and SSB. For the
FM detector output, both a narrow band and a wide band FM detection were performed.
The key features were extracted from the AM detector output and it was stated that the

results from preliminary tests with real signals show the successfulness of the classifier.

2.3.3.2. Classification Based on the Modulation Model

Another modulation recogniser for digital modulation types was introduced by Assaleh et al
[Assaleh, 1992]. The types of signals that could be recognised are CW, PSK2, PSK4,
FSK2 and FSK4. The classification method uses a signal representation known as the
modulation model. The modulation model was formed via autoregressive spectrum
modelling. The key features were derived from the averaged spectrum of the instantaneous
frequency. These key features are the mean and standard deviation of the averaged
instantaneous frequency, the height of the spikes in the differential instantaneous frequency
and the mean and standard deviation of the instantaneous bandwidth. It was claimed that

the success rate for the different modulation types is greater than 99% at a SNR of 15dB.

2.3.3.3. Classification Based on Distance Functions

A classification technique that uses the counts of the signals falling into different parts of
the signal plane was proposed by Huo and Donoho [Huo, 1998]. The advantage of using
the number of counts as a key feature is that the computation time is much faster than
methods based on higher-order statistics and likelihood methods. To find the optimal place
to partition the signal plane, the multinominal distributed Hellinger distance was
maximised for two candidate modulation types. The performance of the classifier was
evaluated for 4QAM and 6PSK and it was found that the proposed algorithm is dependent
on the orientation of the symbols in the signal space. This makes this method suitable for

binary classification only.
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2.3.3.4. Classification of CPM

Two 2CPFSK signal classifiers based on the sum of squared envelopes (SOSE) were
proposed in [Chung, 1994]. The classifiers were envelope based and developed for both
single and multi-index CPM signals. In the first method, a variety of modulation sets were
classified using an appropriately adjusted threshold. The second method was based on the
approximate maximum likelihood estimation (MLE) of the index pattern derived from the
SOSE and can be used for an infinite number of index sets. The proposed algorithm was
compared to the LLF method in [Huang, 1992] and it was found that the LLF method

performs better. However, the SOSE method was more robust at lower SNR.

2.3.3.5. Time-Frequency Methods

A new technique for feature extraction of modulation recognition based on the pattern
recognition approach was proposed by Ketterer, Jondral and Costa [Ketterer, 1999]. The
new algorithm exploits the Margenau-Hill distribution, autoregressive modelling and
amplitude variations to detect phase shifts, frequency shifts, and amplitude shifts
respectively. This method requires no a priori information about the signal and can classify
PSK2, PSK4, PSK8, PSK16, FSK2, FSK4, QAMS8, and OOK signals. The authors
recommend this method in a general non-cooperative environment and state that their
method is also computationally inexpensive. Simulations were carried out on synthetic and
“real world” short-wave signals. Results indicated that this approach is robust against noise

up to an SNR of around 10dB, where an overall success rate greater than 94% is obtained.

2.3.3.6. Classification Using Discrete Fourier Transform
A signal classification method using the discrete Fourier transform (DFT) was proposed in
[Lallo, 1999]. To classify a signal the following steps were taken:
1. The carrier frequencies are obtained from the DFT of the signal.
2. The symbol rate is found once the carrier is known.
3. The amplitude and phase values of discontinuous functions using Euler’s formulae are
calculated from the DFT.
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4. The calculated phase and amplitude distributions are used for modulation analysis for
each carrier frequency.

Tests were carried out over the telephone network and GSM radio for PSK2, QAMIG,

QAM40, QAMO60 and FH signals. It was stated that satisfactory results are obtained.

2.3.3.7. Classification using the Wavelet Transform

Ho, Prokopiw and Chan [Ho, 1995] proposed a modulation classifier that uses the wavelet
transform for the identification problem. The application of the wavelet transform resulted
in distinctive patterns for different types, which enabled simple processing for
identification. Three classes of modulation types were investigated: FSK, PSK, M-ary PSK
and M-ary FSK. The relevant statistics for the identification schemes were derived and
simulations show that in most cases there is less than 8% error at around 15dB carrier-to-

noise ratio (CNR) with 100 symbols.

Hong and Ho extended the classifier in [Ho, 1995] to include QAM signals [Hong, 1999].
The identifier consisted of two branches and a decision block. It computed the |[HW7] of an
input signal with and without amplitude normalisation. It then used median filters to
remove the peaks in the |HWT]'s, calculated the variances of the median filter outputs, and
made the decision of the input modulation type by comparing the variances from the two
branches with thresholds. The relevant statistics for optimum threshold selection were
derived. Simulations show that the percentage of correct identification was higher than

97% with 50 observations when the CNR was not lower than 5dB.

2.3.3.8. Modulation Classification Using Power Moment Matrices

A new approach for modulation classification was proposed by Hero and Hadinejad-
Mahram [Hero, 1998]. The method was based on a pattern recognition fechnique
previously applied to word spotting problems in binary images. In this approach, a large
number of spatial moments are arranged in a symmetric positive definite matrix for which
eigendecomposition and noise subspace processing methods can be applied. The resultant
dencised moment matrix has entries which are used in place of the raw moments for

improved pattern classification. The avthors generalised the moment matrix technique 1o
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grey scale images and applied the technique to discrimination between M-ary PSK and
QAM constellations in signal space. Invariance to unknown phase angle and signal
amplitude was achieved by representing the in-phase and quadrature components of the
signal in the complex plane and computing joint moments of normalised magnitude and

phase components.

2.3.3.9. Classification of Spread Spectrum Signals

A modulation classifier based on the modulation domain measurement technique was
proposed by Schneider and Chu [Schneider, 1991]. The implementation of this technique
allows modulation analysis even with spread spectrum signals such as frequency hopping
or direct sequence. Modulation analysis includes phase, frequency, time and ampiitude of
BPSK, QPSK, 8PSK, 16QAM, communication type signals with hop and pulse, and Barker
or chirp radar type signals. The signals were generated with a psuedo random sequence and
eye patterns were formed by the use of {frequency trigger. By using software demodulation,
a coherent local oscillator is not required but the phase result will be relative. Curve fitting
algorithms were demonstrated with the mentioned modulation schemes. With 500 MHz
bandwidth, the amplitude noise floor was reported to be -73 dBm and the
frequency/phase/timing sensitivity was —60 dBm. It was stated that this technique is
applicable at any carrier frequency where down conversion to the required spread spectrum

bandwidth can be implemented.

2.3.4. Classification using Neural Networks

Two methods of classification using neural networks (NN) will be described. The first
method uses a hierarchical structure to achieve classification and the second classifier

employs a backpropagation NN to recognise a variety of signals.

2.3.4.1. Hierarchical Neural Network
Louis and Sehier [Louis, 1994] introduce a methodology for building neural networks for

modulation classification based on a hierarchical approach and a priori knowledge to speed
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up the leaming phase. Superiority over a single, large, fully connected network was
demonstrated. This approach reduces the complexity of the system in order to improve
generalisation. Reduced sensitivity to initial conditions allows automation of the learning
phase and simulation results showed the superiority of the hierarchical approach. The
modulation types that can be classified are PSK2, PSK4, PSK8, FSK2, FSK4, FSKE,
QAMI16, QAM®64, OQPSK, and MSK. The hierarchical NN classifier was compared with
the conventional backpropagation learning, the k-Nearest Neighbour (k-NN) classifier and
the binary decision tree. Classification success rates were as high as 90% with a SNR

ranging from 0dB to 50dB.

2.3.4.2. Classification of Spectral Features

Ghani and Lamontagne have used a backpropagation neural network for modulation
classification [Ghani, 1993]. The modulation types that can be recognised are: AM, FM,
QPSK, USB, LSB, FSK1, FSK2, BPSK, and CW. A variety of spectral pre-processors
were investigated for feature extraction. For the given training and test sets, the Welch
periodogram was found to give the best results. Simulation results showed that the neural
network algorithm can match or even outdo the performance of conventional k-Nearest
Neighbour (k-NN) classifiers. The overall classification success rate was greater than 97%.
Furthermore, the optimisation of selected neural networks was demonstrated using the

optimal brain damage (OBD) pruning technique.

24. Conclusions
This chapter has covered the various modulation classification techniques found in recent

ltierature. Most of these classification techniques are restricied to a few modulation types.
The motivation for this thesis is to develop a classification algorithm that encompasses a
range of digital modulation types. The classification method chosen is based on deviations
of instantaneous properties (similar to Nandi and Azzouz's work) using the decision-
theoretic and neural network approaches. The reason for this choice is the ability for the
deciston tree to be expanded to accommodate larger numbers of digital modulation
schemes. The neural network is also another feasible method for classification and can be

easily implemented once the key features are identified. Therefore this thesis presents
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modulation classification algorithms based on the decision-theoretic approach and neural

networks respectively for a comprehensive list of digital modulation schemes.
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CHAPTER 3
Decision Theory

3.1. Introduction

In this chapter the theory behind the classification process will be described. The
purpose of classification is to determine to which category or class a given sample or
signal belongs. An observation vector consists of a set of numbers that can be obtained
through a measurement process. The observation vector is the input to a decision rule
where a sample is assigned to one of the given classes. We assume that the observation
vector is a random vector whose conditional density function depends on its class. In
the case of modulation classification, the observation vector consists of samples of
particular key features that have been extracted from the intercepted signal. If the
conditional density function for each class is known, then the classification problem

becomes a problem in statistical hypothesis testing.

The organization of this chapter is as follows. First, a description of classification
decision theory is presented. This theory includes a description of Bayes error and the
Bayes decision rule for minimum error. Threshold determination is then discussed
followed by a discussion on classifier accuracy, confidence intervals, and statistical

significance. Finally, some conclusions are presented.

3.2. Classification Decision Theory

Classification of signals involves three main processes, which are shown in Figure 3.1.
These processes are [Azzouz and Nandi, 1996]:
s Pre-processing - which involves extracting key features from the intercepted
signal as well as signal isolation and segmentation.
e Training and learning phase - A “training set” of data is used to adjust the

classifier structure for optimum performance.
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o Test phase — A “test set” of data is used to decide about the modulation type of a

particular signal.

Signal Pre-processing Training phase Test phase
’ Key features ™ Adjusting the -

; Performance
. classifier siructure
extraction measurement

Figure 3.1. Functional blocks of signal classification.

Assuming that the pre-processing phase is completed (ie the key features are extracted),
the next step is to adjust the classifier structure with training data. One of the functions
of the training phase is to determine the best classification hypothesis, given the
observed training data, X {or key features). In other words, we want the most probable
hypothesis (which modulation type the signal is most likely to be classified as), given
the data and the a priori probabilities. The Bayes decision rule for minimum error is
used to determine the most probable hypothesis and is outlined in the next section. A
two-class problem is discussed regarding the decision rule, which arises because each
sample (or signal) belongs to one of two classes @ or @». The conditional density

functions and the a priori probabilities are assumed to be known.

3.2.1. The Bayes Decision Rule for Minimum Error

If X is an observation vector, the purpose is to determine whether the intercepted signal
belongs to an or a». A decision rule based on posterior probabilities may be written as
follows [Fukunaga, 1990]:

&y

0,(x)” 4,(x) 3.1)

tth

where g{X) is the a posteriori probability of @ given X. Equation (3.1) indicates that if
the probability of @; given X is larger than the probability of a», X is classified as @,
and vice versa. The a posteriori probability ¢,(X) can be calculated from the a priori

probability P; and the conditional density function P(X/wr), using Bayes theorem, as

P(X(w,)P

(X)=Pw,/1X)=
q,(X)=Pw,/ X) (X)

(3.2)
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where p(X) is the mixture density function. Since p(X) is positive and common to both

sides of the inequality, the decision rule of (3.1) can be expressed as

P(X1w)P, "~ P(XIw,)P, (3.3)

EA VE

or

_P(X/w)> P, _.

£0(X)
P(X/w,) < P,
it

(3.4)

The term #(X) is called the likelihood ratio and P(X/w;)/ P(X/a») is the threshold value
of the likelihood ratio for the decision. For the classification of signals in this thesis, it is
assumed that the a priori probabilities are equal for all intercepted signals. Therefore

Equation (3.4) can be written as follows

P(X10)” P(XIw,) (3.5)
<

fth

Equation (3.3), (3.4), or (3.5) is called the Bayes test for minimum error.

3.2.2. Bayes Error

In general, any decision rule does not lead to perfect classification, To evaluate the
performance of a decision rule, the probability of error (the probability that a sample is
assigned to the wrong class) must be calculated. The conditional error given X, is
denoted nX). It is found by the decision rule of (3.1) as either ¢1(X) or gX),

whichever is smaller. That is
r(X)=min[g, (X),q,(X)] (3.6)
The total error, which is called the Bayes error, is calculated by E{r(X)}.
&= E{r(X)}= [1(X)p(X)dX
= {min[P,P(X 1)), P,P(X | @)X

3.7)
= P, [P(X I w,)dX + P, [P(X/ @,)dX
L

Ly
= P& + BE,

where
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&= [p(X)dx and &, = [p,(X)dx (3.8)

L L
The integral regions L) and L; are the regions where X is classified as @y and @». In L,,
P\P(X/wy) > PP(X/a») and therefore r(X) = P,P(X/a)/p(X). Similarly for Ly, n(X) =
PiP(X/w))ip(X) because P,P(X/a») > PiP(X/w;). In (3.8), two types of errors are
defined: one results from misclassifying samples from @, and the other results from

misclassifying samples from @;. The total error is the weighted sum of these two errors.

An example of this decision rule for a simple one-dimensional case is shown in Figure
3.2. In the diagram, p;(X) represents P(X/w;) and p2(X) represents P(X/a»,) The decision
boundary is set at x = r where Pp;(X) = P;pxX), and x < ¢ and x > ¢ are assigned to L,
and L; respectively. The resulting errors are P1&g =B+ C, P&, =A,and 6=A+ B+ (,

where A, B, and C indicate the areas. For example,
B= [Pp(x)dx (3.9)

This decision rule gives the smallest probability of error and this can be shown by
referring to Figure 3.2. If the boundary is moved from ¢ to ¢ | the new @y and @, regions
are L') and L', respectively. The resulting errors are P1g1=C, P,e5=A + B + D, and
£’= A + B + C+ D which is larger than £ by D. The choice of the threshold, ¢, for the

decision rule is very important to ensure the minimum probability of error. Therefore

threshold determination is discussed in the next section.

Ppi(X)

Figure 3.2. Bayes decision rule for minimum error [Fukunaga, 1990].
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Figure 3.3. Example of Bayes decision rule for minimum error.

An example to illustrate the Bayes decision rule is shown in Figure 3.3. The density
functions are normal with one function (pi(X}) having a mean (m) of -7 and standard
deviation (s) of 6 indicated by the solid line. The other function (p2(X)) has mean m =
5.85 and standard deviation s = 5 which is shown by the dashed line in Figure 3.3. Both
functions intersect at x = ) making this value a likely threshold. The error probabilities
can be found by integrating the functions for regions A and B respectively. The
probability of error (&) for pi(X) is indicated by region B and is calculated to be 0.11
(10.68%). The probability of error (&) for p»(X) is calculated to be 0.12 (12.23%) and

is represented by region A.

3.2.3. Threshold Determination

The threshold value, ¢, can be determined in three ways: One method is to find the
threshold that gives the minimum probability of error as shown in section 3.2.2. The
second method is to use the Bayes decision rule for minimum cost. This method is used
when the misclassification of different samples have different consequences, i.e. the
cost of misclassifying samples is different. The third method is to estimate the

threshold from the density estimates of the posterior probabilities of the sample data.
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This method is used when the true posterior probabilities are not known. These

methods will now be described.

3.2.3.1. The Bayes Decision Rule for Minimum Cost

Minimising the error probability is often not the best criterion to design a decision rule
because the misclassifications of @y and @, samples may have different consequences.
An example of this is the misclassification of a cancer patient to a normal patient. This
decision may be more detrimental than if the normal patient was misclassified as a
cancer patient. Therefore it is appropriate to assign a cost to each situation as follows:

Let

¢c; = cost of deciding X € w, when X € a; (3.10)

Then the conditional cost of deciding X € @) given X, r{X), is

r(X)=c,q,(X)+c,q,(X) (3.11)

The decision rule and the resulting conditional cost given X, r(X), are

L]

R(X) " r(x) (3.12)
o
and
r(X)= min[rl (X), rz(X)] (3.13)

The total cost of this decision is

r=E{r(X)} = [minlr, (X),r,(X)dX
= [minle, g, (X) + €109, (X), ¢, (X) + €08, (O |p(X )X
- .[min[C“Plpl(X)+ Py py (X)), Pip (X)) + szP:zpz(X)] ax (.14)

= I[CIIPIPI(X) +C12P2p2(X)]dX + I[Czlplpl(x)+czzpzp2 (X)]
A 5

where L; and L, are determined by the decision rule in (3.12). The boundary that

minimises r in (3.14) can be found by rewriting (3.14) as a function of L, only. This
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can be done by replacing jp,. (X)dX with 1 - J-p,- (X )dX since L, and L, do not overlap
L L

and cover the entire domain. Thus,

r={cyB +c P+ I[(cu — ¢y )Rp(X)+(cy —c)Bp,(X)]dX  (3.15)

L

We must choose L; such that r is minimised. Suppose, for a given value of X, that the
integrand of (3.15) 1s negative. The value r can be decreased by assigning X to L;. If
the integrand is positive, r can be decreased by assigning X to L;. Thus the minimum
cost decision rule is to assign to L those X’s and only those X’s, for which the integrand
of (3.15) is negative. The decision rule is called the Bayes test for minimum cost and
can be described by the following equation:

(Cl2 _sz)Pzpz(X) (C21 _cll)P|p1(X) (316)

EA VE

or

4
p (X) <(c, —¢p)b -
Pz(x)ai (c; — )R,

3.17

By comparing (3.17) with (3.4), it can be seen that Bayes test for minimum cost is a
likelihood ratio test with a different threshold from (3.4), and that the selection of the
cost functions is equivalent to changing the @ priori probabilities; P; and P;. Equation
(3.17) is equal to  (3.4) for the special case when the cost functions are equal as shown

by
G =0 =6 ~Cy (3.18)
This is called the symmetrical cost function where the cost becomes the probability of

error. In the case of modulation classification, this condition holds true because the cost

of misclassification is the same for all signals.

3.2.3.2. Posterior Probability Estimation

Most of the decision theorems assume that the density functions are known. However,
it is common in practice to be unsure of the density functions and therefore it is

necessary to estimate the functions using an unstructured approach. This approach is
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called nonparametric estimation where the density function is estimated locally by a
small number of neighbouring samples. This results in a less reliable estimate with a

larger bias and variance than the parametric methods.

There are two common nonparametric estimation methods: one is called the Parzen
density estimate and the other is the k-nearest neighbour density estimate; the two
techniques are very similar. Once the estimated density functions have been derived,
the technique outlined in section 3.2.2 can be used to determine the threshold. Accurate
density estimation is very hard to achieve. However, the goal is to design a classifier
and evaluate its performance — not to accurately estimate the density itself. For further

information on these methods, the reader may refer to {[Fukunaga, 1990].

Another method is to estimate the posterior probability directly from the sample data
using models [Ripley, 1996]. Figure 3.4 shows an example of the direct modelling of
the posterior probabilities. The two classes are digitally modulated signals where one
class belongs to FSK4 signals and the other class belongs to FSK8 signals. The
probabilities have been estimated from simulated data and the value X is a particular
feature that has been extracted from each signal for classification. We assume that the a

priori probability of each signal is equal.

ity
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Figure 3.4. Example of posterior probabilities for two classes of digitally modulated
signals (FSK4 and FSKQ).
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The threshold can be determined by choosing a value in the centre of where the two
posterior probabilities cross into the error regions. Note that the centre is taken from
where the error regions reach a saturation point. In this case, a suitable estimated

threshold is —10 and 1s shown by the dashed line in Figure 3.4.

This method can be illustrated again with our previous example shown in Figure 3.3. It
can be seen from the figure that the best threshold value to choose is 0 because this is

where the two posterior density functions cross into the error regions.

Once the threshold has been determined, the classifier can be evaluated in terms of

accuracy and confidence intervals.

3.24. Classifier Accuracy

The kappa (k) coefficient is usually used to evaluate the classifier accuracy compared to
chance classification. It is a measure of the difference between the actual agreement
between reference data and the classifier and the chance agreement between the
reference data and a random classifier [Bouzerdoum, 2001]. The &« coefficient is

calculated as

K=—"—r (3.19)

where P, is the observed accuracy and P, is the chance agreement. When the sample
sizes are equal, the chance classification derivation is simply dividing 1 by the number
of groups. When the groups are unequal, the proportional chance criterion is used and

is defined as

Crro = PZ +(1- P)z (3.20

where p is the proportion of individuals in the first group and 1-p is the proportion of
individuals in the second group. This criterion is obviously biased towards the group
with the largest proportion of samples. Hair et al [Hair, 1996] suggest that the
classification accuracy be at least one-fourth greater than that achieved by the chance

accuracy. For a chance agreement it is expected that x = 0, whereas for a true
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agreement, ¥ = 1. The next step is to examine the probable error in this accuracy

estimate,

3.2.4.1. Sample Error and True Error

To find the probable error, it is necessary to distinguish carefully between two notions
of error. One is the error rate of the hypothesis over the sample data that is available
and the other is the error rate of the hypothesis over the entire unknown distribution D

of examples. These are called the sample error and true error respectively [Mitchell,
1997].

The sample error of a hypothesis with respect to some sample S of occurrences drawn
from X, is the fraction of § that it misclassifies. The true error of a hypothesis is the
probability that it will misclassify a single randomly drawn instance from the
distribution D. In the case of the moduliation classification technique used in this thesis,
the sample error can only be calculated for the data that we have on hand. The ultimate
aim is to find the true error because this is the error that we can expect to apply to future
samples. Therefore we need to know how good an estimate of the true error is provided

by the sample error. The answer to this is provided in the next section.

3.2,5. Confidence Intervals for Discrete — Valued Hypotheses
Suppose, we wish to estimate the true error for some discrete valued hypothesis H,
based on its observed sample error over a sample S where [Mitchell, 1997]:
e the sample S contains n examples drawn independent of one another, and
independent of H, according to the probability distribution D.
e n230
# hypothesis H has r errors over these n examples (ie., the error probability: errorg

(H) = rin).

Under these conditions, it is possible to make the following statements due to statistical
theory:
1. Given no other information, the most probable value of the true error errorp(H)
is the statistical error errors (H).

2. With approximately 95% probability, the true error errorp(H) lies in the interval
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|:err0rs _1_96\/3"’0’3 (IOO—errors),ermrs +l.96‘jerrars (100—errors)j| (3.21)
n n

This interval is called the 95% confidence interval estimate for the true error. This

expression is an approximation of the confidence interval and works well when
nerrorg(H)Y1—errorg(H)) 25 (3.22)

The 95% confidence interval for the example shown in Figure 3.3 can be calculated as
follows: For sample 1, the probability of error & is 10.68%, by substituting this value
into equation (3.21) the corresponding confidence interval is [8.34,13.01]. Similarly for
sample 2, the error & is 12.23% and the 95% confidence interval is [9.55,14.91].

Other factors to consider when we only have a sample distribution and not the whole
distribution are statistical significance and statistical power, which will be discussed in

the following section.

3.2.6. Statistical Significance Versus Statistical Power

Since it is rare to obtain the entire population of occurrences, we are forced to draw
statistical inferences from a randomly drawn sample from that population. Interpreting
statistical inferences requires that the acceptable levels of error be specified. The most
common approach is to specify the level of Type I error, also known as the alpha (o)
level. The Type I error is the probability of rejecting the null hypothesis when actually
true. In other words, it is the chance of the test showing statistical significance when it
is actually not present (“false positive”). By specifying an alpha level, the allowable
limits for error are set because we are specifying the probability of concluding that

significance exists when it actually does not.

An associated error known as the Type II error or beta () is also determined when
setting the Type 1 error. The beta is the probability of failing to reject the null
hypothesis when it is actually false. Another probability that arises is called the power
of the statistical inference test and is defined as 1-f. Power is the probability of
correctly rejecting the null hypothesis when it should be rejected. In other words, it is

the probability that statistical significance will be indicated if present. The relationship
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of the different error probabilities for the hypothetical setting of testing for the

difference in two means is shown below [Hair, 1996]:

Table 3.1. The relationship of the different error probabilities in the hypothetical setting

of testing for the difference in two means.

Reality
H,: Nodifference  Hj,: Difference in
in two means two means
H,: No difference I- o B
Statistical Decision Type II error
H,: Difference o 1-p
Type I error Power

H, is the null hypothesis and Hp is the alternative hypothesis. It can be seen that

specifying alpha establishes the level of statistical significance. In other words, it is the

level of power that controls the probability of success in finding the differences if they

exist. There is a trade-off in trying to reduce the different error types. Reducing the

Type I error also reduces the power of the statistical test. Thus there must be a balance

between the level of alpha and the resulting power. Power is also determined by three

main factors:

1.

Effect size - The probability of achieving statistical significance is also based
on the actual magnitude of the effect of interest (eg, a difference of means
between two groups or the correlation between variables) in the population,
called effect size. It is expected that a larger effect is more likely to be found
and thus affect the power of the test.

Alpha - It has already been stated that as alpha increases, the power also
decreases. Thus as the chance of finding an incorrect significant effect reduces,
the probability of correctly finding an effect also decreases.

Sample Size — At any given alpha level, increased sample size always produces
greater power of the test. But there is a danger that increasing the sample size
will produce too much power. This means that by increasing the sample size,
smaller and smaller effects will be found to be statistically significant, until at
very large sample sizes, almost any effect is significant. Therefore it is best to

be aware that the sample size can affect the statistical test by either making it
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too sensitive with very large sample sizes or not sensitive enough (at small

sample sizes).

Referring to our example in Figure 3.1, the different error probabilities for classifying

sample 1 and sample 2 are shown in Table 3.2.

Table 3.2. The relationship of the different error probabilities in the hypothetical setting

of testing for classification of sample | and sample 2.

Reality
H,: Sample 1 Ha: Sample 2
H,: Sample 1 87.77% 10.68%
Type II error
Statistical Decision Ha: Sample 2 12.23% 89.32%
Type I error Power

The level of significance for the classification accuracy can be tested using a ¢ test. The
formula for a two-group analysis of equal size is [Hair, 1996]

pe— P05 (3.23)
Jo.s*a.o—o.S)

N

where p is the proportion correctly classified and N is the sample size. The formula can

be adjusted for use with more groups and unequal sample sizes.

The level of significance, ¢ for sample 1 in our example in Figure 3.3 is calculated as
22,24 for p = 0.89 and N = 800. Similarly, for sample 2, the calculated ¢ statistic is
21.37 with p = 0.88 and N = 800. The optimum ¢ value is 28.28 when all values in the
sample are correctly classified. Therefore it can be concluded that the level of

significance for both samples is acceptable.

3.3, Conclusions

This chapter has outlined the underlying nature, concepts and approach to classification.
The methodological concepts were clarified by presenting the basic guidelines for its
application and interpretation. An example was presented and this outlined the major

points needed to be familiar in applying Baye's classification. The next chapter will
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outline the theory behind neural networks, which are used as another method for
classification. The proceeding chapters will demonstrate the theory outlined in this
chapter and the next chapter, applied to digital modulation classification. The signals to
be classified will be identified as well as key features extracted from the intercepted
signal. A thorough analysis and interpretation of the various classification functions

derived will also be presented.



CHAPTER 4

Classification Using Feedforward
Artificial Neural Networks (ANNSs)

4.1. Introduction

This chapter presents a brief introduction of classification theory based on artificial neural
networks. Artificial Neural Networks (ANNs), or Neural Networks (NNs) for short, are
another tool that will be used for classification of digital modulation schemes. ANNSs use
the pattern recognition approach to modulation classification. This approach is different to
the decision-theoretic (DT) approach, where instead of a suitable threshold being chosen
for each decision, the threshold at cach neuron (node) is chosen automatically and
adaptively. Also in the DT approach, each key feature is considered one at a time, whereas
in the ANN algorithm, all key features are considered simultaneously. Therefore, it is
implied that the ANN approach may perform better than the DT approach because the

probability of a correct decision is not based on the time order of the key features.

The organization of this chapter is as follows. The general concepts of artificial neural
networks, including the different classes of neural networks and their structures, learning
paradigms and training algorithms are presented first. The next section presents a
discussion on classification using neural networks, with an example, followed by some
concluding remarks in the final section. This chapter serves as a building block to the
digital modulation classifiers described in proceeding chapters that are based on neural

networks.

4.2. Artificial Neural Networks

A neural network is a computational structure inspired by the study of biological neural
processing [Rao and Rao, 1995]. The processing power in biological neural structures has

brought about the study of these structures to help organise human made computing
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structures. ANNs are a means to organise synthetic neurons to solve the same kind of

difficult problems in the same way that the human brain may.

ANNs resemble the brain in two respects:
» Knowledge is acquired by the network through a learning process (learning
algorithm).
» Interneuron connection strengths known as synaptic weights are used to store the
“knowledge” [Haykin, 1999].

The learning algorithm modifies the synaptic weights in a prescribed fashion, based on the

leamning information presented, so as to achieve a particular objective.

Neural networks have better performance over conventional technologies in areas which
include data segmentation, data compression, robust pattern detection, adaptive control,
optimisation and scheduling, database mining, and complex mapping. Neural networks are
advantageous because they offer specific processing advantages, such as nonlinear
processing, adaptive learning, self-organisation, ability to handle contextual information
and fault tolerance via redundant information coding. They also offer real time operation,
they are universal information processors, have a neurobiological analogy, and can be
implemented in VLSI.
Some applications of neural networks besides signal classification are:

« Financial prediction

« Control of nuclear power plants

o Coronary heart disease risk assessment

+ Face recognition, etc.

4.2.1. The Artificial Neuron Model

The most common artificial neuron model is shown in Figure 4.1. It has 3 basic elements:
e Synapses or connecting links - Each synapse has associated with it a weight or
strength, w. The signal x;at input of synapse j connected to neuron k& is multiplied by

the synaptic weight wy;.
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® Adder -The adder is a linear combiner for summing the weighted input signals,

WiXj, and its output vi is given by

P
Vi = Z WyX ;
~

(4.1}

» Activation function - The activation function, ¢{v), is the relationship between

adder output and the final neuron output. It is often a non-linear function, thereby

limiting the amplitude of the neuron output. The nonlinearity also helps in feature

extraction. Normally, a constant threshold or bias value (6) is also added, resulting

in the following equation:

Y & @(Vk _gk)
X @ » Wi L
Activation
Function
X ® > Wiz U
Input —» 9()
Signals T
&
X, ® > Wip Threshold

Figure 4.1. Neuron model.

4.2.2. Activation Function Types

Qutpuz
¥

(4.2)

There are many commonly used activation functions. Some examples are the threshold

function, linear function, piecewise linear function, and sigmoid functions such as the

logistic function (logsig) and hyperbolic tangent (tansig) function. These functions are

shown in Figure 4.2. The sigmoid and linear functions are the most popular because they

are continuously differentiable, a very important criteria for most of the training algorithms.
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4.2.3.

The logistic function 1s described as

1
p(v) = — (4.3)
l+e
and the hyperbolic tangent is represented by
vy l-e”’
o) = tanh[#—} = (4.4)
2) 1+e™

af

a) Threshold

¢) Logistic function d) Hyperbolic tangent

Figure 4.2. Types of activation functions.

ANN Architectures

Usually a number of neurons are connected together to form a neural network. A distinct

structure of neurons in a network is called a neural network architecture. The neural

network architecture is closely linked to the learning algorithm used to train the network,

There are four general classes of network architectures [Haykin 1999]:
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1} Single-layer Feedforward Networks
These networks have only feedforward connections and have only a single

layer of computing nodes (doesn’t include input layer).

2} Multilayer Feedforward Networks
The multilayer networks have one or more hidden layers of computing

nodes. These layers can be fully or partially connected.

3) Recurrent Networks
Recurrent networks have at least one feedback loop. They may be with or
without hidden neurons, and normally have delay elements in the feedback
loops.

4} Lattice Structures
Lattice structures consist of a one, two or higher dimensional array of

neurons. A set of source nodes feeds the lattice.

In this research only layered feed-forward network, called multiplayer perceptrons (MLP),
are considered for classification of digital modulation signals. An MLP consists of
subgroups or layers of processing elements; each layer makes independent calculations and
passes the resultant output to another layer which in turn makes calculations and passes the
result to another layer and so on. The final output of the network is determined by a
subgroup of one or more processing elements, called the output neurons. Each processing

element makes its computations based on a weighted sum of its inputs,

The first layer is called the input layer, the last layer is called the output fayer and the layers
in between are called the hidden layers. The processing elements ate referred to as artificial
neurons because they are seen to be similar to neurons in the human brain. Figure 43 is a
typical layered feed-forward network comprising three layers: input, output and one hidden

layer. The neurons are represented with circular nodes.

The input consists of a vector X whose input elements enter the network through the weight
matrix W. The weighted values at the synapses of a neuron are fed to a summing junction

whose sum is <w.X>, i.e., the dot product of the weight vector and the input vector. The
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hidden layer neurons have a bias 8, which is summed with the weighted inputs to form the
net input v. The output of each unit, y, is found by feeding the net input v as an argument to
the activation function @. The output is given by:

y=@(Wxx+8) 4.5)
The transfer function as well as the weighted sum of inputs from the neural network

determines the internal activation or raw output of a neuron.

Input Hidden Output
Layer Layer Layer

Figure 4.3. A Layered feed-forward neural network.

4.2.4. Learning Process

The weights used on the connections between different layers have much significance. If
the network is run with one set of weights, the network is said to have had no learning. If
we start with one set of weights, run the network, modify some or all the weights and then
run the network again with the new set of weights, the process is called training the
network and the network is said to have learned. The learning process for neural networks

can be cutlined as follows:

1. The environment stimulates the neural network.
2. The neural network undergoes changes as a result of stimulation,

3. Then, the neural network responds in a new way to the environment because of
changes to its internal structure.

The changes made to the NN are in terms of changes to the synaptic weights in the form:
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wy(n+l)=w,(n)+Aw,(n) (4.6)

The calculation of Awy; is obtained from the learning algorithm to be used, which is a set of
rules for the solution of the problem. In addition to learning algorithms, the learning
process can be subdivided into learning paradigms: supervised leaming, unsupervised
learning and reinforcement leaming. The learning paradigm refers to the manner in which
the NN (learning machine) relates to its environment. For example, in supervised learning,
the network interacts with a teacher by receiving a feedback signal indicating the desired
outputs; whereas, in unsupervised learning the network only receives inputs from the
environment with no indication as to what should be the desired outputs. Figure 4.4 shows
a taxonomy of the learning process (adapted from [Haykin, 1999]). For a detailed
description of learning paradigms and learning algorithms, the reader is referred to one of

many neural network textbooks [Haykin, 1999]

Leaming process
Learning algorithms (rules) Learning paradigms
Error- Boltzmann Thorndike’s Hebbian Competitive Supervised Reinforcement Self-organised
correction  leaming  law of effect learning learning learning  leaming (unsupervised)
learning learning

Figure 4.4. Taxonomy of the learning process.

4.3. Classification Using Neural Networks

Neural networks have emerged as an important tool for classification. There are many
advantages of using NNs for classification:
» NNs can adjust themselves to the data without any explicit specification of
functional or distributional form for the underlying model [Zhang, 2000].
* NNs can approximate any function with arbitrary accuracy. Since any

classification procedure looks for a functional relationship between the group
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membership and the attributes, or key features, of the object, it is important to
accurately identify this underlying function.

o NNs are non-linear models, making them flexible in modelling real world
complex relationships.

» Finally, NNs are able to estimate the posterior probabilities P(«/X). Chapter 3
discussed how the posterior probabilities provide the basis for establishing the
classification rule and performing statistical analysis. (In this chapter we will

represent X as x — the input vector).

For classification and regression, the operation of a NN can be interpreted as a mapping F :
R > R where a d-dimensional input x, is submitted to the network and an M-vectored
network output y is obtained to make the classification decision. The network is typically
built so that the mean squared error (MSE) 1s minimised. From least squares estimation
theory [Papoulis, 1965], the mapping function F : x — y which minimises the expected
squared error
Ely-Fmf @)
is the conditional expectation of y given x.
F(x) = Ely|x] @8)
With regards to classification, the desired output y is a vector of binary values and is the jth
basis vector ;= (0,...,0,1,0,...,0)' if x € group j. Hence the jth element of F(x) is given by
F(x)=Ely, x|
=1-P(y, =1|x)+0-P(y, =0|x)
=P(y; =1]x)
= P(w; |x)

(4.9)

In other words, the least squares estimate for the mapping function in a classification

problem is exactly the posterior probability.
Neural networks are universal approximators [Cybenko, 1989] and can approximate any

function arbitrarily closely (in theory). However, the mapping function represented by a

network is not perfect due to the local minima problem, finite training data when training
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the neural network, and suboptimal network structure. Therefore the posterior probabilities

provided by neural networks are estimates of the true posteriors.

The link between neural networks and statistical pattern classifiers is the estimation of the
posterior probabilities. However, it is not possible to make a direct comparison since NNs
are generally non-linear while statistical methods are basically linear. If we appropriately
code the desired output of the membership values, we may let neural networks directly
model some discriminant functions. For example, in a two-group classification problem, if
the desired output is coded as 1 if the sample is from class 1 or —1 if the sample 15 from
class 2, then from (4.9), the neural network estimates the following discriminant function:
g(x) = P, | x) - P(w, | %) (4.10)

The classification rule is to assign x to class @ if g(x) > 0 or @y if g(x) < 0.

4.3.1. Learning and Generalisation

As we have described earlier, learning is the ability to approximate the underlying
behaviour adaptively from the training data and generalisation is the ability to predict well
beyond the training data [Zhang, 2000]. Overfitting occurs when the neural network fits
the training sample very well but has poor generalisation capability for predicting future
samples. Powerful data fitting or function approximation capability of the neural network
further contribules to overfitting. Underfitling occurs when the nelwork does not fit the
training sample enough and therefore fulure samples cannot be predicted accurately.
Overfitting and underfitting can be analysed through the bias-plus-variance decomposition

of the prediction error.

4.3.2. Bias and Variance Composition of the Prediction Error

A thorough analysis of the relationship between learning and generalisalion in neural
networks based on the concepts of model bias and model variance can be found in [Geman,
1992]. A data-driven model may be too dependent on the specific data and have a large
variance, on the other hand, a model which is less dependent on the data may represent the
true functional relationship and have a large bias. Bias and variance are often incompatible

and if one is reduced, it will cause the other 10 increase. Therefore a trade-off is necessary
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in building a useful NN classifier. For example, if we consider a two-group classification
problem in which the binary output variable y € {0,1} is related to a set of input variables
(the feature vector) x by
y=F(x)+¢ 4.11)
where F(x) is the target or underlying function and £is assumed to be a zero-mean random
variable. From (4.8) and (4.9), the target function is the conditional expectation of y given
X, that is
F(x)=E(y|x)=P(w, | x) (4.12)
If we have a training set T of size N, we need to find an estimate, f{x;T), of F(x) so that the
overall estimation error can be minimised. The most commonly used performance measure

is the mean square error (MSE) defined as

MSE = E[(y - f(x;T))’}

(4.13)
= El(y - FX)) 1+ (f(x;T) - F(x))°

Notice that the MSE depends on the particular data set 7 which means that any change in
the data set and/or sample size may result in a change in the estimation function and hence
the estimation error. Since the training data is random, the overall prediction error of the
model can be written as

EAR( - f(xT)}= El(y - FX)P1+ E [(f (x:T) - F(x))’] @1

Where Er denotes the expectation over all possible random samples of size N.

Further information on bias and variance as well as methods for reducing the prediction
error can be found in [Zhang, 2000]. An example of how NNs are used for classification is

shown in the next section.

4.3.3. Example of Classification Using Neural Networks

Suppose we have two classes of overlapping two-dimensional normally distributed
samples, labelled class 1 and class 2. Let @y and a» denote the set of events for which a
random vector x belongs to class 1 and class 2, respectively. The conditional probability

for class 1 can be expressed as
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1 1
P(x|@,) =E;exp[—?llx-m||2] (4.15)
1

where , is the mean vector (i, = [2, O]T) and 0'12 is the variance (0'12 =:4)

The conditional probability for class 2 is

1 1
P(x|m2)=-2FCXP[— ||x—p2|]z] (4.16)

2
2 20,

where W, is the mean vector (2 = [0, 0]")and 65 is the variance (05°

I

1).

Furthermore, both classes are assumed to have equal prior probabilities, Py = P, = 0.5.

The probability density functions for class 1 and class 2 are shown in Figure 4.5 and Figure
4.6 respectively. The scatter plot of classes 1 and 2 is shown in Figure 4.7. Class @, is
represented by the ‘0’ symbol and class @ is represented by the ‘+" symbol. The decision

boundary is shown and its derivation will now be discussed.

0.04 -,
0.035 |
0.03

0.025 -

Figure 4.5. Probability density function for Class 1.
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Figure 4.6. Probability density function for Class 2.

15

10+

45— i L L L J
-10 -5 0 5 10 15

Figure 4.7. Scatter plot of classes @; and @, Showing decision boundary.

The optimum decision boundary is found by applying the likelihood ratio test as described
in Chapter 3:

@y
f(x)z =7 (4.17)

@y
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Recall equation (3.4), where the likelihood ratio is defined as

P
fxy = L& @) (4.18)
P(x/w,)
The threshold is defined as
T= Li =1 (4.19)
R
Therefore for our example, the optimum decision boundary is defined as
2
o i 2 i 2
2(x)=—2exp| — X — + X — =1 4.20)
0= Zhon] - Lol o bl (
or equivalently
elx-paff [ =4 2 @20
0, o, g,

Using straightforward manipulations, the decision boundary defined by (4.21) can be

redefined as

o = 422

2. _ 2
X, = g “22 aipl (4.23)

g, —a,

and

2

2= oio; |lm+n 4l L (4.24)
al—a}| o} -a; )

Equation (4.24) represents a circle with centre x. and radius r. Let €, define the region
lying inside the circle. The classification rule may then be stated as follows:
Classify the observation vector x as belonging to class w; if x€Q, and to class @

otherwise.

For our example, we have a circular decision boundary whose centre is located at

X, = [-2;»‘3,0]T and has radius r = 2.34, This decision boundary is shown in Figure 4.7.
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The probability of error for class 1 is & = (0.2642. Similarly, the probability of error for
class 2 1s &=(.1056. The total error assuming both classes have equal priors is:

£=0.5¢ + 0.5 = (.1849. Therefore the probability of correct classification, P, = (0.8151.

We will now compare these values derived theoretically with the performance of a neural
network trained with simulated data of the same distributions outlined in equations (4.15)
and (4.16). We generate 500 samples from each class and simulate a feed-forward MLP
NN with two input neurons (because our data is two dimensional) and two output neurons
corresponding to the two classes. The network has one hidden layer with 2 neurons. The
probability of error for class 1 is found to be 0.2660 and the probability of class 2 is found
to be 0.0082. The total probability of error is then calculated to be (0.174(. These figures
are comparable to the theoretical error rates calculated previously showing that the

simulated neural network performs according to the theory.

4.4, Conclusions

This chapter has covered the general theory and concepts of NNs. The neuron mode! and
NN structures have been described and the learning process and associated algorithms have
also been presented. Statistical decision theory applied to neural networks has been
presented with an example of classification using neural networks. The following chapters
will describe different digital modulation classifiers. These classifiers are based either on
the decision-theoretic approach or neural networks. The contents of this chapter

will be applied in the latter case.
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CHAPTER 5
Modulation Classification of ASK, FSK,
and PSK Signals

5.1 Introduction

In this chapter, modulation classification techniques utilising the decision-theoretic (DT)
and neural network (NN) approaches are used to classify ASK2, ASK4, PSK2, PSK4,
FSK2, and FSK4 signals. These signals have already been treated in [Azzouz and Nandi,
1996]. However, an alternative algorithm with a different decision tree is proposed here and
new key features are introduced. This is the first of three chapters addressing classification
of digitally modulated signals. Each chapter builds on the classifier of the preceding chapter
by treating a different set of digital modulated signals, culminating in a full classifier for all
digitally modulated signals. The classification is achieved through a DT approach or a NN
algorithm. Before the classifier systems are discussed, the next section introduces the
analytic signal representation of digitally modulated ASK, FSK and PSK signals. In
Section 5.3, the key features of these signals are introduced. The two classification
methods, namely the decision-theoretic and the neural network approach for recognising
the different modulation types, are described in Sections 5.4 and 5.5. Section 5.6 presents
and compares the performances of the different classifiers. Finally, Section 5.7 presents

discussion and concluding remarks.

5.2  Analytic Signal Representation

The digital processing of broadband signals requires a high sampling rate. This means that
the processing speed and the memory size must be increased. All the processing of the
received data vector must be completed before the arrival of the next data segment. The
bandwidth of the signal in practice will be minimal to keep the sampling rate low. If the

signal x(t) is real, then from hermitian symmetry X(f) = X (-f), where X(f) is the Fourier
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transform. This means that the whole information coatent of the signal can be found in one
half of the signal spectrum. Thus, any real signal can be represented by its right half
spectrum, called the analytic representation. 'The digital processing of the analytic signal
requires half the sampling rate that is needed for the broad band real signal but the same

amount of memory is needed because the derived samples are complex.

52.1 Hilbert Transform

The spectral redundancy can be removed using the Hilbert transform, which gives the
analytic representation of the signal. By applying the signal, x{t), to a quadrature filter, Fyg,
with impulse response ro(f) and complex gain Gy(f) we get the Hilbert transform, y(¢) This

can be written as

y() = Fpix(e)}= x(t)* rp(6)= [xlt - 6)ry(6)d0 (5.1)
where
rQ(t) = 5.2)
By substituting (5.2} into (5.1), the Hilbert transform can be expressed as:

ye)=PV. | %de (5.3)

where P.V. is the principle value of the integral. The complex gain of the quadrature filter
is

GQ(f)=‘§% =—jsgn(f) (5.4)

where sgn is the signum function. The analytic signal, z(z), is the representation of the right
half spectrum of a real signal x(r). We can obtain z(f), by applying x(z) to an analytizing
filter, F4. This filter is made up of an identity filter F; and a quadrature filter Fy. This can
be shown as:

The impulse response of F;is rfr) = &t) and the complex gain is Gy(f) = 1. For Fy, the
impulse response and complex gain are given by (5.2) and (5.4), respectively. Hence, the

analytic signal, z(#), can be expressed as
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2(t) = Falx(t)}=F; + jFg fx(e)}= x(e} + jye) (5.6)

It can be seen that the analytic signal, z(?), is a complex function where its real part is the
real signal x(f) and the imaginary part y(z) is the Hilbert transform of the signal x(t). The
spectrum of the analylic signal, Z(f) is given by

Z(f)=X(H)+ Y () =[l+sgn(DIX(f)=2U0(NHX(f) (5.7)

where U(f) is the unit step function in the frequency domain and is defined by

I if f>0
U(f)=-;~ i =0 5.8)
0 otherwise

5.2.2 Complex Envelope
The complex envelope, off), of a real signal, x{z), can be derived from the analytic
representation as follows

a(t) = 2(1)e” /27 (5.9)

where f, is some arbitrary frequency. In the case of a narrowband signal, f; is taken as the

carrier frequency. From equations (5.6) and (5.9), the complex envelope can be expressed

as
alt)=m(@)+ jn() (5.10)
where
m(t) = x(t)cos(2zf .t} + y(¢)sin(27f .1) (5.1D)
and
n(t) = y(t)cos(27f t) — x(t)sin(2nf 1) (5.12)

x(t) can be reconstructed from m{t} and n{#) using the following analytic form
x(t)=m(t)cos(2xf .t} — n(t)sin(27f 1) (5.13)

The instantaneous amplitude and instantancous phase of a signal can be found from either
the complex envelope representation in (5.10) or the analytic signal in (5.6). The

instantaneous amplitude, a(?), is defined as

a(t)=2(t)] = x2 (1) + y2 () =|a@) = {m? (1) +n2(1) (5.14)

The instantancous phase, @), can be calculated from the analytic expression as
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tan~![y(2)/ x(2)] if x(1)>0,y(1)>0
7 —tan " [y(2)/ x(0)] if x()<0,y(1)>0

mi2 if x(1)=0,y(t)=0
= 5.15
o m+tan " y@)/ x(®)]  if x(1)<0,¥() <0 ©-)
3zi2 if x(t)=0,y(t)<0

2 —tan [y x(®]  if %) >0,y() <0

@) can be calculated from the complex envelope, except the linear phase component, due
to the carrier frequency (i.e., &) = arg{z(t)} = arg{ Ar) }+271.5), is not present in the

complex envelope representation because of the down-conversion.

The instantaneous frequency f{r) follows as

__1 dow
fi)= o di (5.16)

5.2.3 Representations of Digital Modulation Schemes

This section explains the digital modulation schemes considered for classification in this
chapter, namely amplitude shift keying (ASK), phase shift keying (PSK) and frequency
shift keying (FSK). The signals will be outlined with a graphical representation of the

relevant features.

5.2.3.1 Amplitude Shift Keying (ASK)
The ASK signal is represented as [Couch, 2001]:

s(t)=Am(t)cosw t (5.17)

where m(t) is a unipolar baseband data signal and A. is a constant representing the power

level. The complex envelope 1s given by:

aft)=Amt) (5.18)
For the binary case:
1 0<t<T,,or
m(l) = (5.19)
0 0=<t=<T,
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where Ty, is the bit duration (=1/R;), R, ts the bit rate. The instantaneous amplitude can be

expressed as:

0 if mir)=0
= = 5.20
O O 520)
and the instantaneous phase is
@¢)=0 (5.21)

It can be seen from Figure 5.1 and Figure 5.2 that the instantaneous amplitude looks like

the bit stream, while the instantaneous phase and frequency are zero.

5.2.3.2 Phase Shift Keying (PSK)
The PSK signal is represented as {Couch, 2001]:

sty = A, coslwt + D m(s)) (5.22)

where m(t) is a bipolar baseband signal having peak values of 1 and a rectangular pulse
shape (for convenience) and D, is a the modulation index of the PSK signal.

The complex envelope is given by:

a(t) = A.ed% = x(t) + jy() (5.23)
where the values of x and y are:
X, =A cosb,
. (5.24)
y;, = A, sin,

for the permitted phase angles &, i = 1, 2, ..., M of the PSK signal. For PSK2, M = 2, for
PSK4, M = 4 and for PSK8, M = 8. For the binary case (M = 2), we let D, = /2 to give

the maximum power in the signal [Couch, 2001] and the complex envelope becomes:

afr) = jm(t) (5.25)
The instantaneous amplitude is

a(t) =|m(t)| =1 (5.26)

and the instantaneous phase is
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#(1) ={"”2 if mt)=-1 (5.27)

72 if m@t)=1

Therefore, the instantaneous frequency is zero. These attributes of PSK modulation are

shown in Figure 5.3 and Figure 5.4.

5.2.3.3 Frequency Shift Keying (FSK)
The FSK signal is represented by

s(y=A, cos{a)ct +D, ]m(/l)dzl} (5.28)
s(t)=Relg (e’ } (5.29)
where
ofr) = A e’ (5.30)
and
0()=D, [m(A)dA for FSK (5.31)

where mf(t) is a baseband digital signal. Although m(z) is discontinuous at the switching
time, the phase function &¢) is continuous because &) is proportional to the integral of

m(t). The instantaneous amplitude and phase are given by

alt)= A, (5.32)
#()= D, [m(A)dA (5.33)
The instantaneous frequency is given by
1 dgp 1
-— = D 34
f@) rd - 2m pmt) (5.34)

The attributes of FSK modulation are shown in Figure 5.5 and Figure 5.6.
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Figure 5.1, Useful features of ASK2 modulation, carrier frequency F, = 150kHaz.
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53 Key Feature Extraction

The procedure for digital signal Classiﬁclation is based on the method outlined in [Azzouz
and Nandi, 1996]. The intercepted signal with length K seconds, is sampled at a rate f; and
divided into M successive frames. Each frame is N, samples long (N, = 2048), which is
equivalent to 1.76ms. This results in M (=Kf/N) frames. A set of key features is extracted
from each frame to decide the type of modulation. These key features are derived from the
complex envelope of the signal y(¢), the instantaneous amplitude A(t), the instantaneous
phase @t} and the instantaneous frequency f{t) of the intercepted signal. The key features

from a particular segment (frame) are used to classify the segment as a certain modulation

type.

Five key features are used in this modulation classification approach: two key features were
discussed in [Swami and Sadler, 2000] and the other three are iniroduced here. The key
features discussed by Swami and Sadler are based on higher-order cumulants of the signal
and are described in section 5.3.1, The other three key features, introduced in this chapter,

are discussed in section 5.3.2.

53.1 Cumulant Key Features

The complex envelope of the intercepted signal is represented by y(n). For a complex
valued stationary random process, the second-order cumulants can be written in two ways

depending on the placement of the conjugation operator

Cop = Ely2(n)] and ¢y = Eﬂy(n)ﬂ (5.35)
where E denotes the expectation operation. Similarly, the fourth-order cumulants can be
defined in one of three ways:

C= cum(y(n), y(n), y(n), y(n))
C,, = cumly(n), y(m), y(n), ¥ () (5.36)
Cyp = cum{y(n), y(m), ¥" (), y(m)
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5.3.1.1 Sample Estimates

The cumulants in (5.35) and (5.36) can be approximated with the sample estimates of the
corresponding moments [Swami and Sadler, 2000]. Assuming that y(n) is zero mean, the

sample estimates of second-order cumulants are given by

——Zly(")l

N (5.37)

=—Zy ()

n-l

The superscript ‘' denotes a sample average. The estimates of the fourth-order cumulants

are
A 13 4 -2
C-w=—"zy (m)—3C5
N n=]
. 1 &
Ca ;Zy (myy" (m)=3C»C,, (5.38)
A 1 4 A A2
Cp= “&'Zl}’(n)l _|C20 =20y

a
o

The two cumulants features used in the modulation classifier are |C‘ 2l| and |é 401 .

5.3.2 Other Key Features

The other three new key features introduced in this chapter are the mean of the
instantaneous phase, i, the maximum value (measured in dB) of the power spectral
density (PSD) of the normalised instantaneous frequency, ¥mays and the standard deviation

of the normalised instantaneous frequency, Op.

The key feature fy, is defined as
gy == D 0y () (5.39)
C A (iy>a(n
where ¢yi(i) is the value of the non-linear component of the instantaneous phase at time
instants ¢ = i/f;, C is the number of samples in the intercepted frame [{ ¢(i}}] for which A,(i)
> a, and q, is a threshold for A(t) below which the estimation of the instantaneous phase is

very sensitive to noise.
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The key feature $nqr, measured in dB’s, is given by:

Vews = 10108 o (max|DFT(£,)[") (5.40)

where f, is the normalised instantaneous frequency of the signal defined by f, = fit)/R,. R;
is the symbol rate and f{7) is the instantaneous frequency.
The standard deviation of the normalised instantaneous frequency 1s evaluated over the

non-weak segments of the received signal:

2
1 2. 1 .
e Lc 541
Ty JC{‘";:{R (1):| {CA"(:Z)){{;(!)} ( )

where f, is the normalised instantaneous frequency, C is the number of samples in {f({)}

for which A(i) > a,, A, (i) = A(i¥m, where m, 1s the average value of the instantaneous
amplitude over one frame and a, is a threshold for A,(i) below which the estimation of the
instantaneous phase is very sensitive to noise. It is found in [Azzouz and Nandi, 1996], that

a suitable threshold is a, = 1.

5.3.3 Explanation for Key Feature Selection

The key feature ¥y is used to discriminate between FSK2 and FSK4 as one group and
ASK2, ASK4, PSK2 and PSK4 as the second group. Since ASK2, ASK4, PSK2 and PSK4
signals possess little or no frequency information, their power spectral density values
measured in dB will be very small. On the other hand FSK2 and FSK4 signals possess
some frequency information; therefore, their PSD values of the normalised instantaneous

frequency will be larger.

The feature f, is used to distinguish between ASK2 and ASK4 signals. Both types of
signals possess very little phase information. However, ASK2 signals possess slightly
larger instantaneous phase values than ASK4 signals. Therefore, the mean of the
instantaneous phase is a good feature to separate ASK2 and ASK4 signals. This can be
inferred by inspecting Figure 5.7, which shows a close up of the instantaneous phase for
ASK?2 and ASK4 signals.
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Figure 5.7. Instantaneous phase values for ASK2 and ASK4 signals.

The key feature |C‘21| is used to separate signals with phase information (PSK2, PSK4) from
those with no phase information (ASK2, ASK4). It is found that the values of [C'ZI| for PSK

signals are greater than the values for ASK signals.

The key feature |Cyo} is used to separate PSK2 signals from PSK4 signals. By referring to
Table I in [Swami and Sadler, 2000], the theoretical values of the fourth order cumulants
are —2 and 1 for PSK2 and PSK4 signals respectively. Therefore the absolute values should
be around 2 for PSK2 signals and 1 for PSK4 signals.

The key feature @, is used to separate FSK2 and FSK4 signals. In FSK2 signals, the
symbols are represented by one of two frequency values situated at (f. + 2R,) and (f; - 2R;).
With FSK4 signals, there are an additional two frequency values that a symbol may be
represented as situated at (f. + R;) and (f. - R,). Since these values are smaller, the key

feature values for FSK4 are also generally smaller than for FSK2.

5.4 Decision — Theoretic Modulation Classification Method

In the decision theoretic approach, a decision tree is constructed that has as its leaf nodes
one of the desired modulation types; a flowchart depicting the final classification procedure
is shown in Figure 5.8. The incoming signal segment is categorized as one of two possible
sets of signals by comparing a key feature of the signal with a certain threshold. The
threshold for each feature is chosen so that the number of correct decisions made is optimal.

The determination of the thresholds is outlined next in Section 5.4.1.
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54.1 Threshold Determination

The key feature thresholds are chosen so that the probability of a correct decision is
obtained from 400 realisations of each modulation type at signal to noise ratio (SNR)
ranging from 20 to 5dB. A set of modulation types is separated into two disjoint subsets, A
and B, by the decision rule defined in equation (3.1) of Chapter 3. Note that here we use
the alternate notation A = @y and B = a», and assume that the priors P(A) and P(B) are
equal, P(A) = P(B) = 0.5. The optimum threshold is chosen such that the Bayes error is

minimised as described in Chapter 3.

Digitally
modulated signal

no

b
| PSK4 I [ PSK2 || ASK4 I [ ASK2 [ FSK2 | FSK4

Figure 5.8. Decision tree for classification of digital modulated signals. The first decision
separates signals with frequency information (right side of tree — FSK) from signals with
little or no frequency information (left side of tree — ASK and PSK). The signals with no
frequency information are then separated into signals with phase information (PSK) and

signals with little or no phase information (ASK).
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The estimated total error probability for the key feature J...s is shown in Figure 5.9 to

separate subset A (FSK2 and FSK4) and subset B (ASK2, ASK4, PSK?2 and PSK4). It can

be seen that a good choice for the threshold t}...s is —40dB where the total minimum error
probability is 0 for the SNR range of 20dB to -5dB.

The estimated total error probability for the key feature |Cy| is shown in Figure 5.10 for
subset A (PSK2 and PSK4) and subset B (ASK2 and ASK4). The relevant threshold t|Cy| is

chosen to be 0.93 where the total minimum error probability is 0.0021 for the SNR range of

20dB to 5dB.
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Figure 5.9. Total error probability for the key feature j,..r for SNR range of 20dB to -5dB,

for FSK2 and FSK4 (subset A) and ASK2, ASK4, PSK2 and PSK4 (subset B).
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Figure 5.10. Total error probability for the key feature |Cy|, for SNR range of 20dB to
-5dB, for PSK2 and PSK4 (subset A) and ASK2 and ASK4 (subset B).
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The estimated total error probability for the key feature |C"4g| is shown in Figure 5.11 for
subset A (PSK4) and subset B (PSK2). The total minimum probability of error is 0.0008 at
the threshold t|C,o| = 1.35 for SNR range of 20dB to 5dB. The same threshold value gives
the minimum error probability for SNR range of 0 to —5dB.

For FSK?2 (subset A) and FSK4 (subset B), the total error probability for the key feature o,
is shown in Figure 5.12. The relevant threshold toy, is chosen to be 1.65 where the total

minimum error probability is 0.03 for the SNR range of 20dB to 5dB.

SNR 20dB 10¢B and 58 SNR 0dB and -5dB
0.5 051
Z 2 \
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05 1 15 2 25 05 1 15 2 25
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Figure 5.11. Total error probability for the key feature {Cyol, for SNR range of 20dB to
-5dB, for PSK4 (subset A) and PSK2 (subset B).
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Figure 5.12. Total error probability for the key feature o, for SNR range of 20dB to -5dB,
for FSK2 (subset A) and FSK4 (subset B).
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The total error probability for the classification of ASK2 (subset A) and ASK4 (subset B)

using the key feature f4, is shown in Figure 5.13. The optimum threshold tzy;, is chosen to

be -0.125 for the SNR range of 20dB 10 —5dB.

A summary of the key feature threshold values and minimum error probabilities for the
SNR range of 20dB to -5dB is shown in Table 5.1. These threshold values are used to
discriminate between groups of signals as shown in Figure 5.8. A compromise must be
made between the threshold values at higher and lower SNR. The threshold must be chosen
so thal the overall classification error is minimised. Here, we choose the threshold values
that minimise the error probability between 20 and 5 dB; thus, the key feature thresholds

Unanfs LGPy Ultr 1|Cot] and 1] Ciol are -40, 1,685, -0.125, 0.93 and 1.35, respectively.
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Figure 5.13. Total error probability for the key feature g, for SNR range of 20dB to -5dB,
for ASK2 (subset A) ASK4 (subset B).

54.2 Dependency of Key Feature Selection on Minimum Probability of Error

The selection of a particular key feature for a specific decision is dependent on the
minimum error probability. For example, the reason why the key feature },...ris chosen for
the first decision in Figure 5.8 is because it minimises the total error probability for that
decision. In this section we examine the decision made at every stage of the decision tree

and explain why a particular key feature is chosen at that stage, starting from the top of the

tree.
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Table 5.1. Summary of key feature thresholds and error probabilities.

Key Feature SNR 20dB to 5dB SNR 0dB to -5dB
Threshold Optimum Minimum Error Optimum Minimum Error
Threshold Probability Threshold Probability
Yimaxs -40 0 -40 0
L0 1.65 0.0300 1.84 0.3725
tfdap -0.125 0.0800 -0.12 0.3700
t|Cal 0.93 0.0021 1.7 0.1984
1|Cadl 1.35 0.0008 1.35 0.3600

54.2.1 Decision 1

At every stage of the decision tree, there are many possible scenarios that must be
considered, depending on how the signals are grouped together. Let’s call the grouping of
FSK2 and FSK4 (subset A) and ASK2, ASK4, PSK2 and PSK4 (subset B) as scenario I-1
{scenario 1 of decision 1). Table 5.2 illustrates the total error probabilities of the different
key features, along with the appropriate threshold (shown in brackets). The key feature that
minimises the probability of error is chosen and the minimum error is shown in bold
typeface. The errors are calculated from data based on the SNR range of 20dB to -5dB.
Note that for scenario 1-1, the key feature g5, could also have been chosen since this feature

also has a total minimum error probability of 0.

Alternatively, we could use the key feature || for the first decision in the tree. Then the
two groups of signals to be separated would be FSK and PSK signals in one group (subset
A) and ASK signals in the other (subset B) which we will call scenario 2-1. The total error
probabilities for this scenario are also shown in Table 5.2. It can be seen that the key
feature |C;;) minimises the error probability between these two groups of signals. However,
this feature is not chosen for the first decision because the overall minimum error is not as

small as that of scenario 1-1.
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If we separated the signals into subset A consisting of PSK2 and PSK4 signals and subset B
comprising ASK2, ASK4, FSK2, and FSK4 signals, which we refer to as scenario 3-1, the
feature |C.of minimises the total error probability. However, as can be seen in Table 5.2, the
total minimum error for this decision is still not as small as the error in scenario 1-1.

Therefore, this feature is not used for the first decision.

Table 5.2. Total minimum error probability for different scenarios of Decision 1 for

combined SNR range of 20dB to —5dB (threshold values are shown in brackets).

Key Total Minimum Error | Total Minimum Error | Total Minimum Error

Feature Probability Prob(glzigl}i:;fﬁo 2.1) Probability
(Scenario 1-1) (Scenario 3-1)

Yinasf 0 (-40) 0.3333 (36.2) 0.1788 (-104.45)

Hap 0.1473 {(0.2) 0.3333 (-125) 0.3333 (100.7)

|Cast 0.3185 (1.49) 0.0794 (0.92) 0.2869(1.0850)

|Caol (0.1089 (0.1) 0.3333 (1.1) 0.1178 (0.7)

o 0(1.0) 0.3333 (0.5) 0.3333 (0.5)

5.4.2.2 Decision 2

The second decision in Figure 5.8 separates ASK signals from PSK signals using the key
feature |Cyil; we call this scenario 1-2 (Scenario 1 of Decision 2). Table 5.3 shows that the

key feature |C,,| minimises the total error probability for this decision.

Another possibility is to separate ASK2 (subset A) from ASK4, PSK2, and PSK4 (subset
B); we call this scenario 2-2. Tt can be seen from Table 5.3 that although the key feature
Hqp minimises the total error probability, it is still much higher than that of scenario 1-2.
The third scenario (scenario 3-2) has subset A consisting of ASK4, and subset B

comprising ASK2, PSK2, and PSK4. It can be seen from Table 5.3 that the key feature
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|C21| minimises the probability of error. However, this scenario is not chosen because its

minimum error is still larger than that of scenario 1-2.

By assigning PSK4 to one class and ASK2, ASK4, and PSK2 to the other class, we define
scenario 4-2, where the minimum error probabilities for each feature are shown in the fifth
column of Table 5.3. It can be observed that the feature iy, minimises the total error

probability but this minimum error is still not as small as that of scenario 1-2.

Table 5.3 Total minimum error probability for Scenarios 1 — 4 of Decision 2 for combined

SNR range of 20dB to —5dB (threshold values are shown in brackets).

Key Total Minimum | Total Minimum | Total Minimum | Total Minimum
Feature | Error Probability | Error Probability | Error Probability | Error Probability
(Scenario 1-2) (Scenario 2-2) (Scenario 3-2) (Scenario 4-2)
Vinaxf 0.3227 (-104.1) | 0.2475 (-91.35) 0.2500 (-90) 0.2800 (-113)
Hep 0.1968 (-0.145) | 0.2295 (-0.11) 0.3025 () 0.2319 (-0.2950)
1Cal 0.1275 (0.93) 0.2500 (0.2) 0.2250 (0.52) 0.3000 (2)
|Caol 0.1300 (0.65) 0.2338 (0.1) 0.2445 (0.4) 0.2416 (2.55)
O 0.5000 (0) 0.2500 (-0.01) 0.2500 (-0.1) 0.2500 (-0.1)

Scenario 5-2 is defined by separating PSK2 from PSK4, ASK2, and ASK4. The minimum
error probabilities for this class are shown in Table 5.4. It can be seen that the minimum

error occurs for the feature |é4g| and though the error is low, it is still higher than in scenario
1.2,

Another possibility is to define subset A as ASK2 and PSK2 and subset B as ASK4 and
PSK4. The corresponding calculated errors are shown in the third column of Table 5.4
labelled as scenario 6-2. The feature that minimises the error probability is 4. However,

this scenario has too large an error probability to be considered for this decision.
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The final scenario (scenario 7-2) defines subset A as ASK2 and PSK4 and subset B as
ASK4 and PSK2. The feature that minimises the error probability for the SNR range of
20dB to -5dB is |Cy|. This scenario is not feasible due to the high error risk as can be seen
in Table 5.4.

Table 5.4. Total minimum error probability for Scenarios 5 — 7 of Decision 2 for combined

SNR range of 20dB to —5dB (threshold values are shown in brackets).

Key Feature Total Minimum Total Minimum Total Minimum
Error Probability Error Probability Error Probability
(Scenario 5-2) (Scenario 6-2) (Scenario 7-2)
Yinasf 0.2100 (-122) 0.3840 (-99.5) 0.3850 (-99.75)
Hep 0.2500 (-0.3) 0.2900 (-0.13) 0.3800 (-0.13)
|G| 0.2500 (3) 0.4800 (0.65) 0.4710 (0.6)
|Caol 0.1300 (1.1) 0.3100 (1.3) 0.3150 (1.35)
O, 0.2500 (0.01) 0.5000 (0.01) 0.5000 (0.01)

5.4.2.3 Decision 3, Decision 4 and Decision 5

The following decisions carry on from scenarios 1-1 and 1-2 of decisions 1 and 2, as this
path gives the smallest error probability. The next decision we will examine in the
classification tree separates FSK2 signals from FSK4 signals, The key feature chosen for
this decision (which we will call decision 3) is o and the reason for this is that it

minimises the total error probability compared to the other key features, as presented in
Table 5.5.

Decision 4 separates ASK2 and ASK4 signals. The total minimum error probabilities using
each feature for this decision are shown in Table 5.5. It can be seen from this table that the

feature that gives the smallest error is i,
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The final decision separates PSK2 from PSK4 signals (Decision 5). The feature found to
minimise the total error probability is |Cyl. The other error probabilities for each feature

with respect to Decision 5 are shown in Table 5.5.

Table 5.5. Total minimum error probability for Decision 3, Decision 4, and Decision 5 at

combined SNR range of 20dB to —5dB (threshold values are shown in brackets).

Key Feature Total Minimum Total Minimum Total Minimum
Error Probability Error Probability Error Probability
(Decision 3) (Decision 4) (Decision 5)
Vinaxf 0.3350 (22) 0.4004 (-110.45) 0.4328 (-122)
Hap 0.4875 (30) 0.1673 (-0.125) 0.3250 (0.4)
|Cal 0.4700 (1.0) 0.3871 (0.52) 0. 4800 (1.0)
|Caol 0.4825 (0) 0.4618 (0.55) 0.1204 (1.35)
O 0.1925 (1.65) 0.5000 (1.5) 0.5000 (1.5)

54.3 Receiver Operating Characteristic (ROC) Curves

A receiver operating characteristic (ROC) curve describes the tradeoff between maximising
the probability of a correct decision (P, — Detection Probability) and minimising the
probability of an incorrect decision (Pz4 — False Alarm). By considering two sets of
modulation types A and B, we can call these two classification possibilities the null
hypothesis H and the alternative hypothesis K. They are commonly written in the form:

H :x =subset A

K :x=subset B

where x 1s a particular key feature value.

The probability of false alarm is a function of the key feature threshold value ¢, given by
Prs = P(Rx|H). The probability of a correct decision Pp = P(Rg|K). The plot of the pair Py4
= Pra{ty) and Pp = Pp = Pp(r,) over the range of thresholds -eo < t, < o produces a ROC
curve, Good features have ROC curves with desirable properties such as negative

curvature, monotone increase in Pp as Pry increases, and high slope of Pp at the point (Pga,

&0



Pp) = (0,0). The aim is to find ways to test between X and H that push the ROC curve

towards the upper left corner, where Pp is high for low Pyg,.

The ROC curves for the key feature o5, that separates FSK2 (subset A) from FSK4 (subset
B) are shown in Figure 5.14 for SNR range of 20dB to -5dB. The curves show the detection
probability of FSK2 (subset A) and the false alarm probability of FSK4 (subset B). By
examining the ROC curves for SNR 2 5dB, we can see that for the chosen threshold value,
to; (indicated by ‘x’) has a detection probability (Pp) of 0.9795 and false alarm probability
(Pra) of 0.1203 at 5dB SNR.
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Figure 5.14. ROC curves for the key feature & to separate FSK2 (subset A) and FSK4
(subset B) signals for SNR range of 20dB to -5dB.

The ROC curves for the key feature i, that separates ASK2 (subset A) from ASK4 (subset
B) are shown in Figure 5.14 for SNR range of 20dB to -5dB. For higher SNR, Pp
(detection probability) is high for low Pgy (false alarm probability). By examining the ROC
curves for SNR 2 10dB, we can see that for the chosen threshold value, tz, (represented by
the ‘x’) has a minimum Pp (detection probability) of 0.9509 and Pgs (false alarm
probability) of 0.0013.
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Figure 5.15. ROC curves for the key feature iy, to separate ASK2 and ASK4 signals for
SNR range of 20dB to -5dB.

Figure 5.14 and Figure 5.15 show that the chosen key features give very low false alarm
rates at very high detection rates. The ROC curves for the remaining decisions in the tree

are not presented because the error probability is 0 for SNRs of 20dB to 10dB.

5.5  Modulation Classification Using Artificial Neural Networks
The classification of ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4 signals has been shown

using the decision-theoretic approach. Classification can also be achieved using artificial
neural networks. A neural network classifier will be proposed and compared to the

decision theoretic classifier.

Simulations are carried out in Matlab using the neural network toolbox functions, The
same key features used in the decision theoretic algorithm are used as the input datasets for
the ANN algorithm. These key features are Gp, Ymaxes Haps ]C’21| and |C'4ﬂ|. The key features
are normalised to the range —1 to 1, then passed to the neural network. This normalisation
is performed to make the training of the network more efficient [Demuth and Beale, 1998]
because the inputs have large differences in magnitude and it is also proven in [Azzouz and

Nandi, 1996] that normalisation significantly improves the performance of the ANN

classifier.
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5.5.1 Neural Network Structure

Figure 5.16 presents the selected neural network structure for modulation classification of
ASK, FSK and PSK signals. It consists of three subnetworks. The first has five inputs,
corresponding to the five normalised key features, and four output neurons corresponding
to ASK, PSK2, PSK4, and FSK. The other two subnetworks are used to differentiate
between ASK? and ASK4, and FSK2 and FSK4, respectively. The structure that is chosen
for the first subnetwork consists of one hidden layer with ten neurons. Twenty versions of
this structure are trained and tested to find the network parameters that give the best

performance.

For the classification of ASK2 and ASK4, the chosen network structure has one input,
corresponding to the key feature iy, one hidden layer with ten neurons and two output
neurons, corresponding to ASK2 and ASK4 signals. Twenty versions of this network
structure were trained and tested to find the best network parameters. The network to
classify FSK2 and FSK4 has two inputs, corresponding to the features ogp and Ymaxr, one
hidden layer with ten neurons, and one output neuron. Again, twenty versions of this

network structure were trained and tested to find the best performance.

Hap ASK2
2/ J— Network 2 [——»
—
.| (ASK) ASK4
: (I e
e ASK
62] — 4l Network —————————» PSK2
[ PSK4
Hip—p»
Fraf| oy
3 I\et\;()rk > FSK2
?maxH O FSK
) (FSK) | p FSK4
— P
FSK

Figure 5.16. Neural network structure for modulation classifter.
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The hidden iayers in all network structures use the nonlinear fan-sigmoid (hyperbolic
tangent) activation function because this enables better feature extraction and normally
leads to a smaller network {Arulampalam, 1999]. The tan-sigmoid function also generally
allows the network to learn faster [Haykin, 1999]. This approach is in contrast with other
approaches using neural networks for modulation classification where a log-sigmoid
function is used in the first hidden layer and a linear function is used in the second hidden
iayer [Azzouz, 1996] and [Azzouz, 1998]. The output layer uses the log-sigmoid activation
function since the ideal outputs should be 1 (true) and O (false) for all other outputs. The

full network structure is shown in Figure 5.16.

5.5.2  Training the Network

The large network is trained using the conjugate gradient method due to its fast training
speed and the two smaller networks are trained using the Levenberg-Marquardt (LM)
algorithm. This algorithm is currently one of the fastest training algorithms and approaches
second-order training speeds [Demuth, 1998]; however, it requires a large amount of
memory, which can slow it down significantly with large networks and/or a large amount

of training data.

The networks are trained using 200 samples from each modulation type. The networks are
also tested and validated using a separate set of 200 sampies of each modulation type at
different SNR values. While training, a mean square error performance goal is given and a
cross validation set is used to stop the training early if overfitting occurs to maintain a good
generalisation performance [Haykin, 1999], [Demuth, 1998]. The target values for true and
faise are offset from 1 and O (limit values for log-sigmoid function) to 0.8 and 0.1,
respectively to improve the speed of convergence [Haykin, 1999]. The fast convergence
properties of the LM algorithm in addition to offsetting the limit values, allows the network
to be trained for a maximum of only 1000 epochs. For the larger network using the
conjugate training algorithm, a maximum number of 500 epochs is sufficient for training.
This is in orders of magnitude less than 250,000 epochs used in [Azzouz, 1996] and
[Azzouz, 1998]. It is found that training the network with a mix of samples with SNR
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ranging from 20dB to —5dB gives the best overall performance over a good spread of SNR

values.

5.6  Performance Analysis

The performance results are derived from 200 realisations of each modulation type. The
carrier frequency, sampling rate and the symbol rate are given values of 150kHz, 1200kHz
and 12.5kHz respectively. The digital symbol sequence is randomly generated and the
MPSK, MASK, and MFSK signals are generated using the expressions from Table 3.1 in
[Azzouz and Nandi, 1996].

5.6.1 DT Classifier Results

The results for the test set of the DT approach are summarised in Table 5.6 for the SNR
range of 20dB to -5dB; Table A.1- Table A.6 in Appendix A present the accuracy of the
DT classifier on each modulation type. These results indicate that most types of the digital
modulation schemes considered can be correctly classified with accuracy greater than 89%
for SNR = 5dB. Figure 5.18 to Figure 5.23 show the same result graphically for SNR range
of 20dB to —5dB.

5.6.2 NN Classifier Results and Comparison With DT Classifier

The performance results of the NN classifier are summarised in Table 5.6 and Figure 5.17.
Figure 5.18 to Figure 523 show the performance of the NN and DT for different
modulation types at various SNRs. It can be seen from Table 5.6 and Figure 5.17 that the
NN and DT perform comparatively for most modulation types for SNR greater than 10dB.
However, for SNRs of 5dB, 0dB and —5dB the NN classifier outperforms the DT classifier.
The 0.95 confidence intervals on the accuracy of the DT and NN classifiers, shown in
Table 5.6, indicate that these differences are significant. This may be due to the fact that
more than one key feature is used in NN classification, whereas, the DT classifier uses only
one feature per decision. The confusion matrices showing the results of the NN classifier
are shown in Appendix A in Table A.7 — Table A.12 for SNR ranging from 20dB to —5dB,

respectively.

85



Classification Accuracy
(%)
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Figure 5.17. Overall accuracy of the NN and DT classifiers at different SNRs.

Table 5.6. DT and NN classifier accuracy and 95% confidence intervals.

SNR DT Classifier NN Classifier
Accuracy | 95% Confidence Interval | Accuracy | 95% Confidence Interval

20dB | 99.50% [99.22, 99.78] 99.83% [99.67, 100.0]

15dB | 98.83% [98.40, 99.26] 99.67% [99.44, 99.90]

10dB | 96.71% [95.99, 97.42] 97.58% [96.97, 98.20]

5dB 89.12% [88.62,91.04] 90.85% [89.70, 92.00]

0dB 54.38% [52.38, 56.37] 69.24% [67.39, 71.08]

-5dB | 33.42% [31.53, 35.30] 51.10% [49.10, 53.10]
Overall | 78.58% [77.91, 79.25] 84.71% [83.88, 85.54]

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4
Modulation Type

Figure 5.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 20dB SNR.

86



8

8

Classification Success
Rate (%)

8RR BB

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4
Modulation Type

Figure 5.19. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 15dB SNR.
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Figure 5.20. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 10dB SNR.
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Figure 5.21. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 5dB SNR.
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Figure 5.22. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 0dB SNR.
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Figure 5.23. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at -5dB SNR.

5.6.3 Comparison with Azzouz and Nandi’s Classifier

The DT and NN modulation classifiers presented in this chapter will now be compared with
the classifier proposed by Azzouz and Nandi. By referring to Figure 3.4 in [Azzouz and
Nandi, 1996], it can be seen that the order of classification in the tree structure is slightly
different from the proposed tree structure in Figure 5.8. Both structures start by separating
the signals with frequency information from those that do not possess frequency
information. A&N use the key feature }q. (maximum value of the PSD of the normalised

instantaneous amplitude of the signal) whereas the key feature used in the proposed
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classifier is ¥uay. The reason for this is that the probability of separation at this point in the
tree USing Yay is 100% whereas it is only 99.6% if the key feature ¥, is used (Table 3.3
[Azzouz and Nandi, 1996]). By referring to Figure 5.9, it can be seen that the two sets of

signals can be separated with 100% accuracy.

To separate signals with absolute phase information (PSK4) from those that do not possess
absolute phase information, A&N use the key feature o, (standard deviation of the
absolute value of the centred non-linear component of the instantaneous phase evaluated
over the non-weak intervals of the signal segment). The key feature proposed in this
chapter for the same task is |Cyl. It is found in [Swami and Sadler, 2000] that features
based on cumulants are immune to frequency and phase offsets. This theory is tested by
adding a fixed phase offset of /8 to the PSK2 and PSK4 signals. It is found that the key
feature o, suffers variations in value, whereas the proposed key feature |C,q| suffers no

variation when a phase offset is present.

To separate signals that possess phase information (PSK2 and PSK4) from those signals
that do not (ASK2 and ASK4), the key feature proposed in this chapter is |Cy|. A&N use
the key feature oy, (defined as the standard deviation of the direct value of the centred non-
linear component of the instantaneous phase evaluated over the non-weak intervals of the
signal segment) for this purpose. However, this feature is not immune to phase variations
and may cause inaccuracies in results when phase or frequency offset is present. The

feature |Cy;| is based on cumulants and is therefore robust against phase variations.

To separate ASK2 and ASK4 signals, A&N use the key feature g, (standard deviation of
the absolute value of the normalised — centred instantaneous amplitude of the signal
segment). The key feature used in this chapter for the same purpose is 2. The proposed
DT modulation classifier outperforms A&N’s classifier for the SNR of 20dB and 15dB.
For the SNR of 10dB, the performance drops slightly. Though this feature is based on
phase, there is not much variation in value if there is a phase offset because no information
is contained in the phase of the signal. It is also found in [ater chapters that this feature is

robust in environments such as Rayleigh fading channels.
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Finally, to separate FSK2 and FSK4 signals, the key feature used in this chapter is Gp.
A&N used the key feature oy (standard deviation of the absolute value of the normalised -
centred instantaneous frequency evaluated over the non-weak intervals of the signal
segment) in their modulation classifier. There is not much difference in performance for

both key features; however, o, provides another altemative to separate the FSK signals.

The comparison in results for SNR of 20dB, 15dB and 10dB are shown in Figure 5.24 to
Figure 5.26, respectively. To be fair, the threshold values for the compared proposed
modulation classifier are derived from SNR of 20dB and 10dB only, as A&N have done.
It can be seen that the results for the DT classifier are on par or slightly better than the
classifier proposed by A&N, except for the FSK signals where the performance of the DT
classifier is slightly inferior. The NN classifier results are also presented for comparison.
A&N’s NN classifier performs similarly to their DT classifier, hence the results are not
shown. Our NN has been trained with SNRs ranging from 20dB to —5dB. Therefore, had it
been trained with data from 20dB and 10dB only, as in [Azzouz and Nandi, 1996), the

performance of our NN classifier would have been even better.

5.7 Conclusions

This chapter has introduced a modulation classifier that is capable of classifying six
different digital modulation schemes. The decision-theoretic approach is used for
classification. Key features are extracted from the incoming signal and these features are
used to determine the modulation type by comparing the key feature values with a specific
threshold. Azzouz and Nandi [Azzouz and Nandi, 1996] have used a similar approach to
classify these particular signals; however, different key features and a different tree
structure are used here. The key features introduced in this chapter are more robust against
variations such as phase offsets. The performance of the decision-theoretic classifier
introduced in this chapter is very good with an overall classification success rate of greater
than 89% for SNR 2 5dB. A neural network classifier based on the same key features as
the DT approach 1s also proposed. The results of the NN classifier and the DT classifier are
compared. It is found that the NN classifier performs slightly better than the DT approach
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for higher SNR and much better for lower SNR. This is due to the fact that the main
network is trained with all the key features. This is in contrast with the DT approach where
only one key feature is used per decision and the threshold boundaries are only linear.
These classifiers serve as a base for this thesis where the ultimate aim is to develop a digital
modulation classifier capable of recognising a wide range of digital modulation schemes.
The next chapter expands the classifiers discussed in this chapter to accommodate

continuous phase modulated signals.
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Figure 5.24. Comparison of results of proposed DT and NN classifiers with Azzouz and
Nandi’s (A&N) classifier for SNR 20dB.
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Figure 5.25. Comparison of results of proposed DT and NN classifiers with Azzouz and
Nandi’s (A&N) classifier for SNR 15dB.
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Figure 5.26. Comparison of results of proposed DT and NN classifiers with Azzouz and

Nandi’s (A&N) classifier for SNR 10dB.
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CHAPTER 6

Classification of Continuous Phase

Modulated Signals

6.1 Introduction

In this chapter, the modulation classifiers proposed in Chapter 5 are expanded to
accommodate continuous phase modulated (CPM) signals. These classifiers are able to
distinguish between CPM signals and other modulation types (ASK, PSK, and FSK). The
classifiers can also identify signals within the CPM class - the signals are classified as
partial response, full response or Gaussian minimum shift keying (GMSK) signals. The
decision-theoretic (DT) approach and neural network (NN) algorithms are compared and
results are presented tor signal-to-noise-ratios (SNRs) of 20dB, 15dB, 10dB, 5dB, (dB, and
—5dB. The organization of the chapter is as follows. First a brief introduction to CPM
signals is given in the next section, followed by a description of classifying CPM signals in
general using the DT approach in Section 6.3. We extend the DT approach to classification
of signals within the CPM class, for this key features and a novel decision tree are
proposed. A neural network ciassifier to separatc CPM signals from ASK, PSK, and FSK
signals is proposed in Section 6.4. A separate NN classifier to classify signals within the
CPM class is also proposed. The performance results are presented for the DT and NN
classifiers and a comparison is made between them in section 6.5 followed by the

conclusion of the chapter.
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6.2 Continzous Phase Modulated (CPM) Signals

Recent publications concerning many techniques for automatic modulation classification
have covered different digital signals. However signals with memory, such as CPM, have
not been considered using DT and NN methods. In this chapter, CPM signals will be added
to the existing modulation classifiers described in Chapter 5, but first a brief introduction to

CPM signals is presented.

Continvous phase modulated signals are a class of signals that have memory incorporated
in the modulation scheme. These signals have constant amplitude and carry the
transmitted information in the phase {Proakis, 1995]. CPM signals are a subset of a class of

stgnals known as continuous-phase FSK (CPESK). The CPM signal can be described by
28
s(t)= ?cos[anct+¢(t;I)+¢u] (6.1)

where £is the signal energy, f; is the carrier frequency, ¢, is the initial phase of the carrier,

and ¢t;1)is the time varying phase of the carrier, defined as

o t:1 )= 4nTf, [d(7 )de

= 4nTf, ;[!:Zlng(r— nT)}d’r

(6.2)

where f; is the frequency deviation. Note that the integral of d{ 7) is continuous even though
d(7) 1s discontinuous. Evaluating the integral in (6.2) gives the phase of the carrier in the

interval nT £t S(n+1)T:
e l)=2m Lhqgt—kT) nT<t<(n+1)T (6.3)
K ==t

where {4} is a sequence of modulation indices, {I} is the sequence of M-ary information
symbols chosen from the alphabet 1, £3,..., £(M-1) and ¢(t} is a normalised waveform

shape which may be represented as the integral of some pulse g(¢)
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a(t)=[g(7) 64)

When h; = & for all k, the modulation index is fixed for all symbols. When the modulation
index varies then the signal is referred to as a muliti-h CPM signal. If g(¢) = O forz > T, the
CPM signal is called full response CPM. If g(f) # 0 for 7 > T then the signal is called partial
response CPM.

For & = 2k/p where k and p have no common factors, the phase ¢t} during the interval nT

<t = (n+ 1T can be written as

@(1,1)=2mth Y 1,q(1—kT )+0, (6.5)
where
g - {hﬁi I, } mod 27 (6.6)

h is the modulation index and &, is the memory of all symbols up to time (n-7)T.

When & = 0.5, the complex envelope is given by {Couch, 2001]
alt)= A" = x{t)+ () 6.7)

where T}, 1s the bit rate, the + signs denote the possible polarity of the data during the (0, 7)

interval, and

x(t)= A cos(xm/2T,), O0<t<T, (6.8)

y(t)A, sin(+ m/2T,), O<t<T, (6.9)

The instantaneous amplitude and phase are:
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a(t) = A, (6.10)

#(r) = tan~"[y{t)/ x{¢)] (6.11)

These features are shown in Figure 6.1,
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Figure 6.1. Useful features of CPM modulation.

6.3  CPM Signal Classification using DT Approach

6.3.1  Discrimination of CPM Signals From Other Signals: DT Approach

In this section, we extend the capability of the digital modulation classifier presented in
Chapter 5 to cope with signals that have memory incorporated in their modulation scheme.
With the decision-theoretic approach, the same classification procedure is vsed as in

Chapter 5. However, to derive the appropriate key features a number of steps must be
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taken. First the CPM signal is classified by the existing tree in Chapter 5. The signal is
classified as FSK4; therefore, we know the decision has to be made between CPM and
FSK4 signals. We can see from the plots of the instantaneous frequency in Figure 6.1 and
Figure 5.6 (in Chapter 5) that CPM signals have smaller frequency values than FSK4
signals. In CPM the frequency separation is 1/2T, which is the minimum frequency
separation that is necessary to ensure orthogonality of the signals over the interval T
[Proakis, 1995]. For FSK4 the frequency separation will be larger, thus the frequency

values and hence the PSD values will be greater.

Therefore, the existing key feature ..y i5 used to distinguish between these two types of
signals because FSK4 signals contain more frequency information than CPM signals. The
decision tree for this modulation classifier is shown in Figure 6.2, This is the same
decision tree as in Chapter 5, except there is an additional decision added after the

separation of FSK2 from FSK4.

6.3.2 Threshold Determination

The key feature thresholds are chosen so that the probability of a correct decision obtained
from 400 realisations of each modulation type at the signal to noise ratio (SNR) range of

20dB to -5dB is maximised.

The optimum threshold t}...2 is chosen such that the Bayes error is minimised as
described in Chapter 3. The total error probability €, is estimated directly from the sample
data. The total error probability for the key feature }.q.r at the SNR range of 20dB to —5dB
is shown in Figure 6.3. for subset A (FSK4) and subset B (CPM). It can be seen that a good
choice for the threshold )y 15 15.7 where the total minimum error is 0 for SNR range of
20dB to 5dB. For the SNR range of 0dB to —5dB, the total minimum error at the same
threshold is 0.112.
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Figure 6.2. Decision tree for classification of digital modulation schemes including CPM
signals. The first decision separates signals with frequency information (right side of tree —
FSK and CPM) from signals with little or no frequency information (left side of tree — ASK
and PSK). The signals with frequency information are divided into FSK and CPM. The
signals with no frequency information are then separated into signals with phase

information (PSK) and signals with little or no phase information (ASK).

SNR 20dB, 10dB and 5dB SNR 0dB and -5¢B

0.5 05
204 z
E E 0.4
go3 5
: |
5oz §
= =
:‘-5- 0.1 E 0.2

0 0.1

10 20 30 o 10 20 30
gamma mexf gamma maof

Lo+ ]

Figure 6.3. Total error probability for the key feature Ymaxs, for SNR range of 20dB to -
5dB, for FSK4 (subset A) and CPM (subset B).
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The key feature .,y is chosen to separate FSK4 and CPM, rather than the other existing
features, because this feature minimises the total error probability for that decision. This is
illustrated in Table 6.1. The estimated minimum error probability for SNR = 20, 10, and
5dB is O, and it is 0.112 for SNR = 0, and —5dB. Therefore, the total minimum error
probability over the SNR range of 20dB to —5dB is estimated to be 0.0448 at the threshold

value of 15.7.

6.3.3 Classification of Signals Within the CPM Signal Class (DT Approach)

In this subsection, we describe the classification of CPM signals within the CPM class.
The proposed modulation classifier categorises the incoming CPM signal as full response,
partial response or GMSK (Gaussian minimum shift keying). As described in section 6.2, L
describes the pulse width for each pulse. If L. = 1, the signal is defined as full response (the
length of the pulse is equal to the period of the signal (T)} and if L > 1, the signal is defined
as partial response (the length of the pulse is greater than the period of the signal}). There
are four pulse shapes that we examine here:

¢ LREC (rectangular pulse shape)

¢ LRC (raised cosine)

» HCS (half cycle sinusoid)

e (GMSK (Gaussian minimum shift keying)

Table 6.1. Total minimum error probability for Decision 1: classification of FSK4 (subset
A) and CPM (subset B) at combined SNR range of 20dB to —5dB (threshold values are

shown in brackets).

Key Feature Total Minimum Error Probability
Vmasxf 0.0448 (15.7)
Hap 0.4390 (-1.6)
éml 0.3650 (1)
|@40| 0.4050 (0.04)
O 0.0850 (1.2)
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These pulse shapes are described as follows.
For LREC:

!
ey 0SESLT
() ={2Lr, (6.12)

0 otherwise

If L == 1, the signal is known as MSK or Minimum shift keying.

For LRC:
i 2m
—| 1~ — |, 0gt<slLT
g =32LT [ "‘“( LT H (6.13)
0 i otherwise
For HCS:
7 m
v G e [ 0Lt S LT
g()=4aLT Sm[ LTJ (6.14)
0 i otherwise
For GMSK:
T T
1 - 5 t+ 5
gty =—Q| 278, ~ Q) 278, ; 0SB T<ow (615)
2T VIn2 Vin2

where Q(t) is the complementary error function erfc.

The notation for each pulse is denoted by the value of L followed by the pulse description.
For example to show an LRC pulse shape with a pulse width of 4T we denote this as 4RC.
Since, the signals within the CPM class are very similar, it is only possible to differentiate
between L. = 1, L. = 2, and GMSK for SNR 2 10dB. The full response and partial response
signals are made up of a mixture of the three pulse shapes (LREC, LRC, and HCS). For
example, the partial response signal consists of a mixture of 2REC, 2RC, and HCS where L.
=2,
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In the next section, the CPM receiver structure is described for both partial response and
full response signals. The reason that the receive structure is discussed, is because it is
explained that a CPM receiver designed for a particular pulse shape can accommodate any
other pulse shape without sacrificing performance. This is the reason why the classifier is

designed to recognise only three categories (partial response, full response and GMSK).

634 CPM Receivers

The purpose behind discriminating between CPM signals is so that the appropriate
demodulator can be chosen to extract the desired transmitted information. We describe two
types of receivers for CPM signals. The first receiver is for full response signals and the
second receiver applies to partial response signals. Although it seems that there is one
receiver for each type of CPM scheme, this is not the case. Tailoring the receiver to a
specific CPM signal may simplify the receive structure. However, it is shown in
[Swensson, 1994} that any CPM receiver can apply to all pulse shapes for both full and

partial response without sacrificing the performance,

6.3.4.1 ML Receiver for CPFSK

The first recetver presented in [Anderson, 1986] 1s an optimum ML coherent receiver for
CPFSK (CPM with a 1REC pulse shape). This receiver makes a decision about one
symbol only, based on observation of a sequence of consecutive symbols. Although the
receiver is for CPFSK detection it can be applied to CPM schemes with any pulse shape
and any modulation index A provided that the CPM signal is full response (L. = 1). Also the
receiver structure can be simplified for the special case of full response CPM with M = 2

and h = 0.5 (eg MSK).

6.3.4.2 Optimum Viterbi Receivers

The ML receiver for CPFSK (described in subsection 6.3.4.1) can apply to partial response
(L > 1) CPM signals but the receiver structure becomes unreasonably complex. Therefore,
a general receiver for partial response CPM is used. The ML sequence estimation is done
by means of a Viterbi processor. The metric (correlation between the received signal and

an estimated signal over the n™ symbol interval) is calculated in a bank of linear filters
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which are sampled every symbol interval. In other words, the receiver correlates the
received signal over one symbol interval with all possible transmitted altematives over that
symbol interval. The complexity grows exponentially with signal memory. The limiting
factors are the number of states S = pM~"’ and the number of filters F = 2M" for calculating
the metrics. For many cases with long smoothing pulses, the optimum receiver can be
approximated by a receiver based on a shorter pulse shape g/(t) of length L; < L so that the
complexity is reduced. It is shown in {Svensson, 1984} that the loss in error probability is

very small when for example a binary 4RC signal is received in a 2REC receiver.

The key feature derivation is described in the next section, which includes an overview of
the power spectra of CPM signals (since one of the key features is based on the PSD of the
signal).

6.3.5 Key Feature Derivation

The key features used to distinguish between CPM signals are:
¢ Lagigr, which is the value of the smoothed PSD of the received signal at the carrier

frequency of 150kHz. It is defined as:
Ly =1010g,, (DFTS)") ftsour (6.16)

where § is the received signal segment.

s o, which is the standard deviation of normalised-centred instantaneous amplitude and

is defined by:

1 ul 2 1 s ’

o =,]— A (D|-1—> A (i 6.17
. JN{Z c,,()] va m()] (6.17)
where Aq(i) is the value of the normalised-centred instantanecus amplitude at time
instants ¢ = i/f; (i = 1, 3,..., Ns) and £, is the sampling frequency.
A(i)

A, (D) =A()~1 where A ()= (6.18)

f:]

m, 1s the mean instantaneous amplitude evaluated over one segment
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N,
m, = iZA(i) (6.19)
Ns i=]

Normalisation is necessary to compensate for the channel gain {Azzouz and
Nandi, 1996].

* O is the standard deviation of the normalised instantaneous frequency, evaluated over

the non-weak segments of the intercepted signal and was defined in Chapter 5,

equation (5.41).

These key features are proposed for the following reasons:

The bandwidth occupancy of CPM depends on the modulation index h, the pulse
shape gft) and the number of signals M. In general, small values of & result in the
CPM signal having relatively small bandwidth occupancy, whereas large values of A
result in large bandwidth occupancy. The use of smoother pulse shapes such as
LRC results in smaller bandwidth occupancy. An example taken from [Proakis,
1995] is shown in Figure 6.4 where the power density spectrum is shown for binary
CPM with different partial response raised cosine (LRC) pulses and & = 0.5. The
power spectrum for an MSK signal is also shown for comparison. It can be seen
that as L increases, the pulse g(t) becomes smoother and hence the corresponding
spectral occupancy of the signal decreases. Therefore Lgisr can be used to separate
partial response CPM from full response CPM. Since the receivers mentioned in
section 6.3.4 apply to all pulse shapes, it is only necessary to distinguish between
full and partial response CPM signals. By inspecting the spectral performance of
full and partial response schemes in [Anderson et al, 1986] it can be concluded that
increasing the pulse duration L leads to a more compact PSD with side lobes that
fall off more smoothly. Therefore a key feature may be the value of the PSD of the
signal at some particular frequency. Figure 6.5 shows the smoothed PSD of two
LREC signals with L. =1 and L = 2. Figure 6.6 shows a close up of the PSD around
the peak. It can be seen that for L = 2, the PSD side lobes fall off more quickly and
the value of the PSD around the peak is less than that for L. = 1. It can be seen from
Figure 6.6 that for the frequency value of 150kHz (carrier frequency), the PSD

values for both signals can be separated. The partial response schemes should have
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lower PSD values therefore this key feature, can be used to separate partial response
CPM from full response CPM.

Power spectrum (W/Hz)

M=2

0 [EX] Lo 1.5 20
Normalized frequency £

Figure 6.4. PSD of binary CPM with different pulse shapes (h = 0.5) [Proakis, 1995].

O is used to separate the signals at SNR of 10dB from signals at SNR of 20dB and
15dB. Since signals within the CPM class are so similar, it is very difficult to
separate them at low SNR values. However, at SNR values greater than or equal to
10dB, it is possible to discriminate between full response, partial response and
GMSK. Therefore, when deriving threshold values, we do not consider lower SNR

values.

O, is used to distinguish between partial response signals and full response signals
at SNR of 10dB. It is found that the feature Lgi is not sufficient to discriminate
between these two classes for SNR values less than 15dB. The feature g, can be
used to distinguish between partial and full response. This is due to the fact that
although CPM signals have constant amplitude, there are slight variations in the
instantaneous amplitude of partial response and full response signals. In general,
partial response signals having lower instantancous amplitude values than full
response signals. The same key feature is used to separate GMSK signals from
partial and full response signals. However separate threshold values are used for the

SNR of 10dB and for the SNR range of 20dB to 15dB. It is found that in general,
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GMSK signals have lower instantaneous amplitude values than full and partial

response signals.

The DT classifier structure is discussed in the next section.

6.3.6 DT CPM Classification Method

The incoming CPM signal is categorised as full response, partial response or GMSK. This
is because the receiver structure will be simplified if there is a separate design for each
category. As mentioned earlier, the full and partial response signals consist of a mixture of
the three pulse shapes (LREC, LRC, and HCS). The decision tree depicting the
classification procedure is shown in Figure 6.7. A description of the threshold

determination is presented in the next section.

6.3.7  Threshold Determination

The key feature thresholds are chosen such that the Bayes error is minimised as described
in Chapter 3. The threshold values are obtained using 200 realisations of each modulation
type at the SNR range of 20dB to 10dB (for the first decision — Decision A). For the left
hand side of the decision tree, all threshold values are obtained using data of SNR 10dB.
Similarly for the right hand side of the tree, the thresholds are found from data of SNR
range 20dB to 15dB.

For Decision A, the desired threshold value for the feature oy, to separate SNR of 10dB

from 20dB and 15dB can be found in Figure 6.8. It can be seen than an appropriate value

for top, is 0.446 which has a corresponding minimum error of 0.0104.
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Figure 6.5. Smoothed PSD of LREC signals (L=1 and L. =2 ) at SNR of 20dB.
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Figure 6.6. Close up of PSD in Figure 1 around the peak.
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CPM

Decision A
SNR £i(dB SNR = 15-20dB
No Yes
Decision B

Decision D

Yes

GMSK

O « 10w GMSK

Decision C

Yes
L=2 aﬂ.cto-ﬂz

No

Figure 6.7. Decision tree for CPM signals. The first decision separates the signals at SNR
of 10dB from signals with 15-20dB SNR (Decision A). If g5 > toy, then the signal SNR ig
less than or equal to 10dB. If this condition is satisfied, the next decision separates GMSK
from partial and full response CPM (Decision B). Finally, partial and full response signals
are classified in Decision C. If the signal is of SNR greater than 10dB, the next decision
separates GMSK from partial and full response CPM (Decision D). The final decision
classifies the signal as either full response or partial response CPM (Decision E).
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Figure 6.8. Total error probability for the key feature g5 for Decision A (SNR of 20dB,
15dB and 10dB).

The estimated total error probability for the key feature ¢ that separates GMSK from full
and partial response CPM at SNR of 10dB (Decision B) is 0.0563. This corresponds to the
threshold value tg,; of 0.256. Similarly, for Decision C which separates full and partial
response CPM at SNR of 10dB, the appropriate threshold value is toy; = 0.275. This

corresponds to a total minimum error probability of 0.2625. These values can be confirmed

by referring to Figure 6.9.

Separation of GMSK and L=1/.=2 at SNR 10d8 Separation of L=1 and L=2 at SNR 1048
£04 045

E i)

I 5 0.4

i 03 X
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= ™

)] B
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022 024 026 028 03 032 02 025 03 035
sigma a sigrma a

Figure 6.9. Total error probability for the key feature o, for Decision B and Decision C
(SNR 10dB).
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The threshold value tog; is also found in Figure 6.10 to separate GMSK from L. =1and L =
2 for SNR values greater than or equal to 15dB (Decision D). An appropriate threshold is

0.175, which corresponds to a total minimum error probability of 0.015.

Decision E separates L = 1 and L = 2 at SNR greater than 10dB. The optimum threshold
value for tLgg, is found to be 0.4 from Figure 6.10, where the total minimum error
probability is 0.2158.

SNR 20dB and 15dB SNR 20dB and 154B
05
0.5

2 0.45

£04 £

§ é G4

§ o3 5 0.35

E o2} G o3

= )

E Q1 - 0,25

0 . a2 ~
01 315 g2 025 03 -5 g 5
sigma a (GMSK and L=11=2) Ldiff (L=1 and L=2)

Figure 6.10. Total error probability for the key features tLgiy and toys for Decision D and
Decision E (SNR 20dB and 15dB).

A summary of the key feature values and their corresponding threshold values and
minimum error probabilities are given in Table 6.2. The reason why the chosen key
features are used for each decision (as described in this section) rather than the other
existing key features is that these key features minimise the total error probability. This can
be observed in Table 6.3 and Table 6.4 where each decision has the corresponding
minimum error probability for every existing key feature. The chosen key feature is shown

in beld and its associated threshold value is shown in brackets.

The nest section outlines a NN classifier capable of recognising CPM signals. A NN

classifier that classifies signals within the CPM class is also presented.
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Table 6.2. Summary of key feature values and corresponding threshold values

Key Feature Threshold | Threshold Value | Total Minimum Error Probability
t O 0.4460 0.0104 (SNR 20dB - 10dB)
tOal 0.2560 0.0563 (SNR 10dB)
t0a2 0.2750 0.2625 (SNR 10dB)
tChaz 0.1750 0.015 (SNR 20dB and 15dB)
tL.gise 0.4000 0.2158 (SNR 20dB and 15dB)

Table 6.3. Total minimum error probability for Decision A (SNR 20dB, 15dB and 10dB),
Decision B (SNR of 10dB), and Decision C (SNR of 10dB). Threshold values are shown

in brackets.

Key Total Minimum Error | Total Minimum Error Total Minimum Error
Feature Probability Pmba'zgigm.on B Probability

(Decision A) (Decision C)

o 0.0104 (0.4460) 0.5(0.2) 0.4675 (0.52)

Oa 0.1268 (0.253) 0.0563 (0.2560) 0.2625 (0.2750)

Laifr 0.4146 (0) 0.3713 (2.1) 0.2817 (1.10)

Ymaxf 0.4629 4.7) 0.5 (2.0) 0.3608 (7.10)

Hp 0.4879 (12.0) 0.3812 (1.0) 0.3092 (8.0)

\én 0.1414 (1.0) 0.2963 (1.06) 0.4892 (1.06)

|é40 0.4504 (0.07) 0.0903 (0.5) 0.4942 (0.626)

6.4 Neural Network Classifier

The classification of ASK2, ASK4, PSK2, PSK4, FSK2, FSK4, and CPM signals has been

shown using the decision theoretic approach. A neural network classifier capable of

classifying these same seven signals will be proposed in this section. In the succeeding
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section, the performance of the NN classifier will be compared to the performance of the

decision theoretic approach.

Table 6.4. Total minimum error probability for Decision D (SNR 20dB and 15dB) and
Decision E (SNR 20dB and 15dB). Threshold values are shown in brackets.

Key Feature Total Minimum Error Total Minimum Error
Probability P“’babi('})ticision £
(Decision D)
O 0.1513 (0.36) 0.2983 (0.2)
Oua 0.015 (0.175) 033 (0.3)
Laitr 0.3331 (1.4) 0.2158 (0.4)
Ynaxf 0.4519 (8.7) 0.3838 (5.0)
Hap 0.5 (-100) 0.2962 (9)
é,, 0.125 (0.97) 0.5 (-5.0)
Iéw| 0.0188 (0.5) 0.4933 (0.1)

Simulations are carried out in Matlab using the neural network toolbox functions. The

same key features used in the decision theoretic algorithm are used as inputs to the NN

algorithm. These key features are Jmaxs, Hap, |C'21| + O, and |(:' 4,}|. The key features are

normalised to the range -1 to 1, then passed to the neural network.

The next subsection presents the NN structure of the classifier capable of recognising CPM
signals. The training of this network is discussed in subsection 6.4.2. The NN structures for
classification of signals within the CPM class are presented in subsection 6.4.3 with a

discussion on the training of these NN structures.

6.4.1 Neural Network Structure

The neural network structure is selected to have five inputs, corresponding to the five

normalised key features, and four output neurons corresponding to ASK, PSK2, PSK4, and

111



FSK/CPM. Two other networks are used to differentiate between ASK2 and ASK4 signals
on one hand, and FSK2, FSK4 and CPM signals on the other. The structure that is chosen
for the large network consists of one hidden layer with twelve neurons. Twenty versions of

this structure are tested to find the optimum network that gives the best performance.

For the classification of ASK2 and ASK4, the chosen network structure has one input
corresponding to the key feature t4,, and two output neurons corresponding to ASK2 and
ASK4 signals. There is one hidden layer with ten neurons, and twenty versions of this

network structure are tested to find the optimum performance.

The network to classify FSK2, FSK4, and CPM has two inputs comesponding to the
features o5, and Y and three output neurons corresponding to the three types of signals.
There is one hidden layer with twelve neurons, and twenty versions of this network

structure are also tested to find the optimum performance.

The hidden layers in all network structures use the nonlinear tan-sigmoid (hyperbolic
tangent) activation function and the output layer uses the log-sigmoid activation function.
These functions are chosen for the same reasons as explained in the previous chapter. The

full network structure is shown in Figure 6.11.

6.42 Training the Network

The large network is trained using the conjugate gradient method due to its fast training
speed and the two smaller networks are trained using the Levenberg-Marquardt (LM)
algorithm. All networks are trained using 200 samples from each modulation type. The
network is also tested and validated using a separate set of 200 samples of each modulation
type. The target values for true and false are offset from 1 and 0 (limit values for log-
sigmoid function) to 0.9 and 0.1 respectively as outlined in the previous chapter. The

training data is a mix of samples of SNR range 20dB to -5dB.
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Figure 6.11. Neural network structure for modulation classification of ASK, PSK, FSK and
CPM signals,

6.4.3 NN Classification Within the CPM Signal Class

Two neural network classifiers are proposed for the classification of partial response, full
response, and GMSK signals. The same key features used in the decision theoretic
algorithm are used as the inputs to the ANN algorithm. These key features are Lajs, 0y, and

O, Which are normalised to the range —1 to 1, then passed to the neural network.

The first neural network structure is selected to have three inputs, corresponding to the
three normalised key features, and three output neurons corresponding to the three CPFM
signal types. There are two hidden layers with seven neurons in the first layer and five
neurons in the second layer. Twenty versions of this structure are tested to find the

optimum network that gives the best performance.

The hidden layers in all networks use the nonlinear fan-sigmoid (hyperbolic tangent)
activation function and the output layer uses a linear activation function. The full network

structure is shown in Figure 6.12.
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Figure 6.12. Neural network structure for classification of signals within the CPM class.

The network is trained using the Levenberg-Marquardt (LM) algorithm with 200 samples
from each modulation type. The network is also tested and validated using a separate set of
200 samples of each modulation type. The target values for true and false are offset from 1
and O (limit values for log-sigmoid function) to 0.9 and 0.1, respectively. The training data
is a mix of samples of SNR 20dB 15dB, and 10dB. This is necessary because the data is
highly dependent on SNR as was shown for the DT classifier.

The second neural network structure is made up of three separate networks. Each network
is trained with data of SNR 20dB, 15dB, and 10dB respectively. All networks have three
input neurons corresponding to the three key features Lgsr, 0, and op, and three output
neurons corresponding to the three categories L = 1, L = 2 and GMSK. The first sub-
network is trained with data of 20dB SNR, and has one hidden layer with seven neurons.
The second sub-network is trained with data of 15dB SNR, and has one hidden layer with
ten neurons. Finally, the third sub-network has one hidden layer with ten neurons and is
trained with data of 10dB SNR. The three networks are arranged in parallel and the

modulation type with the maximum output is chosen as shown in Figure 6,13,

6.5 Results

The results for the DT classifiers are presented first. The NN results are then presented and
compared to those of the DT classifiers for signals within the CPM class as well as CPM

signals as one modulation type.
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6.5.1 DT Classifier Performance Results

6.5.1.1 Results for DT Classification of ASK, PSK, FSK, and CPM Signals

The performance results of the DT classifier are derived from 200 realisations of each
modulation type. The carrier frequency, sampling rate and the symbol rate are given the
values of 150kHz, 1200kHz and 12.5kHz, respectively. The digital symbol sequence is
randomly generated. The simulation results for the test set based on 200 realisations are
given in Appendix B, Table B.1 - Table B.6, for the SNR range of 20dB to -5dB,
respectively. The graphical representations of these results are shown in Figure 6.15 -
Figure 6.20 for the SNR range of 20dB to —-5dB. The results from the NN classifier are
also shown for comparison. These results indicate that all types of the digital modulation
schemes considered can be correctly classified with greater than 98% success rate for an

SNR greater than 5dB. For lower SNR, the performance drops, as can be expected.

6.5.1.2 Results for DT Classification Within CPM Class

Simulations are carried out to classify full response CPM signals (consisting of a
combination of LREC, LRC and HCS), partial response signals (also comprising LREC,
LRC, HCS), and GMSK signals. For all signals # = (0.5 and M =2, For the partial response
signals, L. = 2. The carrter frequency, sampling rate and the symbol rate are given values of
150kHz, 1200kHz and 12.5kHz, respectively. The digital symbol sequence is randomly

generated.

The graphical results for each CPM classification type are shown in Figure 6.21 - Figure
6.26 for the SNR range of 20dB to —5dB. The results for the NN classifier are also shown
for comparison. The 95% confidence interval is also shown in all figures by the error bars.
The confusion matrices for the DT classifier are shown in Appendix B in Table B.7 — Table
B.12. It can be seen that the performance drops dramatically for partial response CPM of
SNR less than 10dB because the classifier is trained with data of SNR 204B, 15dB, and
10dB. However, the performance degradation is not an issue because for many cases of
partial response CPM, the optimum receiver can be approximated by a receiver based on

full response CPM as explained in subsection 6.3.4.2. It is implied in [Svensson, 1984] that
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the loss in error probability is very small when for example a binary 2RC signal is received

in a REC receiver.
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Figure 6.13. Second NN structure to classify signals within the CPM class.

6.5.2 NN Classifier Performance With Comparison to DT Classifier Results

6.5.2.1 Results for NN Classification of ASK, PSK, FSK, and CPM Signals

The performance results of the NN classifier at SNR range of 20dB to —5dB are given in

Figure 6.15 - Figure 6.20, respectively. The results for the DT classitier are also shown for
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comparison with 95% confidence interval. It can be seen that the NN performs well, with
100% success rate for most modulation types with SNR of 20dB, 15dB and 10dB. The 0.95
confidence intervals on the classification accuracy of the DT and NN classifiers for the
SNR range of 20dB to -5dB are shown in Table 6.5. It can be seen that the NN classifier
performance is slightly better than that of the DT classifier for the SNR range of 20dB to
5dB. This is mainly because the key features have been chosen well enough so that there is
minimal overlap between classes. This can be confirmed by referring to the graph of SNR
versus classifier accuracy in Figure 6.14. For lower SNR, the NN performs much better
than the DT approach because the NN can develop a decision boundary that is not restricted
to being linear as in the DT approach. The confusion matrices showing the results of the
NN classifier are shown in Appendix B, Table B.13 — Table B.18, for the range of SNR
from 20dB to -5dB, respectively.

Classifier Accuracy
o3 88383881
|

-

20dB 15db 10dB 5d8 0dB -5dB
SNR

Figure 6.14. Graphical comparison of overall performance between the NN-based and DT-
based classifiers with 95% CI for ASK, PSK, FSK, and CPM signals.

6.5.2.2 NN Classifier Results for Within CPM Class

The results of classification of CPM signals are shown in Figure 6.21 - Figure 6.26 for SNR
range of 20dB to —5dB. The 95% confidence interval is shown on all figures by the error
bars. Since the signals are classified as full response, partial response or GMSK, the input
data is a combination of the signals from each classification type. For instance, the test data
for L = 1 is combined from the full response signals LREC, LRC, and HCS, and likewise
for L = 2. It can be seen that the performance is good for both networks for SNR greater
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comparison with 95% confidence interval. It can be seen that the NN performs well, with
100% success rate for most modulation types with SNR of 20dB, 15dB and 10dB. The 0.95
confidence intervals on the classification accuracy of the DT and NN classifiers for the
SNR range of 20dB to -5dB are shown in Table 6.5. It can be seen that the NN classifier
performance is slightly better than that of the DT classifier for the SNR range of 20dB to
5dB. This is mainly because the key features have been chosen well enough so that there is
minimal overlap between classes. This can be confirmed by referring to the graph of SNR
versus classifier accuracy in Figure 6.14. For lower SNR, the NN performs much better
than the DT approach because the NN can develop a decision boundary that is not restricted
to being linear as in the DT approach. The confusion matrices showing the results of the
NN classifier are shown in Appendix B, Table B.13 — Table B.18, for the range of SNR
from 20dB to -5dB, respectively.
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Figure 6.14. Graphical comparison of overall performance between the NN-based and DT-
based classifiers with 95% CI for ASK, PSK, FSK, and CPM signals.

6.5.2.2 NN Classifier Results for Within CPM Class
The results of classification of CPM signals are shown in Figure 6.21 - Figure 6.26 for SNR

range of 20dB to —5dB. The 95% confidence interval is shown on all figures by the error
bars. Since the signals are classified as full response, partial response or GMSK, the input
data is a combination of the signals from each classification type. For instance, the test data
for L = 1 is combined from the full response signals LREC, LRC, and HCS, and likewise
for L = 2. It can be seen that the performance is good for both networks for SNR greater
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than or equal to 10dB as the NNs are trained with data of SNR 20dB, 15dB, and 10dB.
With lower SNR values, the performance drops, as can be expected.

Table 6.5 DT and NN classifier accuracy and 95% confidence intervals for ASK, PSK,
FSK, and CPM signals.

SNR DT Classifier NN Classifier
Accuracy | 95% Confidence Interval | Accuracy | 95% Confidence Interval
20dB | 99.57% [99.34, 99.81] 99.5% [99.24, 99.76]
15dB 99% [98.63, 99.37] 99.28% [98.97, 99.60]
10dB | 97.17% [96.56, 97.79] 97.86% [97.32, 98.39]
5dB 90.46% [89.38, 91.55] 92.08% [91.08, 93.08]
0dB 59.61% [57.79, 61.42] 73.05% [71.41,74.70]
-5dB | 39.07% [37.26, 40.88] 58.16% [56.33, 59.98]
Overall | 80.82% [77.91, 79.25] 86.66% [86.14, 87.17]
R — i
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Figure 6.15. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for ASK, PSK, FSK, and CPM signals at 20dB SNR.
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Figure 6.16. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for ASK, PSK, FSK, and CPM signals at 15dB SNR.
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Figure 6.17. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for ASK, PSK, FSK, and CPM signals at 10dB SNR.
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Figure 6.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for ASK, PSK, FSK, and CPM signals at 5dB SNR.
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Figure 6.19. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for ASK, PSK, FSK, and CPM signals at 0dB SNR.
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Figure 6.20. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for ASK, PSK, FSK, and CPM signals at -5dB SNR.

The second NN structure in Figure 6.13 performs better than the NN structure in Figure
6.12. This is due to the fact that the former NN is made up of three separate networks
trained with individual SNR values, whereas the latter is trained with data of combined
SNR ranging from 20dB to 10dB. A comparison between the overall performance of the
DT and NN classifiers for signals within the CPM class is shown in Table 6.6. It can be
seen that the DT classifier does not perform as well as the NN classifier. This may be due
to the fact that the NN decision boundary may be non linear and based on more than one
key feature, whereas the decision boundary for the DT classifier is linear and based on one
key feature. However, for lower SNR values, the second NN structure outperforms both

the first NN structure and the DT classifier. This is due to the fact that the signal with the
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highest success rate from three separate NN structures is chosen. In other words, we
choose the output of the network that gives the best results out of the three separate
networks. The confusion matrices of the NN classifiers are shown in Appendix B, Table
B.19 — Table B.24, for the first NN structure and, Table B.25 — Table B.30, for the second
NN structure. A graphical comparison between the overall performance of the DT and NN
classifiers is shown in Figure 6.27 for the SNR range of 20dB to -5dB.
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Figure 6.21. Classification accuracy of DT classifier (dark bars) and NN classifiers (light
bars) for CPM signals at 20dB SNR.
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Figure 6.22. Classification accuracy of DT classifier (dark bars) and NN classifiers (light
bars) for CPM signals at 15dB SNR.

121



Rl B

Figure 6.23. Classification accuracy of DT classifier (dark bars) and NN classifiers (light
bars) for CPM signals at 10dB SNR.
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Figure 6.24. Classification accuracy of DT classifier (dark bars) and NN classifiers (light
bars) for CPM signals at 5dB SNR.
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Figure 6.25. Classification accuracy of DT classifier (dark bars) and NN classifiers (light
bars) for CPM signals at 0dB SNR.
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Figure 6.26. Classification accuracy of DT classifier (dark bars) and NN classifiers (light
bars) for CPM signals at -5dB SNR.

6.6 Conclusions

In this chapter we considered a DT classifier capable of classifying ASK, FSK, PSK, and
CPM signals. A NN classifier is also proposed that is capable of recognising these same
signals. The performance of both classifiers are compared. Both the DT and NN
modulation recognisers perform well, even for low SNR values. The NN outperforms the
DT classifier due to the fact that the NN may use a non-linear decision boundary with more
that one key feature for classification; whereas, the DT classifier uses one key feature per

decision with a linear decision boundary.

For signals within the CPM class, by differentiating between partial response, full response
and GMSK signals, the receiver structure chosen to detect the classified signal will be less
complex than a receiver designed for all CPM signals. A decision tree is designed using
data of SNR range 20dB to 10dB. This is because the signals within the CPM class are
very similar and differentiation at lower SNR becomes very difficult. In addition to a DT
approach, two NN classifiers for classification of signals within the CPM class are also
proposed. The first NN is trained with data of SNR ranging from 20dB to 10dB. The
second NN structure is made up of three parallel sub-networks. Each network is trained
with SNR of 20dB, 15dB, and 10dB, respectively. It is found that the NN approach
outperforms the DT classifier for most SNR values. This may be due to the fact that for the

DT classifier, the threshold decision boundary is linear, whereas the NN classifier may
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have a non-linear decision boundary that is based on more than one key feature. The next

chapter introduces multiple access signals to the modulation classifier.

Table 6.6 Comparison of DT and NN classifiers for signals within the CPM class for SNR
range 20dB to —-5dB

SNR DT Classifier NN Classifier 1 NN Classifier 2
Accuracy 95% Accuracy 95% Accuracy 95%
Confidence Confidence Confidence
Interval Interval Interval

20dB | 83.45% |[81.50,85.40] | 94.82% | [93.66,95.98] | 97.83% | [97.07,98.60]

15dB | 83.58% | [81.64,85.52] | 90.17% | [88.61,91.73] | 93.83% | [92.57,95.09]

10dB | 76.75% | [74.54,78.96] | 78.5% |[76.35,80.65] | 80.44% | [78.37,82.52]

5dB 33.33% | [30.86,35.80] | 33.95% |[31.47,36.43] | 72.72% | [70.39,75.06]

0dB 33.33% | [30.86,35.80] | 29.17% | [26.79,31.55] | 67.06% | [64.59,69.52]

-5dB | 33.33% | [30.86,35.80] | 30.95% | [28.53,33.37] | 66.67% | [64.20,69.14]

Overall | 57.30% | [54.71,59.89] | 59.59% | [58.54,60.64] | 79.76% | [78.90,80.62]
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Figure 6.27. Graphical comparison of overall performance between the NN-based and DT-
based classifiers (for within the CPM Class) with 95% CL

124



CHAPTER 7

Classification of Multiple Access Signals

7.1 Introduction

This chapter presents an extension to the capabilities of the modulation classifiers described
in Chapter 6 to include multiple access signals. These signal’s modulation types are: direct
sequence spread spectrum (DS S88) or code division multiple access (CDMA), frequency
hopped spread spectrum (FH SS), and time division multiple access (TDMA). They are
very commonly used in the military for their low probability of interception and also in the
civilian areas in mobile networks to reduce call dropouts and interference. We include
these different types of signals in the modulation classification algorithms, which employ
the decision theoretic and neural network approaches. Results are compared and presented
for SNR of 20dB, 15dB, 10dB, 5dB, 0dB, and -5dB.

The chapter is organised as follows: a brief introduction to multiple access signals is
presented in section 7.2 followed by a description of the DT classification procedure in
section 7.3. Threshold determination is discussed in section 7.4 and in section 7.5, a NN
classifier is introduced to classify the same multiple access signals as the DT classifier. A
discussion of the performance of both the DT and NN classifiers is presented in section 7.6

with results followed by concluding remarks in section 7.7.

7.2  Multiple Access Communication Systems

Multiple access communication systems have a large number of users sharing a common
communication channel to transmit information to a receiver. The common channel may
be the up-link in a satellite communication system, or some frequency band in the radio

spectrum that is used by multiple users to communicate with a radio receiver.
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One method for creating multiple subchannels for multiple access is to divide the time
duration Ty, called the frame duration, into N nonoverlapping subintervals, each of duration
T¢N. Then to transmit information, each user is assigned to a particular time slot within
each frame. This multiple access method is called Time Division Multiple Access (TDMA)
and is commonly used in data and digital transmission. TDMA works well when the data
transmitted is constant. Problems arise when the data becomes bursty. This is when there
are periods of no data being transmitted and where these periods are greater than the
periods of information transmission. This can be the case in a mobile cellular
communications system carrying digitised voice, since speech signals contain long periods
of silence. In these cases TDMA tends to be inefficient because there are wasted time slots
when no data is being transmitted. This inefficiency limits the number of simultaneous

users, TDMA will be discussed in more detail in section 7.2.3.

An alternative to TDMA is to allow more than one user to share a channel by using direct-
sequence spread spectrum signals (DS-SS). It is given its name because the transmission
bandwidth is much greater than the minimum bandwidth required to transmit the digital
information. Each user is assigned a unique code or signature sequence that allows the user
to spread the information signal across the frequency channel. The signals from various
users are separated at the receiver by cross correlation of the received signal with each of
the possible spreading codes. These codes are designed to have relatively small cross
correlations so that there is no interference between users. This multiple access method is
known as code division multiple access (CDMA). For a signal, to be defined as spread

spectrum, the system must have the following characteristics [Peterson, 1995].

1. The transmitted signal energy must occupy a bandwidth which is larger than the
information bit rate (usually much larger) and which is approximately independent of
the information bit rate.

2. Demodulation must be accomplished, in part, by correlation of the received stgnal with

a replica of the signal used in the transmitter to spread the information signal.

There are two types of S8, direct-sequence (DS) and frequency hopped (FH). These types

will be described in more detail in subsections 7.2.1 and 7.2.2 respectively.
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7.2.1 Direct Sequence Spread Spectrum (DS-SS)

The spectrum of a data-modulated signal can be spread by modulating the signal a second
time by a very wideband spreading signal. The second modulation method is usually
digital phase modulation. The spreading signal is chosen so that demodulation of the signal
by an unintended receiver is made as hard as possible. Therefore the spreading signal is
chosen specifically for the intended receiver to demodulate. Also if there is jamming, the
intended receiver will still be able to discriminate between the data signal and jamming due
to this property. A direct-sequence (DS) spread spectrum signal is one in which the
bandwidth spreading is achieved by direct modulation of a data-modulated carrier by a

wide-band spreading signal or code.

7.2.1.1 Binary Phase Shift Keying Direct Sequence Spread Spectrum (BPSK DS-SS)
The simplest form of DS spread spectrum uses BPSK as the spreading modulation. The
BPSK DS-SS signal can be mathematically represented as a multiplication of the carrier by
a function ¢(?) which takes on values of 1. Consider a constant envelope data-modulated
signal s(t) defined by :

s(r) = A, coslw_t + 6()] (7.1)

where &) is the data phase modulation and «. is the radian frequency. The bandwidth of
this signal is usually between one-half and twice the data rate before DS spreading. The
signal is multiplied by a function ¢fz) representing the spreading waveform, and the
resulting transmitted waveform is:

s(t) = A, c(t)coslw 1 +6(1)] (7.2)

6(t)= D ,mfr) (7.3)

where m(t) is a bipolar baseband signal having peak values of 1 and a rectangular pulse
shape (for convenience) and D, is the modulation index of the BPSK signal. The signal has
a transmission delay Ty, is transmitted along a distortionless path, and is received with

additive Gaussian noise and/or some other type of interference.
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7.2.1.2 Spreading Codes

The waveform c(t) used to spread and despread the data-modulated carrier is usually
generated using a shift register. This waveform ¢(¢} is a pseudo-random code known as a
PN sequence. This PN sequence is periodic with noise-like properties which makes the
spread-spectrum signal hard to intercept. Each user in the CDMA system has a unique PN
sequence assigned to them. Because users will be transmitting messages simultaneously,
the PN code sequences must be mutually orthogonal so that interference from other users is
avoided [Sklar, 1988]. For the spread-spectrum system to operate effectively, the PN codes
¢(t-Ty) must be determined initially and then tracked by the receiver. To achieve this, ¢(t) is
chosen to have a two-valued autocorrelation function. The ideal spreading code would be

an infinite sequence of equally likely random bits, however this is not possible in practice.

The most widely known PN sequences are the maximal-length shift-register sequences (m-

sequences) which have a length of
n=2"-1 bits (7.4)

They are generated by an m-stage shift register with linear feedback. The sequence is
periodic with period # and each period of the sequence contains 2™ -1 zeros and 2™ ones.
It is desirable in a CDMA system to have a low cross-correlation between a pair of
sequences. The number of m sequences generated by the shift register with low cross
correlation values is too small for CDMA purposes. Therefore it has been found that Gold

and Kasami sequences have better cross-correlation properties.

7.2.1.3 Gold and Kasami Sequences
It was found by Gold and Kasami that certain pairs of m sequences of length n have a three-

valued cross correlation function with the values {-1, -¢(m), t(m)-2} where

{ 22 L1 (Codd m),
t{mj=

1.5
20mINL L (even m), (75)

For example, if m = 5, then #(5) = 2° + 1 = 9. The three possible values of the periodic
cross-correlation function are then {-1, -9, 7} and the maximum magnitude of the cross-

correlation for the pair of m-sequences is nine. Two m-sequences of length n, with periodic
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cross-correlation taking on values of {-1, -1(m), t(m)-2}, are called preferred sequences,
From a pair of preferred sequences where a = [a;a;...a,] and b = [b;b,...b,], a sequence of
length n can be constructed by taking the modulo-2 sum of g with the n cyclically shifted
versions of b or vice versa. The resulting new periodic sequences have period n = 2"-1. By
including the original sequences, a and b, we have a total of n + 2 sequences called Gold

sequences.

Kasami sequences have cross-correlation and autocorrelation values from the set {-1, -(2’""2
+1), 2" -1}). The sequences are constructed by beginning with an m-sequence a, and
forming a binary sequence b by taking every 2™ + 1 bit of a. This sequence, b, has a
period n = 2™° — 1, Then by taking n = 2™-1 bits of the sequences @ and b, a new set of
sequences is formed by modulo-2 adding the bits from a and b and all 2™ — 2 ¢yclic shifts
of the bits from 4. By including a in the set, a set of 2™ Kasami sequences of length n =
2™-1 is obtained.

In this thesis, Gold codes from a set of orthogonal Gold codes are used in simulations.
These sequences are 7-bits in length and can accommodate up to 9 users in a CDMA

scheme. The set of Gold codes is shown in Table 7.1.

The complex envelope is found by referring to the PSK2 signal and is represented by

[Couch, 2001] as
alt)= A.m{r)e(r) (7.6)

The pulse width of c(f) is denoted by T, and is called a chip interval.

The instantaneous amplitude and phase is:
alt) =|m()c()i=1 amn

~ml2 if m(t)(t)=-1

. (7.8)
wl2 if m(t)e(t)=1

o) = {

These features of BPSK DS-SS modulation are shown in Figure 7.1,
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Table 7.1. CDMA 7-bit Gold code set [Ramakonar, 1996].

User, k 7-bit Gold Code Sequence
0 1-1111-1-1
1 11-11-1-11
2 -111-11-11
3 -11-11-1-1-1
4 lt-1-111-1
5 1-1-1-1-1-11
6 -111-1-11-1
7 1111-111
8 -1-1-11111

7.2.1.4 Quadrature Phase Shift Keying Direct Sequence Spread Specirum (QPSK DS-58S)
Quadrature-phase shift keying is advantageous because it allows simultaneous transmission
on two carriers which are in-phase quadrature and this conserves spectrum. This means
that for the same total transmitted power, the same bit error probability is achieved using
one-half the transmission bandwidth. Bandwidth efficiency is not very important in low
probability of detection and antijam applications. QPSK is used in spread spectrum
applications due to the fact that it is less sensitive to some types of jamming and more

difficult to detect using feature detectors in low probability of detection applications.

The QPSK DS--SS signal can be represented by
s(1) = A ¢, (B)coslw 1 +6()| - A.c, () sin|w t +6 )] (7.9)
6(t)=D,m(z) (7.10)
where ¢;(t) and c:(#) are the in-phase and guadrature spreading waveforms which are
assumed only to take on values of 1. The two terms of the QPSK spread-spectrum signal
in equation (7.9) are identical, except for amplitude and a possible phase shift to the BPSK
spread-spectrum signal in equation (7.2). Therefore, since the two signals are orthogonal,

the power spectrum of the QPSK signal equals the algebraic sum of the two power spectra.

The complex envelope is given by
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alt)= Amltle,(t)- Amit)e, 1)

The instantaneous amplitude and phase are, respectively:
a(t)=1

0
zi2

o) =37

Inf2

(7.11)

(7.12)

if m(t)e,(t) =—1
if m(t)e, (1) =1

if m(tey(r) =1

(7.13)

if m(tye,(t) =—1

The useful attributes of a QPSK DS-SS signal are shown in Figure 7.2.
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Figure 7.1. Useful features of BPSK DS-8S modulation.
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Figure 7.2. Useful features of QPSK DS-8S modulation.

7.2.2 Frequency Hopped Spread Spectrum (FH SS)

Another method used to widen the spectrum of the data-modulated carrier is to change the
frequency of the carrier periodically. Each carrier frequency is chosen from a set of 2k
frequencies which are spaced approximately one width of the data modulation bandwidth
apart. The spreading code is used to control the sequence of carrier frequencies and thus
does not directly modulate the data-modulated carrier. This modulation scheme is named
frequency hopped (FH) spread spectrum because it appears as if the transmitted signal is
hopping from one carrier frequency to another. The frequency hopping is removed in the
receiver by down-converting (mixing) with a local oscillator signal which is hopping

synchronously with the received signal.
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7.2.2.1 Coherent Slow-Frequency Hop Spread Spectrum
In most cases of this type of modulation, the frequency hopping is done noncoherently.
However, it 1s theoretically possible to have a fully coherent FH system. The frequency
synthesiser output is a sequence of tones of duration 7, so si7{t) can be written as

he(t) = i2p(r—nTc)ms(a)nt+¢n) (7.14)
where p(t) is a unit amplitude pulse of duration 7, starting at time zero, and ), and ¢, are
the radian frequency and phase during the nth frequency-hop interval. The radian
frequency e, is taken from a set of 2 frequencies. In a DS spread spectrum system, the
spreading sequence was used one bit at a time. In contrast the FH system uses & bits of the
spreading code at a time. The transmitted signal is the data-modulated carrier up-converted

to a new frequency (ah, + ) for each FH chip and is represented as

oo
s, (t) = [sd (r) ZZp(r - nTc)cos(a)nt + ¢n) s e (7.15)
companents

fi=—oo

The complex envelope is denoted as [Couch, 2001]:
a(t) = a,t)a (1) (7.16)

where ¢,(1) i1s the complex envelope of the information signal and &) is of FM type
where there arc M = 2* hop frequencies determined by the &-bit words obtained from the

spreading code waveform c(z).

The useful features of FH SS modulation are shown in Figure 7.3,

7.2.3 Time Division Multiple Access (TDMA)

In TDMA, M signals or users sharc the same frequency channel for a short duration of time
called a time slot as shown in Figure 7.4. Sometimes unused time regions are inserted
between adjacent slot assignments to allow for time uncertainty between signals. These
time regions are cailed guard times and act as buffer zones to reduce interference. In a
typical TDMA satellite application, time is segmented into intervals called frames. Each

frame is further partitioned into ttime slots which are assigned to each user. The frame
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structure repeats so that a fixed TDMA assignment constitutes one or more slots that
periodically appear during each frame time. Some useful features of TDMA are shown in

Figure 7.5.
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Figure 7.3, Useful features of FH SS modulation.

7.3 Classification Procedure (DT Approach)

The procedure for digital signal classification is based on the method outlined in Chapter 5
and Chapter 6. Key features are derived from the power spectral density and the
instantaneous frequency of the intercepted signal. The following signals are added to the

modulation classifier:

» BPSKDS-58
+« QPSK DS-SS
» FHSS

« TDMA
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7.3.1 Key Feature Derivation for Signal Classification

To derive the appropriate key features for signal classification, the same method in Chapter
6 is used. The new signals are passed through the existing classifier and each signal is
classified as a modulation type already defined in the tree. To find the actual modulation
type of a particular signal, a decision node is added to the tree to distinguish between the
modulation type that the signal is classified as and the actual modulation type of the new
signal. We discuss BPSK DS-SS classification in subsection 7.3.1.1 and QPSK DS-SS
classification in subsection 7.3.1.2. The classification of FH SS and TDMA signals are
discussed in subsections 7.3.1.3 and 7.3.1.4 respectively. The decision tree depicting the
classification procedure is shown in

Figure 7.7

7.3.1.1 BPSK DS-S8S Signal Classification

To derive the appropriate key feature for the classification of the BPSK DS-SS signal, the
existing tree in Chapter 6 is utilised. The BPSK DS-SS signal is classified as a PSK2
signal, therefore we know the decision has to be made between the BPSK DS-SS signal and
a PSK2 signal. By observing the smoothed power spectral densities of both signals in
Figure 5.3 and Figure 7.1, it can be seen that the power of the BPSK DS-SS signal is spread
due to the addition of the spreading sequence. In contrast, the PSK2 signal has most of the
power centered around the carrier frequency. Figure 7.6 shows the smoothed PSD for one
signal segment for PSK2 and BPSK DS-SS signals. It can be seen that for the PSK2 signal,
the power drops off dramatically at frequencies further from the carrier frequency.
However for the BPSK DS-SS signal, this degradation is not so steep because of the

addition of more frequencies by the spreading sequence.

Therefore to separate these two types of signals, a new key feature %, is introduced which

is the minimum value of the smoothed power spectral density (PSD) and is defined as:

Y ain = 1010, (min|DFT(s(1))|) (7.17)
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Figure 7.6. Smoothed power spectral density for PSK2 and BPSK DS-SS signals.

7.3.1.2 QPSK DS-SS Signal Classification

The resulting tree after the addition of the BPSK DS-8S signal is used to derive the
appropriate key feature for the classification of the QPSK DS-8S signal. The signal is
classified as a BPSK DS-SS signal, therefore we know the decision has to be made between
the QPSK DS-SS signal and a BPSK DS-SS signal. By observing the instantaneous phase
of both signals in Figure 7.1 and Figure 7.2, it is found that the QPSK DS-SS signal has a
slightly larger range of phase values. Therefore, a feature based on instantaneous phase is a
logical choice. The key feature chosen to differentiate between BPSK DS-SS and QPSK
DS-SS is 0. This feature is defined in [Azzouz and Nandi, 1996] as the standard
deviation of the absolute value of the non-linear component of the instantaneous phase,
evaluated over the non-weak segments of the received signal. It is found that the QPSK
DS-SS signal has higher standard deviation values due to the larger range of the

Instantaneous phase.

7.3.1.3 FH SS Signal Classification
To derive the appropriate key feature for classification, we exploit the fact that the FH SS

signal has frequency information. By inspecting the decision tree, we intuitively know that
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the FH SS signal will lie in the right hand segment of the tree with the FSK and CPM
signals. By using information found previously by classifying BPSK DS-SS and QPSK DS-
SS signals we can predict that a decision will be made between the FH SS signal and the
other signals with frequency information. By observing the smoothed power spectral
densities of these signals in Figures 5.5, 5.6, 6.1, and 7.3, it can be seen that FH SS signals
also have a greater power spread than FSK and CPM signals due to the addition of the

spreading sequence. Therefore the key feature ¥, is also used to classify the FH SS signal.

7.3.1.4 TDMA Signal Classification

To derive the appropriate key feature for classification, the TDMA signal is classified by
the resulting tree after the addition of the FH SS signal. The TDMA signal is classified as a
FH SS signal, therefore we know the decision has to be made between the TDMA signal
and a FH SS signal.

It is found that the values of léni are higher for TDMA signals than for FH SS signals.
This is probably due to the fact that the TDMA signal is made up of a mixture of signals
and there is no spreading sequence used in the modulation process. Therefore the key

feature |C‘21| is used to separate TDMA and FH SS signals.

7.4 Threshold Determination
The same method in Chapter 3 is used to determine the thresholds tYmin, tYmin2, t|CA'm[ 5 and

toy,. The key feature thresholds are chosen so that the probability of a correct decision is
obtained from 400 realisations of each modulation type at the signal to noise ratio (SNR)
range of 20dB to —5dB. A set of modulation types is separated into two non-overlapping
subsets (A and B). The optimum threshold is chosen such that the Bayes error is minimised
as described in Chapter 3. The total error probability €, is estimated directly from the

sample data.
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Figure 7.7. Flowchart for identification of digital modulation schemes. The first decision in
the tree splits the modulation types into two groups: signals with frequency information
(right hand side of tree) and signals without frequency information (left hand side of tree).
The signals with frequency information are further split into multiple access signals (FH SS
and TDMA) and FSK/CPM signals. The signals without frequency information are divided
into signals with amplitude information (ASK) and signals with phasc information (PSK,
QPSK DS-SS and BPSK DS-SS). The signals with phase information are further divided
into multiple access signals (BPSK DS-SS and QPSK DS-88) and PSK signals.
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The total error probability for the key feature ¥, at SNR range of 20dB to —5dB is shown
in Figure 7.8 for subset A (PSK2) and subset B (BPSK DS-SS and QPSK DS-SS). It can be
seen that a good choice for the threshold tyns, is —30.5 where the total minimum error is

0.0027 for the SNR range of 20dB to -5dB.
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Figure 7.8. Total error probability for the key feature Ynus, at SNR range of 20dB to -5dB,
for PSK2 (subset A) and BPSK DS-SS and QPSK DS-SS (subset B).

The total error probability for the key feature oy, for the SNR range of 20dB to —5dB is
shown in Figure 7.9 for subset A (BPSK DS-SS) and subset B (QPSK DS-55). An
appropriate choice for the threshold tgy, is 0.76 where the total minimum error is 0 for the
SNR range of 20dB to 5dB and 0.00062 for SNR range of 0dB to —5dB at the same
threshold value.

To separate subset A (FSK2, FSK4, CPM) and subset B (FH SS and TDMA) using the key
feature ¥., the threshold is found by referring to the error probabilities in Figure 7.10 for
the SNR range of 20dB to —5dB. It can be seen that a good choice for the threshold tygns is
-32.3, where the total minimum error for the SNR range of 20dB to -5dB is 0.0158.
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Figure 7.9. Total error probability for the key feature o,,, at SNR range of 20dB to -5dB,
for BPSK DS-SS (subset A) and QPSK DS-SS (subset B).

The total error probability for the key feature IC‘ZI

is shown in Figure 7.11 for subset A

(TDMA) and subset B (FH SS). It can be seen that a good choice for the threshold tl(ﬁﬁ'z1 | 5 I8

0.5 where the total minimum error is 0 for the SNR range of 20dB to -5dB.
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Figure 7.10. Total error probability for the key feature Yni,, at SNR range of 20dB to -5dB,
for FSK2, FSK4, CPM (subset A) and FH SS and TDMA (subset B).
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Figure 7.11. Total error probability for the key feature |C,,

, at SNR range of 20dB to

-5dB, for TDMA (subset A) and FH S5 (subset B).

A summary of the key feature thresholds and their corresponding error probabilities for the
SNR range of 20dB to —5dB is shown in Table 7.2. A compromise must be made between
the threshold values at higher and lower SNR. The threshold must be chosen so that the

overall classification error is minimised. Therefore, the optimum values for the key feature

A

thresholds ninz, thnin2, t|C,,| 2 and tay, are —30.5, -33.3, 0.5 and 0.76, respectively.

Table 7.2. Summary of key feature thresholds and error probabilities.

Key Feature SNR 20dB to 5dB SNR 0dB to -5dB
Threshold Optimum Minimum Error Optimum Minimum Error
Threshold Probability Threshold Probability
t Yinin -30.5 0 -24.5 0
t Hinin2 -33.3 0 -25 0
i ézl , 0.5 0 0.5 0
tOap 0.76 0 0.76 0.00062
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7.4.1 Dependency of Key Feature Selection on Minimum Probability of Error

The reason why the key features in the previous section are chosen over the other existing

key features is because they minimise the total error probability for each decision. We will
call the decision separating PSK2 (subset A) and BPSK DS-88 and QPSK DS-SS (subset
B} decision 1. Decision 2 separates subset A (FSK2, FSK4, CPM) and subset B (FH SS)
and decision 3 distinguishes TDMA (subset A) from FH SS (subset B). Finally, we define

decision 4 as the classification of BPSK DS-S8S (subset A) and QPSK DS-8S (subset B).

We can see from Table 7.3 that the key features that have been chosen minimise the total

error probability (shown in bold) for each decision for the SNR range of 20dB to -5dB. The

structure of the NN classifier is discussed in the next section.

Table 7.3. Total minimum error probability for Decisions 1 — 4 for combined SNR range of

20dB to —5dB {threshold values are shown in brackets).

Key Total Minimum | Total Minimum | Total Minimum | Total Minimum
Feature | Error Probability | Error Probability | Error Probability | Error Probability
{Decision 1} {Decision 2) {Decision 3} {Decision 4)
Yinaxt 0.3333 (-85.7) 0.2500 (3.2) 0.0286 (19.3) 0.2140 (-24.28)
Ly 0.2000 (0.8) 0.2500 (100) 0.1393 (37) 0.0313 (0.1)
|CA'21| 0.3450 (1.76) 0.2020 (0.93) 0 (0.5) 0.4640 (3.1)
lé‘“‘ 0.3335 (0.085) 0.2500 (0) 0.0085 (0.0266) | 0.3420 (1.69)
T 0.3333 (0.1) 0.4000 (0.8} 0.1000 (1.8) 0.5000 (0)
Oap 0.0196 (0.95) 0.2500 (0) 0.2000 (14.8) 0.0002 (0.76)
Yimin 0.0027 (-30.5) 0.0158 (-32.3) 0.2000 (-13) 0.0950 (-24.3)
7.5  Neural Network Classifier

A neural network classifier is proposed that is based on the DT classifier described in

section 7.3. This NN classifier is capable of recognising the same twelve signals (ASK2,
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ASK4, PSK2, PSK4, FSK2, FSK4, CPM, BPSK DS-SS, QPSK DS-S8S, FH 8§, and
TDMA) that are discriminated by the DT classifier. The same key features used in the

decision-theoretic algorithm are used as inputs to the NN algorithm. These key features are

oapu ymaxfs glldps |C21| L] ymin, Jﬁ;, and !Cwl -

The key features are normalised to the range —1 to 1, then passed to the neural network.
The NN structure will be described in subsection 7.5.1 and the training of the network is

discussed in subsection 7.5.2.

7.5.1 Neural Network Structure

The neural network is a hierarchical structure based on the decision tree in

Figure 7.7. Tt is found that this hierarchical structure results in better performance because
it is made up of smaller networks. This is in contrast to one large network that is higher in
complexity and takes longer to train. The accuracy of the classification will be poorer
because the NN will have to classify all twelve signals at the same time. Smaller networks,
however, have less output neurons and therefore generally perform better because the

probability of discrimination is higher with a smaller number of signals.

The first network separates the signals with frequency information (ASK2, ASK4, PSK2,
PSK4, BPSK DS-SS, and QPSK DS-SS) from those signals that do not possess any
frequency information (FSK2, FSK4, CPM, FH S§, and TDMA). There are two inputs
corresponding to the two key features ¥maxt and ¥un and two output neurons assigned to the
two sets of signals. Three network structures are tested with the simplest structure having
one hidden layer consisting of two neurons. The performance of this network is good but
the second network gives better results. The latter has two lhidden layers with four neurons
in each layer. However, a third tested structure is chosen as the optimum network for its
simplicity as well as superior performance. This structure has one hidden layer comprising

four neurons and performs as well as the more complex structure with two hidden layers.

The second network classifies ASK, PSK2, PSK4, BPSK DS-SS, and QPSK DS-SS

signals. This network has five input neurons corresponding to the key features o, tap,
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C, . There are also five output ncurons representing the five signal types.

s Ymins and ‘Cm

Two neural network structures are tested with the first structure having two hidden layers
with four neurons in each layer. The performance of this network is mediocre. The sccond
network siructure that is tested has good performance and consists of one hidden layer with
fifteen neurons. This network is chosen for its better results and twenty versions of this

structure are tested to find the ong that gives the optimum performance.

The third network in the hierarchy has two inputs corresponding to the key features Yt
and %uin and three output neurons corresponding to the remaining five signals: FSK/CPM,
FH S8, and TDMA. The network siructure that is chosen has ong hidden layer with seven

neurons. Twenty versions of this siructure are tested to find the optimum performance.

For the classification of ASK2 and ASK4, the chosen network structure has onc input
corresponding to the key feature w4y, and two output ncurons corresponding to ASK2 and
ASK4 signals. There is one hidden layer with ten neurons, and twenty versions of this

network structure are tested to find the optimum performance.

The network to classify FSK2, FSK4, and CPM has two inputs comesponding to the
features o, and ey and three output neurons corresponding to the three types of signals.
There is one hidden layer with twelve ncurons, and twenty versions of this network

structure are tested to find the optimum performance.

The hidden layers in all network structures use the nonlinear tan-sigmoid (hyperbolic
tangent) activation function and the output layer uses the log-sigmoid activation function as

cxplained in the previous chapters.

The full network structure is shown in Figure 7.12. In general it is found that the smaller
structures are the optimum choice for the following rcasons [Arulampalam, 1999]:

e The small structures are the least complex and therefore arc the fastest to train since

they contain the least number of synapses.
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e Smaller structures also minimize the danger of overfitting and loss of generalization
ability since they have the least “memory™.
e The larger networks have lower success rate due to their poorer generalization
ability.
These reasons affirm that the hierarchical structure is the best choice for the neural network

implementation of the modulation classifier.

7.5.2 Training the Network

The same procedure used in the previous chapters is implemented to train the networks.
The Levenberg-Marquardt (LM) algorithm using 200 samples from each modulation type is
applied and the network is also tested and validated using a separate set of 200 samples

from each modulation type. Training is carried out with data of SNR range 20dB to —5dB.

7.6  Performance Analysis

The performance results are derived from 200 realisations of each modulation type. The
carrier frequency, sampling rate and the symbol rate are given values of 150kHz, 1200kHz
and 12.5kHz, respectively. The digital symbol sequence is randomly generated and the first
Gold code sequence in Table 7.1 is used as the spreading sequence. The TDMA signal
consists of an ASK2 signal, a PSK?2 signal, and FSK2 signal and an MSK signal. Each
signal has duration of 512 samples per frame and each frame is 2048 samples long. The
DT classifier results are discussed in subsection 7.6.1. The NN performance is discussed in

subsection 7.6.2 and a comparison with the DT classifier is included.

7.6.1 DT Classifier Results

The simulation results for the test set for the modulation recogniser based on 200
realisations are shown in Figure 7.13 - Figure 7.18, for SNR 20dB to —-5dB, respectively.
The results of the NN classifier presented in the next section are also shown for comparison
as well as the 95% confidence interval. The confusion matrices for the DT classifier are
presented in Appendix C, Table C.1 — Table C.6. These results indicate that all types of the
digital modulation schemes considered can be correctly classified with more than 98%
success rate for SNR greater than or equal to 10dB. Seven of the eleven signals can be

correctly classified with nearly 100% accuracy even at SNR of 5dB, however the
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performance drops for SNR values of 0dB and --5dB as can be expected. Despite the drop

in performance for lower SNR, the accuracy is still greater than 50%.
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Figure 7.12. Neural network structure for modulation classifier.

7.6.2 Neuoral Network Classifier Results

The results outlining the NN and DT classifier performances are shown in Figure 7.13 -
Figure 7.18 for SNR of 20dB to —5dB, respectively. It can be observed that the
performances of both classifiers are very good for SNR greater than or equal to 10dB. For
SNR of 5dB, the performance drops a little, but is still very good. For lower SNR, the
performance drops more and it can be seen that the NN outperforms the DT classifier for
SNR of 0dB and —5dB. This is probably because the NN can derive a non-linear decision

boundary with many key features whereas the DT classifier is restricted by a linear decision

147



boundary with one key feature per decision. The confusion matrices are shown in
Appendix C, Table C.7 — Table C.12, for the SNR range of 20dB to —5dB inclusive.
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Figure 7.13. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 20dB SNR.
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Figure 7.14. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 15dB SNR.
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Figure 7.15. Classification accuracy of DT classifier (dark bars) and NN classifier (light

bars) for signals at 10dB SNR.
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Figure 7.16. Classification accuracy of DT classifier (dark bars) and NN classifier (light

bars) for signals at 5dB SNR.
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Figure 7.17. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 0dB SNR.
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Figure 7.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at -5dB SNR.

A comparison of the overall success rates for the DT and NN classifiers is shown in Table
7.4, including the 95% confidence intervals. A graphical comparison of the overall
success rates for the DT and NN classifiers is shown in Figure 7.19 which also has the 95%
confidence intervals included. It can be inferred that the NN performance is generally
similar to the performance of the DT algorithm for SNR greater than or equal to 5dB. For
lower SNR, the NN classifier outperforms the DT classifier considerably. This may be due
to the fact that the DT approach has hard decisions, meaning the thresholds are linear. On
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the other hand, the NN classifier may have threshold regions which are not necessarily
linear and therefore the signals are separated more effectively. Once the key features have
been identified, the NN is able to learn the classifications directly from the training data. In
contrast to the DT approach, there is no need to determine a classification algorithm or
threshold values. The hierarchical approach to the neural network structure allows the
formation of smaller networks, which have faster training times because the number of
output classes within the network is small. This in turn produces higher success rates,
which indicates that the neural network approach can accommodate even more signals if

necessary without sacrificing performance.

Table 7.4. DT and NN classifier accuracy and 95% confidence intervals.

SNR DT Classifier NN Classifier
Accuracy | 95% Confidence Interval | Accuracy | 95% Confidence Interval

20dB | 99.70% [99.54, 99.86] 99.05% [98.76, 99.33]

15dB | 99.36% [99.13, 99.60] 99.32% [99.08, 99.56]

10dB | 98.20% [97.81, 98.60] 98.05% [97.64, 98.45]

5dB 94.07% [93.37,94.77] 93.87% [93.16, 94.57]

0dB 73.14% [71.83,74.45] 84.43% [83.35, 85.49]

-5dB | 55.59% [54.12, 57.06] 76.08% [74.82, 77.34]
Overall | 86.68% [86.27, 87.09] 91.80% [91.46, 92.13]
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Figure 7.19. The overall classification accuracy of the NN and DT classifiers versus the
SNR.
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7.7 Conclusions

In this chapter, multiple access signals have been introduced and included as part of the
modulation classifiers’ recognisable signals. The multiple access signals used werc BPSK
DS-SS, QPSK DS-3S, FH SS, and TDMA. A new key feature, Ymin Was introduced and this
particular key feature was used to identify the BPSK DS-SS, QPSK DS-SS, FH SS, and
TDMA signals. The QPSK DS-SS signal was differentiated from the BPSK DS-SS signal
using the key feature g, which was first introduced in {Azzouz and Nandi, 1996]. Suitable
threshold values were calculated for the DT classifier and the results presented showed that
the spread spectrum signals could be classified with approximately 100% success rate even
at SNR as low as SdB. The NN classifier was based on a hierarchical structure, which was
found to give better results because the networks were smaller and gave better accuracy.
The results of the DT and NN classifiers were compared and it was found that both
classifiers performed comparatively equally, except for SNR below 5dB where the NN
outperformed the DT classifier. This was possibly due to the NN’s better generalisation

capabilitics and non-linear decision boundaries.
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CHAPTER 8§

Classification of PSKS8, FSK8 and QAM
Signals

8.1 Introduction

In this chapter, PSK8, FSK8, QAMS, and QAM16 signals are added to the modulation
classifiers. These modulation classification algorithms employ the decision-theoretic and
neural network approaches. This results in two types of modulation classifiers that are
capable of distinguishing a very wide range of digitally modulated signals. The results for
the DT and NN classifiers are presented and compared for SNR ranging from 20dB to
-5dB. The performance is also tested for signals undergoing Rayleigh fading.

The structure of this chapter is as follows. In section 8.2 we describe the signals that are
added to the modulation classifiers as well as their useful features. In section 8.3 we
discuss the DT classifier implementation including the tree structure and threshold
determination. Section 8.4 outlines the NN classifier implementation with the addition of
the new signals. The results for both classifiers are presented in section 8.5 and a
comparison between the performance of the DT and NN classifiers is made. Finally, we

present concluding remarks in section 8.6.

8.2  Signal Representation

The signals that are added to the modulation classifiers discussed in Chapter 8 are described
in this section. These signals are QAMSE, QAM16, PSKS8, and FSK8. The key features

associated with these signals are also described

A well-known technique to reduce the bandwidth of a signal is to employ M-ary phase shift
keying (MPSK) modulation. Instead of transmitting one bit of information per channel

symbol period, & = logM bits are sent during each symbol period. The use of M-ary
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symbols allows the data rate to be increased & times within the same bandwidth. Therefore
for a fixed data rate, the use of M-ary PSK reduces the required bandwidth by a factor &
[Sklar, 1988]. The representation of PSK signals has been shown in Chapter 5 and some
useful features of PSK8 signals are shown in Figure 8.1. A QPSK signal consists of two
independent amplitude modulated signals that are 90 degrees out of phase. The signal has
amplitude levels of 1. QAM is a logical extension of QPSK in that the signal also consists
of two independently amplitude modulated signals. The only difference is that the signal
can have k-bit symbols instead of amplitude levels of just +1 and -1. Therefore QAM

signals can be viewed as combined amplitude and phase modulation.

The corresponding signal can be expressed as
5()x(t)cosw t — y(t)sinw,t, 8.1)

where x(t) and y(z} are the information bearing signal amplitudes of the quadrature carriers.

The complex envelope is given by [Couch, 2001]
a(t) = x(t)+ jy(t)= R(£)e /%" (8.2)
The instantaneous amplitude and phase are

a(t) = |R@) (8.3)

#(t)=tan " [y(e)/ x(r)] (8.4)
These features are shown in Figure 8.2 and Figure 8.3 for QAMS and QAM 16 modulation.

The representations FSK signals have been described in Chapter 5 and some useful features

of FSK8 signals are shown in Figure 8.4.
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Figure 8.1. Useful features of PSK8 modulation.
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8.3 DT Classification Procedure

This section outlines the procedure for digital signal classification that is based on the
method outlined in Chapters 5-7. Firstly, the key features are derived from the
instantaneous amplitude, the instantaneous phase, the instantanecous frequency, the
smoothed power spectral density, and the fourth order cumulants of the intercepted signal.
A description of the threshold values is presented followed by a discussion of how the key
feature selection is dependent on the minimum error probability. A flowchart depicting the

classification procedure for all digital modulation schemes is shown in Figure 8.5.

The first decision in the tree separates the signals with frequency information (right side of
the tree) from signals with little or no frequency information (left side of the tree). The
signals with frequency information are further divided into multiple access signals (FH SS
and TDMA) and FSK/CPM signals. The signals with no frequency information are divided
into signals with phase information (PSK and BPSK/QPSK DS S8) and signals with little
or no phase information (ASK and QAM). The signals with phase information are split
into multiple access signals (BPSK/QPSK DS SS8) and PSK signals {PSK2, PSK4, PSK8).
Finally, QAM signals are separated from ASK signals.

8.3.1 Derivation of Key Features

To derive the appropriate key features, the new signals (PSK8, FSK8, QAMS, and
QAMI16) are passed through the existing classifier and each signal is classified as a
modulation type already defined in the tree. To find the actual modulation type of a
particular signal, a decision node is added to the tree to distinguish between the modulation

type that the signal is classified as and the actual modulation type of the new signal.
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Figure 8.5. Decision tree for identification of digital modulation schemes. Refer to section

8.3 for an explanation of the tree.
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8.3.1.1 QAMS Signal Classification

To derive the appropriate key feature for classification, the QAM signal (namely a QAMS
signal) is classified by the existing tree in Chapter 7. The QAMS signal is classified 76.5%
as an ASK?2 signal, 20% as a PSK4 signal, and 3.5% as a PSK2 signal. These results are

not sufficient to add the QAMS signal to the existing tree as it is, In other words, the key

feature Iém is not adequate for classification of QAM signals; therefore, the tree structure

has to be modified slightly. The key feature |C‘21| is replaced by the key feature oy, which is

the standard deviation of the direct value of the non-linear component of the instantaneous
phase, evaluated over the non-weak segments of the received signals and is defined in
fAzzouz and Nandi, 1996]. This key feature is used to separate signals with phase
information (PSK signals) from those with no phase information (ASK signals). A
suitable threshold for ¢, is determined using the previous methods and is outlined in
subsection 8.3.2, After the addition of this new key feature, the QAMS signal is passed
through the classifier again. This time the signal is classified 100% as an ASK2 signal so
we know the decision has to be made between QAMS and ASK2 signals. By observing the
instantaneous phase plots for both signals, it can be seen that QAMS signals possess some
phase information since they are a combination of amplitude and phase modulation.

Therefore the existing key feature 4, 1s used to separate QAMS and ASK2 signals.

8.3.1.2 (QAMIG6 Signal Classification

The QAMI16 signal is classified by the tree after the QAMS signal has been added. It is
found that the QAMI16 signal is classified as an ASK4 signal. Since the decision is now to
be made between QAMI16 and ASK4 signals, we observe from Figure 5.2 and Figure 8.3
that the instantaneous phase values for ASK4 signals lie around zero and the instantaneous
phase values for the QAM16 signal lie around —1. Therefore the key feature g, can be

used to differentiate between these two modulation types.
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8.3.1.3 PSKS8 Signal Classification

To derive the appropriate key feature for classification, the PSK8 signal is classified by the
existing tree after the addition of the QAM signal. The PSKS signal is classified as a PSK4
signal, therefore we know the decision has to be made between the PSK8 signal and a

PSK4 signal. To discriminate between these two signals, the existing key feature |C' | 18

used. By referring to Table I in [Swami and Sadler, 2000], it can be seen that the
theoretical values of the fourth order cumulants for PSK4 signals are 1.0 and the values of

the fourth order cumulants for PSK( > 4) are around 0.0. Therefore we can use the key

to separate PSK4 and PSK8 signals. Another advantage of this key feature is

feature |é a0

that it 18 not affected by phase offsets.

8.3.1.4 FSK8 Signal Classification

The FSKR signal is classified by the existing tree after the addition of the PSK8 and QAM
signals, to obtain an appropriate key feature for classification. The signal is classified as
FSK4; therefore we know the decision has to be made between FSK8 and FSK4 signals.
The bandlimiting of the signals causes the FSK& and FSK4 signals to have very similar
characteristics and the separation of theses two signals becomes almost impossible using
the methods used in previous chapters. The key feature Ly can be used to separate FSK4
and FSK8 to some degree but the performance is not satisfactory. Therefore, we increase
the bandwidth of the FSK signals from 100kHz to 200kHz. This greatly improves the
results of the classifier. However by increasing the bandwidth of the signals, the threshold
value for the key feature oy, to differentiate FSK2 (subset A) and FSK4 and CPM (subset

B) must be modified and this modification is outlined in the next section.

8.3.2 Threshold Determination

As explained in previous chapters, the key feature thresholds are chosen so that the
probability of a correct decision is obtained from 400 realisations of each modulation type
at the SNR range of 20dB to -5dB. A set of modulation types is separated into two non-
overlapping subsets (A and B). The optimum threshold is chosen so that the Bayes error is

minimised as discussed in Chapter 3.
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The total error probability for groups A and B are plotted and the threshold is chosen where
the minimum error occurs. The total error probability for the key feature &y, is shown in
Figure 8.6 for subset A (ASK2, ASK4, QAMS, and QAMI16) and subset B (PSK2, PSK4,
PSKS8, BPSK DS-SS, and QPSK DS-88). It can be seen that an appropriate value for the
threshold tgy, is 1.1 where the total mintmum error ts 0.000166 for the SNR range of 20dB
to 5dB. For the SNR of 0dB and —3dB, the total minimum error is 0.057 at the same

threshold value.
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Figure 8.6. Total error probability for the key feature o, at SNR range of 20dB to -5dB,
for ASK2, ASK4, QAMBS, and QAMI6 (subset A) and PSK2, PSK4, PSK8, BPSK DS-SS§,
and QPSK DS-SS (subset B).

-

C,| to separate subset A (PSK4) and subset

The total error probability for the key feature

B (PSKR) is shown in Figure 8.7. By observation, an appropriate value for the threshold

t (:'4(] 2 1 chosen to be 0.39 where the total minimum error probability is 0.0775 for the

SNR range of 20dB to 5dB. For lower SNR of 0dB and —-5dB, the total minimum error is
0.4652 at the same threshold value.

64(, that separates PSK4 (subset A) from PSKS8

The ROC curves for the key feature

(subset B) are shown in Figure 8.8 for SNR range of 20dB to -5dB. The curves show the
detection probability of subset A (PSK4) and false alarm probability of subset B (PSKS).
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By examining the ROC curves for SNR 2 10dB, we can see that the chosen threshold value,

téw z (indicated by ‘x’) has a detection probability (Pp) of 0.9075 and false alarm

probability (Pra) of 0.0325 at 10dB SNR.
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Figure 8.7. Total error probability for the key feature ‘CA' m' ,at SNR range of 20dB to -3dB,

for PSK4 (subset A) and PSKS (subset B).
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Figure 8.8. ROC curves for the key feature |C‘40| to separate PSK4 (subset A) and PSK8

(subset B) signals for SNR range of 20dB to -5dB.

For the separation of ASK2 from QAMS, the key feature 4y, is used. The total error
probability for the key feature 4z, is shown in Figure 8.9 for subset A (ASK4) and subset B
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(QAMS). From this figure we can infer that an appropriate choice for the threshold tzy; is

(.19 where the total minimum error probability is 0.0035 for the SNR range of 20dB to

—-3dB.
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Figure 8.9. Total error probability for the key feature iy, at SNR range of 20dB to -5dB,

for ASK2 (subset A) and QAMS (subset B).

Similarly, to find the threshold value ti,: to separate QAM16 and ASK4, we examine the

total error probability plot in Figure 8.10. It can be seen that at the threshold value of

—0.46, the minimum error is 0 for the SNR range of 20dB to 5dB. For the SNR values of

0dB and —5dB, the minimum error is 0.0056 at the same threshold value.
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Figure 8.10. Total error probability for the key feature g, at SNR range of 20dB to —5dB,

for ASK4 (subset A) and QAMI6 (subset B).
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The threshold value for the key feature Ly is found from the total error probability plotted
in Figure 8.11 for subset A (FSK8) and subset B (FSK4), When the bandwidth of the FSK
signals is 100kHz, an appropriate choice for the threshold value tLgem is 0.3 where the
minimum error is 0.2096 for the SNR range of 20dB to 5dB.

The ROC curves for the key feature Ly that separates FSK8 (subset A) from FSK4 (subset
B) are shown in Figure 8.12 for SNRs 20dB, 15dB and 10dB. The curves show the
detection probability of subset A (FSK8) and false alarm probability of subset B (FSK4).
The bandwidth of the FSK signals is 100kHz. It can be observed that the ROC curves are
not of a desirable form because the detection probability (Pp) is not very high for low false
alarm probability (Prs). Therefore, it is necessary to increase the bandwidth of the FSK

signals to 200kHz to improve performance.
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Figure 8.11. Total error probability for the key feature Ly at SNR range of 20dB to —5dB,
for FSK8 (subset A) and FSK4 (subset B) bandlimited to 100kHz.

The total error probability for the key feature Ly is shown in Figure 8.13 for subset A
(FSK4) and subset B (FSK8). The total minimum error probability is 0.1004 and occurs at
the threshold value tLge = -7.1 for the SNR range of 20dB to 5dB when the bandwidth of
the FSK signals is increased to 200kHz.
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Figure 8.12. ROC curves for the key feature Ly to separate FSK8 (subset A) and FSK4
(subset B) signals (bandlimited to 100kHz) for SNRs 20dB, 15dB and 10dB.

The ROC curves for the key feature Ly that separates FSK8 (subset A) from FSK4 (subset
B) are shown in Figure 8.14 for the SNR range of 20dB to -5dB. The curves show the
detection probability of subset A (FSK8) and false alarm probability of subset B (FSK4).
By observing the ROC curves for SNR 2 5dB, we can see that the chosen threshold value
tL4ire2 (indicated by ‘x’) has a minimum detection probability (Pp) of 0.9688 and false alarm
probability (Prs) of 0.1825 at 5dB SNR.
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Figure 8.13. Total error probability for the key feature Lgirr, at SNR range of 20dB to -3dB,
for FSK4 (subset A) and FSK8 (subset B) bandlimited to 200kHz.
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Figure 8.14. RQC curves for the key feature Ly to separate FSK8 (subset A) and FSK4
(subset B) signals (bandlimited to 200kHz) for SNR range of 20dB to -5dB.

The new threshold value (top) that separates subset A (FSK2) and subset B (FSK4, FSKS,
and CPM) is found in Figure 8.15 from the plotted total error probability. The appropriate
choice for tgy, is 3.2 when the bandwidth of the FSK signals is increased to 200kHz. This
gives a minimum error probability of 0.0225 for the SNR range of 20dB to 5dB. For SNR
of OdB and —5dB, the minimum error probability is 0.236 at the same threshold value.

The corresponding ROC curves for the key feature gy, that separates FSK2 (subset A) from
FSK4, FSKS8, and CPM (subset B) are shown in Figure 8.16 for the SNR range of 20dB to
-5dB. The curves show the detection probability of subset A (FSK2) and false alarm
probability of subset B (FSK4, FSK8, and CPM). By examining the ROC curves for SNR
= 5dB, we can see that the chosen threshold value tgy, (indicated by ‘x’) has a detection
probability of 0.94 and false alarm probability of 0.0058 when the bandwidth of the FSK
signals is increased to 200kHz at 5dB SNR.
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Note that for all the ROC curves in this chapter, both classes are equally important and we

are not trying to bias one class against the other. The optimum threshold is only dependent

on the total minimum error probability for the SNR range of 20dB to —5dB.
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Figure 8.15. Total error probability for the key feature &3, at SNR range of 20dB to -5dB,

for FSK4, FSK8, and CPM (subset B) and FSK2 (subset A) bandlimited to 200kHz.
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Figure 8.16. ROC curves for the key feature op to separate FSK2 (subset A) and FSK4,
FSK8, and CPM (subset B) signals (bandlimited to 200kHz) for SNR range of 20dB to

-5dB.
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A summary of the key feature values and their relevant thresholds for the SNR range of

20dB to —5dB is shown in Table 8.1. The final threshold values are toy, = 1.1, téw‘z =
0.39, tﬂdpg = 0.19, tﬂdpj = —0.46, tLamz = -7.1, and tam = 3.2.
Table 8.1. Summary of key feature thresholds and error probabilities.
Key Feature SNR 20dB to 5dB SNR (dB to -5dB
Threshold Optimum Minimum Error Optimum Minimum Error
Threshold Probability Threshold Probability
L0y 1.1 0.000166 1.34 0.0077
t C"-‘m 5 0.59 0.0775 1.16 0.4350
t b2 0.19 0 0.19 0.0088
7 -0.46 0 -0.46 0.0056
tLgitr -7.1 0.1004 23 0.3094
1O 3.2 0.0225 3.3 0.2090

8.3.3 Dependency of key feature selection on minimum probability of error

The reason why the key features in the previous section are chosen over the other existing
key features is because they minimise the total error probability for each decision. We will
call the decision separating ASK2, ASK4, and QAM (subsel A) and PSK2, PSK4, PSKS,
BPSK DS-SS, and QPSK DS-8S (subset B) decision 1. Decision 2 separates PSK4 (subset
A) and PSKS8 (subset B) and decision 3 distinguishes ASK2 (subset A) from QAMBS (subset
B). Decision 4 is defined as the classification of ASK4 (subset A) and QAMI16 (subset B)
and finally, Decision 5 separates FSK4 (subset A) and FSK8 (subset B).

We can see from Table 8.2 that the key features that have been chosen minimise the total

error probability for each decision for the SNR range of 20dB to —5dB.
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8.4

NN Classifier

This section introduces a NN classifier that can recognise the same fifteen signals as the DT

classifier described in section 8.3. The input datasets for the NN are the same key features

used in the DT algorithm. These key features are: Ymaxt: Yins Oaps Odpy Gkns Maps Ldier, |én| )

and

¢ “"l' All key features are normalised to the range —1 to 1, then passed to the neural

network. This section will describe the NN structure followed by a description of how the

NN and its subnets are trained.

Table 8.2. Total minimum error probability for Decisions 1 — 5 for combined SNR range of

20dB to —5dB (threshold values are shown in brackets).

Key Total Total Total Total Total
Feature Minimum Minimum Minimum Minimum Minimum
Error Error Error Error Error
Probability Probability Probability Probability Probability
(Decision 1) (Decision 2) (Decision 3) (Decision 4) (Decision 5)
Yo | 0.3640 (-104) + 0.5000 (-92) | 0.435(-108.3) | 0.428(-109.3) | 0.4132 (26)
Hap 0.2504 (0) 0.4088 0.0035 (0.19) 0.0022 0.4875 (-28)
(0.044) (-0.46)
621\ 0.0962 (0.94) | 04968 (4.2) | 02748 (0.7) | 0.2717 (0.65) | 0.4830(1.0)
640\ 0.2208 0.2325 (0.59) | 0.2145 (0.58) | 0.2495 (04) | 0.483(0.02)
(1.448)
O 0.2600 (0) 0.5000 (0) 0.4989 (0) 0.4680 (0) 0.3277 (2.76)
Oup 0.1560 (0.52) | 0.4305(0.91) | 0.2655 (0.26) | 0.2285(0.28) | 0.4925 (410)
Viming 0.3003 (-32) | 0.4284 (-43) { 0.4150 (-50) | 0.4231 (-45) 0.4509
(-45.7)
Laife 0278 (-0.37) | 04910(1.0) | 0.3855(-5.0) 0.3855 (-5) 0.2602 (-7.1)
Cip 0.0229 (1.1) | 0.4769 (1.85) | 0.303 (0.226) | 0.303 (0.226) | 0.4931 (410)
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8.4.1 Neural Network Structure

The developed network is based on a seven-network struciure. Each network is a
feedforward network, commonly referred to as a multi-layer perceptron (MLF). The first
network has two inpuis corresponding to the two key features ¥uix and a0y and two output
neurons corresponding 10 two groups of signals, which are:

1. FSK2, FSK4, FSK8&, FH 8§, TDMA, and CFM

2. QPSK-SS, BPSK-SS, PSK2, PSK4, PSKB, QAMS, QAMI16, ASK2 and ASK4.

It is found that by dividing the signals into these two groups initially, results in optimum
performance. Three structures are tested and it is found that the simplest structure giving
the best performance has one hidden layer consisting of four neurons. Twenty versions of
this structure are tested to find the one that gives ihe best performance. After the initial first
network structure is designed, the other network structures can be derived from the decision
tree to separate the signals. In all the networks described, all hidden layer use the nonlinear
tan-sigmoid (hyperbolic tangent) function and the output layers are linear activation
functions. Also, twenty versions of each network structure are examined to find the one

that gives the best performance.

The second network separates the signals into two groups and therefore this network has
two output neurons. The first group consists of signals with little or no phase information
(ASK2, ASK4, QAMS, and QAM16 signals) and the second group consists of signals with
phase information (PSK2, PSK4, PSK8, BPSK-SS, and QPSK-SS signals). The network

has three input neurons corresponding to the key features o, 0, and lé m‘ . Itis found thai

the simplest structure that gives the best performance has one hidden layer with ten

neurens.

The third network has one input corresponding to the key feature 4, and three output
neurons corresponding to ASK2 and ASK4 signals (as one group) QAMS, and QAMI16
signals. Three networks are tested and the structure that gives the best performance has one

hidden layer with four neurons.
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The fourth tested network classifies PSK2, PSK4, PSK8, BPSK DS-SS, and QPSK DS-SS

signals. This network has four input neurons corresponding to the key features jin, Ozp,

Oap, and IC‘ m| . and five output neurons corresponding to the five modulation types. It is

found that the optimum structure in terms of simplicity and performance has two hidden

layers with seven neurons in the first layer and four neurons in the second layer.

The fifth network has one input neuron corresponding to the key feature t, and two output
neurons representing ASK2 and ASK4 signals respectively. The optimum structure is
found to have one hidden layer with ten neurons. The sixth network classifies TDMA, FH

SS, CPM, and FSK signals. Therefore, there are four output neurons and four input

neurons corresponding to the key features: Ypaxe, ¥mine Gfn, and, |C‘21| . The simplest structure

giving the best performance has onc hidden layer with four neurons.

The final network classifics FSK2, FSK4, and FSKS8 signals and consists of three output
neurens and three input neurons corresponding to the key features Ymaxs, O, and Lair, The
network structure giving the best performance has one hidden layer with ten ncurons.

The full network structure is shown in Figure 8.17 and it has been shown in Chapter 7 that
smaller network structures give better performance. This is why the hierarchical layout is a
better choice than one large network that must discriminate between all fifteen signals

simultancously.

8.4.2 Training the Network

All nctworks are trained using the Levenberg-Marquardt (ILM) algorithm using 200
samples from each modulation type except Network 1, which is trained using the conjugate
gradient function. Each network is also tested and validated using a separate set of 200
samples of each modulation type as described in previous chapters. The training data is a

mix of samples with SNR ranging from 20dB to --5dB.

171



Ymasr

Vmin

Network
1

—

Figure 8.17. Neural network structure for digital modulation classification.

gy L » QAMS
. Network > QaMI6
Cuw 3
»  Network - e
Citp — i 2 Hp | Network
— ——Pp PSK4
Ca| =
—— PSKS§
Network
Ty —M 4
——» BPSKSS
Fovin _’
—» QPSK SS
Ty —
J > psk2
>
& —>
——» CPM
st P Network
6 —% FHSS
Ymiu —’
G —P —» TDMA
——» FSK2
Fnaf
, Network |—p»  FSK4
7
Esr
—» t—» FSK§
T
—

ASK2

ASK4

172



8.5  Performance Analysis of DT and NN Classifiers in the Presence of
White Gaussian Noise

In this section, we first present the results for the DT classifier, followed by the results of
the NN classifier in the presence of Gaussian noise. A comparison is made between the

accuracy of these two types of classifiers and the 95% confidence interval is also included.

8.5.1 Performance Results for DT Classifier

The results for the DT classifier are derived from 200 realisations of each modulation type.
The carrier frequency, sampling rate and the symbol rate are given values of 150kHz,

1200kHz and 12.5kHz, respectively. The digital symbol sequence is randomly generated.

The simulation results for the test set of the digital modulation recogniser for all signals
based on 200 realisations are given in Appendix D, Table D.1 — Table D.6, for the SNR
range of 20dB to —5dB, respectively. It can be seen that the performance of the classifier
for SNR less than 5dB is much poorer for most signals. However for SNR values greater
than or equal to 5dB, the results indicate that all types of the digital modulation schemes

considered can be correctly classified with greater than 93% overall success.

The graphical representation of the performance of the modulation classifier for all
modulation types is shown in Figure 8.19 - Figure 8.24 for an SNR range of 20dB to —-5dB.

The results are compared with the results from the NN classifier, discussed in the section.

8.5.2  Performance Results of NN Classifier
The performance results of the NN classifier for the SNR range of 20dB to —5dB are given

in Figure 8.19 - Figure 8.24 inclusive. The results for the DT classifier are also shown for
comparison with the 95% confidence interval. It can be observed that the NN has good
performance with a success rate of over 93% for the SNR range of 20dB to 5dB. The
classifier still performs very well for SNR of OdB at nearly 84% overall accuracy. This is
because the network is trained with data of SNR range of 20dB to -5dB. A tabular
comparison between the results from the DT approach and the NN approach is shown in

Table 8.3. A graphical comparison between the overall success rates of both classifiers
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over the SNR range of 20dB to —5dB is also shown in Figure 8.18. In general, the overall
classifier accuracies for the DT and NN algorithms are similar for SNR values greater than
or equal to 5dB. However, the NN classifier outperforms the DT classifier considerably at
SNR 0dB and —5dB. This is probably due to the fact that the DT classifier has a linear
decision boundary based on one key feature whereas the NN has the option of having non-
linear decision boundaries based on more than one key feature. The confusion matrices are

shown in Appendix D, Table D.7 — Table D.12, for the SNR range of 20dB to -5dB.

The NN approach is dependent on the DT approach in terms of key feature selection and
hierarchical network selection. By referring to the decision tree in Figure 8.5, it can be
seen that the neural network structure in Figure 8.17 is based on the decision tree. The key
features relevant to a particular section of the decision tree serve as inputs to the
corresponding network. For example, by referring to Network 3, the signals of interest are
ASK, QAMS, and QAMI16. If we observe the decision tree we can determine that the

relevant key feature is t4, and this is the input to Network 3.

Table 8.3. DT and NN classifier accuracy and 95% confidence intervals.

SNR DT Classifier NN Classifier
Accuracy | 95% Confidence Interval | Accuracy | 95% Confidence Interval

20dB | 97.02% [96.57, 97.45] 97.84% [97.47,98.21]

15dB | 96.87% [96.43,97.31] 97.94% [97.58, 98.30]

10dB | 96.72% [96.27,97.17] 97.27% [96.86, 97.68]

5dB 93.80% [93.19,94.41] 93.67% [93.05, 94.29]

0dB 74.98% [73.89, 76.08] 83.90% [82.97, 84.83]

-5dB | 47.37% [46.10, 48.63] 73.58% [72.46, 74.69]
Overall | 84.46% [84.08, 84.83] 90.70% [90.40, 91.00]
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The next chapter outlines the performance of the DT and NN classifiers with signals
affected by Rayleigh fading. The classifiers arc modified to accommodate fading and the
performance of these modified classifiers are compared to the classification performance of

signals in an AWGN channel.
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CHAPTER 9

Classification of Digitally Modulated
Signals in the Presence of Rayleigh
Fading

9.1 Introduction

In this chapter, the performance of the DT and NN classifiers described in Chapter 8 will be
evaluated under the conditions of a Rayleigh fading channel. The classifiers will be
modified so that they can perform optimally whether fading is present or not. In section 9.2
we discuss the classification of digitally modulated signals in the presence of Rayleigh
fading beginning with an introduction to Rayleigh fading channels. The modifications in
the decision tree to accommodate fading are discussed in section 9.3. Similarly, the
modifications to the NN classifier in the presence of fading are outlined in section 9.4.
The performance of both classifiers in the presence of fading are discussed in section 9.5
and a comparison between the performance in an AWGN channel and a fading channel is

made.

9.2  Classification in the Presence of Rayleigh Fading Channels

The DT and NN classifiers described in Chapter 8 will be tested under the conditions of a
Rayleigh fading channel. An introduction to fading channels will first be presented,

followed by the results of the classification performance in a fading environment.

9.2.1 Introduction to Fading Channels

In the 1920s, experiments were carried out with mobile communications at VHF
frequencies. From the results of these experiments (carried out at about 50MHz) it was

found that there was a very hostile propagation environment, particularly in urban centers.

181



Moving the vehicle over a few metres resulted in dramatic changes to the received signal’s
strength. The signal varied from excellent quality to no signal. The mobile or indoor radic
channel is characterised by multipath reception. The received signal is a summation of the
direct line of sight radio wave as well as a large number of reflected radio waves. These
reflected waves interfere with the direct wave, which causes significant degradation in the

strength of the signal.

In most communication systems, the channcl is modelled as a linear time-invariant system.
This model consists of a delay term proportional to the propagation delay between the
channel modulator and channel demodulator. The transfer function consists of a frequency
independent magnitude less than one that is proportional to the propagation loss. The
channel is usually considered to be corrupted by AWGN which is adequate for deep space
communication channels. However for many radio channels such as high-frequency (HF)
long-distance communications via the ionosphere, microwave communications and mobile
communications, the AWGN channel is an oversimplified model. In these three channels,
the received signal has been shown experimentally to undergo fading. In addition, there are
other types of fading channels such as very high frequency (VHF) communication channels
between an aircraft and a synchronous satellite relay [Bond and Meyer, 1966] and line of
sight (LOS) microwave links [Jakes, 1978], which undergo fading due to the formation of
tropospheric inversion layers. This allows multiple transmission paths between the

transmitter and receiver.

9.2.2 Characterisation of Fading Multipath Channels

If an impulse is sent over a time-varying multipath channel, the received signal might
appear as a train of pulses. Thus one characteristic of a multipath channel is the time
spread introduced in the transmitted signal. A second characteristic is due to the time
variations in the structure of the medium and as a result, the nature of the multipath varies
with time. Thus if an impulse is sent over a channel, over and over again, we would
observe changes in the received pulse train, such as changes in the size of individual pulses,

changes in the relative delays among the pulses and changes in the number of pulses in the
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pulse train [Bond and Meyer, 1966]. We can examine the effects of the channel on a
transmitted signal represented by:

s(t) = Re[s, (t)e’*%'] 9.1)
Assuming that there are multiple propagation paths, there is a propagation delay and an

attenuation factor. Thus the received bandpass signal may be expressed as:

xt)= a,()slt-7,() 9.2)

where a,(t) is the attenuation factor for the signal received on the nth path and 7.(f) is the

propagation delay for the nth path, The equivalent lowpass received signal is:

()= a, (e 27505 (- 7 (1)) ©9.3)

The equivalent lowpass channel is described by the time-variant impulse response

(rit)= Y, (e 05(e — 2, (1) ©4)

When there are a large number of paths, the central limit theorem can be applied. Thus, the
received signal r{t) can be modelled as a complex valued Gaussian random process which
implies that the impulse response ¢(7¢) is also a complex-valued Gaussian random process

in the t variable.

Rayleigh fading occurs when the impulse response ¢(7f} is modelled as a zero-mean
complex-valued Gaussian process. The envelope | ¢(zf)| at any instant ¢ is Rayleigh
distributed. Ricean fading occurs when there are fixed scatterers or signal reflectors in the
medium as well as randomly moving scatterers. The mean of the impulse response will not

be zero and the envelope | ¢(%t)| will have a Ricean distribution.

9.23 Rayleigh Fading

Rayleigh fading occurs on time varying multipath channels such as when the medium is
time varying as in under-sea acoustic transmission. It can also occur with radio
transmission through the upper atmosphere, mobile radio where the receiver and transmitter
are in motion and indoor radio transmission where moving people cast shadows. In the case

of mobile radio, the distances along the multiple propagation paths are changing and the
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receiver observes the Doppler shifted versions of the transmitted signal. We can model the
reception as [Lee and Messerschmidt, 1988]:
E(t)= Re{i (A,,ef"('))ef“’--‘} 9.5)
n=l
where the amplitudes A, vary slowly with time and hence they are considered to be fixed.
The phases are varying rapidly because if there are vehicles on the move involved (as is
often the case), the vehicle motions are large with respect to the transmitting wavelength,
The phase can be modelled as:
0,()=wt+o, (9.6)
where ¢, are fixed random phases uniformly distributed from 0 to 2w and the frequency
offset @, is the Doppler frequency shift due to the motion of the vehicle. The Doppler shift
for a wave incident in the direction of motion is
A

where A is the wavelength and vis the velocity of the vehicle.

w (9.7

If equation (9.5) is written in terms of the real and imaginary parts of the complex

exponentials, the resulting expression, in terms of quadrature componenis, is

E(t)=C(t)cos w1 - S(t)sinw t (9.8)
C(t)= iA,‘ cosfwt+,),  S{)= iA,‘ sin{lw,t + ¢,) (9.9)
n=1 n=1

Since the terms in the summation are independent random variables, the baseband random
processes C(t) and S(t) are approximately Gaussian according fo the central limit theorem.
The approximation becomes more accurate as the number of interferers N becomes large.

Thus £(r) is Gaussian and the envelope is:
R(t)=C* 1)+ 5%(r) (9.10)

which has a Rayleigh distribution,
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felr)=40 B (9.11)

9.2.4 DT Performance in Rayleigh Fading Conditions

Simulations are carried out in Matlab in a similar fashion to the simulations for the
Gaussian channel. A Rayleigh fading channel is introduced instead of the (Gaussian

channel. The effect of the fading channel on the modulation classifiers is investigated for
the DT and NN approaches.

The modulation classifier performance is evaluated for a Doppler spread of 120Hz. The
key features and their corresponding threshold values for all signals do not change. The
results for the 120Hz Doppler spread for SNR of 20dB arc presented in Figure 9.1. The
Doppler spread is chosen to be 120Hz as this is a reasonable value for mobile

communications; in [Qon and Steele, 1997] Doppler frequencies of 150Hz were used.

|
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Modulation Type

Figure 9.1. Modulation classifier performance in the presence of Rayleigh fading for SNR
20dB.

It can be seen from Figure 9.1 that the rate of classification is very bad for PSK2, PSK4,
FSK2 and FSK4 signals with 120Hz Doppler spread. The performance also drops for the

TDMA signal. Therefore, the decision tree is modified to accommodate signals undergoing

fading.
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9.3  Decision Tree Modifications for Rayleigh Fading

The decision tree in Figure 8.5. has key features based on cumulants to classify the PSK
and TDMA signals. These cumulants are calculated using the complex envelopes of the
signals. When fading is present, the envelope of the signal also diminishes in amplitude.
Therefore, the features based on cumulants suffer performance degradation. To combat this
limitation, new key features are introduced to classify the PSK and TDMA signals. This

will be outlined in subsections 9.3.1 and 9.3.2, respectively.

The Doppler frequency also causes frequency shifts in the signal and this affects the
classification of FSK signals. Therefore, the tree is modified with an additional key feature
to improve the performance of classification of FSK signals in the presence of Rayleigh
fading. This will be presented in subsection 9.3.3. The relevant threshold derivation is
shown in subsection 9.3.4 and a discussion of the dependency of key feature selection on

the minimum error probability is presented in subsection 9.3.5.

9.3.1 PSK, BPSK DS-SS, and QPSK DS-SS Signal Classification

In the presence of Rayleigh fading, it is not possible to distinguish sufficiently between
PSK2, BPSK DS-SS, and QPSK DS-8S signals as one group and PSK4 and PSKS signals
as another group, with the current tree structure. Therefore, the decision tree is modified to
separate the spread spectrum signals from the PSK signals and then separate PSK2 from
PSK4 and PSK8. To classify the spread spectrum signals, the key feature s is used. The
feature Jnie is used because it can distinguish between signals with more frequency
information (such as spread spectrum signals) from signals with little or no frequency

information (PSK signals).

To distinguish between PSK2 signals as one group and PSK4 and PSKS signals as another
group in the presence of Rayleigh fading, the key feature oy, is used. Rayleigh fading also
introduces phase shifts to the signal. However, it is found that the effect on the overall
instantaneous phase is not substantial because the faded signal gradually shifts altemately
out of phase and then back in phase. Therefore, although this feature is based on phase, the

phase offsets introduced by the fading should not affect the classification performance
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drastically. The feature o, is used because it can distinguish between signals with absolute
phase information (PSK4 and PSK8) from signals without absolute phase information

(PSK2).

To discriminate between PSK4 and PSK8 signals, the phase histogram is used. The
histogram is formed using 50 bins and the value of the histogram at the 28" bin is found
which corresponds to a phase of n/4. PSK4 signals use four phases (£7/2 and *m) to
transmit information and PSK8 signals use eight phases (#n/4, +7/2 +3n/4 and tm). The
28™ bin should contain no values for a signal with only four phases. Hence this feature P,

is used to separate PSK4 and PSKS8 signals.

932 TDMA Classification

To separate TDMA signals from FH SS signals, the key feature ym.. is used. This feature
is found to be suitable because in Chapter 7 it gave an overall error probability of 0.0286
for the SNR range of 20dB to —5dB for the threshold value of 19.3. This feature is also less

susceptible to fading because it is not amplitude dependent.

9.3.3 FSK Signal Classification

To distinguish between FSK2 as one group and FSK4, FSK&, and CPM as another group,
the existing key feature Lgir is used. This is because when fading is present, the key feature
Oy, 15 not sufficient to separate these signals due to the frequency shifts. However, since the
same key feature is used to separate FSK4 and FSK8 signals when there is no fading
present, another key feature must be used simultaneousty. This is to ensure that the feature
Lairs 1s only used when fading is present to separate FSK2 as one group and FSK4 and
FSKB& as the other group. It is found that when the FSK signals undergo Rayleigh fading at

120Hz Doppler frequency, the feature o, is able to determine whether fading is present.
The key feature %n.y 1S used to separate FSK4 and FSKS8 signals when Rayleigh fading 1s

present. This is because FSK8 signals have the same maximum instantaneous frequency

values as FSK4 but they also have four other frequency values which are smaller due 1o the
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eight frequency levels implemented in FSK8. Therefore, the values of ¥y should in
general be greater for FSK4 signals than for FSK8 signals.

934 Threshold Determination

The total error probability for the key feature .. for subset A (BPSK DS-SS and QPSK
DS-S8) and subset B (PSK2, PSK4, PSK8) is shown in Figure 9.2. It can be seen that the
appropriate value for the threshold t}u.s is —29.9 where the total minimum error

probability is 0.0009 for the SNR range of 20dB to —5dB.
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Figure 9.2. Total Error probability for the key feature },,, at SNR range of 20dB to -5dB,

for BPSK DS-SS and QPSK DS-SS (subset A} and PSK2, PSK4, and PSK8 (subset B) with
fading and 120Hz Doppler shift.

The total error probability for the key feature &, is shown in Figure 9.3 for subset A
(PSK2) and subset B (PSK4 and PSK8). It can be observed from the figure that a good
choice for the threshold to,,; is 1.08 where the total minimum error is 0.0106 for the SNR
range of 20dB to 5dB and 0.2784 for the SNR of 0dB and -5dB. It is found that the feature
O.p is not affected by Rayleigh fading. Therefore this feature is sufficient to discriminate
PSK2, PSK4 and PSKS8 even in a Gaussian channel. This is demonstrated in Figure 9.4
where the optimum threshold is also 1.08. The minimum error probability for SNR range

of 20dB to 5dB is 0.0063. The minimum error probability for SNR of OdB and —5dB at the
same threshold is 0.28.
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The ROC curves for this key feature are shown in Figure 9.5 for the SNR range of 20dB to
-5dB. The curves show the detection probability of subset A (PSK2) and false alarm
probability of subset B (PSK4 and PSK8). By examining the ROC curves for SNR 2 5dB,
we can see that the chosen threshold value to,; (indicated by ‘x’) has a detection

probability (Pp) of 0.9875 and false alarm probability (Pgs) of 0.0113 at 5dB SNR.
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Figure 9.3. Total error probability for the key feature o, , at SNR range of 20dB to —5dB,
for PSK2 (subset A) and PSK4 and PSKS8 (subset B) with fading and 120Hz Doppler shift.
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Figure 9.4. Total error probability for the key feature o, , at SNR range of 20dB to —5dB,
for PSK2 (subset A) and PSK4 and PSKS8 (subset B) in a Gaussian channel.
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Figure 9.5. ROC curves for the key feature o, to scparatc PSK2 (subsct A) and PSK4 and
PSKZ® (subsct B) signals with fading and 120Hz Doppler shift for SNR range of 20dB to
—5dB.

The threshold value tPm, is found from the total minimum crror probability for the key
feature Pni,. The total crror probability is plotted in Figure 9.6 for PSK8 (subset A) and
PSK4 (subset B) signals. It can be observed from the figurc that a good choice for the
threshold tP., is 26 where the minimum error is 0.1329 for thc SNR range of 20dB to 5dB
and 0.4744 for SNR of OdB and —5dB. The ROC curves for this key feature are shown in
Figure 9.7 for the SNR range of 20dB to -5dB. Thc curves show the detection probability
of subset A (PSK8) and falsc alarm probability of subsct B (PSK4). By examining the
ROC curves for SNR > 10dB, we can sec that the chosen threshold value P, {(indicated
by ‘x’} has a detection probability (Pp) of 0.7950 and false alarm probability (Pra) of 0.02
at 10dB SNR.
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Figure 9.6. Total error probability for the key feature Py, at SNR range of 20dB to -5dB,
for PSK8 (subset A) and PSK4 (subset B) with fading and 120Hz Doppler shift.
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Figure 9.7. ROC curves for the key feature Pyn to separate PSK8 (subset A) and PSK4
(subset B) signals with fading and 120Hz Doppler shift.

To separate FH SS signals from TDMA signals when fading is present, the Key feature ¥
is used. The total error probability for the SNR range of 20dB to —-5dB is shown in Figure
9.8. Itis found that the optimum threshold value y.,.3 is 44, which gives a minimum error

probability of O for the SNR range of 20dB to -5dB.
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Figure 9.8. Total error probability for the key feature ¥na.r, at SNR range of 20dB to -5dB,
for TDMA (subset A) and FH S8 (subset B) with fading and 120Hz Doppler shift.

To determine whether fading is present for FSK signals, the key feature oy, is used. The
total error probability for subset A (FSK2, FSK4, and FSK8 when fading is not present)
and subset B (FSK2, FSK4, and FSK8 when fading is present) is shown in Figure 9.9. The

optimum threshold occurs at tg,; = 2.4 where the total minimum error probability is 0.0629
for the SNR range of 20dB to 5dB.
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Figure 9.9. Total error probability for the key feature o5, at SNR range of 20dB to ~5dB,
for FSK2, FSK4, FSK8, and CPM with no fading (subset A) and FSK2, FSK4, FSKS§, and
CPM (subset B) with fading and 120Hz Doppler shift.
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The total error probability for the key feature Laigr is shown in Figure 9,10 for subset A
(FSK2) and subset B (FSK4 and FSK8). It is found that the optimum threshold tLgs is —7
where the minimum error probability is 0.0592 for the SNR range of 20dB 10 5dB and
0.4440 for SNR of 0dB and ~-5dB.
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Figure 9.10. Total error probability for the key feature Ly, at SNR range of 20dB to -5dB,
for FSK2 (subset A) and FSK4, FSKS8, and CPM (subset B) with fading and 120Hz
Doppler shift.
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Figure 9.11. ROC curves for the key feature Lqir to separate FSK2 (subset A) and FSK4,
FSKS, and CPM (subset B) signals with fading and 120Hz Doppler shift for SNR range of
20dB to —5dB.

The ROC curves for the key feature Lag are shown in Figure 9.11 for the SNR range of
20dB to -5dB. The curves show the detection probability of FSK2 (subset A) and the false
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alarm probability of FSK4, FSK&, and CPM (subset B). By examining the ROC curves for
SNR = 10dB, we can see that the chosen threshold value tLg; (indicated by ‘x’) has a
detection probability (Pp) of 1.0 and false alarm probability (Pr4) of 0.0917 at 10dB SNR.

To classify FSK4 (subset A) and FSK8 (subset B) signals, the threshold value, t})mayq, 15
determined from the total error probability shown in Figure 9.12. The minimum error
probability is 0.3942 for the SNR range of 20dB to 5dB, corresponding to a threshold value
of t¥mas = 20. When fading is present, it becomes much harder to separate FSK signals as
can be seen from the total error probability in Figure 9.12. The ROC curves for the key
feature ¥uagare shown in Figure 9.13 for the SNR range of 20dB to -5dB. The ROC curves
show the difficulty in separating FSK4 and FSKS8 signals since the probability of detection
(Pp) of FSK4 (subsct A) is not so high for low probability of false alarm {Prs) of FSK&
(subset B). By examining the curves for SNR 2= 10dB, we can see that the chosen threshold
value t¥may¢ (indicated by ‘x’) has a detection probability (Pp) of 0.81 and false alarm
probability (Prs) of 0.5125 at 10dB SNR.
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Figure 9.12. Total error probability for the key feature ¥uqr at SNR range of 20dB to —5dB,
for FSK4 (subset A) and FSKS8 (subset B) with fading and 120Hz Doppler shift.
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A summary of the key features for the modified decision tree to accommodate Rayleigh

fading is shown in Table 9.1. The total minimum error probabilities and corresponding

oplimum thresholds for the SNR ranges of 20dB to 5dB and 0dB to —-5dB are also shown.

Table 9.1. Summary of key feature thresholds and error probabilities.

Key Feature

SNR 20dB to 5dB

SNR 0dB to -5dB

Threshold Optimum Minimum Error Optimum Minimum Error
Threshold Probability Threshold Probability

t Yoming3 -33 0 -29 0.0014
tPmin 26 0.1329 41 0.4294
tOm2 24 0.0629 3.1 (.3140
VWinaxfs 20 0.3942 19 0.4713
tLgife3 -7 0.0592 -2 0.2584
a3 44 0 44 0

1 Op2 1.08 0.0106 0.98 0.0925

Therefore the optimum threshold values are: toy;; = 1.08, tPyin = 26, t0pe = 2.4, thap =

A4, tLatrs = -7, thuing 3 = -29.9, and thnage =20.
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9.3.5 Dependency of Key Feature Selection on Minimum Probability of Error

The reason why the key features in the previous section are chosen over the other existing
key features is that they minimise the total error probability for each decision. We will call
the decision separating BPSK DS-SS, and QPSK DS-SS (subset A) from PSK2, PSK4 and
PSKS, (subset B) decision 1. Decision 2 separates subset A (PSKS) and subset B (PSK4)
and decision 3 distinguishes between fading being present for FSK2, FSK4, FSK&, and
CPM (subset A) and fading not being present for the same signals (subset B). Decision 4 is
defined as the classification of FSK2 (subset A) and FSK4, FSK8, and CPM (subset B) and
Decision 5 separates FSK4 (subset A) and FSK8 (subset B). Decision 6 is defined as the
classification of TDMA (subset A} and FH-SS (subset B) and decision 7 is the
classification of PSK2 (subset A) and PSK4 and PSK8 (subset B). We can see from Table
9.2 and Table 9.3 that the key features that have been chosen minimise the total error

probability for each decision for the SNR range of 20dB to —5dB.

It can be seen in decision 5, that the feature L4y has the smallest error probability.
However, this feature is not chosen because it is very sensitive to fading for this particular
decision and will vary for different Doppler frequencies. Therefore, the feature Jay is
chosen for this decision instead because it is unaffected by fading. The modified decision
tree to accommodate signals undergoing Rayleigh fading with Doppler spread of 120Hz is
shown in

Figure 9.14. The first modification to the tree accurs where FH SS and TDMA are
separated by the key feature yu.qy if fading is present. The second modification occurs
where the feature oy, is used to determine if fading is present for FSK signals. If fading is
present the feature Lyg separates FSK2 from FSK4, FSKS, and CPM. The third change to

the decision tree is where the feature o, separates PSK2 from PSK4 and PSKE when

fading is present. Similarly, the feature Py, is used instead of té ,m! to separate PSK4 from

PSKZX in a fading channel. The final change in the tree occurs where FSK4 and FSKS are
separated by the feature }... in the presence of fading. The NN classifier modifications to

accommodate fading are presented in the next section.
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9.4 NN Classifier Modifications for Rayleigh Fading

The modulation classifier performance using the NN approach is investigated for a Doppler
spread of 120Hz. The neural network structure shown in Figure 8.17 is slightly modified to
accommodate fading signals. The modified structure is described in subsection 9.4.1.
Subsection 9.4.2 describes how the NN classification works when the channel is unknown.

This network structure is trained for modulation types with SNR range 20dB to -5dB.

94.1 Modified Neural Network Structure to Accommodate Rayleigh Fading

The neural network structure shown in Figure 9.15 has some modifications within the sub-
nets. All of the modified networks have been trained with signals undergoing Rayleigh
fading with Doppler spread 120Hz and SNR range of 20dB to -5dB. Network four is
modified to have the input key feature Py, instead of the feature oy, Network six is
retrained with data of SNR range of 20dB to —5dB that has been affected by Rayleigh
fading. The structure giving the optimum performance is modified to have one hidden

layer with seven neurons. The remaining sub-nets remain the same.

94.2 Neural Network Classifier for AWGN and Rayleigh Fading Channel

When a signal is intercepted and the channel is unknown, the signal can be simultaneously
passed through the networks in 8.17 and Figure 9.15. The classification can be achieved by
choosing the signal with the highest success rate from the two networks. The results of the

DT and NN classifiers in the presence of fading will be discussed in the next section.

9.5  Performance Analysis of DT and NN Classifiers in the Presence of
Rayleigh Fading

A graphical comparison between the overall classification accuracy of the DT and NN
classifiers in the presence of fading is shown in Figure 9.16. It can be inferred that the NN
implementation generally performs better than the DT algorithm. The performance results
for the classification of each modulation type using the DT and NN approaches are shown
in Figure 9.17 - Figure 9.22, for the SNR range of 20dB to -5dB, respectively. It can be
seen that most of the signals can be classified with success rates greater than 80% for SNR

greater than or equal to 5dB with the exception of FSK8 signals.
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Table 9.2. Total minimum error probability for Decisions 1 — 3 for combined SNR range of

20dB to —5dB (threshold values are shown in brackets).

Key Total Minimum Error Total Minimum Error Total Minimum Error
Feature | Probability (Decision 1) | Probability (Decision 2) | Probability (Decision 3)

Yinaxf 0.2953 (-102.6) 0.5000 (-92) 0.2724 (24.2)

Hip 0.3938 (0.34) 0.4053 (0.08) 0.4502 (44)

(‘jzl 0.1786 (0.96) 0.4762 (0.6) 0.2385 (0.9)
|(:~w| 0.0378 (1.07) 0.2667 (0.1) 0.4267 (0.02)

Opn 0.3748 (0) 0.5000 (0) 0.2378 (2.4)

Cup 0.1823 (0.82) 0.4342 (0.91) 0.3892 (435)
Vinf 0.0009 (-29) 04133 (-45.4) 0.4206 (-39)
Laisr 0.3221 (-2.02) 0.4787 (-2.9) 0.4173 (-5.0)

Oy 0.4466 (1.57) 0.4700 (1.91) 0.3866 (435)

Prin 0.2015 (13.72) 0.2515 (26) 0.4821 (12)

It can also be observed that the DT classifier performs better than the NN classifier for
some signals such as FSK signals when a fading channel is present. With the DT classifier,
the performance of the FSK4 signal gets worse while the FSK8 classification performance
gets better with decreasing SNR. This is because the values of the key feature y..rare very
similar for FSK4 and FSKS signals and therefore it is harder to separate these two signals
in the presence of fading, so if the performance of one signal is good, the performance of

the other suffers.

The NN classifier performs better than the DT classifier for signals such as PSK2, BPSK-
SS, and QPSK-SS signals. For all other signals, the results for the NN classifier and the DT
classifier are comparable when fading is present. By referring to the results for the
Gaussian channel in Chapter 8, it can be seen that both the NN and DT classifier

performances suffer in the presence of Rayleigh fading.
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Table 9.3. Total minimum crror probability for Decisions 4 — 7 for combined SNR range of

20dB to —5dB (threshold values are shown in brackets).

Key Total Minimum Total Minimum Total Minimum Total Minimum

Feature | Error Probability | Error Probability | Error Probability | Error Probability
(Decision 4) {Decision 5) (Decision 6) (Decision 7)

Vnaxf 0.2451 (23) 0.4325 (20) 0 (44) 0.2562 (-98.7)
Hp 0.2500 (100) 0.4635 (-1.0) 0.0002 (455) 0.2255 (0.57)
|(jz| 0.2500 (0.35) 0.4373 (0.8) 0.3028 (0.98) 0.3813 (1.4)
é4o| 0.3332 (0.4) 0.5000 (0) 0.0539 (0.16) 0.2587 (0.38)

O 0.2500 (4) 0.4443 (1.7) 0 (9.5) 0.2532 (0)

Cup 0.2500 (200) 0.4902 (460) 0 (250) 0.0893 (1.08)
Yoninf 0.2500 (-32) 0.4650 (-44) 0.1440 (-14) 0.3333 (-30)
Laisr 0.1325 (-7) 0.3762 (-1.0) 0.0011 {(-4.434) (0.3333 (10)
O 0.2500 (100) 0.4900 (463) 0 (250) 0.3150 (2)
Prin 0.2500(175) 0.4900 (70) 0.2300 (20) 0.3333 (357)

A tabular comparison of the overall performance of the DT and NN classifiers is shown in
Table 9.4. It can be seen that the NN classifier performs on par with the DT classifier for
SNR greater than 5dB. However, for lower SNR, the NN classifier outperforms the DT
classifier considerably. The confusion matrices showing the results for the DT classifier
arc in Appendix E, Table E.1 — Table E.6, and the results for the NN classifier are in Table
E.7 — Table E.12 for the SNR range of 20dB to —5dB respectively.

A graphical comparison between the NN and DT classifiers in both AWGN and fading
environments is shown in Figure 9.23. In general, it can be observed that the NN classifiers
perform slightly better than the DT classifiers for both AWGN and fading channels. Also,

the performance of both classifiers degrades in the presence of fading.
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Figure 9.14. Modified decision tree to accommodate signals in the presence of Rayleigh

fading. Refer to section 9.3.5 for an explanation of the modifications to the tree.
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Figure 9.15. Modified neural network structure for digital modulation classifier in the

presence of Rayleigh fading.

201



Table 9.4. DT and NN classifier accuracy and 95% confidence intervals in the presence of

Rayleigh fading.
SNR DT Classifier NN Classifter
Accuracy | 95% Confidence Interval | Accuracy | 95% Confidence Interval
20dB | 91.97% [91.28, 92.65] 93.8% [93.19, 94.41]
15dB | 92.13% [91.45, 92.81] 94.98% [94.42, 95.53]
104B 91.5% [90.79, 92.21] 93.81% £93.20, 94.42}
5dB 84.1% [83.17, 85.03] 89.93% [89.17, 90.69]
0dB 75.42% [74.33, 76.51] 81.35% {80.36, 82.34]
-5dB | 5043% [49.17, 51.70] 70.19% [69.03, 71.34]
Overall | 80.93% [80.52, 81.33] 87.34% [87.00, 87.69]

9.6 Conclusions

The classifiers presented in Chapter 8 were tested in the presence of Rayleigh fading. It
was found that the classifiers had to be modified slightly to accommodate fading channels.
The performance of the DT modulation classifier suffered significantly for some signals
(namely PSK and FSK) with a Doppler spread of 120Hz. This resulted in some
modifications to the existing decision tree with the addition of new key feawres. The
performance of the DT classifier with signals undergoing fading was good for SNR down
to 10dB. However the classification of FSK8 signals was poor. For SNR of 5dB, the
performance dropped significantly for PSK4, FSK2, and FSKS8 signals.

The neural network classifier was tested with a Doppler spread of 120Hz. Certain sub-net
structures were retrained with modified structures and inputs to improve classification
performance. The performance was good for SNR greater than 10dB, however for lower
SNR, the results were only marginally satisfactory. The results were compared to the DT
classifier and it was found that for certain signals, the NN outperforms the DT classifier

whereas for other signals, the DT classifier gives better results. However, the NN has
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better overall performance than the DT approach over the SNR range of 20dB to -5dB.
The classifiers’ performances in a fading environment were also compared to the
performances in an AWGN channel. It was found that the presence of fading causes the
classification performance to suffer significantly more than in an environment where fading

is not present.
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Figure 9.16. Graphical comparison of overall performance between the NN-based and DT-
based classifiers for Rayleigh fading.
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Figure 9.17. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 20dB SNR and 120Hz Doppler shift.
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Figure 9.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 15dB SNR and 120Hz Doppler shift.
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Figure 9.19. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 10dB SNR and 120Hz Doppler shift.
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Figure 9.20. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 5dB SNR and 120Hz Doppler shift.
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Figure 9.21. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at 0dB SNR and 120Hz Doppler shift.
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Figure 9.22. Classification accuracy of DT classifier (dark bars) and NN classifier (light
bars) for signals at -5dB SNR and 120Hz Doppler shift.
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Figure 9.23. Comparison of overall performance between the NN-based and DT-based
classifiers for Rayleigh fading and AWGN channels.
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CHAPTER 10

Conclusion

10.1 Introduction

A framework has been presented in this thesis for the classification of digital modulation
schemes of communications signals. The focus has been on decision theoretic and neural
network implementations of modulation classifiers. New key features have been proposed
to classify the signals and for the first time, fifteen different digital modulation types can be
classified by one type of modulation classifier. These modulation schemes have bcen
added to the modulation classifiers gradually in Chapters 5, 6, 7 and 8. The fiftecen
modulation types are: ASK2, ASK4, PSK2, PSK4, PSK8, FSK2, FSK4, FSK8, CPM,
BPSK DS-S§S, QPSK DS-SS, FH-SS, TDMA, QAMSE, and QAMI16. It has been shown that
these signals can be classified with accuracies greater than 95% for SNR greater than or
equal to 10dB. For lower SNR values the performance drops as can be expected. It is
found that as more modulation types are added to the classifiers, the classification of
signals becomes increasingly difficult, particularly with signals belonging to the same
family (eg FSK2, FSK4, and FSK8 signals). For NN classificrs, it is found that a
hierarchical network structure gives better results as more signals are added to the
classifier. The overall accuracy of the NN classifier, over the combined SNR range of 20 to

—5dB, is 90.7% compared to 84.56% for the DT classifier.

The performance of the DT and NN classifiers were also tested in the presence of Raylcigh
fading with 120Hz Doppler shift. 1t was found that fading mainly affects key featurcs
which are dependent on the complex envelope of the signal or power spectral density.
Some modifications to the classifiers had to be made so that they were capable of

classifying signals in both an AWGN environment and Rayleigh fading environment. The
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performance is generally slightly worse for fading channels compared to AWGN channels.
With the modifications, the overall accuracy of the NN classifier, over the combined SNR
range of 20 to —5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT

classifier.

A point to consider is that the classification accuracy is based on a single segment of the
intercepted signal. In a real life situation, the decision will be based on a number of
segments and therefore we expect the classification accuracy to improve; a signal
classification accuracy of over 50% (from all the segments) will probably guarantee the

correct recognition of the modulation type.

There are many factors which have not been addressed with regards to modulation
classification in this thesis. There is also room for improvement with the classification
techniques that have been discussed in this thesis. These issues are outlined in the next

section.

10.2  Suggestions for Further Work

This thesis is a first attempt at classifying a large range of digital modulation schemes and
therefore leaves much room for improvement. Some suggestions for further research and
improvement are listed below in no particular order:

1. Investigation into making threshold values dynamically changing with varying SNR
would greatly improve the performance of the DT classifier.

2. The former point follows on from the suggestion of finding methods to determine
the SNR of the unknown signal so that more accurate threshold values can be used
to classify the signal.

3. Investigation into making key features more robust against varying SNR would
improve the performance of classification of signals with very low SNR.

4. For the classification of FSK signals, the bandlimitation greatly hinders the
classification performance. Therefore, further research into finding features that are

not greatly affected by bandwidth would help improve performance.

208



10.

It is found that features that are robust against phase offsets (such as features based
on cumulants) are sensitive to fading channels. The converse also applies with
features such as ¢, that are robust in the presence of fading, are affected by phase
offsets and variations. Therefore, further investigation into feature extraction and
robustness under different conditions should be carried out to improve performance.
The effects of signal delay have not been examined and more work can be carried
out regarding phase and frequency offsets and variations.

More research into the effects of Rayleigh fading channels with different Doppler
frequencies can be made. Different types of fading, e.g. Ricean fading, can also be
examined as well as other channel environments that would affect classification.
Investigation into NN structures to give better performance should also be made.
Factors such as: training algorithms, number of training epochs, minimum error,
number of layers and number of neurons in each layer, input features, outputs, and
hierarchical structures should all be examined further. New NN technologies can
also be researched further to improve performance.

Research into finding more features that can be extracted from communication
signals should be done. Features such as wavelets, for cxample, can be investigated
further to improve classification performance.

Analog communications signals can also be added to the classifiers discussed in this
thesis. Azzouz and Nandi have designed a classifier incorporating a limited number
of analog and digital signals in [Azzound and Nandi, 1996] and this is a good
starting point.

Finally, it is hoped that the methods developed in this thesis can be extended to other

applications, such as the design of a universal recciver.
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Appendix A

This appendix presents the results of the DT and NN classifiers described in Chapter 5.

A.1  Confusion Matrices for DT Classifier
Table A.1. DT classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 i PSK2 PSK4 | FSK2 | FSK4
ASK2 100% - -
ASK4 - 100% -
PSK2 - - 100% -
PSK4 - - - 100% - -
FSK2 - - - - 97.5% 2.5%
FSK4 - - - - 0.5% 99.5%

Table A.2. DT classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 | PSK4 [ FSK2 [ FSK4
ASK2 98.5% 1.5% - - - -

ASK4 - 100% -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 95.5% | 4.5%
FSK4 - - - - 1% 99%

Table A.3. DT classifier confusion matrix for signals at SNR = 10dB (test sct).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 PSK4 | FSK2 | FSK4
ASK2 89.75% | 10.25% - - - -

ASK4 1.5% 98.5% -
PSK2 - - 100%

PSK4 - - - 100% - -
FSK2 - - - - 92.75% 1 7.25%
FSK4 - - - - 0.75% | 99.25%
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Table A.4. DT classifier confusion matrix for signals at SNR = 5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type
ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4

ASK2 7125% | 27% - 1.75% - -
ASK4 12% | 87.75% - 0.5% - -
PSK2 - - 98.75% | 1.25% - -
PSK4 - - - 100% - -
FSK2 - - - - 94.75% | 5.25%
FSK4 - - - - 13.25% | 86.75%

Table A.5. DT classifier confusion matrix for signals at SNR = 0dB (test set).

Simulated Deduced Modulation Type

Modulation
Type

ASK2 [ ASK4 | PSK2 PSK4 FSK2 FSK4

ASK?2 26.5% 11% 0.75% | 61.75% - -
ASK4 17% 40.5% - 42.5% - -
PSK2 - - 81.25% | 18.75% - -
PSK4 - - 255% | 714.5% - -
FSK2 - - - - 99.75% | 0.25%
FSK4 - - - - 96.25% | 3.75%

Table A.6. DT classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type
ASK2 | ASK4 [ PSK2 PSK4 FSK2 FSK4

ASK2 0.25% | 0.25% | 38.5% 61% - -
ASK4 - 0% 31% 69% - -
PSK2 - - 92.25% | 7.75% - -
PSK4 - - 92% 8% - -
FSK2 - - - - 100% -
FSK4 - - - - 100% -
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A2

Confusion Matrices for NN Classifier

Table A.7. NN classifier confuston matrix for signals at SNR = 20dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

ASK4 | PSK2 PSK4 FSK?2

ASK2

ASK4

100% - -

PSK2

- 100%

PSK4

- - 100%

FSK2

- - - 100%

FSK4

1%

99%

Table A.8. NN classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

ASK4 | PSK2 | PSK4 | FSK2

ASK2

ASK4

99.5% - -

PSK2

- 100% -

PSK4

- - 160%

FSK2

- - - 99%

1%

FSK4

- - - 0.5%

99.5%

Table A.9. NN classifier confusion matrix for signals at SNR = 10dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

ASK2

ASK4 | PSK2 | PSK4 | FSK2

ASK2

96.5%

3.5% - -

ASK4

95% - -

PSK2

- 100%

PSK4

- - 100%

FSK2

- - - 95%

FSK4

1%

99%
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Table A.10. NN classifier confusion matrix for signals at SNR = 5dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4
ASK2 82.29% | 17.46% | 0.25% - - -
ASK4 21.45% | 783% | 0.25% - - -

PSK2 - - 100% - - -
PSK4 2% - - 98% - -
FSK2 - - - - 91% 9%
FSK4 - - - - 4.5% 95.5%

Table A.11. NN classifier confusion matrix for signals at SNR = 0dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4
ASK?2 59.44% | 38.81% 1% 0.75% - -
ASK4 41.26% | 56.98% 1% 0.75% - -

PSK2 - - 71% 19.5% - -
PSK4 1.5% - 7.5% 91% - -
FSK2 - - - - 85.5% | 14.5%
FSK4 - - - - 45% 35%

Table A.12. NN classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4
ASK?2 51.15% | 45.36% | 2.75% | 0.75% - -

ASK4 54.04% | 42.46% | 2.75% | 0.75% - -
PSK?2 - - 53% 38.5% - 8.5%

PSK4 - - 27% 66.5% 0.5% 6%
FSK2 - - - - 91.5% 8.5%
FSK4 - - - - 88.5% | 11.5%
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Appendix B

This Appendix presents the results of the DT and NN classifiers described in Chapter 6.

B.1 Confusion Matrices for DT Classifier

B.1.1 Classification of CPM Signals

Table B.1. DT classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

ASK2 | ASK4 | PSK2

PSK4

FSK?2

CPM

ASK?

ASK4

PSK2

PSK4

FSK?2

FSK4

CPM

100%

Table B.2. DT classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated
Modulation
Type

Deduced Modulation Type

ASK2 1 ASK4 | PSK2

PSK4

FSK2

CPM

ASK2

98.5% | 1.5% -

ASK4

PSK2

- - 100%

PSK4

FSK2

FSK4

CPM

100%
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Table B.3. DT classifier confusion matrix for signals at SNR = 10dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

ASK2 | ASK4 | PSK2

PSK4

FSK2

FSK4

ASK2

89.75% | 10.25% -

ASK4

1.5% | 98.5% -

PSK2

- - 100%

PSK4

FSK?2

92.75%

7.25%

FSK4

0.75%

99.25%

CPM

Table B.4. DT classifier confusion matrix for signals at SNR = 5dB (test set).

Simulated Deduced Modulation Type

Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4 | CPM
ASK2 71.25% | 27% - 1.75% - - -
ASK4 12% | 87.75% - 0.5% - - -
PSK2 - - 97.5% | 2.5% - - -
PSK4 - - 3% 97% - - -
FSK2 - - - - 94.75% | 5.25% -
FSK4 - - - - 13.25% | 85.25% | 1.25%
CPM - - - - - - 100%
Table B.5, DT classifier confusion matrix for signals at SNR = OdB (test set)

Simulated Deduced Modulation Type

Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4 | CPM

ASK2 26.5% 11% 0.75% | 61.75% - - -
ASK4 17% | 40.5% - 42.5% - - -
PSK?2 - - 83% 17% - - -
PSK4 - - 30% 70% - - -
FSK2 - - - - 99.75% | 0.25% -
FSK4 - - - - 96.25% | 2.75% 1%
CPM - - - - - 4.25% | 95.75%
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Table B.6. DT classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type

Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4 | CPM

ASK2 0.25% | 0.25% | 38.5% | 61% - - 40.5%
ASK4 - 0% 31% 69% - - 31%
PSK2 - - 92.25% | 7.75% - - -
PSK4 - - 92% B% - - -
FSK2 - - - - 100% - -
FSK4 - - - - 100% - -
CPM - - - - 0.25% 12675% 1 73%

B.1.2 Classification of Signals within the CPM Signal Class

Table B.7. DT classifier confusion matrix for signals at SNR = 20dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 91.5% 8.5% -
CPM (L=1)
Partial Response 31.33% 68.67% -
CPM (L=2)
GMSK - - 100%

Table B.8. DT classifier confusion matrix for signals at SNR = 15dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 90.83% 8.5% -
CPM (L=1)
Partial Response 36% 64% -
CPM (1.=2)
GMSK - - 100%
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Table B.9. DT classifier confusion matrix for signals at SNR = 10dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 78.17% 21.83% -
CPM (L=1)
Partial Response 30.17% 69.83% -
CPM (L=2)
GMSK - - 100%

Table B.10. DT classifier confusion matrix for signals at SNR = 5dB.

Simulated Deduced Modulation Type
Modulation Type]
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 100% - -
CPM (L=1)
Partial Response 100% - -
CPM (L=2)
GMSK 4% - 96%

Table B.11. DT classifier confusion matrix for signals at SNR = 0dB.

Simulated Deduced Modulation Type
Modulation Type,
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 100% - -
CPM (L=1)
Partial Response 100% - -
CPM (L=2)
GMSK 21.5% - 78.5%
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Table B.12. DT classifier confusion matrix for signals at SNR = -5dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
{L=1) CPM (L=2)
Full Response 100% - -
CPM (L=1)
Partial Response 100% - -
CPM (L=2)
GMSK 49.75% - 50.25%

B.2 Confusion Matrices for NN Classifier

B.2.1 NN Classification of CPM Signals

Table B.13, NN classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

PSK2

PSK4 | FSK2

ASK2

ASK4

PSK?2

100%

PSK4

FSK2

- 100%

FSK4

- 2.5

1%

CPM

- 100%

Table B.14. NN classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 | PSK4 [ FSK2 | FSK4 | CPM
ASK2 99.75% - 0.25% - - - -
ASK4 0.5% [9925%( 025% - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 100% - -
FSK4 - - - - 2% 96% 2%
CPM - - - - - - 100%
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Table B.15. NN classifier confusion matrix for signals at SNR = 10dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

PSK2

PSK4

FSK2

FSK4

ASK2

ASK4

PSK2

100%

PSK4

FSK2

94.5%

5.5%

FSK4

1%

99%

CPM

100%

Table B.16.

NN classifier confusion matrix for signals at SNR = 5dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

ASK2

ASK4

PSK2

PSK4

FSK2

FSK4

ASK2

82.29%

17.46%

0.25%

ASK4

21.45%

78.3%

0.25%

PSK2

0.5%

99.5%

PSK4

0.5%

FSK2

88.5%

11.5%

FSK4

3.5%

96.5%

CPM

100%

Table B.17. NN classifier confusion matrix for signals at SNR = 0dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4 | CPM
ASK2 57.63% | 37.62% | 125% | 3.5% - - -
ASK4 0% |[55.24% | 1.25% | 3.5% - - -
PSK2 - 9% 75.5% | 15.5% - - -
PSK4 - 6% 95% | 84.5% - - -
FSK2 - - - - 84.5% | 15.5% -
FSK4 - - - - 54% 46% -
CPM - - - - - - 100%
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Table B.18. NN classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type
ASK2 | ASK4 | PSK2 | PSK4 | FSK2 | FSK4 | CPM

ASK2 51.15% | 45.36% | 2.75% | 0.75% - - -
ASK4 54.04% | 42.46% | 2.75% | 0.75% - - -
PSK2 - - 57% 43% - - -
PSK4 - - 32.5% i 67.5% - - -
FSK2 - - - - 67.5% | 32.5% -
FSK4 - - - - 69% 31% -
CPM - - - - - 9.5% | 90.5%

B.2.2 NN Classification of Signals Within the CPM Class

Table B.19, Neural network ! confusion matrix for signals at SNR = 20dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 88.83% 11.17% -
CPM (L=1)
Partial Response 3.83% 96.17% -
CPM (L=2)
GMSK - - 100%

Table B.20. Neural network 1 confusion matrix for signals at SNR = 15dB.

Simulated Deduced Modulation Type
Modulation Type]
Full Response CPM | Partial Response GMSK
{L=1) CPM (L=2)
Full Response 91.5% 8.5% -
CPM (L=1)
Partial Response 20.83% 79% 0.17
CPM (L=2)
GMSK - - 100%
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Table B.21. Neural network 1 confusion matrix for signals at SNR = 10dB.

Simulated Deduced Modulation Type
Modulation Type|
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 79% 20.5% 0.5%
CPM (L=1)
Partial Response 25.17% 70% 4.83%
CPM (L=2)
GMSK 0.5% 13% 86.5%

Table B.22. Neural network 1 confusion matrix for signals at SNR = 5dB.

Simulated Deduced Modulation Type
Modulation Typel
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 99.67% 0.33% -
CPM (L=1)
Partial Response 97.85% 2.17% -
CPM (L=2)
GMSK 97.5% 2.5% 0%

Table B.23. Neural network 1 confusion matrix for signals at SNR = 0dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 855% 13.8% 0.67%
CPM (L=1)
Partial Response 87.5% 12.5% -
CPM (L=2)
GMSK 86.5% 13% 0.5%
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Table B.24. Neural network 1 confusion matrix for signals at SNR = -5dB.

Simulated Deduced Modulation Type
Mecedulation Type;
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)

Full Response 41.17% 45.33% 13.5%
CPM (L=1)

Partial Response 46% 40.17% 13.83%
CPM (L=2)

GMSK 53.5% 35% 11.5%

Table B.25, Neural network 2 confusion matrix for signals at SNR = 20dB,

Simulated Deduced Modulation Type
Modulation Type)
Full Response CPM [ Partial Response GMSK
(L=1) CPM (L=2)
Full Response 95.5% 4.5% -
CPM (L=1)
Partial Response 2% 98% -
CPM (L=2)
GMSK - - 100%

Table B.26. Neural network 2 confusion matrix for signals at SNR = 15dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 87% 13% -
CPM (L=1)
Partial Response 5.5% 94.5% -
CPM (L=2)
GMSK - - 100%
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Table B.27. Neural network 2 confusion matrix for signals at SNR = 10dB.

Simulated Deduced Modulation Type
Modulation Type|
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 75% 24.67% 0.33%
CPM (L=1)
Partial Response 20.5% 75.83% 3.67%
CPM (L=2)
GMSK 1% 8.5% 90.5%
Table B.28. Neural network 2 confusion matrix for signals at SNR = 5dB.
Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 99.67% 0.33% -
CPM (L=1)
Partial Response 0.5% 33.5% 66%
CPM (L=2)
GMSK - 15% B85%

Table B.29. Neural network 2 confusion matrix for signals at SNR = 0dB.

Simulated Deduced Modulation Type
Modulation Type|
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2)
Full Response 100% - -
CPM (L=1)
Partial Response - 1.07% 98.33%
CPM (L=2)
GMSK - 0.5% 99.5%
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Table B.30. Neural network 2 confusion matrix for signals at SNR = -5dB.

Simulated Deduced Modulation Type
Modulation Type
Full Response CPM | Partial Response GMSK
(L=1) CPM (L=2}
Full Response 100% - -
CPM (L=1)
Partial Response 100% - -
CPM (L=2)
GMSK - - 100%
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Appendix C

This Appendix presents the results of the DT and NN classifiers described in Chapter 7.

C.1 Confusion Matrices for DT Classifier

Table C.1. DT classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM [ BPSK-SS | QPSK-SS| FH-SS TDMA

ASK2 100% - - - - - - - - . -

ASK4 - 100%

PSK2 - - 100% - - - - - - - -

PSK4 - - - 100%

FSK2 - - - - 97.5% 2.5% - - - - -

FSK4 - - - - 0.5% 99.5% - - - - -

CPM - - - . - - 100% - : ) :

BPSK-SS - - - - - - - 100% - - .

QPSK-SS| - 2 - - - - - - 100%

FH-SS - - - - -

TDMA - - - - - 0.25% - - - - 99.75%
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Table C.2. DT classificr confusion matrix for signals at SNR = 15dB (tcst set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM [ BPSK-SS |QPSK-SS| FH-SS TDMA

ASK2 98.5% 1.5% - - - - - - - - _

ASK4 - 100%

PSK2 - - 100%

PSK4 - - - 100%

FSK2 - - - - 95.5% 4.5% - - - - -

FSK4 - - - - 1% 99% - - - - _

CPM - - - - - - 100% - - - _

BPSK-SS - - - - - - - 100%

QPSK-SS - - - - - . - - 100% - ;

FH-SS - - - - - - - - - 100%

TDMA - - - - - - - - - - 100%




Table C.3. DT classifier confusion matrix for signals at SNR = 10dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS | QPSK-SS| FH-SS TDMA

ASK2 89.75% | 10.25% - - - - - - - - -

ASK4 1.5% 98.5%

PSK2 - - 100%

PSK4 - - - 100%

FSK2 - - - - 92.75% 7.25% - - - - -

FSK4 - - - - 0.75% 99.25%

CPM - - - - - - 100%

BPSK-S8 - - - - - - - 100%

QPSK-SS - - - - - - - - 100%

FH-88 - - - - - - a - - 100%

TDMA - - - - - - - - - - 100%
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Table C.4. DT classifier confusion matrix for signals at SNR = 5dB (lest set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS [QPSK-SS| FH-SS | TDMA

ASK2 11.25% 27% - 1.75% - - - - - . R

ASK4 12% 87.75% 0.5% - - - - - - -

PSK2 - - 98.75% 1.25% ~ ~ - - - . R

PSK4 - : ) 100%

FSK?2 - - - - 94.25% 5.25% - - - - 0.5%

FSK4 - - - - 13.25% 85% 1.5% - - - 0.25%

CPM - - . - - . 100%

BPSK-SS - -

QPSK-SS - - 0.25% 1.75% - - - - 98%

FH-SS - - - - - - - - - 100%

TDMA - - - - - - - - - - 100%




Table C.5. DT classifier confusion matrix for signals at SNR = OdB (test set).

Simulated Deduced Modulation Type
Modulation
Type
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM |BPSK-SS|QPSK-SS| FH-SS | TDMA
ASK2 26.5% 11% 0.75% | 61.75% - - - - - - -
ASK4 17% 40.5% - 42.5% - - - - - - -
PSK2 - - 81.25% 18% - - - - 0.75% - -
PSK4 - - 25% 74.5% - - - 0.25% 0.25% - -
FSK2 - - - - 98% 0.25% - - - - 1.75%
FSK4 - - - - 92.5% 2.75% 1% - - - 3.75%
CPM - - - - - 4.25% | 95.75% - - - -
BPSK-SS - - - 0.75% - - - 99.25% - - -
QPSK-SS - - - 14% - - - - 86% - -
FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100%
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Table C.6. DT classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS |QPSK-SS| FH-SS | TDMA
ASK2 0.25% 0.25% 38.5% 61% - - 40.5% - - - -
ASK4 - 0% 31% 69% - - 31% - - - -
PSK2 - - 84% 8% - - - - 8% - -
PSK4 - - 85% 8.25% - - - - 6.75% - -
FSK2 - - - - 85.25% - - - - - 14.75%
FSK4 - - - - 83.25% - - - - - 16.75%
CPM - - - - 0.25% 24% 65.75% - - - 10%
BPSK-SS - - - 18.25% - - - 81.5% 0.25% - -
(QPSK-SS - - - 21.5% - - - - 78.5% - -
FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100%




C.2 Confusion Matrices for NN Classifier

Table C.7. NN classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS |QPSK-SS| FH-SS TDMA

ASK2 99.5% 0.5% - - - - - - - - .

ASK4 - 100% - - - - - ; - - -

PSK2 : ] 100% - - - - - - -

PSK4 - - - 100%

FSK2 - - - - 100%

FSK4 - - - - 2.5% 97.5% - - - - -

CPM - - - - ; ; 100% a - - -

BPSK-SS - - - - - - - 100% : - -

QPSK-SS - - - - ; - - - 100% - -

FH-SS - ; . - _ ; ; . ; 100% ;

TDMA - - - - - - - - - - 100%
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Table C.8. NN classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated Deduced Modulation Type

Modulation
Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS |QPSK-SS| FH-SS | TDMA

ASK2 99% - 1% - - - - - . - -

ASK4 - 100% - - - - - - - - -

PSK2 - - 100% : - - - ; ; . ;

PSK4 - - _ 100% - - - - - - -

FSK2 - - - - 100% - - - - - -

FSK4 - - - - 0.5% 99.5% - - - - -

CPM - - - - ; - 100% . - ) _

BPSK-SS - - - - - - - 100% - - -

QPSK-SS - - - . - - ) - 100% - -

FH-SS - - A A - A A - - 100% -

TDMA - - - - - - - - - - 100%

sl ¥ |



Table C.9. NN classifier confusion matrix for signals at SNR = 10dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS|QPSK-SS| FH-SS | TDMA

ASK2 98.5% 1.5% - - - - - - - -

ASK4 0.5% 99.5% - - - - - - - - -

PSK2 - - 100% - - - - - - - -

PSK4 - - - 100%

FSK2 - - - - 99.5% 0.5%

FSK4 - - - - 1% 98.5% 0.5% - - - -

CPM - - - - - - 100% - - - -

BPSK-SS - - - A _ _ - 100% 3 _ ;

QPSK-SS - - - ; ; ] - - 100%

FH-SS - - - - - - - - - 99.5% 0.5%

TDMA - - - - - - - - - - 100%
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Table C.10. NN classifier confusion matrix for signals at SNR = 5dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

PSK2

FSK2

FSK4

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

ASK2

05%

ASK4

PSK2

0.5%

PSK4

FSK2

0.5%

0.5%

FSK4

92.5%

1.5%

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

100%




Table C.11. NN classifier confusion matrix for signals at SNR = 0dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM | BPSK-SS |QPSK-SS| FH-SS TDMA

ASK2 38% - 55% - - - 7% - - -

ASK4 0.5% 99.5% -

PSK2 - - 2% 94.5% - - - - 3.5% - -

PSK4 - - - 99.5% - - - - 0.5% -

FSK2 - - - - 98.5%

FSK4 - - - - 1% 75% 18.5% - -

CPM - - - - - 2% 97.5%

BPSK-SS - - - - - - - 100%

QPSK-SS - - - A A ] - 425% | 515%

FH-SS - - - - - - - - - 100% -

TDMA - - - - - - - - - - 100%
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Table C.12. NN classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 ASK4 PSK?2 PSK4 FSK2 FSK4 CPM | BPSK-SS{QPSK-SS| FH-SS | TDMA

ASK2 0% - 1% 86.5% - - - 3% 95% - -

ASK4 2.5% 97.5% - - - - - - - -

PSK2 - 55% 1.5% - - - - 43.5% - -

PSK4 - 0.5% 1.5% S5% - - - 43% - -

FSK2 - - - - 89%

FSK4 - - - - 2% 68% 9.5% - - 1.5% 19%

CPM - - - - - 20% 63% -

BPSK-SS - - - ; A - - . 100% - :

QPSK-SS - - . - ] - - - 100% - -

FH-SS - . ] ; A A : ; ) 100% ;

TDMA . . - ; - ; ; _ ) ; 100%

14



Appendix D

This Appendix presents the results of the DT and NN classifiers described in Chapter 8.

D.1 Confusion Matrices for DT Classifier
Table D.1. DT classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated
Modulation
Type

Deduced Modulation Type

ASK2

PSK4

PSK8

FSK?2

FSK4

FSK8

CPM | BPSK-

SS

QPSK-

FH-SS

TDMA

QAMSI0AMI6

ASK2

ASK4

PSK2

PSK4

PSK8

FSK2

FSK4

FSK8

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

QAMSB

QAM16




Table D.2. DT classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated
Modulation
Type

Deduced Modulation Type

PSK4

PSK8

FSK2

FSK4

FSK8

CPM |BPSK-

SS

QPSK-

FH-SS

TDMA

QAMS

QAMI6

ASK2

ASK4

PSK2

PSK4

PSK8

FSK2

97.75%

2.25%

FSK4

7.25%

92.75%

FSK8

23.5%

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

QAMS

QAMI6




Table D.3. DT classificr confusion matrix for signals at SNR = 10dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

PSK4

PSK8

FSK2

FSK4

FSK38

CPM |BPSK-

SS

FH-SS

TDMA[QAMS|QAMI6

ASK2

ASK4

PSK?2

PSK4

PSK8

FSK2

FSK4

FSK8

CPM

BPSK-SS

QPSK-SS

FH-S8S

TDMA

QAMS

QAMI6
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Table D 4. DT classificr confusion matrix for signals at SNR = 5dB (test set).

Simulated Deduced Modulation Type
Modulation

Type

ASK2 [ ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 [ CPM [BPSK-|QPSK-| FH-SS [TDMA[QAMS |QAM16
SS | SS
ASK2 | D% | 2% | - - - - - - - - - - - - -
ASK4 | 12% | 88% | - - - - _ ; - _ -
PSK2 - |0.25% [ 985% | - [125%| - ] - - _ ] _ - ; -
PSK4 - - - 845% | 155% | - - - - - - - - - -
PSKS - - - [7.25% [92.75%| - - -
FSK2 - - - ; - [955% | 2.5% [0.75% | - - - - - - -
FSK4 - : : - - 4% |79.75%|16.25%| - _ - - - - -
FSK8 - - - - - [025% | 25% | 96% | - - - - (25w ] - -
CPM - - - - - - - — [ 100% | - - - : - -
BPSK-SS | - - - - -
QPSK-SS | - - : 1% - - - - - -~ 1 99% | - - - -
FH-SS - - - - _ -

TDMA | - - _ _ _ - _ _ - ; ; T 100% |- -
QAMS - — ; ; - - ] - _ _ - - [1oom | -
QAMIG | - - - - : - - - - - _ - - -~ | 100%

A



Table D.5, DT classifier confusion matrix for signals at SNR = 0dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM |BPSK- ]| QPSK-| FH-SS |TDMA | QAMS [QAM§
ss | ss
ASKZ | 645% | 355% | - - - - - - : _ - - - ] _
ASK4_ [30.75%169.25%] - - 3 ;
PSK2 - . [81.25%] 1.25% |16.75%] - - _ - ~1075% | - _ _ _
PSK4 - _ | 25% | 54% ]20.5%] - : : : - 1 05% | - : : ;
PSK8 . - 19.25% 155.25%) 35.5% | - _ ; _ ; . -
FSK2 3 ; ; . ~ 1 90% | - _
FSKA4 ; ; ; ; - [715%]| 0% |225%)| - . _ — 6% | - ;
FSKS _ _ 3 _ ~ 138.75% - |52.5%
CPM - ] _ : ;
BPSK-SS | - ; ~10.75% | - _ - _ - 199.25%| -
QPSK-SS| - ; ~1525%| - 3 _ : . - [8475%] -
FH-SS 3 3 3 3 _ - _ ; _ ; T 100% | - . :
TDMA | - : - 3 _ ; 3 ; ; 3 ; — 100% | -
QAMS | - _ - - i 3 3 3 - - - ~ 100% | -
QAMIG | - ; 3 - - - _ - _ - - - - 1 100%
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Table D.6. DT classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type
ASK?2 [ ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM |BPSK-|QPSK-| FH-SS |{TDMA | QAMS iQAMI6
SS SS
ASK2 165% | 1325% - - - - - - - - - - - - -
ASK4 122.25%] 32% | 10.5% {15.25%] 19.5% - - - - 0.25% - - - - 0.25%
PSK?2 - - 84% 1% 7% - - - - - 8% - - - -
PSK4 - - 85% | 6.5% | 1.75% - - - - - 6.75% - - - -
PSK8 - - 83% | 8.5% | 1.25% - - - - 7.25% - - - - -
FSK?2 - - - - - 2% - - - - - - 28% - -
FSK4 - - - - - 78.5% 1 0% - - - - - 28% - -
FSK8 - - - - - {74.75%] - 0% - - - - {25.25%f - -
CPM - - - - - - - 21% |68.75%| - - - 10.25%) - -
BPSK-SS - - - 116.75% 1.5% - - - - {8L.75%| - - - - -
QPSK-SS - - - 117.715%] 6.25% - - - - - 76% - - - -
FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAMS - 38.75%} 9.25% | 2.75% - - - - 2.25% - - - 47% -
QAMI16 - - 155.25%| 15% {3.75% - - - - - 1.25% - - - 12475%

A



D.2 Confusion Matrices for NN Classifier

Table D.7. NN classifier confusion matrix for signals at SNR = 20dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

PSK4

PSK®&

FSK2

FSK4

FSK8&

CPM |BPSK-

S8

QPSK-

FH-8S

TDMA

QAMSIQAMLIG

ASK2

ASK4

PSK2

PSK4

04.83%

PSK®&

3.48%

FSK2

FSK4

FSK8

CPM

BPSK-S§8

QPSK-SS

FH-SS§

TDMA

QAMR

QAMI6
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Table D.8. NN classifier confusion matrix for signals at SNR = 15dB (test set).

Simulated
Modulation

Type

Deduced Modulation Type

FSK2

FSK4

FSK8

CPM | BPSK-

SS

QPSK-

FH-SS

TDMA

QAMS

ASK2

ASK4

PSK2

PSK4

PSK8

FSK2

FS5K4

FSK8

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

QAMS

QAMI6




Table D.9 NN classifier confusion matrix for signals at SNR = 10dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM | BPSK- | QPSK- | FH-SS | TDMA | QAMS [0AMI1 6
ss | ss
ASKZ | 965% | 35% | - . . . _ ; } ) - 3 - - -
ASK4 | 5% | 95% | - ; ) ) : ; ; : ) . . . )
PSK2 | 04% | - [991%]| - |05% ] - : ) ; ; ; ; ; - ;
PSK4 | 04% | - = 193.62%| 5.98% | - ; _ _ : ) ; ; ; .
PSK8 | 04% | - - 19.96% [89.64%| -
FSK2 - - - ) - T9%6% | 4% -
FSK4 - - - . - | 05% {945% | 5% ; A . ; : - )
FSK8 - - - a A - | 45% [955%| -
CPM - - - - - - - Twow | -
BPSK-SS | 04% | - - . - . - - AR - - - -
QPSK-SS | 04% | - - - - - - - - ~ J996% | - ; ] ]
FH-SS - - - - - - - - - - - [100% | -
TDMA | - - - - - - - - - - - - J100% | -
QAMS - - ) ) . . ] A ; _ } ] " Toow | -
QAMI6 | - - - ) . ; ] ] - _ _ _ - - 100%
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Table D.10. NN classifier confusion matrix for signals at SNR = 5dB (test set).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM {BPSK- |QPSK-| FH-SS |TDMA | QAMS8 |QAM16
S8 88
ASK2 825% | 175% - - - - - - - - - - - - -
ASK4 121.5%178.5% - -
PSK2 0.2% - 98.3% - 1.5% - - - - - - - - - -
PSK4 0.2% - - i186.83%] 13% - - - - - - - - - -
PSK8 0.2% - - 15% {84.83%{ - -
FSK2 - - - - - 89% | 11% -
FSK4 - - - - - - 88% | 12% - - - - - - -
FSK8 - - - - - - 2.5% {97.5%
CPM -
BPSK-SS | 0.2% - - - - - - - - 9%.8% - - - - -
QPSK-SS | 0.2% - - - - - - - - - 99.8% -
FH-SS - - - - - - - - - - - 100% -
TDMA - - - - - - - - - - - - 100% -
QAMS - - - - - - - - - - - - - 100% -
QAMI6 - - - - - - - - - - - - - - 100%

AR



Table D.11. NN classifier confusion matrix for signals at SNR = OdB (test set).

Simulated
Meodulation

Type

Deduced Modulation Type

ASK2

ASK4

PSK4

PSK8

FSK2

FSK4

FSK8

CPM | BPSK-

S8

FH-8S

TDMA

QAMEB QAMIG

ASK2

6035%

394%

ASK4

41.89%

57.86%

PSK2

0.3%

1.5%

1%

PSK4

0.3%

68.29%

28.5%

PSK8

0.3%

59.32%

37.39%

FSK2

FSK4

FSK8

CPM

BPSK-SS

0.3%

QPSK-SS

0.3%

FH-SS

TDMA

QAMS

QAMI6
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Table D.12. NN classifier confusion matrix for signals at SNR = -5dB (test set).

Simulated
Modulation
Type

Deduced Modulation Type

FSK2

FSK4

FSK8

CPM | BPSK-

SS

QPSK-
SS

FH-SS

TDMA

ASK2

ASK4

PSK?2

4%

PSK4

2.5%

PSK8

FSK2

FSK4

FSK§

CPM

BPSK-SS

QPSK-SS

FH-SS§

TDMA

QAMS

QAMIG6

~ oy



Appendix E

This Appendix presents the results of the DT and NN classifiers described in Chapter 9.

E.1 Confusion Matrices for DT Classifier (Rayleigh Fading)

Table E.1 DT classifier confusion matrix for signals at SNR = 20dB (Doppiler spread = 120 Hz).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM | BPSK- |QPSK- | FH-SS |TDMA | QAMS [QAM16
SS SS

ASK2 | 100%
ASK4 ] ;
PSK2 | 025% | - [9975% - _
PSK4 - - - 199.75%| 025% | - - - - - ; . ; . ;
PSK8 - - - 1675% [93.25%] -
FSK2 - - - - - |100% | - -
FSK4 . - ) - - 116.25%| 79.5% [4.25% | - - - . ; ; .
FSK3 - - - - - 1 65% [785% | 15% | -
CPM - - - - - 7175%]| - — l9225%| -
BPSK-SS | - - . i - - - - - |100% | -
QPSK-SS| - - - - - - - - - - [100% |- . . -
FH-SS - - - - - - - - - - - |100% | -
TDMA - - . - - - - - - . - - | 100% | -
QAMS - - - - - - - - - - - . S T100% |-
QAMI16 | - - - - i - - - - - . - - - | 100%




Table E.2. DT classifier confusion matrix for signals at SNR = 15dB (Doppler spread = 120 Hz).

Simulated
Modulation

Type

Deduced Modulation Type

PSK4

PSK38

FSK2

FSK4

FSK8

CPM |BPSK-

SS

QPSK-

FH-S§

TDMA

QAMS [QAMI16

ASK?

ASK4

PSK2

PSK4

PSK8

FSK2

100%

FSK4

16.25%

FSK8

5%

CPM

5%

BPSK-SS

QPSK-SS

FH-SS

TDMA

QAMS

QAMI6

IS



Table E.3. DT classifier confusion matrix for signals at SNR = 10dB (Doppler spread = 120 Hz).

Simulated Deduced Modulation Type
Modulation
Type

ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM | BPSK- [QPSK- | FH-SS | TDMA [QAMS [QAMI 6
ss | ss
ASK2 | 8925% | 1675% | - - - ) - - - - ; - - - -
ASK4 | 2% | 98% | -
PSK2 | 05% | - |995%| -
PSK4 - - =1 98% | 2% - - - ] ; - - . - ;
PSK8 - - - 1 19% 1805%] -
FSK2 - - ; . - 1100% | - -
FSK4 ; . - ; - 1 13.5% [67.75%|18.75%| -
FSK8 - - ; 2 - 1 75% |46.75%|45.25%) 0.5% | - _ - ) A )
CPM - - - . - 55% | - - l9as%m| - A ] ] - ;
BPSK-SS | - - - : -
QPSK-SS| - - - lo2sm| - - - - - AR - - -
FH-SS . - - . ) - ; : ; ] ~ 1 100% | - - .
TDMA A - - - - - - - - - : - l100% [ - -
QAMS - - - - - ) : ) - ; - - - T100% | -
QAMI6 | - - - - - ) - ; - } - - - - [100%
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Table E.4. DT classifier confusion matrix for signals at SNR = 5dB (Doppler spread = 120 Hz).

Simulated
Modulation
Type

Deduced Modulation Type

ASK2

ASK4

PSK4

PSKS8

FSK2

FSK4

FSK8

CPM

BPSK-
SS

QPSK-

FH-SS

TDMA

ASK2

71.75%

2825%

ASK4

12.75%

87.25%

PSK2

PSK4

34.75%

PSK8

79.5%

FSK2

50.25%

325%

FSK4

52%

38.5%

FSK8

32.25%

60.25%

CPM

BPSK-S8§

QPSK-SS

FH-S§

TDMA

QAMS

QAMI6

54



Table E.5. DT classifier confusion matrix for signals at SNR = 0dB (Doppler spread = 120 Hz).

Simulated Deduced Modulation Type
Modulation
Type

S8 S8

ASK?2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 { FSK4 | FSK8 | CPM |BPSK- |QPSK-|FH-5S |TDMA |QAMS [QAM 16!

ASK2 | 6625% | 33.75% - - - - - - - - - - - -

ASK4  130.25%169.75%

PSK2 10.25% - 199.75%

PSK4 : - - [21.25%|78.75%] - - : _ ]

PSK3 - - - 116.25%| 83.5% -

FSK2 - - - - - 7.5% 120.5% {70.5% { 0.25% - - - 1.25% -

FSK4 - - - - - 1.25% 1 1.25% | 96% - - - - 1.25% -

FSK8 - - - - - 125% { 2% 94%

CPM - - - - - : - 155% |945% | - _ - 3 -

BPSK-SS| - - - - - - - - - | 100%

QPSK-SS - - - - - - - - - - 100% - - -

FH-SS - - - - - - - - - - - | 100%

TDMA

QAMS [025%] - -

QAMI16 | 0.5% - - 0.25% {0.25% - - - - - - - - R
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Table E.6. DT classifier confusion matrix for signals at SNR = -5dB (Doppler spread = 120 Hz).

Simulated
Modulation

Type

Deduced Modulation Type

ASK2

PSK2

PSK&

FSK2

FSK4

FSK8

CPM

BPSK-

FH-SS

TDMA |QAMS QAMI 6

ASK2

15%

ASK4

28.25%

PSK2

32.25%

PSK4

36%

PSK®8

35.25%

FSK2

0.25%

ESK4

FSK8

0%

CPM

22.25%

BPSK-SS

QPSK-SS

FH-5S

TDMA

QAMS

24.25%

QAMI6

36.5%

I8A



E.4 Confusion Matrices for NN Classifier (Rayleigh Fading)

Table E.7. NN classifier confusion matrix for signals at SNR = 20dB (Doppler spread = 120 Hz).

Simulated
Modulation
Type

Deduced Modulation Type

FSK2

FSK4

FSK8

CPM

BPSK-

QPSK-

FH-SS

TDMA

QAMS QAMI16

ASK2

ASK4

PSK2

PSK4

PSKS8

FSK2

FSK4

FSK&

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

QAMS

QAMI6
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Table E.8. NN classifier confusion matrix for signals at SNR = 15dB (Doppler spread = 120 Hz).

Simulated Deduced Modulation Type
Modulation

Type

ASK?2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM [BPSK- [QPSK-| FH-SS |TDMA | QAMS QAM16
S8 S8

ASK2 [ 100% | -
ASK4 | 05% |995% | - -
PSK2 | 1.9% | - [94.18%|245% [ 1.47% | - - - - - - - - - -
PSK4 | 19% | - - |96.14%] 1.96% | - - - - - - - - - -
PSK8 [ 19% | - - |245%(95.65%] -
FSK2 - - - : - | w00%m | - - - - - - - - -
FSK4 - - - - - 55% | 7% [175% ] - - - - - - -
FSK8 - - - - - 1% | 33% | 66% | - - - - - - -
CPM - - - - - - - - |1o0%m | -
BPSK-SS | 1.9% | - - - - - - - - |981m]| - - - - -
QPSK-SS | 1.9% [ - - - - - - - - - [98.1% [ -
FH-SS - A - - - - - - - - - 100w | - - -
TDMA | - ) - - - - - - - - - |1w00% | -
QAMS - - - A - - - - - - - - TR
QAMI6 | A - - - - - - - - - - - - | 100%

NEQ



Table E.9. NN classifier confusion matrix for signals at SNR = 10dB (Doppler spread = 120 Hz).

Simulated
Modulation

Type

Deduced Modulation Type

PSKS8

FSK2

FSK4 | FSK8 | CPM |BPSK-|QPSK-
SS SS

FH-8S8

TDMA

QAMS QAMIG

ASK2

ASK4

PSK2

0.99%

PSK4

5.95%

PSK8

93.25%

FSK2

FSK4

FSK8

CPM

BPSK-SS

QPSK-SS

FH-SS

TDMA

QAMS

QAMI6
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Table E.10. NN classifier confusion matrix for signals at SNR = 5dB (Doppler spread = 120 Hz).

Simutated
Modulation

Type

Deduced Modulation Type

PSK2

PSK4

PSK8

FSK2

FSK4

FSK8

CPM | BPSK-

SS

QPSK-

FH-SS

TDMA | QAMSE IQAM 16

ASK2

ASK4

PSK?2

98.5%

0.5%

PSK4

0.5%

79%

PSK38

FSK2

FSK4

FSK&

CPM

BPSK-SS

QPSK-SS

FH-S8S

TDMA

QAMR

QAMI6

Yy



Table E.11. NN classifier confusion matrix for signals at SNR = 0dB (Doppler spread = 120 Hz).

Simulated Deduced Modulation Type
Modulation
Type
ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM | BPSK-|QPSK-| FH-SS |TDMA | QAMS |QAM 16
SS SS
ASK?2 | 605% | 395% - - - - - - - - - - - - -
ASK4 42% | 58% - - - - - - - - - - - - -
PSK2 | 0.3% - 193.72%| 2% |3.99% - - - - - - - - - -
PSK4 0.3% - 3.49% |58.32%(37.89%| - - - - - - - - - -
PSK8 [ 0.3% - 3.49% 130.91%| 65.3% - - - - - - - - - -
FSK2 - - - - - 95% | 4% 1% - - - - - - -
FSK4 - - - - - 21.5% | 54% |24.5% - - - - - - -
FSK8 - - - - - 15% |45.5% ] 39.5% - - - - - - -
CPM - - - - - - - - 99% - - - 1% - -
BPSK-SS | 0.3% - - - - - - - - 99.7% - - - - -
QPSK-SS | 0.3% - - - - - - - - - 99.7% - - - -
FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAMS 2% - - - - - - - - - - - - 98% -
QAM16 - 0.5% - - - - - - - - - - - - 99.5%
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Table E.12. NN classifier confusion matrix for signals at SNR = -5dB (Doppler spread = 120 Hz).
Simulated Deduced Modulation Type
Modulation
Type
ASK2 | ASK4 | PSK2 | PSK4 | PSK8 | FSK2 | FSK4 | FSK8 | CPM | BPSK-|QPSK-| FH-SS [ TDMA | QAMS |QAM16
SS SS
ASK2 462% | 533% - - - - - - - - - - - 05% -
ASK4 |61.1% | 38.4% - - - - - - - - - - - 0.5% -
PSK2 0.1% - 63.4% 114.49%|21.98%| - - - - - - - - - -
PSK4 0.1% - 7.99% | 56.9% |34.47%| - - - - 0.5% - - - - -
PSK8 0.1% - 11.99%147.45%} 39.5% - - - - 1% - - - - -
FSK2 - - - - - 79.5% | 19.5% | 1% - - - - - - -
FSK4 - - - - - 35.5% 139.5% ¢ 25% - - - - - - -
FSK8 - - - - - 2% §31.5% | 36.5% - - - - - - -
CPM - - - - - - - - 97.5% - - - 2.5% - -
BPSK-SS | 0.1% - - - 0.5% - - - - 99.4% - - - - -
QPSK-SS8 | 0.1% - 1% - - - - - - - 98.9% - - - -
FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAMS 11% - - - - - - - - - - - - 89% -
QAMI6 - 11% - - - - - - - - - - - - 89%

LD
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