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ABSTRACT 

Modulation classification of digital communications signals plays an important role in 

both military and civilian sectors. It has the potential of replacing several receivers with 

one universal receiver. An automatic modulation classifier can be defined as a system 

that automatically identifies the modulation type of the received signal given that the 

signal exists and its parameters lie in a known range. This thesis addresses the need for 

a universal modulation classifier capable of classifying a comprehensive list of digital 

modulation schemes. Two classification approaches are presented: a decision-theoretic 

(DT) approach and a neural network (NN) approach. I 
First classifiers are introduced that can classify ASK, PSK, and FSK signals. A 

decision tree is designed for the DT approach and a NN structure is formulated and 

trained to classify these signals. Both classifiers use the same key features derived from 

the intercepted signal. These features are based on the instantaneous amplitude, 

instantaneous phase, and instantaneous frequency of the intercepted signal, and the 

cumulants of its complex envelope. Threshold values for the DT approach are found 

from the minimum total error probabilities of the extracted key features at SNR of 20 to 

-5dB. The NN parameters are found by training the networks on the same data. The 

DT and NN classifiers are expanded to include CPM signals. Signals within the CPM 

class are also added to the classifiers and a separate decision tree and new NN structure 

are found for these signals. New key features to classify these signals are also 

introduced. 

The classifiers are then expanded further to include multiple access signals, followed by 

QAM, PSK8 and FSK8 signals. New features are found to classify these signals. The 

final decision tree is able to accommodate a total of fifteen different modulation types. 

The NN structure is designed in a hierarchical fashion to optimise the classification 

performance of these fifteen digital modulation schemes. 

Both DT and NN classifiers are able to classify signals with more than 90% accuracy in 

the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, 



the performance of the NN classifier appears to be more robust as it degrades gradually 

at the SNRs of O and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, 

whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the 

NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 

84.56% for the DT classifier. 

Finally, the performances of these classifiers are tested in the presence of Rayleigh 

fading. The DT and NN classifier structures are modified to accommodate fading and 

again, new key features are introduced to accomplish this. With the modifications, the 

overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 

120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier. 
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CHAPTER 1 

Introduction 

Modulation identification plays an important part in both covert and overt operations. The 

main aim in communication intelligence (COMINT) applications is the perfect monitoring 

of the intercepted signals. The modulation type of the intercepted signal is one of the 

parameters that affects perfect monitoring. In the past, radar and communication systems 

have relied on operator interpreted measured parameters to classify and identify signals. In 

modem warfare, there are dense electromagnetic environments and automatic processing 

techniques are required for rapid response. Therefore, automatic modulation classification 

is necessary. Modulation classification exploits several classical communication 

disciplines that include detection and estimation. It has recently attracted interest from both 

the military and commercial sectors due to its capability of replacing several receivers with 

one universal receiver. This has practical application for example in a network 

environment where it is required for an incoming signal to be routed to an appropriate 

processor. An automatic modulation classifier can be defined as a system that automatically 

identifies the modulation type of the received signal given that the signal exists and its 

parameters lie in a known range. This chapter is organised as follows: first the objectives 

of the thesis are described next, followed by the major contributions of the thesis. A 

description of the thesis organization is presented in Section 1.3, and finally the 

publications arising from this research are listed in Section 1.4. 

1.1 Objectives of the Thesis 

There has been some research conducted into the area of automatic modulation 

recognition by Azzouz and Nandi [Azzouz and Nandi, 1996]. They proposed modulation 

classifiers capable of recognising certain analogue signals and a limited number of digital 
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modulation schemes. However, they tested their algorithms on signals with SNR values 

greater than or equal to lOdB. With the advent of new technology using digital 

transmission, the proposed modulation classifiers described in this thesis are designed for 

digital communication signals only. Therefore, the objectives of this thesis are: 

• To design a modulation classifier that is able to classify a comprehensive list of 

digital modulation schemes 

• To use two types of classifier implementations - the decision-theoretic (DT) 

approach and the neural network (NN) approach. 

• To be able to classify digitally modulated signals in the presence of additive white 

Gaussian noise (A WGN) at SNR values down to -5dB. 

• To design classifiers that can handle a different environment than the A WGN 

channel, such as a Rayleigh fading channel. 

1.2 Major Contributions of the Thesis 

The major contributions of this thesis are: 

• A new decision tree design for the classification of ASK, PSK and FSK signals 

using different key features from those proposed by Azzouz and Nandi. 

• The decision-theoretic and neural network modulation classifier capabilities are 

extended to include the classification of CPM, BPSK DS-SS, QPSK DS-SS, FH SS, 

TDMA, FSK8, PSK8, QAM8, and QAM16 signals. 

• New key features are found to classify these signals. 

• Signals within the CPM class can be classified as full response, partial response or 

GMSK and an associated decision tree is developed for that. Also two neural 

network designs have been proposed for the classification of CPM signals. 

• The classifiers' capabilities are extended to signals affected by Rayleigh fading. 

The developed decision tree and neural network are modified to accommodate 

faded signals with a Doppler spread of 120Hz. 
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1.3 Organization of the Thesis 

The structure of the thesis is as follows: 

1. Chapter 2 gives an overview of literature related to digital modulation classification. 

The different techniques related to modulation classification will be described and 

the modulation types that can be classified by each technique will be discussed. 

The main classification techniques discussed are the maximum likelihood approach, 

the pattern recognition approach, and the neural network implementations. 

2. Chapter 3 describes the theory behind the classification process for the decision­

theoretic approach. The Bayes decision rule for minimum error is described as well 

as a method to derive the Bayes error. Threshold determination is described using 

an example. Classifier accuracy, confidence intervals, statistical power and 

statistical significance are also discussed. 

3. Chapter 4 presents the theory behind the classification process for the neural 

network implementation. The general concepts of neural networks including the 

different classes of neural networks and their structures, training algorithms and 

learning paradigms are discussed. An example of classification using neural 

networks is also presented. 

4. In chapter 5, the classification of ASK, PSK, and FSK signals is presented using the 

decision-theoretic and neural network approaches. New key features are introduced 

and an alternate decision tree design is devised. This new tree is compared to the 

design of [Azzouz and Nandi, 1996] and the performances of both these DT 

classifiers are compared. A neural network using the same key features used in the 

devised decision tree is also designed and tested. The performances of both the NN 

and DT classifiers are compared and some conclusions are made. 

5. Chapter 6 expands the DT and NN modulation classifiers proposed in chapter 5 to 

accommodate continuous phase modulated (CPM) signals. These classifiers are 

able to distinguish between CPM signals and other modulation types (ASK, PSK, 
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and FSK). The classifiers can also identify signals within the CPM class - the 

signals are recognised as partial response, full response or Gaussian minimum shift 

keying (GMSK) signals. The performances of the DT and NN classifiers are also 

compared with some concluding remarks. 

6. Chapter 7 presents an extension to the capabilities of the modulation classifiers 

described in chapter 6 to include multiple access signals. These signals are direct 

sequence spread spectrum (DS SS) or code division multiple access (CDMA), 

frequency hopped spread spectrum (FH SS), and time division multiple access 

(TDMA). They are very commonly used in the military for their low probability of 

interception and also in civilian areas, such as in mobile networks to reduce call 

dropouts and interference. These different types of signals are included in the 

modulation classification algorithms, which employ the decision theoretic and 

neural network approaches. The results are compared and presented for each 

classifier with some conclusions. 

7. Chapter 8 completes the development of the modulation classifier structure. In this 

chapter, PSK8, FSK8 QAM8, and QAM16 signals are added to the modulation 

classifiers. These modulation classification algorithms employ the decision 

theoretic and neural network approaches. This results in two types of modulation 

classifiers that are capable of distinguishing fifteen types of digitally modulated 

signals. The performances of the DT and NN classifiers are tested and compared in 

the presence of additive white Gaussian noise (A WGN). Estimates of the 

classification accuracy are derived for SNR (signal-to-noise ratio) ranging from 

20dB to -5dB. 

8. Chapter 9 tests the performances of the developed classifiers in the presence of 

Rayleigh fading. Both classifier structures are modified slightly to accommodate 

fading and the performances of the modified classifiers are compared to the results 

in an A WGN channel. 
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9. Chapter 10 presents some concluding remarks about the thesis. Some suggestions 

for further research are also presented in this chapter. 

10. The thesis also includes a number of appendices where tables of results are 

presented for the classifiers developed in Chapters 5 - 9. 

1.4 Publications Arising From PhD Research 

1. Ramakonar, V., Habibi, D. and Bouzerdoum, A., "Automatic Recognition of 

Digitally Modulated Communications Signals". Proceedings of ISSPA '99, pp. 753-

756, August 1999. 

2. Arulampalam, G., Ramakonar, V., Bouzerdoum, A., and Habibi, D., "Classification 

of Digital Modulation Schemes Using Neural Networks", Proceedings of ISSPA 

'99, pp. 649-652, August 1999. 

3. Ramakonar, V., Habibi, D. and Bouzerdoum, A., "Classification of bandlimited 

FSK4 and FSK8 signals". Proceedings of ISSPA 2001, August 2001. 

4. Ramakonar, V., Habibi, D. and Bouzerdoum, A., "New Algorithm for Classification 

in Rayleigh Fading Channels of Spread Spectrum Communications Signals". 

Proceedings of /SC 2001, pp 530-535, November 2001. 

5. Ramakonar, V., Habibi, D. and Bouzerdoum, A. "New Methods for Classification 

of CPM and Spread Spectrum Communication Signals". Communications World 

( Electrical and Computer Engineering Series), pp303- 308, 2001. 
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CHAPTER2 

Classification of Digital Modulation 

Schemes: A Review 

2.1. Introduction 
This chapter presents a review of the literature relevant to modulation classification. There 

have been a number of articles published in this area, which describe classifiers that can 

recognise a limited number of modulation types [Azzouz, 1998; Wei, 2000; Jondral, 1994; 

Swami, 2000]. There is no comprehensive reference for a classifier encompassing many 

modulation schemes. This serves as the motivation for this thesis. 

There are many types of modulation classification methods and a description of each 

scheme and relevant publications will be presented. The chapter is organised as follows: 

Classification using the maximum likelihood approach is outlined first followed by a 

description of the pattern recognition approach to classification. Finally modulation 

recognition using neural networks is discussed. 

2.2. Maximum Likelihood Approach 

With the maximum likelihood (ML) approach, the classification is viewed as a multiple 

hypothesis testing problem. This is where a hypothesis, OJi, is arbitrarily assigned to the ith 

modulation type of m possible types. The conditional pdf p(XJWi), (i = 1, ... , m) determines 

the ML classification and X is an observation, eg a sampled frequency component. If the 

observation sequence X[k], k = 1, ... , n is independent and identically distributed (i.i.d), the 

likelihood function (LF), L(Xjm;) can be expressed as [Stark, 1994]: 
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n 

p(X I w;) = I] p(X [k] I w;) = L(X I w;) (2.1) 
k=I 

The ML classifier outputs the jth modulation type based on the observation whenever 

L(Xj[0) > L(XjaJ;), j -:t: i; j, i = 1, ... , m. The log-likelihood function (LLF) can be used if 

the likelihood function is exponential due to the monotonic nature of the exponent function. 

It is common for the expressions of the pdf to be approximations and assume prior 

information of the symbol rate and SNR. Therefore quasi-optimal rules are defined. A 

general ML classifier is shown in Figure 2.1. 

Signal 
Measurements ....-------, 

Observation 

x 

L(xllf;) 

Choose 
the 

Largest 

Figure 2.1. General maximum likelihood classifier. 

Typej 

We will outline general maximum likelihood classification techniques first, followed by a 

description of a ML classifier capable of recognising MPSK schemes based on the exact 

phase distribution. Classifiers that are based on the likelihood functions are then presented 

and we will describe how the ML function is used to classify continuous phase modulation 

(CPM). Finally a ML classifier using constellation shape is discussed. 

2.2.1. General Maximum Likelihood Methods 

A classifier capable of recognising digital amplitude modulated signals was proposed by 

Wei and Mendel [Wei, 1995]. The method was based on the ML approach and is 

applicable to any constellation based modulation type in an additive white Gaussian noise 

(A WGN) channel. The theoretical performance of the ML classifier under ideal conditions 
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was reported and this in turn serves as an upper bound of performance for any classifier. It 

was assumed that all signal parameters are known. 

The classifier in [Wei, 1995] was extended to include PSK and QAM signals in [Wei, 

2000]. It was shown that the 1-Q domain data were sufficient statistics for modulation 

classification. A generic formula for the error probability of a ML classifier was obtained 

and an asymptotic performance study was carried out. The theoretical performance was 

derived under an ideal situation where all signal parameters as well as the noise power are 

known. The data symbols are independent and the pulse shape is rectangular. The classifier 

can accommodate any finite set of distinct constellations with zero error rate when the 

number of data symbols approaches infinity. Simulations were performed with SNR 

ranging from O to 15 dB. 

A maximum likelihood classifier for QAM and PSK signals was proposed by Sills [Sills, 

1999]. The classifier algorithms were designed for coherent and noncoherent conditions. 

The algorithm's performance was evaluated for PSK2, PSK4, PSK8, QAM16, QAM32 and 

QAM64 signals and compared with a psuedo maximum-likelihood noncoherent 

classification technique in terms of error rate, false alarm rate, and computational 

complexity. It was stated that the coherent ML classifier makes less than one error in ten 

across all six modulation types provided that the SNR is greater than or equal to lOdB. For 

the noncoherent ML classifier, there is less than one error in ten across the tested 

modulation types for SNR greater than or equal to 13dB. It was found that using a large 

number of symbols in the likelihood ratio reduces the probability of error and probability of 

false alarm. 

A general ML classifier based on an approximation of the likelihood function was 

developed by Boiteau and Le Martret [Boiteau, 1998]. Equations were derived for the case 

of linear modulation and applied to MPSK signals. It was shown that the tests are a 

generalisation of the previous methods using the ML approach discussed in section 2.2.3. 

It was found that the likelihood function of an observation can be approximated by 

measuring the correlation between the higher-order statistic (or true temporal) and the 
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empirical. Thus, this type of classifier provides a theoretical foundation for systems that 

exploit cyclostationary properties to classify signals as well as many other empirical 

classification systems. 

2.2.2. MPSK Classifier Based on the Exact Phase Distribution 

The classification of MPSK signals using an asymptotic optimal algorithm has been 

achieved by Yang and Liu [Yang, 1998]. The same results but with slightly different test 

statistics were also published earlier by Yang and Soliman in [Yang, 1991] and [Yang, 

1997]. The exact phase distribution of a received MPSK signal was expressed in terms of 

the Fourier series expansion to develop the classification algorithm. The classifier was 

capable of recognising CW, BPSK, QPSK, and 8PSK signals. A multiple hypothesis 

classification rule was developed using the maximum a posteriori (MAP) probability rule, 

which was consequently reduced to a ML classifier. This is because the hypotheses were 

assumed equally likely. The SNR was assumed to be known and the classifier was shown 

to outperform the classifiers proposed in [Yang, 1991] and [Yang, 1997]. 

2.2.3. Classifiers Based on the Likelihood Functions 

There are six publications based on classification using likelihood functions that will be 

discussed. The first article describes a quasi log-likelihood classifier. The second 

publication performs a comparison on the performance of a Mth-law classifier and a qM-rule 

classifier. Thirdly, an average log-likelihood classifier is discussed, followed by a 

description of a multiple hypothesis classifier. The fifth article, describes classification in 

unknown ISi environments using a LF. Finally we outline classification (based on 

likelihood functions) of QAM signals using the DFT of phase histograms. 

2.2.3.1. Quasi Log-Likelihood Ratio Classifier 

Polydoros and Kim [Polydoros, 1990] derive and analyse optimal and suboptimal decision 

rules for the detection of constant envelope quadrature digital modulations in the presence 

of noise. No timing or frequency uncertainty was assumed and signal parameters such as 

carrier frequency, initial phase, symbol rate and SNR were assumed to be known. The 
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effect of various stochastic models for the carrier phase was examined. The modulation 

classifier was for BPSK/QPSK signals based on an approximation of the likelihood 

function. A comparison between three classifiers for MPSK signals was introduced. The 

three classifiers were a phase based classifier (PBC) that is based on the phase histogram, a 

square law classifier (SLC) that is based on the fact that squaring an MPSK signal results in 

another MPSK signal with M/2 states, and finally the quasi-log-likelihood ratio (qLLR) 

which is derived by approximating the likelihood ratio functions of phase modulated digital 

signals in white gaussian noise. The authors have proved analytically that the last method 

performs better than conventional phase-based and square-law classifiers particularly for 

lower signal-to-noise ratios (SNR). 

2.2.3.2. M'h - law Classifier Versus qM-Rule 

A maximum likelihood classifier based on the likelihood function of MPSK and MQAM 

signals in A WGN noise was proposed by Hwang and Polydoros [Hwang, 1991]. 

Simplified versions of the likelihood function for each modulation type are represented by 

the qM statistic. The qM classifier is similar to a synchronous pulse-shaped matched filter. 

Its performance was compared with other Mth-law methods and the correct classification 

probability was found by having a long observation time (N >> 1 symbols) and estimated 

for a low SNR (SNR << OdB). For the M1h-law classifier to have comparable performance, 

the SNR had to be more than 2dB greater than the SNR for the qM classifier. All signal 

parameters such as symbol rate, initial phase, carrier frequency and SNR were assumed to 

be known and the qM classifier was only valid for SNR less than OdB. 

2.2.3.3. Average wg-Likelihood Ratio Classifier 

The low SNR methods in [Hwang, 1991] were modified to accommodate higher SNR by 

Long, Chugg and Polydoros [Long, 1994]. The QM - rule, based on the average log­

likelihood ratio (ALLR) was developed. An approximate expression for the pdf of the QM 

statistic was also developed for medium and high SNR environments. It was found that the 

approximation of the ALLR had better performance than the qM rule in [Hwang, 1991]. 

The performance was evaluated for four different cases including CPFSK interference. All 
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signal parameters were assumed to be known and the classifier was developed for binary 

hypothesis testing. 

2.2.3.4. Multiple Hypothesis Classifier 

The maximum likelihood classifier had been extended to estimate power and threshold 

setting automatically by Long, Chugg and Polydoros [Chugg, 1995]. The classifier also 

included more than two hypothesised modulation types. These modulation types were 

BPSK/QPSK/OQPSK. The modulation classification was based on the average likelihood 

function (ALF) and the threshold setting was based on the quasi log-likelihood ratio test. 

An estimate for the signal power based on the maximum likelihood function was derived. 

It was found that a reliable power estimate is hard to obtain when only in-band 

measurements are available. 

2.2.3.5. Classification in Unknown ISi Environments 

A classification method for signals affected by intersymbol interference (ISi) was proposed 

by Lay and Polydoros [Lay, 1995]. It was assumed that the channel impulse response is 

known. An average likelihood ratio test (ALRT) and a generalised likelihood ratio test 

(GLRT) were derived. The channel identification was carried out simultaneously using 

per-surviving processing (PSP). Simulations were carried out for 16-ary digital 

modulations in known and unknown channels. It was found that the ALRT outperforms the 

GLRT but requires explicit knowledge of the signal power and noise variance of the 

channel. On the other hand, the GLRT only requires the ML estimate of the transmitted 

data. The Viterbi algorithm reduces the computational load of the decision statistics 

considerably, however the simultaneous classification and channel estimation is a time 

consuming task that may affect the classification tests detrimentally. This classifier was 

developed for binary hypothesis testing and it is assumed that all signal parameters are 

available except the impulse response. 
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2.2.3.6. QAM Classification using DFT of Phase Histogram Combined With Modulus 

Information 

A method to classify various QAM signal constellations by analysing the DFf of the phase 

histogram and applying the magnitude distribution has been proposed by Schreyogg and 

Reichert [Schreyogg, 1997]. The likelihood functions were derived as well as a rule to 

combine them for classification. The LF was phase based and the pdf of the DFf bins of 

the phase histogram was used to derive the function. A LF based on the modulus was also 

derived and computed from the pdf of the constellations magnitude. The performance of 

the classifier was evaluated for a few different QAM constellations as well as BPSK, 

QPSK, and 8PSK signals. 

2.2.4. CPM Classification using ML Function 

Classification of CPM signals according to their modulation indices has been reported in 

[Chung, 1994] and [Huang, 1992]. Two classification rules based on the log likelihood 

function (LLF) for CPM signals in low SNR were proposed in [Huang, 1992]. The signals 

are passed through an A WGN channel and the classifier can differentiate two single-index 

CPM signals with different modulation indices h1 and h2• The rule e(h1, h2) is equivalent to 

an energy comparator and the second rule c(h1, h2) has an original form. It was found that 

the second rule performs better than the first rule with short observations. 

2.2.5. Classification Using Constellation Shape as A Robust Signature 

A classification technique which uses the signal constellation shape as a stable modulation 

signature was proposed by Mobasseri, [Mobasseri, 1999]. The algorithm was designed for 

an A WGN channel and accounts for the presence of carrier recovery errors. The recovered 

constellations were modelled by binomial nonhomogenous spatial random fields. 

Experimental results were shown for various modulation standards including V.29, 

V.29_fallback, PSK8 and QAM16. It was stated that the PSK8 signal can be correctly 

classified 90% of the time at SNR of OdB. It was also stated that for the V .29, the classifier 

achieves performance levels exceeding 90% in the presence of large peak phase lock error 

and SNR of 3dB. 

13 



2.3. Pattern Recognition Approach 
Generally, a pattern recognition system consists of sensing, feature extraction and decision 

procedures [Tou, 1974]. Each measurement, observation or pattern vector x = (X[l], X[2], 

.. . ,X[n]{ describes a certain characteristic of the object or pattern. The size of the pattern 

vectors can be reduced because they often contain redundant information. This reduction in 

size of the pattern vectors is referred to as the feature extraction or preprocessing stage. 

The decision procedure can be a neural network, decision function, or distance function. 

The block diagram of a pattern recognition system is shown in Figure 2.2. 

Measurements Vectors Classes Signal Feature Decision .... Sensing ~ 

Extraction .... .... ... .... - Rule .... 

Feature Pattern 

(Preprocessing) 

Figure 2.2. General pattern recognition system. 

This section will be divided into three parts. The first part describes a pattern recognition 

approach using envelope-based methods, the second part describes a classification 

technique based on higher-order statistics, and the final part describes other methods of 

classification using the pattern recognition approach. 

2.3.1. Envelope-Based Methods 

Classification using envelope-based methods can be accomplished using the ratio of 

different envelope statistics or deviations of instantaneous properties. Both techniques will 

now be discussed. 

2.3.1.1. Ratio of Different Envelope Statistics 

A classifier based on the ratio (R) of the variance of the envelope to the square of the mean 

of the envelope has been proposed in [Chan, 1989]. The classification method was based 

on four modulation types (AM, DSB, FM and SSB) and the equations for R were derived as 

a function of the carrier-to-noise ratio (CNR). The signal was classified according to where 
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the value of R lies. It was found that the length of the signal segment and the computation 

time were short making this method desirable for real time applications. 

The classifier in [Chan, 1989] was extended to include more features based on the analytic 

envelope and on an approximation of the envelope, extracted by different means that did 

not require the Hilbert transform. The authors in [Druckmann, 1998] employ ratios of 

different statistics of these two envelopes to extract key features. The classification rule 

uses two features and the success rate of classification was reported to be 99% for a CNR 

of lOdB. This method, however, was not suitable for complex envelope representation. 

An adaptive technique for classifying some types of digital modulations (ASK2, PSK2, 

PSK4 and FSK2) was introduced by DeSimio and Glenn [DeSimio, 1988]. Key features 

were derived from the signal envelope, signal spectra, the square of the signal, and the 

fourth power of the signal. These key features are the mean and the variance of the 

envelope, the magnitude and location of the two largest peaks in the signal spectrum, the 

magnitude of the spectral component at twice the carrier frequency of the signal squared, 

and the magnitude of the spectral component at four times the carrier frequency. The 

classification procedure was as follows: 

1) feature vectors extraction, 

2) weight vectors generation for each signal type, and 

3) modulation classification. 

The LMS algorithm is an adaptive technique that was used to generate decision functions. 

Also, the decision rule used was similar to that applied to pattern recognition algorithms. 

The classifier was trained using the values of the extracted key features at 20dB SNR. The 

classifier has the ability to discriminate between PSK2 and PSK4 signals at an SNR of 5dB. 

2.3.1.2. Deviations of Instantaneous Properties 

One of the first authors to publish on modulation classification was Liedtke [Liedtke, 

1984]. His work covers modulation recognition of digital signals. The modulation 

schemes covered were ASK2, PSK2, PSK4, PSK8, FSK2 and CW and use the universal 
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demodulator technique. To distinguish between different signals, key features such as the 

amplitude histogram, the phase difference histogram, the frequency histogram, the 

frequency variance and the amplitude variance were used. The classification procedure 

involves approximate signal bandwidth estimation, signal demodulation and parameter 

extraction, statistical computation and finally automatic modulation classification. It was 

claimed that when the signal's parameters are exactly known, the signal could be 

recognised at SNR values greater than or equal to 18dB. 

Nandi and Azzouz have devised two algorithms for modulation classification [Azzouz, 

1995]. Their algorithm encompasses both analog and digital signals. The first algorithm 

uses the decision-theoretic (DT) approach in which a set of decision criteria is developed 

for identifying different types of modulation. The second algorithm utilises artificial neural 

networks (ANN) as a new approach to modulation recognition [Azzouz, 1998]. Through 

simulations it was found that for the decision-theoretic algorithm, the overall success rate 

was over 94% at SNR of 15dB. The ANN algorithm had an overall success rate of over 

96% at SNR of 15dB. All key features were considered simultaneously in the ANN 

approach whereas with the DT approach, each feature was considered one at a time against 

a certain threshold value. The success rate depends on the order of the features in the 

branches of the decision tree. This would imply that the ANN approach gives better results 

and this was found to be true. This research is based on these authors' work as it serves as 

a foundation to design a classifier that is capable of recognising a large range of modulation 

types. 

A modulation recogniser using a pattern recognition approach was proposed by Jondral 

[Jondral, 1984]. The key features were extracted from the instantaneous amplitude, 

frequency and phase. These key features are the instantaneous amplitude, phase difference 

and frequency histograms. The received signal was divided into two adjacent sets called 

the learning set and the test set and the signal segment length was 4096 samples. Real 

signals had been used and the classification success rate was greater than or equal to 90% 

except for SSB (83%) and FSK4 (88% ). 

16 



Aisbett [Aisbett, 1997] had developed a classifier that utilises signal parameters A2
, AA' 

and A28' where A is the signal envelope derivative and 8' is the instantaneous frequency. 

The key features used were the peak and tail values of the parameters A 2, AA' and A 28' as 

well as the variance of the squared instantaneous amplitude minus its squared mean. The 

types of signals that could be classified were ASK2, PSK2, DSB, AM, FM, and CW. The 

performance was claimed to be good for signals with higher SNR. 

A modulation classifier that can recognise analog and digital signals has been proposed by 

Dominiguez et al [Dominiguez, 1991]. The recogniser can differentiate ASK2, ASK4, 

PSK2, PSK4, FSK2, FSK4, AM, DSB, FM, SSB, CW and noise. The number of samples 

per segment needed for the performance evaluation is 3000. There were three subsystems 

in the recogniser: 

1. pre analysis, 

2. features extraction, 

3. classifier subsystem. 

The key features were extracted from the histograms of the instantaneous amplitude, 

frequency and phase. It was claimed that for SNR values greater than or equal to 40dB, all 

modulation types were classified correctly. At SNR of lOdB no digitally modulated signals 

were classified correctly. 

A modulation recogniser for multichannel systems was introduced by Nagy [Nagy, 1994]. 

With this modulation detector, the analysed signal was divided into individual components 

and each signal component was classified using a single - tone classifier. The signals that 

can be recognised are CW, ASK2, PSK2, PSK4 and FSK2. The classification process was 

as follows: 

1. Each signal component in the estimated amplitude spectrum is detected and filtered, 

for eg the FSK2 signal is considered as two correlated ASK2 signals. 

2. The differential phase is calculated to discriminate between the different types of 

single - tone signals. 

3. Finally, all ASK2 signals are correlated to detect the FSK2 signals. 

The single - tone classifier carries out the following tasks: 
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1. The amplitude histogram is used to discriminate the ASK2 signal from the CW, PSK2 

and PSK4 signals. 

2. The phase histogram is used to distinguish between CW, PSK2 and PSK4 signals. 

It was stated that CW, PSK2 and PSK4 signals have been classified with greater than 98% 

success rate at lOdB SNR and the ASK2 signal with success rate of 87%. 

A modulation recogniser for AM, FM, CW, ASK2 and FSK2 signals has been proposed by 

Martin [Martin, 1990]. The key features were extracted from the IF signal spectrum, its 

derivative and the instantaneous amplitude. These key features were the signal bandwidth, 

amplitude histogram and the relationship between spectral components. The signals have 

been classified with a success rate greater than 90% except for FM with 80% success rate. 

Taira and Murukami [Taira, 1999] describe a modulation classification technique for 

analogue modulated signals including phase continuous FSK signals. For the 

discrimination between frequency modulation signals and amplitude modulation signals 

and for classification among the amplitude modulated signals, the statistical parameters of 

the signal envelope were used. For classification among the frequency modulated signals, 

the compactness of instantaneous frequency distribution was used. It was reported that 

good classification possibility has been ascertained by simulation when SNR is greater than 

or equal to lOdB. Discrimination between analogue and digital modulation schemes was 

accomplished via block processing. 

2.3.2. Higher-Order Statistical Methods 

Six different methods for classification using higher-order statistics will be discussed in the 

following sections. The first method employs higher-order statistics to classify MPSK 

signals. The second method exploits the differences in higher-order moments, while the 

third method utilises cyclic temporal cumulants for classification. The fourth technique 

discussed uses time-domain higher-order correlations to classify FSK signals. Fourth­

order cumulants are used to recognise certain digital modulation schemes in the fifth 

reviewed publication, and finally the time-average of the complex envelope is employed in 

the sixth classification method using higher-order statistics. 
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2.3.2.1. Even Moment Based MPSK Classifier 

Soliman and Hsue [Soliman, 1992] investigate signal classification using statistical 

moments. The type of signals they considered were M-ary PSK signals. They show that 

for M-ary PSK signals, the nth moment (n even), of the phase of the signal is a monotonic 

increasing function of M. From this, an analytic expression for the probability of a 

misclassification was derived. A decision rule and a general hypothesis test were also 

developed. The classification procedure was as follows: 

1) the instantaneous phase is extracted, 

2) even order moments are calculated, 

3) threshold comparison, and 

4) modulation recognition. 

All the signal parameters were assumed to be known. The performance of the algorithm 

was demonstrated by two examples. It was found that the eighth moment is adequate to 

identify BPSK signals with reasonable performance at low CNR. The suggested algorithm 

was compared to the qLLR method in [Polydoros, 1990] and also the square-law and 

phase-based methods. The qLLR method outperformed the proposed algorithm at low 

CNR but the latter was comparable to the square-law classifier and was better than the 

phase-based classifier. However, the qLLR classifier is only valid at CNR less than OdB 

and can only be used to distinguish between BPSK and QPSK signals whereas the 

moments algorithm is more general. 

Yang and Soliman [Yang, 1995] modified the modulation detector in [Soliman, 1992] by 

approximating the probability distribution function of the instantaneous phase. Instead of 

using the Tikhonov probability density function to approximate the exact phase 

distribution, the Fourier series expansion was used. The modification improved the results 

by 2dB for 99% success rate of modulation recognition. Also the computation for the nth 

order moments was simpler than that proposed in [Soliman, 1992]. 

2.3.2.2. The M'h-law Based Classifier 

A classification method, which exploits the differences in the higher-order moment-spaces 

of the discrete-time modulating process, was proposed in [Reichert, 1992]. The carrier 
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frequency and symbol rate were assumed to be unknown so these differences in the higher­

order moments contribute spectral lines associated with these unknown parameters. The 

spectral lines were detected by periodogram analysis and their existence, position and 

amplitude contribute to robust key features. It was possible to classify ASK2, PSK2, 

PSK4, MSK and FSK2. A complete statistical analysis of the classification performance 

was reported in terms of the probability of detection and false alarm rate. The theoretical 

performance figures were verified with simulations. A disadvantage of this method is that 

it is unsuitable for the complex envelope representation and the periodogram analysis is 

quite complex. 

2.3.2.3. Cyclic Multi-correlation Based MPSK Classifier 

A multiple hypothesis QAM modulation classifier, utilising decision theory, was proposed 

by Marchand et al [Marchand, 1997 Marchand, 1998]. The same features have also been 

mentioned in [Le Martret, 1997] but a slightly different structure has been used. The 

proposed feature comprises a combination of fourth-order and squared second-order cyclic 

temporal cumulants. This combination was used to counter the uncertainty in the signal 

power. Simulations were carried out for 4QAM, 16QAM, and 64QAM signals. The 

performance was evaluated for SNR of 5dB and 1 OdB and it was found that the success rate 

was poor for sample sizes less than 1024 symbols. It was also stated that the authors are the 

only people to classify QAM signals exploiting cyclostationary properties. 

2.3.2.4. Time-Domain Higher-Order Correlation MFSK Classifier 

A modulation classifier for MFSK signals was proposed by Beidas and Weber [Beidas, 

1995]. The classifier was used to distinguish between MFSK signals and is based on the 

time - domain higher-order correlations. Two types of classifiers were presented: 

channelised and non-channelised. The channelised classifier was made up of a bank of 

matched filters and a set of successive correlators. Each matched filter was tuned to one of 

the designated frequency locations. In the non-channelised classifier, each signal was 

divided into three adjacent subbands - lower, middle and high. There were also three 

parallel processes assigned to each subband. Three algorithms were considered for the non-

20 



channelised classifier which were: 1) a first-order correlation based classifier where three 

energy processors and three correlators were used, 2) a second-order correlation based 

classifier (type 1) where six correlators were used and 3) a second-order correlation based 

classifier (type 2) where three energy processors and six correlators were used. The log­

likelihood function compared to a suitable threshold was used to decide about the number 

of levels of an MFSK signal. It was stated that the non-channelised classifiers can detect 

exact frequency locations perfectly. 

2.3.2.5. Classification Using Fourth-Order Cumulants 

Swami and Sadler devise a classification method based on elementary fourth-order 

cumulants for digital modulation schemes [Swami, 2000]. These statistics are said to 

characterise the shape of the distribution of the noisy baseband I and Q samples. It was 

shown that cumulant-based classification is particularly effective when used in a 

hierarchical scheme. This enables separation into subclasses at low SNR with small sample 

size which makes it appropriate for a preliminary classifier. The computational complexity 

is of order N, where N is the number of complex baseband samples. This method has been 

shown to be robust in the presence of carrier phase and frequency offsets and can be 

implemented recursively. Theoretical arguments were verified with simulation results and 

compared with existing approaches. The modulation schemes that can be classified are M­

ASK, M-PSK and QAM signals. Results show that the classifier performs with 100% 

accuracy for 500 samples and SNR of 1 OdB even in the presence of carrier phase and 

frequency offsets. 

Akmouche has proposed a classifier that discriminates single carrier modulations from 

multi-carrier modulations of OFDM type [Akmouche, 1999]. It was stated that multi­

carrier methods are asymptotically Gaussian and therefore the proposed detector uses the 

statistical test of [Giannakis, 1990] based on fourth-order cumulants. The test was adapted 

by Akmouche to the specific case of digital modulations which reduces the algorithm 

complexity. Simulations were provided and show that for the worse case (filtered QAM-

256 versus 32-0FDM), the detector achieves a probability of detection Po of 0.99 for a 

probability of false alarm PFA equivalent to 0.01. 
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2.3.2.6. Classification Based on Time Average of Complex Envelope. 

Rosti has addressed the feature extraction process of modulation classification [Rosti, 

1998]. Useful characteristics and representations of communications signals were 

presented as well as the relevant knowledge of statistical signal processing. First and 

second order statistics of digital modulated signals were studied and a novel feature was 

proposed. This novel feature was based on the time average of the complex envelope 

representation of the digital signal. Previous methods and this novel feature were compared 

by investigating their discrimination performance through Matlab simulations. Modulation 

types that can be classified are: AM, DSB, SSB, FM, CW, PSK2, PSK4, FSK2 and FSK4. 

2.3.3. Other Methods 

Other methods for modulation classification using the pattern recognition approach will be 

outlined in the following sections. The first method employs the zero-crossing technique 

for classification. The second approach uses a modulation model and the third method 

classifies signals using distance functions. CPM signals are classified in the fourth 

publication using the sum of squared envelopes. The fifth technique discussed utilises time­

frequency methods for signal recognition and the sixth and seventh approaches employ the 

discrete Fourier transform and the Wavelet transform respectively, for classification. 

Power moment matrices are employed in the eighth publication, and finally spread 

spectrum signals are classified using a modulation domain measurement technique. 

2.3.3.1. Classification Using Zero-Crossings 

Hsue and Soliman use a zero-crossing technique for classification and report the findings in 

[Soliman, 1989] and [Soliman, 1990]. The zero-crossing sampler has the advantage of 

providing accurate phase transition information over a wide frequency range. The 

modulation recognition was achieved by utilising features such as phase difference and 

zero-crossing histograms. Signal parameters such as zero-crossing variance, carrier-to­

noise ratio (CNR) and carrier frequency were estimated. The modulation detection was 

achieved by the following steps: 

1) extraction of the zero-crossing sequence, the zero-crossing interval sequence and the 

zero-crossing interval difference sequence, 
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2) inter-symbol transition detection and carrier frequency estimation, and finally 

3) modulation detection. 

The zero-crossing sequence, the zero-crossing difference sequence and the zero-crossing 

interval difference sequence were all used to derive the phase and frequency information. 

The modulation type was decided from the variance of the zero-crossing interval sequence 

as well as the phase and frequency histograms. The types of signals considered were CW, 

MPSK and FSK signals. The recogniser first distinguishes between single-tone (CW and 

MPSK) and multi-tone signals (FSK) by comparing the variance of the zero-crossing 

difference sequence in the non-weak intervals of the signal with a suitable threshold. Then 

the number of levels (M) in a single-tone signal was found by measuring the similarity of 

the normalised phase difference histogram. The number of levels in a multi-tone signal 

was found based on the number of hills in the zero-crossing interval difference histogram. 

From simulation results the authors found that a reasonable average probability of correct 

classification was possible for CNR greater than or equal to 15 dB. 

Callaghan et al [Callaghan, 1985] have utilised the envelope and zero-crossing 

characteristics of the intercepted signal in their modulation classifier. A phase-locked loop 

(PLL) was used for carrier recovery in the weak intervals of the signal segment. In signals 

with modulation types such as MPSK, AM and DSB, the carrier frequency may be absent 

or severely suppressed and this is equivalent to having a signal with a low SNR. Therefore 

a high SNR is not required for accurate frequency estimation if a PLL is used for carrier 

recovery. If the receiver was not perfectly tuned to the carrier frequency then the 

performance of the recogniser deteriorated. The types of signals that could be recognised 

are AM, FM, FSK2, and CW. For correct recognition, the SNR must be greater than or 

equal to 20dB. The noise on the weak intervals of the signal segment caused incorrect 

estimate of the instantaneous frequency, and thus DSB and MPSK signals could not be 

discriminated. 

Petrovic et al [Petrovic, 1989] has designed a modulation recogniser based on the zero­

crossing rate and parameter variations of the AM detector output. In addition the parameter 
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variations in the FM detector output were also considered. The classification procedure 

was as follows: 

1. AM and FM demodulation, 

2. key features extraction, 

3. modulation classification. 

The signals that could be recognised are ASK2, FSK2, AM, FM, CW and SSB. For the 

FM detector output, both a narrow band and a wide band FM detection were performed. 

The key features were extracted from the AM detector output and it was stated that the 

results from preliminary tests with real signals show the successfulness of the classifier. 

2.3.3.2. Classification Based on the Modulation Model 

Another modulation recogniser for digital modulation types was introduced by Assaleh et al 

[Assaleh, 1992]. The types of signals that could be recognised are CW, PSK2, PSK4, 

FSK2 and FSK4. The classification method uses a signal representation known as the 

modulation model. The modulation model was formed via autoregressive spectrum 

modelling. The key features were derived from the averaged spectrum of the instantaneous 

frequency. These key features are the mean and standard deviation of the averaged 

instantaneous frequency, the height of the spikes in the differential instantaneous frequency 

and the mean and standard deviation of the instantaneous bandwidth. It was claimed that 

the success rate for the different modulation types is greater than 99% at a SNR of 15dB. 

2.3.3.3. Classification Based on Distance Functions 

A classification technique that uses the counts of the signals falling into different parts of 

the signal plane was proposed by Huo and Donoho [Huo, 1998]. The advantage of using 

the number of counts as a key feature is that the computation time is much faster than 

methods based on higher-order statistics and likelihood methods. To find the optimal place 

to partition the signal plane, the multinominal distributed Hellinger distance was 

maximised for two candidate modulation types. The performance of the classifier was 

evaluated for 4QAM and 6PSK and it was found that the proposed algorithm is dependent 

on the orientation of the symbols in the signal space. This makes this method suitable for 

binary classification only. 
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2.3.3.4. Classification of CPM 

Two 2CPFSK signal classifiers based on the sum of squared envelopes (SOSE) were 

proposed in [Chung, 1994]. The classifiers were envelope based and developed for both 

single and multi-index CPM signals. In the first method, a variety of modulation sets were 

classified using an appropriately adjusted threshold. The second method was based on the 

approximate maximum likelihood estimation (MLE) of the index pattern derived from the 

SOSE and can be used for an infinite number of index sets. The proposed algorithm was 

compared to the LLF method in [Huang, 1992] and it was found that the LLF method 

performs better. However, the SOSE method was more robust at lower SNR. 

2.3.3.5. Time-Frequency Methods 

A new technique for feature extraction of modulation recognition based on the pattern 

recognition approach was proposed by Ketterer, Jondral and Costa [Ketterer, 1999]. The 

new algorithm exploits the Margenau-Hill distribution, autoregressive modelling and 

amplitude variations to detect phase shifts, frequency shifts, and amplitude shifts 

respectively. This method requires no a priori information about the signal and can classify 

PSK2, PSK4, PSK8, PSK16, FSK2, FSK4, QAM8, and OOK signals. The authors 

recommend this method in a general non-cooperative environment and state that their 

method is also computationally inexpensive. Simulations were carried out on synthetic and 

"real world" short-wave signals. Results indicated that this approach is robust against noise 

up to an SNR of around lOdB, where an overall success rate greater than 94% is obtained. 

2.3.3.6. Classification Using Discrete Fourier Transform 

A signal classification method using the discrete Fourier transform (DPT) was proposed in 

[Lallo, 1999]. To classify a signal the following steps were taken: 

1. The carrier frequencies are obtained from the DPT of the signal. 

2. The symbol rate is found once the carrier is known. 

3. The amplitude and phase values of discontinuous functions using Euler's formulae are 

calculated from the DPT. 
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4. The calculated phase and amplitude distributions are used for modulation analysis for 

each carrier frequency. 

Tests were carried out over the telephone network and GSM radio for PSK2, QAM16, 

QAM40, QAM60 and FH signals. It was stated that satisfactory results are obtained. 

2.3.3.7. Classification using the Wavelet Transform 

Ho, Prokopiw and Chan [Ho, 1995] proposed a modulation classifier that uses the wavelet 

transform for the identification problem. The application of the wavelet transform resulted 

in distinctive patterns for different types, which enabled simple processing for 

identification. Three classes of modulation types were investigated: FSK, PSK, M-ary PSK 

and M-ary FSK. The relevant statistics for the identification schemes were derived and 

simulations show that in most cases there is less than 8% error at around 15dB carrier-to­

noise ratio (CNR) with 100 symbols. 

Hong and Ho extended the classifier in [Ho, 1995] to include QAM signals [Hong, 1999]. 

The identifier consisted of two branches and a decision block. It computed the IHW11 of an 

input signal with and without amplitude normalisation. It then used median filters to 

remove the peaks in the IHW7l's, calculated the variances of the median filter outputs, and 

made the decision of the input modulation type by comparing the variances from the two 

branches with thresholds. The relevant statistics for optimum threshold selection were 

derived. Simulations show that the percentage of correct identification was higher than 

97% with 50 observations when the CNR was not lower than 5dB. 

2.3.3.8. Modulation Classification Using Power Moment Matrices 

A new approach for modulation classification was proposed by Hero and Hadinejad­

Mahram [Hero, 1998]. The method was based on a pattern recognition technique 

previously applied to word spotting problems in binary images. In this approach, a large 

number of spatial moments are arranged in a symmetric positive definite matrix for which 

eigendecomposition and noise subspace processing methods can be applied. The resultant 

denoised moment matrix has entries which are used in place of the raw moments for 

improved pattern classification. The authors generalised the moment matrix technique to 
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grey scale images and applied the technique to discrimination between M-ary PSK and 

QAM constellations in signal space. Invariance to unknown phase angle and signal 

amplitude was achieved by representing the in-phase and quadrature components of the 

signal in the complex plane and computing joint moments of normalised magnitude and 

phase components. 

2.3.3.9. Classification of Spread Spectrum Signals 

A modulation classifier based on the modulation domain measurement technique was 

proposed by Schneider and Chu [Schneider, 1991]. The implementation of this technique 

allows modulation analysis even with spread spectrum signals such as frequency hopping 

or direct sequence. Modulation analysis includes phase, frequency, time and amplitude of 

BPSK, QPSK, 8PSK, 16QAM, communication type signals with hop and pulse, and Barker 

or chirp radar type signals. The signals were generated with a psuedo random sequence and 

eye patterns were formed by the use of frequency trigger. By using software demodulation, 

a coherent local oscillator is not required but the phase result will be relative. Curve fitting 

algorithms were demonstrated with the mentioned modulation schemes. With 500 MHz 

bandwidth, the amplitude noise floor was reported to be -73 dBm and the 

frequency/phase/timing sensitivity was -60 dBm. It was stated that this technique is 

applicable at any carrier frequency where down conversion to the required spread spectrum 

bandwidth can be implemented. 

2.3.4. Classification using Neural Networks 

Two methods of classification using neural networks (NN) will be described. The first 

method uses a hierarchical structure to achieve classification and the second classifier 

employs a backpropagation NN to recognise a variety of signals. 

2.3.4.1. Hierarchical Neural Network 

Louis and Sehier [Louis, 1994] introduce a methodology for building neural networks for 

modulation classification based on a hierarchical approach and a priori knowledge to speed 
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up the learning phase. Superiority over a single, large, fully connected network was 

demonstrated. This approach reduces the complexity of the system in order to improve 

generalisation. Reduced sensitivity to initial conditions allows automation of the learning 

phase and simulation results showed the superiority of the hierarchical approach. The 

modulation types that can be classified are PSK2, PSK4, PSK8, FSK2, FSK4, FSK8, 

QAM16, QAM64, OQPSK, and MSK. The hierarchical NN classifier was compared with 

the conventional backpropagation learning, the k-Nearest Neighbour (k-NN) classifier and 

the binary decision tree. Classification success rates were as high as 90% with a SNR 

ranging from OdB to 50dB. 

2.3.4.2. Classification of Spectral Features 

Ghani and Lamontagne have used a backpropagation neural network for modulation 

classification [Ghani, 1993]. The modulation types that can be recognised are: AM, FM, 

QPSK, USB, LSB, FSKl, FSK2, BPSK, and CW. A variety of spectral pre-processors 

were investigated for feature extraction. For the given training and test sets, the Welch 

periodogram was found to give the best results. Simulation results showed that the neural 

network algorithm can match or even outdo the performance of conventional k-Nearest 

Neighbour (k-NN) classifiers. The overall classification success rate was greater than 97%. 

Furthermore, the optimisation of selected neural networks was demonstrated using the 

optimal brain damage (OBD) pruning technique. 

2.4. Conclusions 
This chapter has covered the various modulation classification techniques found in recent 

literature. Most of these classification techniques are restricted to a few modulation types. 

The motivation for this thesis is to develop a classification algorithm that encompasses a 

range of digital modulation types. The classification method chosen is based on deviations 

of instantaneous properties (similar to Nandi and Azzouz's work) using the decision­

theoretic and neural network approaches. The reason for this choice is the ability for the 

decision tree to be expanded to accommodate larger numbers of digital modulation 

schemes. The neural network is also another feasible method for classification and can be 

easily implemented once the key features are identified. Therefore this thesis presents 
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modulation classification algorithms based on the decision-theoretic approach and neural 

networks respectively for a comprehensive list of digital modulation schemes. 
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CHAPTER3 

Decision Theory 

3.1. Introduction 

In this chapter the theory behind the classification process will be described. The 

purpose of classification is to determine to which category or class a given sample or 

signal belongs. An observation vector consists of a set of numbers that can be obtained 

through a measurement process. The observation vector is the input to a decision rule 

where a sample is assigned to one of the given classes. We assume that the observation 

vector is a random vector whose conditional density function depends on its class. In 

the case of modulation classification, the observation vector consists of samples of 

particular key features that have been extracted from the intercepted signal. If the 

conditional density function for each class is known, then the classification problem 

becomes a problem in statistical hypothesis testing. 

The organization of this chapter is as follows. First, a description of classification 

decision theory is presented. This theory includes a description of Bayes error and the 

Bayes decision rule for minimum error. Threshold determination is then discussed 

followed by a discussion on classifier accuracy, confidence intervals, and statistical 

significance. Finally, some conclusions are presented. 

3.2. Classification Decision Theory 

Classification of signals involves three main processes, which are shown in Figure 3.1. 

These processes are [Azzouz and Nandi, 1996]: 

• Pre-processing - which involves extracting key features from the intercepted 

signal as well as signal isolation and segmentation. 

• Training and learning phase - A "training set" of data is used to adjust the 

classifier structure for optimum performance. 
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• Test phase - A "test set" of data is used to decide about the modulation type of a 

particular signal. 

Signal Pre-processing 

Key features 
extraction 

Training phase 

Adjusting the 
classifier structure 

Test phase 

Performance 
measurement 

Figure 3 .1. Functional blocks of signal classification. 

Assuming that the pre-processing phase is completed (ie the key features are extracted), 

the next step is to adjust the classifier structure with training data. One of the functions 

of the training phase is to determine the best classification hypothesis, given the 

observed training data, X (or key features). In other words, we want the most probable 

hypothesis (which modulation type the signal is most likely to be classified as), given 

the data and the a priori probabilities. The Bayes decision rule for minimum error is 

used to determine the most probable hypothesis and is outlined in the next section. A 

two-class problem is discussed regarding the decision rule, which arises because each 

sample ( or signal) belongs to one of two classes mi or OJi. The conditional density 

functions and the a priori probabilities are assumed to be known. 

3.2.1. The Bayes Decision Rule for Minimum Error 

If X is an observation vector, the purpose is to determine whether the intercepted signal 

belongs to mi or OJi. A decision rule based on posterior probabilities may be written as 

follows [Fukunaga, 1990]: 

m, 

(3.1) 

where qi(X) is the a posteriori probability of W; given X. Equation (3.1) indicates that if 

the probability of w1 given Xis larger than the probability of Wi., Xis classified as OJ1, 

and vice versa. The a posteriori probability qi(X) can be calculated from the a priori 

probability Pi and the conditional density function P(X/W;), using Bayes theorem, as 

. (X) = P(w. IX)= P(X I w;)P; 
q, I p(X) 

(3.2) 
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where p(X) is the mixture density function. Since p(X) is positive and common to both 

sides of the inequality, the decision rule of (3.1) can be expressed as 

Wt 

> 
P(X /oJ1 )!'i P(X I OJ2 )P2 (3.3) 

< 
W2 

or 

W1 

£(X)= P(X !OJI)> Pi =T 

P( X I OJ2) < Pi 
(3.4) 

W2 

The term £(X) is called the likelihood ratio and P(X!OJ1)/P(X!O)i) is the threshold value 

of the likelihood ratio for the decision. For the classification of signals in this thesis, it is 

assumed that the a priori probabilities are equal for all intercepted signals. Therefore 

Equation (3.4) can be written as follows 

w. 

> 
P( X f OJI ) P( X f OJ2 ) (3.5) 

< 
W2 

Equation (3.3), (3.4), or (3.5) is called the Bayes test for minimum error. 

3.2.2. Bayes Error 

In general, any decision rule does not lead to perfect classification. To evaluate the 

performance of a decision rule, the probability of error (the probability that a sample is 

assigned to the wrong class) must be calculated. The conditional error given X, is 

denoted r(X). It is found by the decision rule of (3.1) as either q1(X) or q2(X), 

whichever is smaller. That is 

r(X) = min[q1 (X),q2 (X)] 

The total error, which is called the Bayes error, is calculated by E{ r(X)}. 

e = E{r(X)}= f r(X)p(X)dX 

where 

= fmin[PiP(X /OJ1),P2P(X !OJ2)]dX 

= Pi f P(X I OJ1)dX + P2 f P(X I OJ2)dX 
Li Li 

= Pie1 + P2e2 

(3.6) 

(3.7) 
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e1 = f Pi(X)dX and £ 2 = f p2 (X)dX (3.8) 
Li Li 

The integral regions L1 and Li are the regions where Xis classified as mi and WJ.. In Li, 

P1P(Xlw1) > P2P(X/WJ.) and therefore r(X) = P2P(Xl0>i)lp(X). Similarly for L2, r(X) = 

P1P(Xlw1)/p(X) because P2P(Xl0>i) > P1P(Xlw1). In (3.8), two types of errors are 

defined: one results from misclassifying samples from mi and the other results from 

misclassifying samples from WJ.. The total error is the weighted sum of these two errors. 

An example of this decision rule for a simple one-dimensional case is shown in Figure 

3.2. In the diagram, p1(X) represents P(Xlw1) and p2(X) represents P(X/012) The decision 

boundary is set at x = t where P1p1(X) = P2p2(X), and x < t and x >tare assigned to L1 

and Li respectively. The resulting errors are P1e1 = B + C, P2e2 = A, and e =A+ B + C, 

where A, B, and C indicate the areas. For example, 

t 

B= f PiPi(x)dx (3.9) 

This decision rule gives the smallest probability of error and this can be shown by 

referring to Figure 3.2. If the boundary is moved from t to t ~ the new mi and WJ. regions 

are L'1 and L'2 respectively. The resulting errors are P1e1 = C, P2e2 = A + B + D, and 

e' = A + B + C+ D which is larger than e by D. The choice of the threshold, t, for the 

decision rule is very important to ensure the minimum probability of error. Therefore 

threshold determination is discussed in the next section. 

x 
t t' 

L'1 ·---+---· L'2 

Figure 3.2. Bayes decision rule for minimum error [Fukunaga, 1990]. 
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Figure 3.3. Example of Bayes decision rule for minimum error. 

20 

An example to illustrate the Bayes decision rule is shown in Figure 3.3. The density 

functions are normal with one function (p1(X)) having a mean (m) of -7 and standard 

deviation (s) of 6 indicated by the solid line. The other function (p2(X)) has mean m = 

5.85 and standard deviations= 5 which is shown by the dashed line in Figure 3.3. Both 

functions intersect at x = 0 making this value a likely threshold. The error probabilities 

can be found by integrating the functions for regions A and B respectively. The 

probability of error (e1) for p 1(X) is indicated by region B and is calculated to be 0.11 

(10.68%). The probability of error (e2) for p2(X) is calculated to be 0.12 (12.23%) and 

is represented by region A. 

3.2.3. Threshold Determination 

The threshold value, t, can be determined in three ways: One method is to find the 

threshold that gives the minimum probability of error as shown in section 3.2.2. The 

second method is to use the Bayes decision rule for minimum cost. This method is used 

when the misclassification of different samples have different consequences, i.e. the 

cost of misclassifying samples is different. The third method is to estimate the 

threshold from the density estimates of the posterior probabilities of the sample data. 
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This method is used when the true posterior probabilities are not known. These 

methods will now be described. 

3.2.3.1. The Bayes Decision Rule for Minimum Cost 

Minimising the error probability is often not the best criterion to design a decision rule 

because the misclassifications of Wt and OJi. samples may have different consequences. 

An example of this is the misclassification of a cancer patient to a normal patient. This 

decision may be more detrimental than if the normal patient was misclassified as a 

cancer patient. Therefore it is appropriate to assign a cost to each situation as follows: 

Let 

cij = cost of deciding X E m; when X E m j (3.10) 

Then the conditional cost of deciding X E {t)j given X, r;(X), is 

'i (X) = cnq, (X) + c;2q2 (X) (3.11) 

The decision rule and the resulting conditional cost given X, r(X), are 

(3.12) 

and 

r(X) = min[r1 (X), r2 (X)] (3.13) 

The total cost of this decision is 

r=E{r(X)}= fmin[r1(X),r2 (X)dX 

= Jmin[c11 q1 (X) + c12q2(X),c21 q1 (X) + c22 q2(X)]p(X)dX 

= f min[c11PiP1 (X) + c,2P2P2 (X),c2,PiP1 (X) + Cz2P2P2 (X)] dX (3.l4) 

= J[c11PiP1 (X) + C12P2P2 (X)]dX + J[c2,PiP1 (X) + Cz2P2P2 (X)] 
~ ~ 

where L1 and Lz are determined by the decision rule in (3.12). The boundary that 

minimises r in (3.14) can be found by rewriting (3.14) as a function of L1 only. This 
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can be done by replacing f p; ( X )dX with 1- f p; ( X )dX since L1 and Li do not overlap 
Li Li 

and cover the entire domain. Thus, 

r=(c2,Pi +c22P2)+ f[(c" -c2,).Pip,(X)+(c,2 -c22)P2P2(X)]dX 
Li 

(3.15) 

We must choose L 1 such that r is minimised. Suppose, for a given value of X, that the 

integrand of (3.15) is negative. The value r can be decreased by assigning X to L 1• If 

the integrand is positive, r can be decreased by assigning X to Li. Thus the minimum 

cost decision rule is to assign to L those X's and only those X's, for which the integrand 

of (3.15) is negative. The decision rule is called the Bayes test for minimum cost and 

can be described by the following equation: 

or 

w, 

> 
(c,2 -C22)P2P2(X) (c2, -c").Pip,(X) 

< 
W2 

w, 

P, (X) < (c,2 - C22 )P2 __;;..;;...__.;;.;;....._...;;... = '[' 
P2 (X) > (c2, - c" )Pi 

mi 

(3.16) 

(3.17) 

By comparing (3.17) with (3.4), it can be seen that Bayes test for minimum cost is a 

likelihood ratio test with a different threshold from (3.4), and that the selection of the 

cost functions is equivalent to changing the a priori probabilities: P1 and P2. Equation 

(3.17) is equal to (3.4) for the special case when the cost functions are equal as shown 

by 

(3.18) 

This is called the symmetrical cost function where the cost becomes the probability of 

error. In the case of modulation classification, this condition holds true because the cost 

of misclassification is the same for all signals. 

3.2.3.2. Posterior Probability Estimation 

Most of the decision theorems assume that the density functions are known. However, 

it is common in practice to be unsure of the density functions and therefore it is 

necessary to estimate the functions using an unstructured approach. This approach is 
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called nonparametric estimation where the density function is estimated locally by a 

small number of neighbouring samples. This results in a less reliable estimate with a 

larger bias and variance than the parametric methods. 

There are two common nonparametric estimation methods: one is called the Parzen 

density estimate and the other is the k-nearest neighbour density estimate; the two 

techniques are very similar. Once the estimated density functions have been derived, 

the technique outlined in section 3.2.2 can be used to determine the threshold. Accurate 

density estimation is very hard to achieve. However, the goal is to design a classifier 

and evaluate its performance - not to accurately estimate the density itself. For further 

information on these methods, the reader may refer to [Fukunaga, 1990]. 

Another method is to estimate the posterior probability directly from the sample data 

using models [Ripley, 1996]. Figure 3.4 shows an example of the direct modelling of 

the posterior probabilities. The two classes are digitally modulated signals where one 

class belongs to FSK4 signals and the other class belongs to FSK8 signals. The 

probabilities have been estimated from simulated data and the value X is a particular 

feature that has been extracted from each signal for classification. We assume that the a 

priori probability of each signal is equal. 
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Figure 3.4. Example of posterior probabilities for two classes of digitally modulated 

signals (FSK4 and FSK8). 
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The threshold can be determined by choosing a value in the centre of where the two 

posterior probabilities cross into the error regions. Note that the centre is taken from 

where the error regions reach a saturation point. In this case, a suitable estimated 

threshold is -10 and is shown by the dashed line in Figure 3.4. 

This method can be illustrated again with our previous example shown in Figure 3.3. It 

can be seen from the figure that the best threshold value to choose is O because this is 

where the two posterior density functions cross into the error regions. 

Once the threshold has been determined, the classifier can be evaluated in terms of 

accuracy and confidence intervals. 

3.2.4. Classifier Accuracy 

The kappa (,q coefficient is usually used to evaluate the classifier accuracy compared to 

chance classification. It is a measure of the difference between the actual agreement 

between reference data and the classifier and the chance agreement between the 

reference data and a random classifier [Bouzerdoum, 2001]. The K coefficient is 

calculated as 

~-~ K =---"--.a;.. 

1-~ 
(3.19) 

where P0 is the observed accuracy and Pe is the chance agreement. When the sample 

sizes are equal, the chance classification derivation is simply dividing 1 by the number 

of groups. When the groups are unequal, the proportional chance criterion is used and 

is defined as 

(3.20) 

where p is the proportion of individuals in the first group and 1-p is the proportion of 

individuals in the second group. This criterion is obviously biased towards the group 

with the largest proportion of samples. Hair et al [Hair, 1996] suggest that the 

classification accuracy be at least one-fourth greater than that achieved by the chance 

accuracy. For a chance agreement it is expected that K = 0, whereas for a true 
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agreement, K = 1. The next step is to examine the probable error in this accuracy 

estimate. 

3.2.4.1. Sample Error and True Error 

To find the probable error, it is necessary to distinguish carefully between two notions 

of error. One is the error rate of the hypothesis over the sample data that is available 

and the other is the error rate of the hypothesis over the entire unknown distribution D 

of examples. These are called the sample error and true error respectively [Mitchell, 

1997]. 

The sample error of a hypothesis with respect to some sample S of occurrences drawn 

from X, is the fraction of S that it misclassifies. The true error of a hypothesis is the 

probability that it will misclassify a single randomly drawn instance from the 

distribution D. In the case of the modulation classification technique used in this thesis, 

the sample error can only be calculated for the data that we have on hand. The ultimate 

aim is to find the true error because this is the error that we can expect to apply to future 

samples. Therefore we need to know how good an estimate of the true error is provided 

by the sample error. The answer to this is provided in the next section. 

3.2.5. Confidence Intervals for Discrete - Valued Hypotheses 

Suppose, we wish to estimate the true error for some discrete valued hypothesis H, 

based on its observed sample error over a sample S where [Mitchell, 1997]: 

• the sample S contains n examples drawn independent of one another, and 

independent of H, according to the probability distribution D. 

• n~ 30 

• hypothesis H has r errors over these n examples (ie., the error probability: errors 

(H) = rln). 

Under these conditions, it is possible to make the following statements due to statistical 

theory: 

1. Given no other information, the most probable value of the true error errorv(H) 

is the statistical error errors (H). 

2. With approximately 95% probability, the true error errorv(H) lies in the interval 
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[ 1 96 
errors (100- errors) 

1 96 
errors (100- errors) J 

errors - . ,errors + . (3.21) 
n n 

This interval is called the 95% confidence interval estimate for the true error. This 

expression is an approximation of the confidence interval and works well when 

n errors (H)(l- errors (H)) ~ 5 (3.22) 

The 95% confidence interval for the example shown in Figure 3.3 can be calculated as 

follows: For sample 1, the probability of error 81 is 10.68%, by substituting this value 

into equation (3.21) the corresponding confidence interval is [8.34,13.01]. Similarly for 

sample 2, the error 82 is 12.23% and the 95% confidence interval is [9.55,14.91]. 

Other factors to consider when we only have a sample distribution and not the whole 

distribution are statistical significance and statistical power, which will be discussed in 

the following section. 

3.2.6. Statistical Significance Versus Statistical Power 

Since it is rare to obtain the entire population of occurrences, we are forced to draw 

statistical inferences from a randomly drawn sample from that population. Interpreting 

statistical inferences requires that the acceptable levels of error be specified. The most 

common approach is to specify the level of Type I error, also known as the alpha (a) 

level. The Type I error is the probability of rejecting the null hypothesis when actually 

true. In other words, it is the chance of the test showing statistical significance when it 

is actually not present ("false positive"). By specifying an alpha level, the allowable 

limits for error are set because we are specifying the probability of concluding that 

significance exists when it actually does not. 

An associated error known as the Type II error or beta (~) is also determined when 

setting the Type I error. The beta is the probability of failing to reject the null 

hypothesis when it is actually false. Another probability that arises is called the power 

of the statistical inference test and is defined as 1-~. Power is the probability of 

correctly rejecting the null hypothesis when it should be rejected. In other words, it is 

the probability that statistical significance will be indicated if present. The relationship 
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of the different error probabilities for the hypothetical setting of testing for the 

difference in two means is shown below [Hair, 1996]: 

Table 3.1. The relationship of the different error probabilities in the hypothetical setting 

of testing for the difference in two means. 

Reality 
H0 : No difference HA: Difference in 

in two means two means 
H0 : No difference 1- a. 13 

Statistical Decision Type II error 
HA: Difference a. 1-13 

Type I error Power 

H0 is the null hypothesis and HA is the alternative hypothesis. It can be seen that 

specifying alpha establishes the level of statistical significance. In other words, it is the 

level of power that controls the probability of success in finding the differences if they 

exist. There is a trade-off in trying to reduce the different error types. Reducing the 

Type I error also reduces the power of the statistical test. Thus there must be a balance 

between the level of alpha and the resulting power. Power is also determined by three 

main factors: 

1. Effect size - The probability of achieving statistical significance is also based 

on the actual magnitude of the effect of interest (eg, a difference of means 

between two groups or the correlation between variables) in the population, 

called effect size. It is expected that a larger effect is more likely to be found 

and thus affect the power of the test. 

2. Alpha - It has already been stated that as alpha increases, the power also 

decreases. Thus as the chance of finding an incorrect significant effect reduces, 

the probability of correctly finding an effect also decreases. 

3. Sample Size - At any given alpha level, increased sample size always produces 

greater power of the test. But there is a danger that increasing the sample size 

will produce too much power. This means that by increasing the sample size, 

smaller and smaller effects will be found to be statistically significant, until at 

very large sample sizes, almost any effect is significant. Therefore it is best to 

be aware that the sample size can affect the statistical test by either making it 
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too sensitive with very large sample sizes or not sensitive enough (at small 

sample sizes). 

Referring to our example in Figure 3.1, the different error probabilities for classifying 

sample I and sample 2 are shown in Table 3.2. 

Table 3.2. The relationship of the different error probabilities in the hypothetical setting 

of testing for classification of sample I and sample 2. 

Reality 
H0 : Sam le 1 HA: Sam le 2 

H0 : Sample 1 87.77% 10.68% 
T e II error 

Statistical Decision 12.23% 89.32% 
T e I error Power 

The level of significance for the classification accuracy can be tested using a t test. The 

formula for a two-group analysis of equal size is [Hair, 1996] 

p-0.5 
t = ---;:::===== 

~ 0.5 * (1:- 0.5) 
(3.23) 

where p is the proportion correctly classified and N is the sample size. The formula can 

be adjusted for use with more groups and unequal sample sizes. 

The level of significance, t for sample I in our example in Figure 3.3 is calculated as 

22.24 for p = 0.89 and N = 800. Similarly, for sample 2, the calculated t statistic is 

21.37 withp = 0.88 and N = 800. The optimum t value is 28.28 when all values in the 

sample are correctly classified. Therefore it can be concluded that the level of 

significance for both samples is acceptable. 

3.3. Conclusions 

This chapter has outlined the underlying nature, concepts and approach to classification. 

The methodological concepts were clarified by presenting the basic guidelines for its 

application and interpretation. An example was presented and this outlined the major 

points needed to be familiar in applying Baye' s classification. The next chapter will 
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outline the theory behind neural networks, which are used as another method for 

classification. The proceeding chapters will demonstrate the theory outlined in this 

chapter and the next chapter, applied to digital modulation classification. The signals to 

be classified will be identified as well as key features extracted from the intercepted 

signal. A thorough analysis and interpretation of the various classification functions 

derived will also be presented. 
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CHAPTER4 

Classification Using Feedf orward 
Artificial Neural Networks (ANNs) 

4.1. Introduction 

This chapter presents a brief introduction of classification theory based on artificial neural 

networks. Artificial Neural Networks (ANNs), or Neural Networks (NNs) for short, are 

another tool that will be used for classification of digital modulation schemes. ANNs use 

the pattern recognition approach to modulation classification. This approach is different to 

the decision-theoretic (DT) approach, where instead of a suitable threshold being chosen 

for each decision, the threshold at each neuron (node) is chosen automatically and 

adaptively. Also in the DT approach, each key feature is considered one at a time, whereas 

in the ANN algorithm, all key features are considered simultaneously. Therefore, it is 

implied that the ANN approach may perform better than the DT approach because the 

probability of a correct decision is not based on the time order of the key features. 

The organization of this chapter is as follows. The general concepts of artificial neural 

networks, including the different classes of neural networks and their structures, learning 

paradigms and training algorithms are presented first. The next section presents a 

discussion on classification using neural networks, with an example, followed by some 

concluding remarks in the final section. This chapter serves as a building block to the 

digital modulation classifiers described in proceeding chapters that are based on neural 

networks. 

4.2. Artificial Neural Networks 

A neural network is a computational structure inspired by the study of biological neural 

processing [Rao and Rao, 1995]. The processing power in biological neural structures has 

brought about the study of these structures to help organise human made computing 
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structures. ANN s are a means to organise synthetic neurons to solve the same kind of 

difficult problems in the same way that the human brain may. 

ANN s resemble the brain in two respects: 

• Knowledge is acquired by the network through a learning process (learning 

algorithm). 

• Interneuron connection strengths known as synaptic weights are used to store the 

"knowledge" [Haykin, 1999]. 

The learning algorithm modifies the synaptic weights in a prescribed fashion, based on the 

learning information presented, so as to achieve a particular objective. 

Neural networks have better performance over conventional technologies in areas which 

include data segmentation, data compression, robust pattern detection, adaptive control, 

optimisation and scheduling, database mining, and complex mapping. Neural networks are 

advantageous because they offer specific processing advantages, such as nonlinear 

processing, adaptive learning, self-organisation, ability to handle contextual information 

and fault tolerance via redundant information coding. They also offer real time operation, 

they are universal information processors, have a neurobiological analogy, and can be 

implemented in VLSI. 

Some applications of neural networks besides signal classification are: 

• Financial prediction 

• Control of nuclear power plants 

• Coronary heart disease risk assessment 

• Face recognition, etc. 

4.2.1. The Artificial Neuron Model 

The most common artificial neuron model is shown in Figure 4.1. It has 3 basic elements: 

• Synapses or connecting links - Each synapse has associated with it a weight or 

strength, w. The signal Xj at input of synapse j connected to neuron k is multiplied by 

the synaptic weight Wkj· 
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• Adder -The adder is a linear combiner for summing the weighted input signals, 

WkjXj, and its output Vk is given by 

p 

vk = L wkixi 
j=I 

(4.1) 

• Activation function - The activation function, (J(v), is the relationship between 

adder output and the final neuron output. It is often a non-linear function, thereby 

limiting the amplitude of the neuron output. The nonlinearity also helps in feature 

extraction. Normally, a constant threshold or bias value (B) is also added, resulting 

in the following equation: 

(4.2) 

X1 • ~ WkI 
Activation 
Function 

X2 • l1c ·y Output 
Input Yk 

Signals 

Bi: 
Xp • ~ Wkp 

Threshold 

Figure 4.1. Neuron model. 

4.2.2. Activation Function Types 

There are many commonly used activation functions. Some examples are the threshold 

function, linear function, piecewise linear function, and sigmoid functions such as the 

logistic function (logsig) and hyperbolic tangent (tansig) function. These functions are 

shown in Figure 4.2. The sigmoid and linear functions are the most popular because they 

are continuously differentiable, a very important criteria for most of the training algorithms. 
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The logistic function is described as 

1 
tp(v) = 1 -av 

+e 
(4.3) 

and the hyperbolic tangent is represented by 

(v) 1-e-v 
tp(v) = tanh - = --

2 1 +e-v 
(4.4) 

•• 

"' 

·lS-6 _. .3 -2 -1 0 I 2 3 4 5 

a) Threshold b) Linear function 

' ' ' ' . ' ' ' ' ' . ' . ' ' ' . ' .. . ' . ' .. . ' ... ' .. ·-···;·····r····:····(-·i"" .. ;··········· 

······1···::1::::j::::j::::.j::::j:::::j::::j::::1::: 

•• ····(-··; ····(·(-·(·(·(···;·· f ... 

·• ····(--1····:····1····1····:·····:····("·;··· 
"
15.s _. -3 -2 -1 0 I 2 3 4 5 

I···+ ···;····;·-_;;;···..-!'~-j 

~ ••••1+r1·1/ !••••!••••!••• 
-15.s -4 -3 ·2 ·I O I 2 3 4 5 

c) Logistic function d) Hyperbolic tangent 

Figure 4.2. Types of activation functions. 

4.2.3. ANN Architectures 

Usually a number of neurons are connected together to form a neural network. A distinct 

structure of neurons in a network is called a neural network architecture. The neural 

network architecture is closely linked to the learning algorithm used to train the network. 

There are four general classes of network architectures [Hay kin 1999]: 

48 



1) Single-layer Feedforward Networks 

These networks have only feedforward connections and have only a single 

layer of computing nodes (doesn't include input layer). 

2) Multilayer Feedforward Networks 

The multilayer networks have one or more hidden layers of computing 

nodes. These layers can be fully or partially connected. 

3) Recurrent Networks 

Recurrent networks have at least one feedback loop. They may be with or 

without hidden neurons, and normally have delay elements in the feedback 

loops. 

4) Lattice Structures 

Lattice structures consist of a one, two or higher dimensional array of 

neurons. A set of source nodes feeds the lattice. 

In this research only layered feed-forward network, called multiplayer perceptrons (MLP), 

are considered for classification of digital modulation signals. An MLP consists of 

subgroups or layers of processing elements; each layer makes independent calculations and 

passes the resultant output to another layer which in turn makes calculations and passes the 

result to another layer and so on. The final output of the network is determined by a 

subgroup of one or more processing elements, called the output neurons. Each processing 

element makes its computations based on a weighted sum of its inputs. 

The first layer is called the input layer, the last layer is called the output layer and the layers 

in between are called the hidden layers. The processing elements are referred to as artificial 

neurons because they are seen to be similar to neurons in the human brain. Figure 4.3 is a 

typical layered feed-forward network comprising three layers: input, output and one hidden 

layer. The neurons are represented with circular nodes. 

The input consists of a vector x whose input elements enter the network through the weight 

matrix W. The weighted values at the synapses of a neuron are fed to a summing junction 

whose sum is <w.x>, i.e., the dot product of the weight vector and the input vector. The 
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hidden layer neurons have a bias 8, which is summed with the weighted inputs to form the 

net input v. The output of each unit, y, is found by feeding the net input v as an argument to 

the activation function (f). The output is given by: 

y = (f)( w x x + 8) (4.5) 

The transfer function as well as the weighted sum of inputs from the neural network 

determines the internal activation or raw output of a neuron. 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

Figure 4.3. A Layered feed-forward neural network. 

4.2.4. Learning Process 

The weights used on the connections between different layers have much significance. If 

the network is run with one set of weights, the network is said to have had no learning. If 

we start with one set of weights, run the network, modify some or all the weights and then 

run the network again with the new set of weights, the process is called training the 

network and the network is said to have learned. The learning process for neural networks 

can be outlined as follows: 

1. The environment stimulates the neural network. 

2. The neural network undergoes changes as a result of stimulation. 

3. Then, the neural network responds in a new way to the environment because of 
changes to its internal structure. 

The changes made to the NN are in terms of changes to the synaptic weights in the form: 
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(4.6) 

The calculation of !l.wki is obtained from the learning algorithm to be used, which is a set of 

rules for the solution of the problem. In addition to learning algorithms, the learning 

process can be subdivided into learning paradigms: supervised learning, unsupervised 

learning and reinforcement learning. The learning paradigm refers to the manner in which 

the NN (learning machine) relates to its environment. For example, in supervised learning, 

the network interacts with a teacher by receiving a feedback signal indicating the desired 

outputs; whereas, in unsupervised learning the network only receives inputs from the 

environment with no indication as to what should be the desired outputs. Figure 4.4 shows 

a taxonomy of the learning process (adapted from [Haykin, 1999]). For a detailed 

description of learning paradigms and learning algorithms, the reader is referred to one of 

many neural network textbooks [Haykin, 1999] 

Error­
correction 
learning 

Learning algorithms (rules) 

I 
Boltzmann Thorndike's Hebbian 

learning law of effect learning 

Learning process 

Competitive 
learning 

Supervised Reinforcement Self-organised 
learning learning (unsupervised) 

learninl! 

Figure 4.4. Taxonomy of the learning process. 

4.3. Classification Using Neural Networks 

Neural networks have emerged as an important tool for classification. There are many 

advantages of using NNs for classification: 

• NNs can adjust themselves to the data without any explicit specification of 

functional or distributional form for the underlying model [Zhang, 2000]. 

• NNs can approximate any function with arbitrary accuracy. Since any 

classification procedure looks for a functional relationship between the group 
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membership and the attributes, or key features, of the object, it is important to 

accurately identify this underlying function. 

• NNs are non-linear models, making them flexible in modelling real world 

complex relationships. 

• Finally, NNs are able to estimate the posterior probabilities P(~/X). Chapter 3 

discussed how the posterior probabilities provide the basis for establishing the 

classification rule and performing statistical analysis. (In this chapter we will 

represent X as x - the input vector). 

For classification and regression, the operation of a NN can be interpreted as a mapping F : 

K1 ~ ~. where ad-dimensional input x, is submitted to the network and an M-vectored 

network output y is obtained to make the classification decision. The network is typically 

built so that the mean squared error (MSE) is minimised. From least squares estimation 

theory [Papoulis, 1965], the mapping function F : x ~ y which minimises the expected 

squared error 

E[y-F(x)]2 (4.7) 

is the conditional expectation of y given x. 

F(x) = E[y Ix] (4.8) 

With regards to classification, the desired output y is a vector of binary values and is the jth 

basis vector ej = (0, ... ,0, 1,0, ... ,O)' if x e group j. Hence the jth element of F(x) is given by 

F/x) = Eb'i I xJ 
= 1 · P(y i = 1 I x) + 0 · P(y i = 0 I x) 

= P(yi = 1 Ix) 
= P(wi Ix) 

In other words, the least squares estimate for the mapping function in a classification 

problem is exactly the posterior probability. 

(4.9) 

Neural networks are universal approximators [Cybenko, 1989] and can approximate any 

function arbitrarily closely (in theory). However, the mapping function represented by a 

network is not perfect due to the local minima problem, finite training data when training 
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the neural network, and suboptimal network structure. Therefore the posterior probabilities 

provided by neural networks are estimates of the true posteriors. 

The link between neural networks and statistical pattern classifiers is the estimation of the 

posterior probabilities. However, it is not possible to make a direct comparison since NNs 

are generally non-linear while statistical methods are basically linear. If we appropriately 

code the desired output of the membership values, we may let neural networks directly 

model some discriminant functions. For example, in a two-group classification problem, if 

the desired output is coded as 1 if the sample is from class 1 or -1 if the sample is from 

class 2, then from ( 4.9), the neural network estimates the following discriminant function: 

g(x) = P(m1 Ix)- P(m2 Ix) (4.10) 

The classification rule is to assign x to class Wt if g(x) > 0 or Wi. if g(x) < 0. 

4.3.1. Learning and Generalisation 

As we have described earlier, learning is the ability to approximate the underlying 

behaviour adaptively from the training data and generalisation is the ability to predict well 

beyond the training data [Zhang, 2000]. Overfitting occurs when the neural network fits 

the training sample very well but has poor generalisation capability for predicting future 

samples. Powerful data fitting or function approximation capability of the neural network 

further contributes to overfitting. Underfitting occurs when the network does not fit the 

training sample enough and therefore future samples cannot be predicted accurately. 

Overfitting and underfitting can be analysed through the bias-plus-variance decomposition 

of the prediction error. 

4.3.2. Bias and Variance Composition of the Prediction Error 

A thorough analysis of the relationship between learning and generalisation in neural 

networks based on the concepts of model bias and model variance can be found in [Geman, 

1992]. A data-driven model may be too dependent on the specific data and have a large 

variance, on the other hand, a model which is less dependent on the data may represent the 

true functional relationship and have a large bias. Bias and variance are often incompatible 

and if one is reduced, it will cause the other to increase. Therefore a trade-off is necessary 
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in building a useful NN classifier. For example, if we consider a two-group classification 

problem in which the binary output variable y E { 0, 1} is related to a set of input variables 

(the feature vector) x by 

y=F(x)+& (4.11) 

where F(x) is the target or underlying function and &is assumed to be a zero-mean random 

variable. From (4.8) and (4.9), the target function is the conditional expectation of y given 

x, that is 

F(x) = E(y Ix)= P(m, Ix) (4.12) 

If we have a training set T of size N, we need to find an estimate,fix;7), of F(x) so that the 

overall estimation error can be minimised. The most commonly used performance measure 

is the mean square error (MSE) defined as 

MSE = E[(y- /(x;T))2
] 

= E[(y-F(x))2] + (/(x;T)-F(x)) 2 
(4.13) 

Notice that the MSE depends on the particular data set T which means that any change in 

the data set and/or sample size may result in a change in the estimation function and hence 

the estimation error. Since the training data is random, the overall prediction error of the 

model can be written as 

(4.14) 

Where ET denotes the expectation over all possible random samples of size N. 

Further information on bias and variance as well as methods for reducing the prediction 

error can be found in [Zhang, 2000]. An example of how NNs are used for classification is 

shown in the next section. 

4.3.3. Example of Classification Using Neural Networks 

Suppose we have two classes of overlapping two-dimensional normally distributed 

samples, labelled class 1 and class 2. Let m1 and {();, denote the set of events for which a 

random vector x belongs to class 1 and class 2, respectively. The conditional probability 

for class 1 can be expressed as 
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P(x I W1) = -
1
-2 exp(- ~llx- J11 ll

2 J 
2m:;1 2a1 

(4.15) 

where µ1 is the mean vector (µ1 = [2, 0{) and a/ is the variance (a/ = 4). 

The conditional probability for class 2 is 

P(x I w2 ) = ~exp[-~llx-11 2 11
2

] 
2m:; 2 2a2 

(4.16) 

where µ2 is the mean vector (µa = [O, O]T) and o:/ is the variance (a:/ = 1). 

Furthermore, both classes are assumed to have equal prior probabilities, P1 = P2 = 0.5. 

The probability density functions for class 1 and class 2 are shown in Figure 4.5 and Figure 

4.6 respectively. The scatter plot of classes 1 and 2 is shown in Figure 4.7. Class {t)i is 

represented by the 'o' symbol and class OJi. is represented by the '+' symbol. The decision 

boundary is shown and its derivation will now be discussed . 
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Figure 4.5. Probability density function for Class 1. 
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Figure 4.7. Scatter plot of classes Wt and OJz. Showing decision boundary. 

The optimum decision boundary is found by applying the likelihood ratio test as described 

in Chapter 3: 

(4.17) 
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Recall equation (3.4), where the likelihood ratio is defined as 

R(x) = P(x/ m1) 
P(x/ m2 ) 

The threshold is defined as 

T=P2=l 
Pi 

Therefore for our example, the optimum decision boundary is defined as 

R(x)= a~ ex...(-~llx-J11ll
2 
+~llx-J12ll

2
)=1 

a1 1_ 2a1 2a2 

or equivalently 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Using straightforward manipulations, the decision boundary defined by (4.21) can be 

redefined as 

(4.22) 

(4.23) 

and 

(4.24) 

Equation (4.24) represents a circle with centre Xe and radius r. Let Q 2 define the region 

lying inside the circle. The classification rule may then be stated as follows: 

Classify the observation vector x as belonging to class (J)z if XE Q 2 and to class m1 

otherwise. 

For our example, we have a circular decision boundary whose centre is located at 

Xe= [-2/3,0l and has radius r == 2.34. This decision boundary is shown in Figure 4.7. 
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The probability of error for class 1 is e1 ::::: 0.2642. Similarly, the probability of error for 

class 2 is e2 = 0.1056. The total error assuming both classes have equal priors is: 

e= 0.5e1 + 0.5e2 ::::: 0.1849. Therefore the probability of correct classification, Pc::::: 0.8151. 

We will now compare these values derived theoretically with the performance of a neural 

network trained with simulated data of the same distributions outlined in equations ( 4.15) 

and (4.16). We generate 500 samples from each class and simulate a feed-forward MLP 

NN with two input neurons (because our data is two dimensional) and two output neurons 

corresponding to the two classes. The network has one hidden layer with 2 neurons. The 

probability of error for class 1 is found to be 0.2660 and the probability of class 2 is found 

to be 0.0082. The total probability of error is then calculated to be 0.1740. These figures 

are comparable to the theoretical error rates calculated previously showing that the 

simulated neural network performs according to the theory. 

4.4. Conclusions 

This chapter has covered the general theory and concepts of NN s. The neuron model and 

NN structures have been described and the learning process and associated algorithms have 

also been presented. Statistical decision theory applied to neural networks has been 

presented with an example of classification using neural networks. The following chapters 

will describe different digital modulation classifiers. These classifiers are based either on 

the decision-theoretic approach or neural networks. The contents of this chapter 

will be applied in the latter case. 
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CHAPTERS 

Modulation Classification of ASK, FSK, 

and PSK Signals 

5.1 Introduction 

In this chapter, modulation classification techniques utilising the decision-theoretic (DT) 

and neural network (NN) approaches are used to classify ASK2, ASK4, PSK2, PSK4, 

FSK2, and FSK4 signals. These signals have already been treated in [Azzouz and Nandi, 

1996]. However, an alternative algorithm with a different decision tree is proposed here and 

new key features are introduced. This is the first of three chapters addressing classification 

of digitally modulated signals. Each chapter builds on the classifier of the preceding chapter 

by treating a different set of digital modulated signals, culminating in a full classifier for all 

digitally modulated signals. The classification is achieved through a DT approach or a NN 

algorithm. Before the classifier systems are discussed, the next section introduces the 

analytic signal representation of digitally modulated ASK, FSK and PSK signals. In 

Section 5.3, the key features of these signals are introduced. The two classification 

methods, namely the decision-theoretic and the neural network approach for recognising 

the different modulation types, are described in Sections 5.4 and 5.5. Section 5.6 presents 

and compares the performances of the different classifiers. Finally, Section 5.7 presents 

discussion and concluding remarks. 

5.2 Analytic Signal Representation 

The digital processing of broadband signals requires a high sampling rate. This means that 

the processing speed and the memory size must be increased. All the processing of the 

received data vector must be completed before the arrival of the next data segment. The 

bandwidth of the signal in practice will be minimal to keep the sampling rate low. If the 

signal x(t) is real, then from hermitian symmetry X(f) = x*(-/), where X(f) is the Fourier 
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transform. This means that the whole information content of the signal can be found in one 

half of the signal spectrum. Thus, any real signal can be represented by its right half 

spectrum, called the analytic representation. The digital processing of the analytic signal 

requires half the sampling rate that is needed for the broad band real signal but the same 

amount of memory is needed because the derived samples are complex. 

5.2.1 Hilbert Transform 

The spectral redundancy can be removed using the Hilbert transform, which gives the 

analytic representation of the signal. By applying the signal, x(t), to a quadrature filter, F Q, 

with impulse response rQ(t) and complex gain GQ(f) we get the Hilbert transform, y(t). This 

can be written as 

where 

00 

y(t) = FQ {x(t )}= x(t) * rQ (t) = f x(t - 8).rQ (8)d8 
-oo 

1 
rQ(t)=-

111 

By substituting (5.2) into (5.1), the Hilbert transform can be expressed as: 

y(t)= P.V. f x(t-8) dB 
-oo 7l8 

(5.1) 

(5.2) 

(5.3) 

where P.V. is the principle value of the integral. The complex gain of the quadrature filter 

is 

GQ(J)= ~~j~ =-jsgn(J) (5.4) 

where sgn is the signum function. The analytic signal, z(t), is the representation of the right 

half spectrum of a real signal x(t). We can obtain z(t), by applying x(t) to an analytizing 

filter, FA, This filter is made up of an identity filter F1 and a quadrature filter F Q· This can 

be shown as: 

(5.5) 

The impulse response of F1 is rJ(t) = ~t) and the complex gain is G1(f) = 1. For F Q, the 

impulse response and complex gain are given by (5.2) and (5.4), respectively. Hence, the 

analytic signal, z(t), can be expressed as 
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z(t) = FA {x(t )}= lF1 + jF Q Kx(t )}= x(t) + jy(t) (5.6) 

It can be seen that the analytic signal, z(t), is a complex function where its real part is the 

real signal x(t) and the imaginary part y(t) is the Hilbert transform of the signal x(t). The 

spectrum of the analytic signal, Z(f) is given by 

Z(f) = X(f)+ jY(f) = [l+sgn(J)]X(f) = 2U(f)X(f) (5.7) 

where U(f) is the unit step function in the frequency domain and is defined by 

{

1 if f >0 

U(f)= ~ if f=O 

O otherwise 

(5.8) 

5.2.2 Complex Envelope 

The complex envelope, a(t), of a real signal, x(t), can be derived from the analytic 

representation as follows 

a(t) = z(t)e- i 21ifct (5.9) 

where fc is some arbitrary frequency. In the case of a narrowband signal, fc is taken as the 

carrier frequency. From equations (5.6) and (5.9), the complex envelope can be expressed 

as 

a(t) = m(t) + jn(t) (5.10) 

where 
m(t) = x(t)cos(2nfct) + y(t)sin(2nfct) (5.11) 

and 
n(t) = y(t)cos(2nfct)- x(t)sin(2nfct) (5.12) 

x(t) can be reconstructed from m(t) and n(t) using the following analytic form 

x(t) = m(t)cos(2nfct)- n(t)sin(2nfct) (5.13) 

The instantaneous amplitude and instantaneous phase of a signal can be found from either 

the complex envelope representation in (5.10) or the analytic signal in (5.6). The 

instantaneous amplitude, a(t), is defined as 

a(t) = lz(t)I = ~ x 2 (t) + y 2 (t) = la(t)I = ~ m2 (t) + n 2 (t) (5.14) 

The instantaneous phase, </f....t), can be calculated from the analytic expression as 
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tan-1[y(t)/ x(t)] if x(t) > 0, y(t) > 0 

1l - tan-• [y(t)I x(t)] if x(t)<O,y(t)>O 

1ll2 if x(t) = 0, y(t) = 0 
</>(t) = 

1l + tan-1 [y(t)I x(t)] if x(t) < 0, y(t) < 0 
(5.15) 

31l/2 if x(t) = 0, y(t) < 0 

21l -tan-1[y(t)/ x(t)] if x(t) > 0, y(t) < 0 

<fX.t) can be calculated from the complex envelope, except the linear phase component, due 

to the carrier frequency (i.e., <fX.t) = arg{z(t)} = arg{ a(t) }+2,efct), is not present in the 

complex envelope representation because of the down-conversion. 

The instantaneous frequency f(t) follows as 

f (t) = _1 d<f>(t) 
21l dt 

5.2.3 Representations of Digital Modulation Schemes 

(5.16) 

This section explains the digital modulation schemes considered for classification in this 

chapter, namely amplitude shift keying (ASK), phase shift keying (PSK) and frequency 

shift keying (FSK). The signals will be outlined with a graphical representation of the 

relevant features. 

5.2.3.1 Amplitude Shift Keying (ASK) 

The ASK signal is represented as [Couch, 2001]: 

(5.17) 

where m(t) is a unipolar baseband data signal and Ac is a constant representing the power 

level. The complex envelope is given by: 

(5.18) 

For the binary case: 

(5.19) 
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where Tb is the bit duration (=1/Rb), Rb is the bit rate. The instantaneous amplitude can be 

expressed as: 

a(t) = lm(t)I= . {
o if m(t) = 0 

1 if m(t) = 1 
(5.20) 

and the instantaneous phase is 

</J(t) = 0 (5.21) 

It can be seen from Figure 5.1 and Figure 5.2 that the instantaneous amplitude looks like 

the bit stream, while the instantaneous phase and frequency are zero. 

5.2.3.2 Phase Shift Keying (PSK) 

The PSK signal is represented as [Couch, 2001]: 

s(t) = Ac cos[mct +DP m(t)] (5.22) 

where m(t) is a bipolar baseband signal having peak values of ±1 and a rectangular pulse 

shape (for convenience) and Dp is a the modulation index of the PSK signal. 

The complex envelope is given by: 

where the values of x and y are: 

a(t) = AcejO(t) = x(t) + jy(t) 

X; = Ac cos8i 

Y; = Ac sin8; 

(5.23) 

(5.24) 

for the permitted phase angles 8;, i = 1, 2, ... , M of the PSK signal. For PSK2, M = 2, for 

PSK4, M = 4 and for PSK8, M = 8. For the binary case (M = 2), we let Dp = n/2 to give 

the maximum power in the signal [Couch, 2001] and the complex envelope becomes: 

a(t) = jm(t) (5.25) 

The instantaneous amplitude is 

a(t) = lm(t)I = 1 (5.26) 

and the instantaneous phase is 
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{
-n/2 if m(t) = -1 

</J(t) = 
tr I 2 if m(t) = 1 

(5. 27) 

Therefore, the instantaneous frequency is zero. These attributes of PSK modulation are 

shown in Figure 5.3 and Figure 5.4. 

5.2.3.3 Frequency Shift Keying (FSK) 

The FSK signal is represented by 

(5.28) 

s(t) = Re{g(t)ejmc,} (5.29) 

where 

(5.30) 

and 

t 

B(t) = DI J m(.2 )d.2 for FSK (5.31) 

where m(t) is a baseband digital signal. Although m(t) is discontinuous at the switching 

time, the phase function ~t) is continuous because ~t) is proportional to the integral of 

m(t). The instantaneous amplitude and phase are given by 

(5.32) 

(5.33) 

The instantaneous frequency is given by 

1 d</J 1 
f(t) = 2n dt = 2n Dfm(t) (5.34) 

The attributes of FSK modulation are shown in Figure 5.5 and Figure 5.6. 
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Figure 5.1. Useful features of ASK2 modulation, carrier frequency Fe= 150kHz. 
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Figure 5.3. Useful features of PSK2 modulation. 
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5.3 Key Feature Extraction 

The procedure for digital signal classification is based on the method outlined in [Azzouz 

and Nandi, 1996]. The intercepted signal with length K seconds, is sampled at a ratefs and 

divided into M successive frames. Each frame is Ns samples long (Ns = 2048), which is 

equivalent to l.76ms. This results in M ( =Kf /N) frames. A set of key features is extracted 

from each frame to decide the type of modulation. These key features are derived from the 

complex envelope of the signal y(t), the instantaneous amplitude A(t), the instantaneous 

phase (/X.t) and the instantaneous frequency f(t) of the intercepted signal. The key features 

from a particular segment (frame) are used to classify the segment as a certain modulation 

type. 

Five key features are used in this modulation classification approach: two key features were 

discussed in [Swami and Sadler, 2000] and the other three are introduced here. The key 

features discussed by Swami and Sadler are based on higher-order cumulants of the signal 

and are described in section 5.3.1. The other three key features, introduced in this chapter, 

are discussed in section 5.3.2. 

5.3.1 Cumulant Key Features 

The complex envelope of the intercepted signal is represented by y(n). For a complex 

valued stationary random process, the second-order cumulants can be written in two ways 

depending on the placement of the conjugation operator 

C20 = E~ 2 (n)] and C21 = E~y(n)l
2

] (5.35) 

where E denotes the expectation operation. Similarly, the fourth-order cumulants can be 

defined in one of three ways: 

C40 = cum(y(n), y(n), y(n), y(n)) 

C41 = cum(y(n), y(n), y(n), y* (n)) 

C42 = cum(y(n), y(n), y* (n), y(n)) 

(5.36) 
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5.3.1.1 Sample Estimates 

The cumulants in (5.35) and (5.36) can be approximated with the sample estimates of the 

corresponding moments [Swami and Sadler, 2000]. Assuming that y(n) is zero mean, the 

sample estimates of second-order cumulants are given by 

A 1 ~I 12 C21 = - £... y(n) 
N n=I 

A 1 ~ 2 
Cw= - £..,.Y (n) 

N n=I 

(5.37) 

The superscript '"' denotes a sample average. The estimates of the fourth-order cumulants 

are 

A 1 ~ 4 "2 
C40 = - £...Y (n)-3Cw 

N n=I 

A 1~ 3 • A A 

C41 = - £... y (n)y (n)-3CwC21 
N n=I 

A 1 ~I 14 I A 12 A 2 C42 = - £... y(n) - Cw - 2C21 
N n=I 

The two cumulants features used in the modulation classifier are lc21 i and IC40 1. 

5.3.2 Other Key Features 

(5.38) 

The other three new key features introduced in this chapter are the mean of the 

instantaneous phase, /ldp, the maximum value (measured in dB) of the power spectral 

density (PSD) of the normalised instantaneous frequency, Ymaxf, and the standard deviation 

of the normalised instantaneous frequency, O'Jn. 

The key feature /.,ldp is defined as 

(5.39) 

where </JNL(i) is the value of the non-linear component of the instantaneous phase at time 

instants t = ills, C is the number of samples in the intercepted frame [ {<Xi)}] for which An(i) 

> at, and at is a threshold for A(t) below which the estimation of the instantaneous phase is 

very sensitive to noise. 
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The key feature YmaxJ, measured in dB's, is given by: 

(5.40) 

where fn is the normalised instantaneous frequency of the signal defined by fn = ft..t)IRs, Rs 

is the symbol rate andft..t) is the instantaneous frequency. 

The standard deviation of the normalised instantaneous frequency is evaluated over the 

non-weak segments of the received signal: 

a fn = _!_ Lf/(i) - _!_ Lfn(i) 
[ ] [ ]

2 

C A. (i)>a, C A. (i)>a, 

(5.41) 

where fn is the normalised instantaneous frequency, C is the number of samples in {.fn( i)} 

for which An(i) > a,, An (i) = A(i)lma where ma is the average value of the instantaneous 

amplitude over one frame and a, is a threshold for An(i) below which the estimation of the 

instantaneous phase is very sensitive to noise. It is found in [Azzouz and Nandi, 1996], that 

a suitable threshold is a, = 1. 

5.3.3 Explanation for Key Feature Selection 

The key feature Yma.xJ is used to discriminate between FSK2 and FSK4 as one group and 

ASK2, ASK4, PSK2 and PSK4 as the second group. Since ASK2, ASK4, PSK2 and PSK4 

signals possess little or no frequency information, their power spectral density values 

measured in dB will be very small. On the other hand FSK2 and FSK4 signals possess 

some frequency information; therefore, their PSD values of the normalised instantaneous 

frequency will be larger. 

The feature /idp is used to distinguish between ASK2 and ASK4 signals. Both types of 

signals possess very little phase information. However, ASK2 signals possess slightly 

larger instantaneous phase values than ASK4 signals. Therefore, the mean of the 

instantaneous phase is a good feature to separate ASK2 and ASK4 signals. This can be 

inferred by inspecting Figure 5.7, which shows a close up of the instantaneous phase for 

ASK2 and ASK4 signals. 
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Figure 5.7. Instantaneous phase values for ASK2 and ASK4 signals. 

The key feature IC21I is used to separate signals with phase information (PSK2, PSK4) from 

those with no phase information (ASK2, ASK4). It is found that the values of IC21I for PSK 

signals are greater than the values for ASK signals. 

The key feature IC401 is used to separate PSK2 signals from PSK4 signals. By referring to 

Table I in [Swami and Sadler, 2000], the theoretical values of the fourth order cumulants 

are -2 and 1 for PSK2 and PSK4 signals respectively. Therefore the absolute values should 

be around 2 for PSK2 signals and 1 for PSK4 signals. 

The key feature O'fa is used to separate FSK2 and FSK4 signals. In FSK2 signals, the 

symbols are represented by one of two frequency values situated at (fc + 2Rs) and (fc - 2Rs), 

With FSK4 signals, there are an additional two frequency values that a symbol may be 

represented as situated at (fc + Rs) and (fc - Rs). Since these values are smaller, the key 

feature values for FSK4 are also generally smaller than for FSK2. 

5.4 Decision - Theoretic Modulation Classification Method 

In the decision theoretic approach, a decision tree is constructed that has as its leaf nodes 

one of the desired modulation types; a flowchart depicting the final classification procedure 

is shown in Figure 5.8. The incoming signal segment is categorized as one of two possible 

sets of signals by comparing a key feature of the signal with a certain threshold. The 

threshold for each feature is chosen so that the number of correct decisions made is optimal. 

The determination of the thresholds is outlined next in Section 5.4.1. 
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5.4.1 Threshold Determination 

The key feature thresholds are chosen so that the probability of a correct decision is 

obtained from 400 realisations of each modulation type at signal to noise ratio (SNR) 

ranging from 20 to 5dB. A set of modulation types is separated into two disjoint subsets, A 

and B, by the decision rule defined in equation (3.1) of Chapter 3. Note that here we use 

the alternate notation A= WJ and B = Wi, and assume that the priors P(A) and P(B) are 

equal, P(A) = P(B) = 0.5. The optimum threshold is chosen such that the Bayes error is 

minimised as described in Chapter 3. 

yes 

no 

PSK4 

Digitally 
modulated signal 

ASK2 

no 

no 

yes 

FSK2 FSK4 

Figure 5.8. Decision tree for classification of digital modulated signals. The first decision 

separates signals with frequency information (right side of tree - FSK) from signals with 

little or no frequency information (left side of tree - ASK and PSK). The signals with no 

frequency information are then separated into signals with phase information (PSK) and 

signals with little or no phase information (ASK). 
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The estimated total error probability for the key feature Ymaxf is shown in Figure 5.9 to 

separate subset A (FSK2 and FSK4) and subset B (ASK2, ASK4, PSK2 and PSK4 ). It can 

be seen that a good choice for the threshold tymaxf is -40dB where the total minimum error 

probability is O for the SNR range of 20dB to -5dB. 

The estimated total error probability for the key feature IC21 I is shown in Figure 5.10 for 

subset A (PSK2 and PSK4) and subset B (ASK2 and ASK4). The relevant threshold tlC21I is 

chosen to be 0.93 where the total minimum error probability is 0.0021 for the SNR range of 

20dB to 5dB. 
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Figure 5.9. Total error probability for the key feature Ymaxt for SNR range of 20dB to -5dB, 

for FSK2 and FSK4 (subset A) and ASK2, ASK4, PSK2 and PSK4 (subset B). 
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Figure 5.10. Total error probability for the key feature IC21 1, for SNR range of 20dB to 

-5dB, for PSK2 and PSK4 (subset A) and ASK2 and ASK4 (subset B). 
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The estimated total error probability for the key feature IC401 is shown in Figure 5.11 for 

subset A (PSK4) and subset B (PSK2). The total minimum probability of error is 0.0008 at 

the threshold tlC401 = 1.35 for SNR range of 20dB to 5dB. The same threshold value gives 

the minimum error probability for SNR range of O to -5dB. 

For FSK2 (subset A) and FSK4 (subset B), the total error probability for the key feature O'ftz 

is shown in Figure 5.12. The relevant threshold taftz is chosen to be 1.65 where the total 

minimum error probability is 0.03 for the SNR range of 20dB to 5dB. 
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Figure 5.11. Total error probability for the key feature IC401, for SNR range of 20dB to 

-5dB, for PSK4 (subset A) and PSK2 (subset B). 
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Figure 5.12. Total error probability for the key feature O'ftz, for SNR range of 20dB to -5dB, 

for FSK2 (subset A) and FSK4 (subset B). 
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The total error probability for the classification of ASK2 (subset A) and ASK4 (subset B) 

using the key feature /J,dp is shown in Figure 5.13. The optimum threshold t/J,dp is chosen to 

be -0.125 for the SNR range of 20dB to -5dB. 

A summary of the key feature threshold values and minimum error probabilities for the 

SNR range of 20dB to -5dB is shown in Table 5.1. These threshold values are used to 

discriminate between groups of signals as shown in Figure 5.8. A compromise must be 

made between the threshold values at higher and lower SNR. The threshold must be chosen 

so that the overall classification error is minimised. Here, we choose the threshold values 

that minimise the error probability between 20 and 5 dB; thus, the key feature thresholds 

tYmaxf, tO'fn, t/J,dp, tlC21I and tlC4ol are -40, 1.65, -0.125, 0.93 and 1.35, respectively. 
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~0.4 
\ :;;, 0.48 

.c ~ 0.46 

\ 
ftl 
.c l 0.44 ~ 0.3 

g g 0.42 

\~ ~ 0.2 w 
ftl ii 0.4 0 0 
I- I-
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mudp mudp 

Figure 5.13. Total error probability for the key feature /idp, for SNR range of 20dB to -5dB, 

for ASK2 (subset A) ASK4 (subset B). 

5.4.2 Dependency of Key Feature Selection on Minimum Probability of Error 

The selection of a particular key feature for a specific decision is dependent on the 

minimum error probability. For example, the reason why the key feature Ymaxt is chosen for 

the first decision in Figure 5.8 is because it minimises the total error probability for that 

decision. In this section we examine the decision made at every stage of the decision tree 

and explain why a particular key feature is chosen at that stage, starting from the top of the 

tree. 
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Table 5.1. Summary of key feature thresholds and error probabilities. 

Key Feature SNR 20dB to 5dB SNR OdB to -5dB 

Threshold Optimum Minimum Error Optimum Minimum Error 

Threshold Probability Threshold Probability 

tymaxf -40 0 -40 0 

tO"fa 1.65 0.0300 1.84 0.3725 

t/idp -0.125 0.0800 -0.12 0.3700 

tlC21I 0.93 0.0021 1.7 0.1984 

t1C401 1.35 0.0008 1.35 0.3600 

5.4.2.1 Decision 1 

At every stage of the decision tree, there are many possible scenarios that must be 

considered, depending on how the signals are grouped together. Let's call the grouping of 

FSK2 and FSK4 (subset A) and ASK2, ASK4, PSK2 and PSK4 (subset B) as scenario 1-1 

(scenario 1 of decision 1). Table 5.2 illustrates the total error probabilities of the different 

key features, along with the appropriate threshold (shown in brackets). The key feature that 

minimises the probability of error is chosen and the minimum error is shown in bold 

typeface. The errors are calculated from data based on the SNR range of 20dB to -5dB. 

Note that for scenario 1-1, the key feature O"fa could also have been chosen since this feature 

also has a total minimum error probability of 0. 

Alternatively, we could use the key feature IC21I for the first decision in the tree. Then the 

two groups of signals to be separated would be FSK and PSK signals in one group (subset 

A) and ASK signals in the other (subset B) which we will call scenario 2-1. The total error 

probabilities for this scenario are also shown in Table 5.2. It can be seen that the key 

feature IC21I minimises the error probability between these two groups of signals. However, 

this feature is not chosen for the first decision because the overall minimum error is not as 

small as that of scenario 1-1. 
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If we separated the signals into subset A consisting of PSK2 and PSK4 signals and subset B 

comprising ASK2, ASK4, FSK2, and FSK4 signals, which we refer to as scenario 3-1, the 

feature IC401 minimises the total error probability. However, as can be seen in Table 5.2, the 

total minimum error for this decision is still not as small as the error in scenario 1-1. 

Therefore, this feature is not used for the first decision. 

Table 5.2. Total minimum error probability for different scenarios of Decision 1 for 

combined SNR range of 20dB to -5dB (threshold values are shown in brackets). 

Key Total Minimum Error Total Minimum Error Total Minimum Error 

Feature Probability 
Probability 

Probability 
(Scenario 2-1) 

(Scenario 1-1) (Scenario 3-1) 

Ymaxt 0 (-40) 0.3333 (36.2) 0.1788 (-104.45) 

/Jdp 0.1473 (0.2) 0.3333 (-125) 0.3333 (100.7) 

IC21I 0.3185 (1.49) 0.0794 (0.92) 0.2869(1.0850) 

1t4ol 0.1089 (0.1) 0.3333 (1.1) 0.1178 (0.7) 

O"fe 0 (1.0) 0.3333 (0.5) 0.3333 (0.5) 

5.4.2.2 Decision 2 

The second decision in Figure 5.8 separates ASK signals from PSK signals using the key 

feature IC'21 I; we call this scenario 1-2 (Scenario 1 of Decision 2). Table 5.3 shows that the 

key feature IC21l minimises the total error probability for this decision. 

Another possibility is to separate ASK2 (subset A) from ASK4, PSK2, and PSK4 (subset 

B); we call this scenario 2-2. It can be seen from Table 5.3 that although the key feature 

/1,dp minimises the total error probability, it is still much higher than that of scenario 1-2. 

The third scenario (scenario 3-2) has subset A consisting of ASK4, and subset B 

comprising ASK2, PSK2, and PSK4. It can be seen from Table 5.3 that the key feature 
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IC2d minimises the probability of error. However, this scenario is not chosen because its 

minimum error is still larger than that of scenario 1-2. 

By assigning PSK4 to one class and ASK2, ASK4, and PSK2 to the other class, we define 

scenario 4-2, where the minimum error probabilities for each feature are shown in the fifth 

column of Table 5.3. It can be observed that the feature /.,ldp minimises the total error 

probability but this minimum error is still not as small as that of scenario 1-2. 

Table 5.3 Total minimum error probability for Scenarios 1 - 4 of Decision 2 for combined 

SNR range of 20dB to-5dB (threshold values are shown in brackets). 

Key Total Minimum Total Minimum Total Minimum Total Minimum 

Feature Error Probability Error Probability Error Probability Error Probability 

(Scenario 1-2) (Scenario 2-2) (Scenario 3-2) (Scenario 4-2) 

Ymaxt 0.3227 (-104.1) 0.2475 (-91.35) 0.2500 (-90) 0.2800 (-113) 

/.,ldp 0.1968 (-0.145) 0.2295 (-0.11) 0.3025 (0) 0.2310 (-0.2950) 

IC2d 0.1275 (0.93) 0.2500 (0.2) 0.2250 (0.52) 0.3000 (2) 

1c401 0.1300 (0.65) 0.2338 (0.1) 0.2445 (0.4) 0.2416 (2.55) 

O'fa 0.5000 (0) 0.2500 (-0.01) 0.2500 (-0.1) 0.2500 (-0.1) 

Scenario 5-2 is defined by separating PSK2 from PSK4, ASK2, and ASK4. The minimum 

error probabilities for this class are shown in Table 5.4. It can be seen that the minimum 

error occurs for the feature IC401 and though the error is low, it is still higher than in scenario 

1-2. 

Another possibility is to define subset A as ASK2 and PSK2 and subset B as ASK4 and 

PSK4. The corresponding calculated errors are shown in the third column of Table 5.4 

labelled as scenario 6-2. The feature that minimises the error probability is /.,ldp· However, 

this scenario has too large an error probability to be considered for this decision. 
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The final scenario (scenario 7-2) defines subset A as ASK2 and PSK4 and subset B as 

ASK4 and PSK2. The feature that minimises the error probability for the SNR range of 

20dB to -5dB is IC4ol- This scenario is not feasible due to the high error risk as can be seen 

in Table 5.4. 

Table 5.4. Total minimum error probability for Scenarios 5 - 7 of Decision 2 for combined 

SNR range of 20dB to-5dB (threshold values are shown in brackets). 

Key Feature Total Minimum Total Minimum Total Minimum 

Error Probability Error Probability Error Probability 

(Scenario 5-2) (Scenario 6-2) (Scenario 7-2) 

Ymaxt 0.2100 (-122) 0.3840 (-99.5) 0.3850 (-99.75) 

J.l,dp 0.2500 (-0.3) 0.2900 (-0.13) 0.3800 (-0.13) 

IC2d 0.2500 (3) 0.4800 (0.65) 0.4710 (0.6) 

1c401 0.1300 (1.1) 0.3100 (1.3) 0.3150 (1.35) 

O"fa 0.2500 (0.01) 0.5000 (0.01) 0.5000 (0.01) 

5.4.2.3 Decision 3, Decision 4 and Decision 5 

The following decisions carry on from scenarios 1-1 and 1-2 of decisions 1 and 2, as this 

path gives the smallest error probability. The next decision we will examine in the 

classification tree separates FSK2 signals from FSK4 signals. The key feature chosen for 

this decision (which we will call decision 3) is O"fa and the reason for this is that it 

minimises the total error probability compared to the other key features, as presented in 

Table 5.5. 

Decision 4 separates ASK2 and ASK4 signals. The total minimum error probabilities using 

each feature for this decision are shown in Table 5.5. It can be seen from this table that the 

feature that gives the smallest error is J.l,dp, 
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The final decision separates PSK2 from PSK4 signals (Decision 5). The feature found to 

minimise the total error probability is IC401, The other error probabilities for each feature 

with respect to Decision 5 are shown in Table 5.5. 

Table 5.5. Total minimum error probability for Decision 3, Decision 4, and Decision 5 at 

combined SNR range of 20dB to-5dB (threshold values are shown in brackets). 

Key Feature Total Minimum Total Minimum Total Minimum 

Error Probability Error Probability Error Probability 

(Decision 3) (Decision 4) (Decision 5) 

YmaxJ 0.3350 (22) 0.4004 (-110.45) 0.4328 (-122) 

/Jdp 0.4875 (30) 0.1673 ( -0.125) 0.3250 (0.4) 

IC21I 0.4700 (1.0) 0.3871 (0.52) 0. 4800 (1.0) 

1c401 0.4825 (0) 0.4618 (0.55) 0.1204 (1.35) 

O'Jn 0.1925 (1.65) 0.5000 (1.5) 0.5000 (1.5) 

5.4.3 Receiver Operating Characteristic (ROC) Curves 

A receiver operating characteristic (ROC) curve describes the tradeoff between maximising 

the probability of a correct decision (Pv - Detection Probability) and minimising the 

probability of an incorrect decision (PFA - False Alarm). By considering two sets of 

modulation types A and B, we can call these two classification possibilities the null 

hypothesis Hand the alternative hypothesis K. They are commonly written in the form: 

H: x = subset A 

K : x = subset B 

where x is a particular key feature value. 

The probability of false alarm is a function of the key feature threshold value tx given by 

PFA = P(RKIH), The probability of a correct decision Pv = P(RKJK). The plot of the pair PFA 

= PFA(tx) and Pv = Pv = Pv(tx) over the range of thresholds -00 < tx < oo produces a ROC 

curve. Good features have ROC curves with desirable properties such as negative 

curvature, monotone increase in Pv as PFA increases, and high slope of Pv at the point (PFA, 

80 



Po) = (0,0). The aim is to find ways to test between K and H that push the ROC curve 

towards the upper left comer, where Po is high for low PFA· 

The ROC curves for the key feature O'fa that separates FSK2 (subset A) from FSK4 (subset 

B) are shown in Figure 5.14 for SNR range of 20dB to -5dB. The curves show the detection 

probability of FSK2 (subset A) and the false alarm probability of FSK4 (subset B). By 

examining the ROC curves for SNR ~ 5dB, we can see that for the chosen threshold value, 

tO'fa (indicated by 'x') has a detection probability (Po) of 0.9795 and false alarm probability 

(PFA) of 0.1203 at 5dB SNR. 
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Figure 5.14. ROC curves for the key feature O'fa to separate FSK2 (subset A) and FSK4 

(subset B) signals for SNR range of 20dB to -5dB. 

The ROC curves for the key feature jldp that separates ASK2 (subset A) from ASK4 (subset 

B) are shown in Figure 5.14 for SNR range of 20dB to -5dB. For higher SNR, Po 

(detection probability) is high for low PFA (false alarm probability). By examining the ROC 

curves for SNR ~ lOdB, we can see that for the chosen threshold value, tjldp (represented by 

the 'x') has a minimum Po (detection probability) of 0.9509 and PFA (false alarm 

probability) of 0.0013. 
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Figure 5.15. ROC curves for the key feature /Jdp to separate ASK2 and ASK4 signals for 

SNR range of 20dB to -5dB. 

Figure 5.14 and Figure 5.15 show that the chosen key features give very low false alarm 

rates at very high detection rates. The ROC curves for the remaining decisions in the tree 

are not presented because the error probability is O for SNRs of 20dB to lOdB. 

5.5 Modulation Classification Using Artificial Neural Networks 

The classification of ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4 signals has been shown 

using the decision-theoretic approach. Classification can also be achieved using artificial 

neural networks. A neural network classifier will be proposed and compared to the 

decision theoretic classifier. 

Simulations are carried out in Matlab using the neural network toolbox functions. The 

same key features used in the decision theoretic algorithm are used as the input datasets for 

the ANN algorithm. These key features are O'Jn, Ymaxf, /Jdp, l<:7z1I and IC4ol· The key features 

are normalised to the range -1 to l, then passed to the neural network. This normalisation 

is performed to make the training of the network more efficient [Demuth and Beale, 1998] 

because the inputs have large differences in magnitude and it is also proven in [Azzouz and 

Nandi, 1996] that normalisation significantly improves the performance of the ANN 

classifier. 
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5.5.1 Neural Network Structure 

Figure 5.16 presents the selected neural network structure for modulation classification of 

ASK, FSK and PSK signals. It consists of three subnetworks. The first has five inputs, 

corresponding to the five normalised key features, and four output neurons corresponding 

to ASK, PSK2, PSK4, and FSK. The other two subnetworks are used to differentiate 

between ASK2 and ASK4, and FSK2 and FSK4, respectively. The structure that is chosen 

for the first subnetwork consists of one hidden layer with ten neurons. Twenty versions of 

this structure are trained and tested to find the network parameters that give the best 

performance. 

For the classification of ASK2 and ASK4, the chosen network structure has one input, 

corresponding to the key feature /Jop, one hidden layer with ten neurons and two output 

neurons, corresponding to ASK2 and ASK4 signals. Twenty versions of this network 

structure were trained and tested to find the best network parameters. The network to 

classify FSK2 and FSK4 has two inputs, corresponding to the features O'fa and Ymaxf, one 

hidden layer with ten neurons, and one output neuron. Again, twenty versions of this 

network structure were trained and tested to find the best performance. 

/Jdp 
Network2 ASK2 

O'fa 

lc401 
(ASK) ... ASK4 

ASK 

lc21I Network ... PSK2 

... PSK4 

µdp--+ 
YmaxJ Network FSK2 

3 
(FSK) FSK4 

Figure 5.16. Neural network structure for modulation classifier. 
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The hidden layers in all network structures use the nonlinear tan-sigmoid (hyperbolic 

tangent) activation function because this enables better feature extraction and normally 

leads to a smaller network [Arulampalam, 1999]. The tan-sigmoid function also generally 

allows the network to learn faster [Haykin, 1999]. This approach is in contrast with other 

approaches using neural networks for modulation classification where a log-sigmoid 

function is used in the first hidden layer and a linear function is used in the second hidden 

layer [Azzouz, 1996] and [Azzouz, 1998]. The output layer uses the log-sigmoid activation 

function since the ideal outputs should be 1 (true) and O (false) for all other outputs. The 

full network structure is shown in Figure 5.16. 

5.5.2 Training the Network 

The large network is trained using the conjugate gradient method due to its fast training 

speed and the two smaller networks are trained using the Levenberg-Marquardt (LM) 

algorithm. This algorithm is currently one of the fastest training algorithms and approaches 

second-order training speeds [Demuth, 1998]; however, it requires a large amount of 

memory, which can slow it down significantly with large networks and/or a large amount 

of training data. 

The networks are trained using 200 samples from each modulation type. The networks are 

also tested and validated using a separate set of 200 samples of each modulation type at 

different SNR values. While training, a mean square error performance goal is given and a 

cross validation set is used to stop the training early if overfitting occurs to maintain a good 

generalisation performance [Haykin, 1999], [Demuth, 1998]. The target values for true and 

false are offset from 1 and O (limit values for log-sigmoid function) to 0.8 and 0.1, 

respectively to improve the speed of convergence [Haykin, 1999]. The fast convergence 

properties of the LM algorithm in addition to offsetting the limit values, allows the network 

to be trained for a maximum of only 1000 epochs. For the larger network using the 

conjugate training algorithm, a maximum number of 500 epochs is sufficient for training. 

This is in orders of magnitude less than 250,000 epochs used in [Azzouz, 1996] and 

[Azzouz, 1998]. It is found that training the network with a mix of samples with SNR 
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ranging from 20dB to -5dB gives the best overall performance over a good spread of SNR 

values. 

5.6 Performance Analysis 

The performance results are derived from 200 realisations of each modulation type. The 

carrier frequency, sampling rate and the symbol rate are given values of 150kHz, 1200kHz 

and 12.5kHz respectively. The digital symbol sequence is randomly generated and the 

MPSK, MASK, and MFSK signals are generated using the expressions from Table 3.1 in 

[Azzouz and Nandi, 1996]. 

5.6.1 DT Classifier Results 

The results for the test set of the DT approach are summarised in Table 5.6 for the SNR 

range of 20dB to -5dB; Table A.1- Table A.6 in Appendix A present the accuracy of the 

DT classifier on each modulation type. These results indicate that most types of the digital 

modulation schemes considered can be correctly classified with accuracy greater than 89% 

for SNR ~ 5dB. Figure 5.18 to Figure 5.23 show the same result graphically for SNR range 

of20dB to-5dB. 

5.6.2 NN Classifier Results and Comparison With DT Classifier 

The performance results of the NN classifier are summarised in Table 5.6 and Figure 5.17. 

Figure 5.18 to Figure 5.23 show the performance of the NN and DT for different 

modulation types at various SNRs. It can be seen from Table 5.6 and Figure 5.17 that the 

NN and DT perform comparatively for most modulation types for SNR greater than lOdB. 

However, for SNRs of 5dB, OdB and-5dB the NN classifier outperforms the DT classifier. 

The 0.95 confidence intervals on the accuracy of the DT and NN classifiers, shown in 

Table 5.6, indicate that these differences are significant. This may be due to the fact that 

more than one key feature is used in NN classification, whereas, the DT classifier uses only 

one feature per decision. The confusion matrices showing the results of the NN classifier 

are shown in Appendix A in Table A.7 -Table A.12 for SNR ranging from 20dB to-5dB, 

respectively. 

85 



>, 
u 
f! 
:I 
u 
u 
c( 

20dB 15dB 10dB SdB OdB -SdB 

SNR 

Figure 5 .17. Overall accuracy of the NN and DT classifiers at different SNRs. 

SNR 

20dB 

15dB 

lOdB 
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-5dB 

Overall 

Table 5.6. DT and NN classifier accuracy and 95% confidence intervals. 

Accuracy 

99.50% 

98.83% 

96.71% 

89.12% 

54.38% 

33.42% 

78.58% 

DT Classifier NN Classifier 

95% Confidence Interval Accuracy 95% Confidence Interval 

[99.22, 99.78] 99.83% [99.67, 100.0] 

[98.40, 99.26] 99.67% [99.44, 99.90] 

(95.99, 97.42] 97.58% [96.97, 98.20] 

[88.62, 91.04] 90.85% [89.70, 92.00] 

(52.38, 56.37] 69.24% [67.39, 71.08] 

(31.53, 35.30] 51.10% [49.10, 53.10] 

(77.91, 79.25] 84.71 % (83.88, 85.54] 
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Figure 5.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at 20dB SNR. 
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Figure 5 .19. Classification accuracy of DT classifier ( dark bars) and NN classifier (light 

bars) for signals at 15dB SNR. 
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Figure 5.20. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at lOdB SNR. 
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Figure 5.21. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at 5dB SNR. 
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Figure 5.22. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at OdB SNR. 
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Figure 5.23. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at -5dB SNR. 

5.6.3 Comparison with Azzouz and Nandi's Classifier 

The DT and NN modulation classifiers presented in this chapter will now be compared with 

the classifier proposed by Azzouz and Nandi. By referring to Figure 3.4 in [Azzouz and 

Nandi , 1996], it can be seen that the order of classification in the tree structure is slightly 

different from the proposed tree structure in Figure 5.8. Both structures start by separating 

the signals with frequency information from those that do not possess frequency 

information. A&N use the key feature Y,11ax (maximum value of the PSD of the normalised 

instantaneous amplitude of the signal), whereas the key feature used in the proposed 
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classifier is Ymaxf. The reason for this is that the probability of separation at this point in the 

tree using Ymaxf is 100% whereas it is only 99.6% if the key feature Ymax is used (Table 3.3 

[Azzouz and Nandi, 1996]). By referring to Figure 5.9, it can be seen that the two sets of 

signals can be separated with 100% accuracy. 

To separate signals with absolute phase information (PSK4) from those that do not possess 

absolute phase information, A&N use the key feature O'ap (standard deviation of the 

absolute value of the centred non-linear component of the instantaneous phase evaluated 

over the non-weak intervals of the signal segment). The key feature proposed in this 

chapter for the same task is IC401. It is found in [Swami and Sadler, 2000] that features 

based on cumulants are immune to frequency and phase off sets. This theory is tested by 

adding a fixed phase offset of rc/8 to the PSK2 and PSK4 signals. It is found that the key 

feature O'ap suffers variations in value, whereas the proposed key feature IC4ol suffers no 

variation when a phase offset is present. 

To separate signals that possess phase information (PSK2 and PSK4) from those signals 

that do not (ASK2 and ASK4), the key feature proposed in this chapter is IC21 I. A&N use 

the key feature O'dp ( defined as the standard deviation of the direct value of the centred non­

linear component of the instantaneous phase evaluated over the non-weak intervals of the 

signal segment) for this purpose. However, this feature is not immune to phase variations 

and may cause inaccuracies in results when phase or frequency off set is present. The 

feature IC2d is based on cumulants and is therefore robust against phase variations. 

To separate ASK2 and ASK4 signals, A&N use the key feature O'aa (standard deviation of 

the absolute value of the normalised - centred instantaneous amplitude of the signal 

segment). The key feature used in this chapter for the same purpose is /Jdp· The proposed 

DT modulation classifier outperforms A&N's classifier for the SNR of 20dB and 15dB. 

For the SNR of lOdB, the performance drops slightly. Though this feature is based on 

phase, there is not much variation in value if there is a phase offset because no information 

is contained in the phase of the signal. It is also found in later chapters that this feature is 

robust in environments such as Rayleigh fading channels. 
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Finally, to separate FSK2 and FSK4 signals, the key feature used in this chapter is O'Jn, 

A&N used the key feature O'af (standard deviation of the absolute value of the normalised -

centred instantaneous frequency evaluated over the non-weak intervals of the signal 

segment) in their modulation classifier. There is not much difference in performance for 

both key features; however, O'Jn provides another alternative to separate the FSK signals. 

The comparison in results for SNR of 20dB, 15dB and lOdB are shown in Figure 5.24 to 

Figure 5.26, respectively. To be fair, the threshold values for the compared proposed 

modulation classifier are derived from SNR of 20dB and lOdB only, as A&N have done. 

It can be seen that the results for the DT classifier are on par or slightly better than the 

classifier proposed by A&N, except for the FSK signals where the performance of the DT 

classifier is slightly inferior. The NN classifier results are also presented for comparison. 

A&N' s NN classifier performs similarly to their DT classifier, hence the results are not 

shown. Our NN has been trained with SNRs ranging from 20dB to -5dB. Therefore, had it 

been trained with data from 20dB and lOdB only, as in [Azzouz and Nandi, 1996], the 

performance of our NN classifier would have been even better. 

5. 7 Conclusions 

This chapter has introduced a modulation classifier that is capable of classifying six 

different digital modulation schemes. The decision-theoretic approach is used for 

classification. Key features are extracted from the incoming signal and these features are 

used to determine the modulation type by comparing the key feature values with a specific 

threshold. Azzouz and Nandi [Azzouz and Nandi, 1996] have used a similar approach to 

classify these particular signals; however, different key features and a different tree 

structure are used here. The key features introduced in this chapter are more robust against 

variations such as phase offsets. The performance of the decision-theoretic classifier 

introduced in this chapter is very good with an overall classification success rate of greater 

than 89% for SNR ~ 5dB. A neural network classifier based on the same key features as 

the DT approach is also proposed. The results of the NN classifier and the DT classifier are 

compared. It is found that the NN classifier performs slightly better than the DT approach 
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for higher SNR and much better for lower SNR. This is due to the fact that the main 

network is trained with all the key features. 'This is in contrast with the DT approach where 

only one key feature is used per decision and the threshold boundaries are only linear. 

These classifiers serve as a base for this thesis where the ultimate aim is to develop a digital 

modulation classifier capable of recognising a wide range of digital modulation schemes. 

The next chapter expands the classifiers discussed in this chapter to accommodate 

continuous phase modulated signals. 
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Figure 5.24. Comparison of results of proposed DT and NN classifiers with Azzouz and 

Nandi's (A&N) classifier for SNR 20dB. 
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Figure 5.25. Comparison of results of proposed DT and NN classifiers with Azzouz and 

Nandi's (A&N) classifier for SNR 15dB. 
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CHAPTER6 

Classification of Continuous Phase 

Modulated Signals 

6.1 Introduction 

In this chapter, the modulation classifiers proposed in Chapter 5 are expanded to 

accommodate continuous phase modulated (CPM) signals. These classifiers are able to 

distinguish between CPM signals and other modulation types (ASK, PSK, and FSK). The 

classifiers can also identify signals within the CPM class - the signals are classified as 

partial response, full response or Gaussian minimum shift keying (GMSK) signals. The 

decision-theoretic (DT) approach and neural network (NN) algorithms are compared and 

results are presented for signal-to-noise-ratios (SNRs) of 20dB, 15dB, lOdB, 5dB, OdB, and 

-5dB. The organization of the chapter is as follows. First a brief introduction to CPM 

signals is given in the next section, followed by a description of classifying CPM signals in 

general using the DT approach in Section 6.3. We extend the DT approach to classification 

of signals within the CPM class, for this key features and a novel decision tree are 

proposed. A neural network classifier to separate CPM signals from ASK, PSK, and FSK 

signals is proposed in Section 6.4. A separate NN classifier to classify signals within the 

CPM class is also proposed. The performance results are presented for the DT and NN 

classifiers and a comparison is made between them in section 6.5 followed by the 

conclusion of the chapter. 
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6.2 Continuous Phase Modulated (CPM) Signals 

Recent publications concerning many techniques for automatic modulation classification 

have covered different digital signals. However signals with memory, such as CPM, have 

not been considered using DT and NN methods. In this chapter, CPM signals will be added 

to the existing modulation classifiers described in Chapter 5, but first a brief introduction to 

CPM signals is presented. 

Continuous phase modulated signals are a class of signals that have memory incorporated 

in the modulation scheme. These signals have constant amplitude and carry the 

transmitted information in the phase [Proakis, 1995]. CPM signals are a subset of a class of 

signals known as continuous-phase FSK (CPFSK). The CPM signal can be described by 

s( t) = J¥ cos[21Zfi + f/J( t; I)+ <P0 ] (6.1) 

where ~ is the signal energy, .fc is the carrier frequency, <jJ0 is the initial phase of the carrier, 

and </f.t;I) is the time varying phase of the carrier, defined as 

I 

f/J( t; I)= 41fffd f d( T )dT 

(6.2) 

where !d is the frequency deviation. Note that the integral of d( T) is continuous even though 

d( T) is discontinuous. Evaluating the integral in (6.2) gives the phase of the carrier in the 

interval nT St S(n+l)T: 

n 

f/J( t; I)= 2tr .LJkhkq( t -kT ), nT $. t $. ( n + l)T (6.3) 
k=--

where { hk} is a sequence of modulation indices, {/k} is the sequence of M-ary information 

symbols chosen from the alphabet ±1, ±3, ... , ±(M-1) and q(t) is a normalised waveform 

shape which may be represented as the integral of some pulse g(t) 
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t 

q( t) = I g( T) (6.4) 
0 

When hk = h for all k, the modulation index is fixed for all symbols. When the modulation 

index varies then the signal is referred to as a multi-h CPM signal. If g(t) = 0 for t > T, the 

CPM signal is called full response CPM. If g(t) ct O for t > T then the signal is called partial 

response CPM. 

For h = 2klp where k and p have no common factors, the phase fXt;I) during the interval nT 

~ t ~ (n+ l)T can be written as 

r/J( t; I)= 27Zh "2:.Jkq( t - kT) + O. (6.5) 
k=n-L+I 

where 

(6.6) 

his the modulation index and On is the memory of all symbols up to time (n-l)T. 

When h = 0.5, the complex envelope is given by [Couch, 2001] 

(6.7) 

where Tb is the bit rate, the ± signs denote the possible polarity of the data during the (0, Tb) 

interval, and 

(6.8) 

(6.9) 

The instantaneous amplitude and phase are: 
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a(t) = Ac (6.10) 

</J(t) = tan -I [y(t )! x(t )] (6.11) 

These features are shown in Figure 6.1. 
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Figure 6.1. Useful features of CPM modulation. 

6.3 CPM Signal Classification using DT Approach 

6.3.1 Discrimination of CPM Signals From Other Signals: DT Approach 

In this section, we extend the capability of the digital modulation classifier presented in 

Chapter 5 to cope with signals that have memory incorporated in their modulation scheme. 

With the decision-theoretic approach, the same classification procedure is used as in 

Chapter 5. However, to derive the appropriate key features a number of steps must be 
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taken. First the CPM signal is classified by the existing tree in Chapter 5. The signal is 

classified as FSK4; therefore, we know the decision has to be made between CPM and 

FSK4 signals. We can see from the plots of the instantaneous frequency in Figure 6.1 and 

Figure 5.6 (in Chapter 5) that CPM signals have smaller frequency values than FSK4 

signals. In CPM the frequency separation is 112T, which is the minimum frequency 

separation that is necessary to ensure orthogonality of the signals over the interval T 

[Proakis, 1995]. For FSK4 the frequency separation will be larger, thus the frequency 

values and hence the PSD values will be greater. 

Therefore, the existing key feature Ymaxf is used to distinguish between these two types of 

signals because FSK4 signals contain more frequency information than CPM signals. The 

decision tree for this modulation classifier is shown in Figure 6.2. This is the same 

decision tree as in Chapter 5, except there is an additional decision added after the 

separation of FSK2 from FSK4. 

6.3.2 Threshold Determination 

The key feature thresholds are chosen so that the probability of a correct decision obtained 

from 400 realisations of each modulation type at the signal to noise ratio (SNR) range of 

20dB to -5dB is maximised. 

The optimum threshold tYmaxf2 is chosen such that the Bayes error is minimised as 

described in Chapter 3. The total error probability £, is estimated directly from the sample 

data. The total error probability for the key feature Ymaxt at the SNR range of 20dB to -5dB 

is shown in Figure 6.3. for subset A (FSK4) and subset B (CPM). It can be seen that a good 

choice for the threshold trmaxf2 is 15.7 where the total minimum error is O for SNR range of 

20dB to 5dB. For the SNR range of OdB to -5dB, the total minimum error at the same 

threshold is 0.112. 
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Figure 6.2. Decision tree for classification of digital modulation schemes including CPM 

signals. The first decision separates signals with frequency information (right side of tree -

FSK and CPM) from signals with little or no frequency information (left side of tree - ASK 

and PSK). The signals with frequency information are divided into FSK and CPM. The 

signals with no frequency information are then separated into signals with phase 

information (PSK) and signals with little or no phase information (ASK). 
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Figure 6.3. Total error probability for the key feature Ymaxf, for SNR range of 20dB to 

5dB, for FSK4 (subset A) and CPM (subset B). 
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The key feature Ymaxt is chosen to separate FSK4 and CPM, rather than the other existing 

features, because this feature minimises the total error probability for that decision. This is 

illustrated in Table 6.1. The estimated minimum error probability for SNR = 20, 10, and 

5dB is 0, and it is 0.112 for SNR = 0, and -5dB. Therefore, the total minimum error 

probability over the SNR range of 20dB to -5dB is estimated to be 0.0448 at the threshold 

value of 15.7. 

6.3.3 Classification of Signals Within the CPM Signal Class (DT Approach) 

In this subsection, we describe the classification of CPM signals within the CPM class. 

The proposed modulation classifier categorises the incoming CPM signal as full response, 

partial response or GMSK (Gaussian minimum shift keying). As described in section 6.2, L 

describes the pulse width for each pulse. If L = 1, the signal is defined as full response (the 

length of the pulse is equal to the period of the signal (T)) and if L > 1, the signal is defined 

as partial response (the length of the pulse is greater than the period of the signal). There 

are four pulse shapes that we examine here: 

• LREC (rectangular pulse shape) 

• LRC (raised cosine) 

• HCS (half cycle sinusoid) 

• GMSK (Gaussian minimum shift keying) 

Table 6.1. Total minimum error probability for Decision 1: classification of FSK4 (subset 

A) and CPM (subset B) at combined SNR range of 20dB to -5dB (threshold values are 

shown in brackets). 

Key Feature Total Minimum Error Probability 

Ymaxt 0.0448 (15. 7) 

f./,dp 0.4390 (-1.6) 

lc\11 0.3650 (1) 

lc\ol 0.4050 (0.04) 

O'fa 0.0850 (1.2) 
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These pulse shapes are described as follows. 

ForLREC: 

{

_l_; 05:t5:LT 
g(t) = 2LT . 

0 ; otherwise 
(6.12) 

If L = 1, the signal is known as MSK or Minimum shift keying. 

ForLRC: 

{ I [ (2m)] 0 5: t 5: LT -- 1-cos - · 
(6.13) g(t) = 2iT LT ; 

otherwise 

ForHCS: r . (m) 0 5: t 5: LT --sm - · 
(6.14) g(t) = 6LT LT : 

otherwise 

ForGMSK: 

where Q(t) is the complementary error function erfc. 

The notation for each pulse is denoted by the value of L followed by the pulse description. 

For example to show an LRC pulse shape with a pulse width of 4T we denote this as 4RC. 

Since, the signals within the CPM class are very similar, it is only possible to differentiate 

between L = 1, L = 2, and GMSK for SNR ~ lOdB. The full response and partial response 

signals are made up of a mixture of the three pulse shapes (LREC, LRC, and HCS). For 

example, the partial response signal consists of a mixture of 2REC, 2RC, and HCS where L 

=2. 
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In the next section, the CPM receiver structure is described for both partial response and 

full response signals. The reason that the receive structure is discussed, is because it is 

explained that a CPM receiver designed for a particular pulse shape can accommodate any 

other pulse shape without sacrificing performance. This is the reason why the classifier is 

designed to recognise only three categories (partial response, full response and GMSK). 

6.3.4 CPM Receivers 

The purpose behind discriminating between CPM signals is so that the appropriate 

demodulator can be chosen to extract the desired transmitted information. We describe two 

types of receivers for CPM signals. The first receiver is for full response signals and the 

second receiver applies to partial response signals. Although it seems that there is one 

receiver for each type of CPM scheme, this is not the case. Tailoring the receiver to a 

specific CPM signal may simplify the receive structure. However, it is shown in 

[Swensson, 1994] that any CPM receiver can apply to all pulse shapes for both full and 

partial response without sacrificing the performance. 

6.3.4.1 ML Receiver for CPFSK 

The first receiver presented in [Anderson, 1986] is an optimum ML coherent receiver for 

CPFSK (CPM with a lREC pulse shape). This receiver makes a decision about one 

symbol only, based on observation of a sequence of consecutive symbols. Although the 

receiver is for CPFSK detection it can be applied to CPM schemes with any pulse shape 

and any modulation index h provided that the CPM signal is full response (L = 1). Also the 

receiver structure can be simplified for the special case of full response CPM with M = 2 

and h = 0.5 (eg MSK). 

6.3.4.2 Optimum Viterbi Receivers 

The ML receiver for CPFSK (described in subsection 6.3.4.1) can apply to partial response 

(L > 1) CPM signals but the receiver structure becomes unreasonably complex. Therefore, 

a general receiver for partial response CPM is used. The ML sequence estimation is done 

by means of a Viterbi processor. The metric ( correlation between the received signal and 

an estimated signal over the nth symbol interval) is calculated in a bank of linear filters 
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which are sampled every symbol interval. In other words, the receiver correlates the 

received signal over one symbol interval with all possible transmitted alternatives over that 

symbol interval. The complexity grows exponentially with signal memory. The limiting 

factors are the number of states S = pML-J and the number of filters F = 2ML for calculating 

the metrics. For many cases with long smoothing pulses, the optimum receiver can be 

approximated by a receiver based on a shorter pulse shape gr(t) of length Lr< L so that the 

complexity is reduced. It is shown in [Svensson, 1984] that the loss in error probability is 

very small when for example a binary 4RC signal is received in a 2REC receiver. 

The key feature derivation is described in the next section, which includes an overview of 

the power spectra of CPM signals (since one of the key features is based on the PSD of the 

signal). 

6.3.5 Key Feature Derivation 

The key features used to distinguish between CPM signals are: 

• Ldiff, which is the value of the smoothed PSD of the received signal at the carrier 

frequency of 150kHz. It is defined as: 

(6.16) 

wheres is the received signal segment. 

• O'a, which is the standard deviation of normalised-centred instantaneous amplitude and 

is defined by: 

(6.17) 

where Acn(i) is the value of the normalised-centred instantaneous amplitude at time 

instants t = ills (i = 1, 3, ... , Ns) and.f.. is the sampling frequency. 

Acn (i) = An (i) -1 where An (i) = A(i) (6.18) 
ma 

ma is the mean instantaneous amplitude evaluated over one segment 

102 



1 N, 

ma =-LA(i) 
NS i=I 

(6.19) 

Normalisation is necessary to compensate for the channel gain [Azzouz and 

Nandi, 1996]. 

• CTJn is the standard deviation of the normalised instantaneous frequency, evaluated over 

the non-weak segments of the intercepted signal and was defined in Chapter 5, 

equation (5.41). 

These key features are proposed for the following reasons: 

• The bandwidth occupancy of CPM depends on the modulation index h, the pulse 

shape g( t) and the number of signals M. In general, small values of h result in the 

CPM signal having relatively small bandwidth occupancy, whereas large values of h 

result in large bandwidth occupancy. The use of smoother pulse shapes such as 

LRC results in smaller bandwidth occupancy. An example taken from [Proakis, 

1995] is shown in Figure 6.4 where the power density spectrum is shown for binary 

CPM with different partial response raised cosine (LRC) pulses and h = 0.5. The 

power spectrum for an MSK signal is also shown for comparison. It can be seen 

that as L increases, the pulse g(t) becomes smoother and hence the corresponding 

spectral occupancy of the signal decreases. Therefore Liliff can be used to separate 

partial response CPM from full response CPM. Since the receivers mentioned in 

section 6.3.4 apply to all pulse shapes, it is only necessary to distinguish between 

full and partial response CPM signals. By inspecting the spectral performance of 

full and partial response schemes in [Anderson et al, 1986] it can be concluded that 

increasing the pulse duration L leads to a more compact PSD with side lobes that 

fall off more smoothly. Therefore a key feature may be the value of the PSD of the 

signal at some particular frequency. Figure 6.5 shows the smoothed PSD of two 

LREC signals with L =1 and L = 2. Figure 6.6 shows a close up of the PSD around 

the peak. It can be seen that for L = 2, the PSD side lobes fall off more quickly and 

the value of the PSD around the peak is less than that for L = 1. It can be seen from 

Figure 6.6 that for the frequency value of 150kHz (carrier frequency), the PSD 

values for both signals can be separated. The partial response schemes should have 
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lower PSD values therefore this key feature, can be used to separate partial response 

CPM from full response CPM. 

dB 

f -20 

E 
5 
l -40 

j 

0.5 1.0 1.5 2.0 
Normalized frequency /T 

Figure 6.4. PSD of binary CPM with different pulse shapes (h = 0.5) [Proakis, 1995]. 

• O"fa is used to separate the signals at SNR of lOdB from signals at SNR of 20dB and 

15dB. Since signals within the CPM class are so similar, it is very difficult to 

separate them at low SNR values. However, at SNR values greater than or equal to 

lOdB, it is possible to discriminate between full response, partial response and 

GMSK. Therefore, when deriving threshold values, we do not consider lower SNR 

values. 

• Oa is used to distinguish between partial response signals and full response signals 

at SNR of lOdB. It is found that the feature Liliff is not sufficient to discriminate 

between these two classes for SNR values less than 15dB. The feature Oa can be 

used to distinguish between partial and full response. This is due to the fact that 

although CPM signals have constant amplitude, there are slight variations in the 

instantaneous amplitude of partial response and full response signals. In general, 

partial response signals having lower instantaneous amplitude values than full 

response signals. The same key feature is used to separate GMSK signals from 

partial and full response signals. However separate threshold values are used for the 

SNR of lOdB and for the SNR range of 20dB to 15dB. It is found that in general, 
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GMSK signals have lower instantaneous amplitude values than full and partial 

response signals. 

The DT classifier structure is discussed in the next section. 

6.3.6 DT CPM Classification Method 

The incoming CPM signal is categorised as full response, partial response or GMSK. This 

is because the receiver structure will be simplified if there is a separate design for each 

category. As mentioned earlier, the full and partial response signals consist of a mixture of 

the three pulse shapes (LREC, LRC, and HCS). The decision tree depicting the 

classification procedure is shown in Figure 6.7. A description of the threshold 

determination is presented in the next section. 

6.3. 7 Threshold Determination 

The key feature thresholds are chosen such that the Bayes error is minimised as described 

in Chapter 3. The threshold values are obtained using 200 realisations of each modulation 

type at the SNR range of 20dB to lOdB (for the first decision - Decision A). For the left 

hand side of the decision tree, all threshold values are obtained using data of SNR lOdB. 

Similarly for the right hand side of the tree, the thresholds are found from data of SNR 

range 20dB to 15dB. 

For Decision A, the desired threshold value for the feature O'fa to separate SNR of lOdB 

from 20dB and 15dB can be found in Figure 6.8. It can be seen than an appropriate value 

for tafa is 0.446 which has a corresponding minimum error of 0.0104. 
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Figure 6.5. Smoothed PSD of LREC signals (L= 1 and L =2 ) at SNR of 20dB. 
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Figure 6.6. Close up of PSD in Figure 1 around the peak. 
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CPM 

Decision A 

SNR~lOdB SNR = 15-20dB 

Figure 6.7. Decision tree for CPM signals. The first decision separates the signals at SNR 

of lOdB from signals with 15-20dB SNR (Decision A). If O'Jn > tO'fn, then the signal SNR is 

less than or equal to lOdB. If this condition is satisfied, the next decision separates OMSK 

from partial and full response CPM (Decision B). Finally, partial and full response signals 

are classified in Decision C. If the signal is of SNR greater than lOdB, the next decision 

separates OMSK from partial and full response CPM (Decision D). The final decision 

classifies the signal as either full response or partial response CPM (Decision E). 
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Figure 6.8. Total error probability for the key feature O"fa for Decision A (SNR of 20dB, 

15dB and lOdB). 

The estimated total error probability for the key feature O"a that separates GMSK from full 

and partial response CPM at SNR of lOdB (Decision B) is 0.0563. This corresponds to the 

threshold value taa1 of 0.256. Similarly, for Decision C which separates full and partial 

response CPM at SNR of lOdB, the appropriate threshold value is tO"a2 = 0.275. This 

corresponds to a total minimum error probability of 0.2625. These values can be confirmed 

by referring to Figure 6.9. 

Separation of GMSK and L=1/L=2 at SNR 10dB 

~0.4 
:a 
.! 
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iii 
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sigma a 
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~ 0.4 

l5 
aj 0.35 
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0.3 

Separation of L=1 and L=2 at SNR 10dB 

0.2 0.25 0.3 
sigma a 

0.35 

Figure 6.9. Total error probability for the key feature O"a for Decision B and Decision C 

(SNR lOdB). 
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The threshold value tOa3 is also found in Figure 6.10 to separate GMSK from L = 1 and L = 
2 for SNR values greater than or equal to 15dB (Decision D). An appropriate threshold is 

0.175, which corresponds to a total minimum error probability of 0.015. 

Decision E separates L = 1 and L = 2 at SNR greater than lOdB. The optimum threshold 

value for tLdiff, is found to be 0.4 from Figure 6.10, where the total minimum error 

probability is 0.2158. 

SNR 20dB and 15dB SNR 20dB and 15dB 

0.5 0.5 

fo.4 
~0.45 
:a 

J 0.3 
~ 0.4 
&'.: 

~ 
l5 0.35 
t: w0.2 i 0.3 iii 

~ 0.1 I- 0.25 

0 
0.1 0.15 0.2 0:25 0.3 

0;2 
-5 0 5 

sigma a (GMSK and L=11L=2) Ldiff (L=1 and L=2) 

Figure 6.10. Total error probability for the key features tLdiff and tOa3 for Decision D and 

Decision E (SNR 20dB and 15dB). 

A summary of the key feature values and their corresponding threshold values and 

minimum error probabilities are given in Table 6.2. The reason why the chosen key 

features are used for each decision (as described in this section) rather than the other 

existing key features is that these key features minimise the total error probability. This can 

be observed in Table 6.3 and Table 6.4 where each decision has the corresponding 

minimum error probability for every existing key feature. The chosen key feature is shown 

in bold and its associated threshold value is shown in brackets. 

The nest section outlines a NN classifier capable of recognising CPM signals. A NN 

classifier that classifies signals within the CPM class is also presented. 
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Table 6.2. Summary of key feature values and corresponding threshold values 

Key Feature Threshold Threshold Value Total Minimum Error Probability 

tO'fa 0.4460 0.0104 (SNR 20dB - lOdB) 

tO'aaJ 0.2560 0.0563 (SNR lOdB) 

tO'aa2 0.2750 0.2625 (SNR lOdB) 

tO'aaJ 0.1750 0.015 (SNR 20dB and 15dB) 

tLdiff 0.4000 0.2158 (SNR 20dB and 15dB) 

Table 6.3. Total minimum error probability for Decision A (SNR 20dB, 15dB and lOdB), 

Decision B (SNR of lOdB), and Decision C (SNR of lOdB). Threshold values are shown 

in brackets. 

Key Total Minimum Error Total Minimum Error Total Minimum Error 

Feature Probability 
Probability 

Probability 
(Decision B) 

(Decision A) (Decision C) 

O'fa 0.0104 (0.4460) 0.5 (0.2) 0.4675 (0.52) 

O'aa 0.1268 (0.253) 0.0563 (0.2560) 0.2625 (0.2750) 

Ldiff 0.4146 (0) 0.3713 (2.1) 0.2817 (1.10) 

YmaxJ 0.4629 (4.7) 0.5 (2.0) 0.3608 (7 .10) 

/1,dp 0.4879 (12.0) 0.3812 (1.0) 0.3092 (8.0) 

l(\,I 0.1414 (1.0) 0.2963 (1.06) 0.4892 (1.06) 

lt401 0.4504 (0.07) 0.0903 (0.5) 0.4942 (0.626) 

6.4 Neural Network Classifier 

The classification of ASK2, ASK4, PSK2, PSK4, FSK2, FSK4, and CPM signals has been 

shown using the decision theoretic approach. A neural network classifier capable of 

classifying these same seven signals will be proposed in this section. In the succeeding 
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section, the performance of the NN classifier will be compared to the performance of the 

decision theoretic approach. 

Table 6.4. Total minimum error probability for Decision D (SNR 20dB and 15dB) and 

Decision E (SNR 20dB and 15dB). Threshold values are shown in brackets. 

Key Feature Total Minimum Error Total Minimum Error 

Probability 
Probability 

(Decision E) 
(Decision D) 

O'Jn 0.1513 (0.36) 0.2983 (0.2) 

Oaa 0.015 (0.175) 0.33 (0.3) 

Ldiff 0.3331 (1.4) 0.2158 (0.4) 

YmaxJ 0.4519 (8.7) 0.3838 (5.0) 

/1,dp 0.5 (-100) 0.2962 (9) 

l(\11 0.125 (0.97) 0.5 (-5.0) 

lt401 0.0188 (0.5) 0.4933 (0.1) 

Simulations are carried out in Matlab using the neural network toolbox functions. The 

same key features used in the decision theoretic algorithm are used as inputs to the NN 

algorithm. These key features are Ymaxf, f.idp, lt21I • O'Jn, and 1c4ol · The key features are 

normalised to the range -1 to 1, then passed to the neural network. 

The next subsection presents the NN structure of the classifier capable of recognising CPM 

signals. The training of this network is discussed in subsection 6.4.2. The NN structures for 

classification of signals within the CPM class are presented in subsection 6.4.3 with a 

discussion on the training of these NN structures. 

6.4.1 Neural Network Structure 

The neural network structure is selected to have five inputs, corresponding to the five 

normalised key features, and four output neurons corresponding to ASK, PSK2, PSK4, and 
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FSK/CPM. Two other networks are used to differentiate between ASK2 and ASK4 signals 

on one hand, and FSK2, FSK4 and CPM signals on the other. The structure that is chosen 

for the large network consists of one hidden layer with twelve neurons. Twenty versions of 

this structure are tested to find the optimum network that gives the best performance. 

For the classification of ASK2 and ASK4, the chosen network structure has one input 

corresponding to the key feature /kp, and two output neurons corresponding to ASK2 and 

ASK4 signals. There is one hidden layer with ten neurons, and twenty versions of this 

network structure are tested to find the optimum performance. 

The network to classify FSK2, FSK4, and CPM has two inputs corresponding to the 

features O"fa and Ymaxr and three output neurons corresponding to the three types of signals. 

There is one hidden layer with twelve neurons, and twenty versions of this network 

structure are also tested to find the optimum performance. 

The hidden layers in all network structures use the nonlinear tan-sigmoid (hyperbolic 

tangent) activation function and the output layer uses the log-sigmoid activation function. 

These functions are chosen for the same reasons as explained in the previous chapter. The 

full network structure is shown in Figure 6.11. 

6.4.2 Training the Network 

The large network is trained using the conjugate gradient method due to its fast training 

speed and the two smaller networks are trained using the Levenberg-Marquardt (LM) 

algorithm. All networks are trained using 200 samples from each modulation type. The 

network is also tested and validated using a separate set of 200 samples of each modulation 

type. The target values for true and false are offset from 1 and O (limit values for log­

sigmoid function) to 0.9 and 0.1 respectively as outlined in the previous chapter. The 

training data is a mix of samples of SNR range 20dB to -5dB. 
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Figure 6.11. Neural network structure for modulation classification of ASK, PSK, FSK and 

CPM signals. 

6.4.3 NN Classification Within the CPM Signal Class 

Two neural network classifiers are proposed for the classification of partial response, full 

response, and OMSK signals. The same key features used in the decision theoretic 

algorithm are used as the inputs to the ANN algorithm. These key features are Lctiff, O"a, and 

D"fa, which are normalised to the range -1 to 1, then passed to the neural network. 

The first neural network structure is selected to have three inputs, corresponding to the 

three normalised key features, and three output neurons corresponding to the three CPM 

signal types. There are two hidden layers with seven neurons in the first layer and five 

neurons in the second layer. Twenty versions of this structure are tested to find the 

optimum network that gives the best performance. 

The hidden layers in all networks use the nonlinear tan-sigmoid (hyperbolic tangent) 

activation function and the output layer uses a linear activation function. The full network 

structure is shown in Figure 6.12. 
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L=l 

Network L=2 

L.tiff 

Figure 6.12. Neural network structure for classification of signals within the CPM class. 

The network is trained using the Levenberg-Marquardt (LM) algorithm with 200 samples 

from each modulation type. The network is also tested and validated using a separate set of 

200 samples of each modulation type. The target values for true and false are offset from 1 

and O (limit values for log-sigmoid function) to 0.9 and 0.1, respectively. The training data 

is a mix of samples of SNR 20dB 15dB, and lOdB. This is necessary because the data is 

highly dependent on SNR as was shown for the DT classifier. 

The second neural network structure is made up of three separate networks. Each network 

is trained with data of SNR 20dB, 15dB, and lOdB respectively. All networks have three 

input neurons corresponding to the three key features Lctiff, aa, and afn, and three output 

neurons corresponding to the three categories L = 1, L = 2 and GMSK. The first sub­

network is trained with data of 20dB SNR, and has one hidden layer with seven neurons. 

The second sub-network is trained with data of 15dB SNR, and has one hidden layer with 

ten neurons. Finally, the third sub-network has one hidden layer with ten neurons and is 

trained with data of 1 OdB SNR. The three networks are arranged in parallel and the 

modulation type with the maximum output is chosen as shown in Figure 6.13. 

6.5 Results 

The results for the DT classifiers are presented first. The NN results are then presented and 

compared to those of the DT classifiers for signals within the CPM class as well as CPM 

signals as one modulation type. 
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6.5.1 DT Classifier Performance Results 

6.5.1.1 Results for DT Classification of ASK, PSK, FSK, and CPM Signals 

The performance results of the DT classifier are derived from 200 realisations of each 

modulation type. The carrier frequency, sampling rate and the symbol rate are given the 

values of 150kHz, 1200kHz and 12.5kHz, respectively. The digital symbol sequence is 

randomly generated. The simulation results for the test set based on 200 realisations are 

given in Appendix B, Table B.1 - Table B.6, for the SNR range of 20dB to -5dB, 

respectively. The graphical representations of these results are shown in Figure 6.15 -

Figure 6.20 for the SNR range of 20dB to -5dB. The results from the NN classifier are 

also shown for comparison. These results indicate that all types of the digital modulation 

schemes considered can be correctly classified with greater than 98% success rate for an 

SNR greater than 5dB. For lower SNR, the performance drops, as can be expected. 

6.5.1.2 Results for DT Classification Within CPM Class 

Simulations are carried out to classify full response CPM signals ( consisting of a 

combination of LREC, LRC and HCS), partial response signals (also comprising LREC, 

LRC, HCS), and GMSK signals. For all signals h = 0.5 and M =2. For the partial response 

signals, L = 2. The carrier frequency, sampling rate and the symbol rate are given values of 

150kHz, 1200kHz and 12.5kHz, respectively. The digital symbol sequence is randomly 

generated. 

The graphical results for each CPM classification type are shown in Figure 6.21 - Figure 

6.26 for the SNR range of 20dB to -5dB. The results for the NN classifier are also shown 

for comparison. The 95% confidence interval is also shown in all figures by the error bars. 

The confusion matrices for the DT classifier are shown in Appendix Bin Table B.7 -Table 

B.12. It can be seen that the performance drops dramatically for partial response CPM of 

SNR less than lOdB because the classifier is trained with data of SNR 20dB, 15dB, and 

lOdB. However, the performance degradation is not an issue because for many cases of 

partial response CPM, the optimum receiver can be approximated by a receiver based on 

full response CPM as explained in subsection 6.3.4.2. It is implied in [Svensson, 1984] that 
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the loss in error probability is very small when for example a binary 2RC signal is received 

in a REC receiver. 

O'a L=l 

O'jn Network L=2 

1 (20dB) 

Lwff 
~ GMSK 

O'a L=l 

O'jn Network L=2 

3 (lOdB) 

Lwff 
~ GMSK 

Figure 6.13. Second NN structure to classify signals within the CPM class. 

6.5.2 NN Classifier Performance With Comparison to DT Classifier Results 

6.5.2.1 Results for NN Classification of ASK, PSK, FSK, and CPM Signals 

The performance results of the NN classifier at SNR range of 20dB to -5dB are given in 

Figure 6.15 - Figure 6.20, respectively. The results for the DT classifier are also shown for 
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comparison with 95% confidence interval. It can be seen that the NN performs well, with 

100% success rate for most modulation types with SNR of 20dB, 15dB and lOdB. The 0.95 

confidence intervals on the classification accuracy of the DT and NN classifiers for the 

SNR range of 20dB to -5dB are shown in Table 6.5. It can be seen that the NN classifier 

performance is slightly better than that of the DT classifier for the SNR range of 20dB to 

5dB. This is mainly because the key features have been chosen well enough so that there is 

minimal overlap between classes. This can be confirmed by referring to the graph of SNR 

versus classifier accuracy in Figure 6.14. For lower SNR, the NN performs much better 

than the DT approach because the NN can develop a decision boundary that is not restricted 

to being linear as in the DT approach. The confusion matrices showing the results of the 

NN classifier are shown in Appendix B, Table B.13 - Table B.18, for the range of SNR 

from 20dB to -5dB, respectively. 
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Figure 6.14. Graphical comparison of overall performance between the NN-based and DT­

based classifiers with 95% CI for ASK, PSK, FSK, and CPM signals. 

6.5.2.2 NN Classifier Results for Within CPM Class 

The results of classification of CPM signals are shown in Figure 6.21 - Figure 6.26 for SNR 

range of 20dB to -5dB. The 95% confidence interval is shown on all figures by the error 

bars. Since the signals are classified as full response, partial response or GMSK, the input 

data is a combination of the signals from each classification type. For instance, the test data 

for L = 1 is combined from the full response signals LREC, LRC, and HCS, and likewise 

for L = 2. It can be seen that the performance is good for both networks for SNR greater 
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comparison with 95% confidence interval. It can be seen that the NN performs well, with 

100% success rate for most modulation types with SNR of 20dB, 15dB and lOdB. The 0.95 

confidence intervals on the classification accuracy of the DT and NN classifiers for the 

SNR range of 20dB to -5dB are shown in Table 6.5. It can be seen that the NN classifier 

performance is slightly better than that of the DT classifier for the SNR range of 20dB to 

5dB. This is mainly because the key features have been chosen well enough so that there is 

minimal overlap between classes. This can be confirmed by referring to the graph of SNR 

versus classifier accuracy in Figure 6.14. For lower SNR, the NN performs much better 

than the DT approach because the NN can develop a decision boundary that is not restricted 

to being linear as in the DT approach. The confusion matrices showing the results of the 

NN classifier are shown in Appendix B, Table B.13 - Table B.18, for the range of SNR 

from 20dB to-5dB, respectively. 
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Figure 6.14. Graphical comparison of overall performance between the NN-based and DT­

based classifiers with 95% CI for ASK, PSK, FSK, and CPM signals. 

6.5.2.2 NN Classifier Results for Within CPM Class 

The results of classification of CPM signals are shown in Figure 6.21 - Figure 6.26 for SNR 

range of 20dB to -5dB. The 95% confidence interval is shown on all figures by the error 

bars. Since the signals are classified as full response, partial response or GMSK, the input 

data is a combination of the signals from each classification type. For instance, the test data 

for L = 1 is combined from the full response signals LREC, LRC, and HCS, and likewise 

for L = 2. It can be seen that the performance is good for both networks for SNR greater 
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than or equal to lOdB as the NNs are trained with data of SNR 20dB, 15dB, and lOdB. 

With lower SNR values, the performance drops, as can be expected. 

Table 6.5 DT and NN classifier accuracy and 95% confidence intervals for ASK, PSK 

FSK, and CPM signals. 

SNR 

Accuracy 

20dB 99.57% 

15dB 99% 

lOdB 97.17% 

5dB 90.46% 

OdB 59.61 % 

-5dB 39.07% 

Overall 80.82% 

DT Classifier NN Classifier 

95% Confidence Interval Accuracy 95% Confidence Interval 

[99.34, 99.81] 99.5% 

[98.63, 99.37] 99.28% 

[96.56, 97.79] 97.86% 

[89.38, 91.55] 92.08% 

[57.79, 61.42] 73.05% 

[37 .26, 40.88] 58.16% 

[77.91, 79.25] 86.66% 
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[99.24, 99.76] 

[98.97, 99.60] 

[97.32, 98.39] 

[91.08, 93.08] 

[71.41, 74.70] 

[56.33, 59.98] 

[86.14, 87.17] 

Figure 6.15. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for ASK, PSK, FSK, and CPM signals at 20dB SNR. 
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Figure 6.16. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for ASK, PSK, FSK, and CPM signals at 15dB SNR. 
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Figure 6.17. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for ASK, PSK, FSK, and CPM signals at lOdB SNR. 
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Figure 6.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for ASK, PSK, FSK, and CPM signals at 5dB SNR. 
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Figure 6.19. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for ASK, PSK, FSK, and CPM signals at OdB SNR. 
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Figure 6.20. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for ASK, PSK, FSK, and CPM signals at -5dB SNR. 

The second NN structure in Figure 6.13 performs better than the NN structure in Figure 

6.12. This is due to the fact that the former NN is made up of three separate networks 

trained with individual SNR values, whereas the latter is trained with data of combined 

SNR ranging from 20dB to I OdB. A comparison between the overall performance of the 

DT and NN classifiers for signals within the CPM class is shown in Table 6.6. It can be 

seen that the DT classifier does not perform as well as the NN classifier. This may be due 

to the fact that the NN decision boundary may be non linear and based on more than one 

key feature, whereas the decision boundary for the DT classifier is linear and based on one 

key feature. However, for lower SNR values, the second NN structure outperforms both 

the first NN structure and the DT classifier. This is due to the fact that the signal with the 
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highest success rate from three separate NN structures is chosen. In other words, we 

choose the output of the network that gives the best results out of the three separate 

networks. The confusion matrices of the NN classifiers are shown in Appendix B, Table 

B.19 - Table B.24, for the first NN structure and, Table B.25 -Table B.30, for the second 

NN structure. A graphical comparison between the overall performance of the DT and NN 

classifiers is shown in Figure 6.27 for the SNR range of 20dB to -5dB. 
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Figure 6.21. Classification accuracy of DT classifier (dark bars) and NN classifiers (light 

bars) for CPM signals at 20dB SNR. 
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Figure 6.22. Classification accuracy of DT classifier (dark bars) and NN classifiers (light 

bars) for CPM signals at 15dB SNR. 
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Figure 6.23. Classification accuracy of DT classifier (dark bars) and NN classifiers (light 

bars) for CPM signals at lOdB SNR. 
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Figure 6.24. Classification accuracy of DT classifier (dark bars) and NN classifiers (light 

bars) for CPM signals at 5dB SNR. 
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Figure 6.25. Classification accuracy of DT classifier (dark bars) and NN classifiers (light 

bars) for CPM signals at OdB SNR. 

122 



i120~~~~~~~~~~~~~ 

0 
1i 100 
a: 

i 80 

ril 80 

~ AO 

:J 
5 20 : 
i3 0 ----L=1 L=2 

Modul1tlon Type 

GMSK 

DNN1 

DNN2 

•oT 

Figure 6.26. Classification accuracy of DT classifier (dark bars) and NN classifiers (light 

bars) for CPM signals at-5dB SNR. 

6.6 Conclusions 

In this chapter we considered a DT classifier capable of classifying ASK, FSK, PSK, and 

CPM signals. A NN classifier is also proposed that is capable of recognising these same 

signals. The performance of both classifiers are compared. Both the DT and NN 

modulation recognisers perform well, even for low SNR values. The NN outperforms the 

OT classifier due to the fact that the NN may use a non-linear decision boundary with more 

that one key feature for classification; whereas, the DT classifier uses one key feature per 

decision with a linear decision boundary. 

For signals within the CPM class, by differentiating between partial response, full response 

and GMSK signals, the receiver structure chosen to detect the classified signal will be less 

complex than a receiver designed for all CPM signals. A decision tree is designed using 

data of SNR range 20dB to lOdB. This is because the signals within the CPM class are 

very similar and differentiation at lower SNR becomes very difficult. In addition to a OT 

approach, two NN classifiers for classification of signals within the CPM class are also 

proposed. The first NN is trained with data of SNR ranging from 20dB to lOdB. The 

second NN structure is made up of three parallel sub-networks. Each network is trained 

with SNR of 20dB, 15dB, and lOdB, respectively. It is found that the NN approach 

outperforms the DT classifier for most SNR values . This may be due to the fact that for the 

DT classifier, the threshold decision boundary is linear, whereas the NN classifier may 
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have a non-linear decision boundary that is based on more than one key feature. The next 

chapter introduces multiple access signals to the modulation classifier. 

Table 6.6 Comparison of DT and NN classifiers for signals within the CPM class for SNR 

range 20dB to - 5dB 

SNR 

20dB 

15dB 

lOdB 

5dB 

OdB 

-5dB 

Overall 

DT Classifier NN Cla sifier I 

Accuracy 

83.45% 

83.58% 

76.75% 

33.33% 

33.33% 

33.33% 

57.30% 

95% Accuracy 95% 

Confidence Confidence 

Interval Interval 

(81 .50,85 .40] 94.82% [93 .66,95 .98] 

[81 .64,85.52] 90.17% [88.61,91.73] 

[74.54,78.96] 78.5% [76.35,80.65] 

[30.86,35 .80] 33.95% [31.47,36.43] 

[30.86,35 .80] 29.17% [26.79,31.55] 

[30.86,35.80] 30.95% [28.53,33.37] 

[54.71,59.89] 59.59% [58.54,60.64] 

20dB 15dB 10dB SdB OdB -SdB 

SNR 

NN Classifier 2 

Accuracy 95% 

Confidence 

Interval 

97.83% [97.07,98.60] 

93.83% [92.57 ,95.09] 

80.44% [78.37 ,82.52] 

72.72% [70.39,75.06] 

67.06% [64.59,69.52] 

66.67% (64.20,69.14] 

79.76% [78.90,80.62] 

Figure 6.27. Graphical comparison of overall performance between the NN-based and DT­

based classifiers (for within the CPM Class) with 95% CI. 
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CHAPTER 7 

Classification of Multiple Access Signals 

7 .1 Introduction 

This chapter presents an extension to the capabilities of the modulation classifiers described 

in Chapter 6 to include multiple access signals. These signal's modulation types are: direct 

sequence spread spectrum (DS SS) or code division multiple access (CDMA), frequency 

hopped spread spectrum (FH SS), and time division multiple access (TOMA). They are 

very commonly used in the military for their low probability of interception and also in the 

civilian areas in mobile networks to reduce call dropouts and interference. We include 

these different types of signals in the modulation classification algorithms, which employ 

the decision theoretic and neural network approaches. Results are compared and presented 

for SNR of 20dB, 15dB, lOdB, 5dB, OdB, and-5dB. 

The chapter is organised as follows: a brief introduction to multiple access signals is 

presented in section 7 .2 followed by a description of the DT classification procedure in 

section 7.3. Threshold determination is discussed in section 7 .4 and in section 7 .5, a NN 

classifier is introduced to classify the same multiple access signals as the DT classifier. A 

discussion of the performance of both the DT and NN classifiers is presented in section 7 .6 

with results followed by concluding remarks in section 7. 7. 

7.2 Multiple Access Communication Systems 

Multiple access communication systems have a large number of users sharing a common 

communication channel to transmit information to a receiver. The common channel may 

be the up-link in a satellite communication system, or some frequency band in the radio 

spectrum that is used by multiple users to communicate with a radio receiver. 
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One method for creating multiple subchannels for multiple access is to divide the time 

duration Tr, called the frame duration, into N nonoverlapping subintervals, each of duration 

Tr/N. Then to transmit information, each user is assigned to a particular time slot within 

each frame. This multiple access method is called Time Division Multiple Access (TOMA) 

and is commonly used in data and digital transmission. TOMA works well when the data 

transmitted is constant. Problems arise when the data becomes bursty. This is when there 

are periods of no data being transmitted and where these periods are greater than the 

periods of information transmission. This can be the case in a mobile cellular 

communications system carrying digitised voice, since speech signals contain long periods 

of silence. In these cases TOMA tends to be inefficient because there are wasted time slots 

when no data is being transmitted. This inefficiency limits the number of simultaneous 

users. TOMA will be discussed in more detail in section 7.2.3. 

An alternative to TOMA is to allow more than one user to share a channel by using direct­

sequence spread spectrum signals (DS-SS). It is given its name because the transmission 

bandwidth is much greater than the minimum bandwidth required to transmit the digital 

information. Each user is assigned a unique code or signature sequence that allows the user 

to spread the information signal across the frequency channel. The signals from various 

users are separated at the receiver by cross correlation of the received signal with each of 

the possible spreading codes. These codes are designed to have relatively small cross 

correlations so that there is no interference between users. This multiple access method is 

known as code division multiple access (CDMA). For a signal, to be defined as spread 

spectrum, the system must have the following characteristics [Peterson, 1995]. 

1. The transmitted signal energy must occupy a bandwidth which is larger than the 

information bit rate (usually much larger) and which is approximately independent of 

the information bit rate. 

2. Demodulation must be accomplished, in part, by correlation of the received signal with 

a replica of the signal used in the transmitter to spread the information signal. 

There are two types of SS, direct-sequence (DS) and frequency hopped (FH). These types 

will be described in more detail in subsections 7.2.1 and 7.2.2 respectively. 
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7 .2.1 Direct Sequence Spread Spectrum (DS-SS) 

The spectrum of a data-modulated signal can be spread by modulating the signal a second 

time by a very wideband spreading signal. The second modulation method is usually 

digital phase modulation. The spreading signal is chosen so that demodulation of the signal 

by an unintended receiver is made as hard as possible. Therefore the spreading signal is 

chosen specifically for the intended receiver to demodulate. Also if there is jamming, the 

intended receiver will still be able to discriminate between the data signal and jamming due 

to this property. A direct-sequence (DS) spread spectrum signal is one in which the 

bandwidth spreading is achieved by direct modulation of a data-modulated carrier by a 

wide-band spreading signal or code. 

7.2.1.1 Binary Phase Shift Keying Direct Sequence Spread Spectrum (BPSK DS-SS) 

The simplest form of DS spread spectrum uses BPSK as the spreading modulation. The 

BPSK DS-SS signal can be mathematically represented as a multiplication of the carrier by 

a function c(t) which takes on values of ±1. Consider a constant envelope data-modulated 

signal s(t) defined by: 

s(t) = Ac cos[mc1 + 8(t)] (7.1) 

where ~t) is the data phase modulation and li-4: is the radian frequency. The bandwidth of 

this signal is usually between one-half and twice the data rate before DS spreading. The 

signal is multiplied by a function c(t) representing the spreading waveform, and the 

resulting transmitted waveform is: 

s(t) = Ac c(t)cos[mc1 + B(t)] 

B(t) = DPm(t) 

(7.2) 

(7.3) 

where m(t) is a bipolar baseband signal having peak values of ±1 and a rectangular pulse 

shape (for convenience) and Dp is the modulation index of the BPSK signal. The signal has 

a transmission delay Td, is transmitted along a distortionless path, and is received with 

additive Gaussian noise and/or some other type of interference. 
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7.2.1.2 Spreading Codes 

The waveform c(t) used to spread and despread the data-modulated carrier is usually 

generated using a shift register. This waveform c(t) is a pseudo-random code known as a 

PN sequence. This PN sequence is periodic with noise-like properties which makes the 

spread-spectrum signal hard to intercept. Each user in the CDMA system has a unique PN 

sequence assigned to them. Because users will be transmitting messages simultaneously, 

the PN code sequences must be mutually orthogonal so that interference from other users is 

avoided [Sklar, 1988]. For the spread-spectrum system to operate effectively, the PN codes 

c(t-Td) must be determined initially and then tracked by the receiver. To achieve this, c(t) is 

chosen to have a two-valued autocorrelation function. The ideal spreading code would be 

an infinite sequence of equally likely random bits, however this is not possible in practice. 

The most widely known PN sequences are the maximal-length shift-register sequences (m­

sequences) which have a length of 

n = 2m -1 bits (7.4) 

They are generated by an m-stage shift register with linear feedback. The sequence is 

periodic with period n and each period of the sequence contains 2m-J _ J zeros and 2m-J ones. 

It is desirable in a CDMA system to have a low cross-correlation between a pair of 

sequences. The number of m sequences generated by the shift register with low cross 

correlation values is too small for CDMA purposes. Therefore it has been found that Gold 

and Kasami sequences have better cross-correlation properties. 

7.2.1.3 Gold and Kasami Sequences 

It was found by Gold and Kasami that certain pairs of m sequences of length n have a three­

valued cross correlation function with the values {-1, -t(m), t(m)-2} where 

{ 
i m+l J/2 + 1 ( odd m ), 

t(m)= i m+Z)/2 + 1 ( even m ), 
(7.5) 

For example, if m = 5, then t(5) = 23 + 1 = 9. The three possible values of the periodic 

cross-correlation function are then {-1, -9, 7} and the maximum magnitude of the cross­

correlation for the pair of m-sequences is nine. Two m-sequences of length n, with periodic 

128 



cross-correlation taking on values of {-1, -t(m), t(m)-2}, are called preferred sequences. 

From a pair of preferred sequences where a= [a1a2 ... an] and b = [b1b2 ... bn], a sequence of 

length n can be constructed by taking the modulo-2 sum of a with then cyclically shifted 

versions of b or vice versa. The resulting new periodic sequences have period n = 2m-1. By 

including the original sequences, a and b, we have a total of n + 2 sequences called Gold 

sequences. 

Kasami sequences have cross-correlation and autocorrelation values from the set { -1, -(2m/2 

+ 1 ), 2m12 
- 1}. The sequences are constructed by beginning with an m-sequence a, and 

forming a binary sequence b by taking every 2m12 + 1 bit of a. This sequence, b, has a 

period n = 2m12 
- 1. Then by taking n = 2m-1 bits of the sequences a and b, a new set of 

sequences is formed by modulo-2 adding the bits from a and band all 2m12 - 2 cyclic shifts 

of the bits from b. By including a in the set, a set of 2m12 Kasami sequences of length n = 
2m -1 is obtained. 

In this thesis, Gold codes from a set of orthogonal Gold codes are used in simulations. 

These sequences are 7-bits in length and can accommodate up to 9 users in a CDMA 

scheme. The set of Gold codes is shown in Table 7 .1. 

The complex envelope is found by referring to the PSK2 signal and is represented by 

[Couch, 2001] as 

a(t) = Acm(t )c(t) 

The pulse width of c(t) is denoted by Tc and is called a chip interval. 

The instantaneous amplitude and phase is: 

a(t) = lm(t)c(t)I = 1 

{

-lt I 2 if m(t)c(t) = -1 
</J(t) = 

1t I 2 if m(t)c(t) = 1 

These features of BPSK DS-SS modulation are shown in Figure 7 .1. 

(7.6) 

(7.7) 

(7.8) 
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Table 7.1. CDMA 7-bit Gold code set [Ramakonar, 1996]. 

User, k 7-bit Gold Code Sequence 

0 1-1111-1-1 

1 11-11-1-11 

2 -111-11-11 

3 -1 1 -1 1 -1 -1 -1 

4 11-1-111-1 

5 1 -1 -1 -1 -1 -11 

6 -111-1-11-1 

7 1111-111 

8 -1-1-11111 

7.2.1.4 Quadrature Phase Shift Keying Direct Sequence Spread Spectrum (QPSK DS-SS) 

Quadrature-phase shift keying is advantageous because it allows simultaneous transmission 

on two carriers which are in-phase quadrature and this conserves spectrum. This means 

that for the same total transmitted power, the same bit error probability is achieved using 

one-half the transmission bandwidth. Bandwidth efficiency is not very important in low 

probability of detection and antijam applications. QPSK is used in spread spectrum 

applications due to the fact that it is less sensitive to some types of jamming and more 

difficult to detect using feature detectors in low probability of detection applications. 

The QPSK DS-SS signal can be represented by 

s(t) = Acc1(t)cos[mct+8(t)]-Acc2 (t)sinlmc1+B (t)J 

B(t) = D Pm(t) 

(7.9) 

(7.10) 

where c1(t) and c2(t) are the in-phase and quadrature spreading waveforms which are 

assumed only to take on values of ±1. The two terms of the QPSK spread-spectrum signal 

in equation (7 .9) are identical, except for amplitude and a possible phase shift to the BPSK 

spread-spectrum signal in equation (7 .2). Therefore, since the two signals are orthogonal, 

the power spectrum of the QPSK signal equals the algebraic sum of the two power spectra. 

The complex envelope is given by 
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a(t) = Am(t )c1 (t )-Am(t )c2 (t) 

The instantaneous amplitude and phase are, respectively: 

a(t) = 1 

0 if m(t)c1 (t) = -1 

n/2 if m(t)C1 (t) = 1 

f/J(t) = 1t if m(t)c2 (t) = 1 

31t/2 if m(t)c2 (t) = -1 

The useful attributes of a QPSK DS-SS signal are shown in Figure 7 .2. 
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Figure 7 .1. Useful features of BPSK DS-SS modulation. 
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Figure 7.2. Useful features of QPSK DS-SS modulation. 

7.2.2 Frequency Hopped Spread Spectrum (FH SS) 

1.5 

600 

Another method used to widen the spectrum of the data-modulated carrier is to change the 

frequency of the carrier periodically. Each carrier frequency is chosen from a set of 2k 

frequencies which are spaced approximately one width of the data modulation bandwidth 

apart. The spreading code is used to control the sequence of carrier frequencies and thus 

does not directly modulate the data-modulated carrier. This modulation scheme is named 

frequency hopped (FH) spread spectrum because it appears as if the transmitted signal is 

hopping from one carrier frequency to another. The frequency hopping is removed in the 

receiver by down-converting (mixing) with a local oscillator signal which is hopping 

synchronously with the received signal. 
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7.2.2.1 Coherent Slow-Frequency Hop Spread Spectrum 

In most cases of this type of modulation, the frequency hopping is done non coherently. 

However, it is theoretically possible to have a fully coherent FH system. The frequency 

synthesiser output is a sequence of tones of duration Tc, so h'J(t) can be written as 

00 

hT (t) = L2p(t - nTc )cos(mnt + </Jn) (7.14) 
n=-oo 

where p(t) is a unit amplitude pulse of duration Tc, starting at time zero, and £4i and </Jn are 

the radian frequency and phase during the nth frequency-hop interval. The radian 

frequency £4i is taken from a set of 2k frequencies. In a DS spread spectrum system, the 

spreading sequence was used one bit at a time. In contrast the FH system uses k bits of the 

spreading code at a time. The transmitted signal is the data-modulated carrier up-converted 

to a new frequency ( m0 + £4i) for each FH chip and is represented as 

s,(t) = [ s.{t lJ:.zp(t- nT, )cos(m,t +;,)].=ft<• 
components 

(7.15) 

The complex envelope is denoted as [Couch, 2001]: 

a(t) = am (t)ac (t) (7.16) 

where llnt(t) is the complex envelope of the information signal and ~(t) is of FM type 

where there are M = 2k hop frequencies determined by the k-bit words obtained from the 

spreading code waveform c(t). 

The useful features of FH SS modulation are shown in Figure 7 .3. 

7.2.3 Time Division Multiple Access (TDMA) 

In TDMA, M signals or users share the same frequency channel for a short duration of time 

called a time slot as shown in Figure 7.4. Sometimes unused time regions are inserted 

between adjacent slot assignments to allow for time uncertainty between signals. These 

time regions are called guard times and act as buffer zones to reduce interference. In a 

typical TDMA satellite application, time is segmented into intervals called frames. Each 

frame is further partitioned into time slots which are assigned to each user. The frame 
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structure repeats so that a fixed TOMA assignment constitutes one or more slots that 

periodically appear during each frame time. Some useful features of TOMA are shown in 

Figure 7.5. 
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Figure 7.3. Useful features of FH SS modulation. 

7 .3 Classification Procedure (DT Approach) 

The procedure for digital signal classification is based on the method outlined in Chapter 5 

and Chapter 6. Key features are derived from the power spectral density and the 

instantaneous frequency of the intercepted signal. The following signals are added to the 

modulation classifier: 

• BPSKOS-SS 

• QPSKOS-SS 

• FHSS 

• TOMA 
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7.3.1 Key Feature Derivation for Signal Classification 

To derive the appropriate key features for signal classification, the same method in Chapter 

6 is used. The new signals are passed through the existing classifier and each signal is 

classified as a modulation type already defined in the tree. To find the actual modulation 

type of a particular signal, a decision node is added to the tree to distinguish between the 

modulation type that the signal is classified as and the actual modulation type of the new 

signal. We discuss BPSK DS-SS classification in subsection 7.3.1.1 and QPSK DS-SS 

classification in subsection 7.3.1.2. The classification of FH SS and TOMA signals are 

discussed in subsections 7.3.1.3 and 7.3.1.4 respectively. The decision tree depicting the 

classification procedure is shown in 

Figure 7.7 

7.3.1.1 BPSK DS-SS Signal Classification 

To derive the appropriate key feature for the classification of the BPSK DS-SS signal, the 

existing tree in Chapter 6 is utilised. The BPSK DS-SS signal is classified as a PSK2 

signal, therefore we know the decision has to be made between the BPSK DS-SS signal and 

a PSK2 signal. By observing the smoothed power spectral densities of both signals in 

Figure 5.3 and Figure 7.1, it can be seen that the power of the BPSK DS-SS signal is spread 

due to the addition of the spreading sequence. In contrast, the PSK2 signal has most of the 

power centered around the carrier frequency. Figure 7 .6 shows the smoothed PSD for one 

signal segment for PSK2 and BPSK DS-SS signals. It can be seen that for the PSK2 signal, 

the power drops off dramatically at frequencies further from the carrier frequency. 

However for the BPSK DS-SS signal, this degradation is not so steep because of the 

addition of more frequencies by the spreading sequence. 

Therefore to separate these two types of signals, a new key feature Ymin is introduced which 

is the minimum value of the smoothed power spectral density (PSD) and is defined as: 

y min = 10log10 (minlDFT(s(t)}l2) (7.17) 
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Figure 7 .6. Smoothed power spectral density for PSK2 and BPSK DS-SS signals. 

7.3.1.2 QPSK DS-SS Signal Classification 

The resulting tree after the addition of the BPSK DS-SS signal is used to derive the 

appropriate key feature for the classification of the QPSK DS-SS signal. The signal is 

classified as a BPSK DS-SS signal, therefore we know the decision has to be made between 

the QPSK DS-SS signal and a BPSK DS-SS signal. By observing the instantaneous phase 

of both signals in Figure 7 .1 and Figure 7 .2, it is found that the QPSK DS-SS signal has a 

slightly larger range of phase values. Therefore, a feature based on instantaneous phase is a 

logical choice. The key feature chosen to differentiate between BPSK DS-SS and QPSK 

DS-SS is aap· This feature is defined in [Azzouz and Nandi, 1996] as the standard 

deviation of the absolute value of the non-linear component of the instantaneous phase, 

evaluated over the non-weak segments of the received signal. It is found that the QPSK 

DS-SS signal has higher standard deviation values due to the larger range of the 

instantaneous phase. 

7.3.1.3 FH SS Signal Classification 

To derive the appropriate key feature for classification, we exploit the fact that the FH SS 

signal has frequency information. By inspecting the decision tree, we intuitively know that 
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the FH SS signal will lie in the right hand segment of the tree with the FSK and CPM 

signals. By using information found previously by classifying BPSK OS-SS and QPSK OS­

SS signals we can predict that a decision will be made between the FH SS signal and the 

other signals with frequency information. By observing the smoothed power spectral 

densities of these signals in Figures 5.5, 5.6, 6.1, and 7.3, it can be seen that FH SS signals 

also have a greater power spread than FSK and CPM signals due to the addition of the 

spreading sequence. Therefore the key feature Ymin is also used to classify the FH SS signal. 

7.3.1.4 TDMA Signal Classification 

To derive the appropriate key feature for classification, the TOMA signal is classified by 

the resulting tree after the addition of the FH SS signal. The TOMA signal is classified as a 

FH SS signal, therefore we know the decision has to be made between the TOMA signal 

and a FH SS signal. 

It is found that the values of l<\1 I are higher for TOMA signals than for FH SS signals. 

This is probably due to the fact that the TOMA signal is made up of a mixture of signals 

and there is no spreading sequence used in the modulation process. Therefore the key 

feature l<\1 I is used to separate TOMA and FH SS signals. 

7 .4 Threshold Determination 

The same method in Chapter 3 is used to determine the thresholds tyminI, tymin2. tlc21 l 2 and 

tO'ap· The key feature thresholds are chosen so that the probability of a correct decision is 

obtained from 400 realisations of each modulation type at the signal to noise ratio (SNR) 

range of 20dB to -5dB. A set of modulation types is separated into two non-overlapping 

subsets (A and B). The optimum threshold is chosen such that the Bayes error is minimised 

as described in Chapter 3. The total error probability 8, is estimated directly from the 

sample data. 
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Figure 7. 7. Flowchart for identification of digital modulation schemes. The first decision in 

the tree splits the modulation types into two groups: signals with frequency information 

(right hand side of tree) and signals without frequency information (left hand side of tree). 

The signals with frequency information are further split into multiple access signals (FH SS 

and TDMA) and FSK/CPM signals. The signals without frequency information are divided 

into signals with amplitude information (ASK) and signals with phase information (PSK, 

QPSK DS-SS and BPSK DS-SS)_ The signals with phase information are further divided 

into multiple access signals (BPSK DS-SS and QPSK DS-SS) and PSK signals. 
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The total error probability for the key feature Ymin at SNR range of 20dB to -5dB is shown 

in Figure 7.8 for subset A (PSK2) and subset B (BPSK DS-SS and QPSK DS-SS). It can be 

seen that a good choice for the threshold t'¥minI is -30.5 where the total minimum error is 

0.0027 for the SNR range of 20dB to -5dB. 
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Figure 7.8. Total error probability for the key feature Ymin, at SNR range of 20dB to -5dB, 

for PSK2 (subset A) and BPSK DS-SS and QPSK DS-SS (subset B). 

The total error probability for the key feature CTap for the SNR range of 20dB to -5dB is 

shown in Figure 7.9 for subset A (BPSK DS-SS) and subset B (QPSK DS-SS). An 

appropriate choice for the threshold tOap is 0.76 where the total minimum error is O for the 

SNR range of 20dB to 5dB and 0.00062 for SNR range of OdB to -5dB at the same 

threshold value. 

To separate subset A (FSK2, FSK4, CPM) and subset B (FH SS and TDMA) using the key 

feature Ymin, the threshold is found by referring to the error probabilities in Figure 7 .10 for 

the SNR range of 20dB to -5dB. It can be seen that a good choice for the threshold t'¥min2 is 

-32.3, where the total minimum error for the SNR range of 20dB to-5dB is 0.0158. 
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Figure 7.9. Total error probability for the key feature <7ap, at SNR range of 20dB to -5dB, 

for BPSK DS-SS (subset A) and QPSK DS-SS (subset B). 

The total error probability for the key feature lc2,I is shown in Figure 7.11 for subset A 

(TDMA) and subset B (FH SS). It can be seen that a good choice for the threshold tlc2,l 2 is 

0.5 where the total minimum error is O for the SNR range of 20dB to -5dB. 
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Figure 7.10. Total error probability for the key feature Ymin, at SNR range of 20dB to -5dB, 

for FSK2, FSK4, CPM (subset A) and FH SS and TDMA (subset B). 
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Figure 7 .11. Total error probability for the key feature jc2, I, at SNR range of 20dB to 

-5dB, for TOMA (subset A) and FH SS (subset B). 

A summary of the key feature thresholds and their corresponding error probabilities for the 

SNR range of 20dB to -5dB is shown in Table 7.2. A compromise must be made between 

the threshold values at higher and lower SNR. The threshold must be chosen so that the 

overall classification error is minimised. Therefore, the optimum values for the key feature 

thresholds trminl, trmin2, tjc21l 2 and tlTap are -30.5, -33.3, 0.5 and 0.76, respectively. 

Table 7.2. Summary of key feature thresholds and error probabilities. 

Key Feature SNR 20dB to 5dB SNR OdB to -5dB 

Threshold Optimum Minimum Error Optimum Minimum Error 

Threshold Probability Threshold Probability 

tYminl -30.5 0 -24.5 0 

trmin2 -33.3 0 -25 0 

tjc2,l2 0.5 0 0.5 0 

tOap 0.76 0 0.76 0.00062 
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7.4.1 Dependency of Key Feature Selection on Minimum Probability of Error 

The reason why the key features in the previous section are chosen over the other existing 

key features is because they minimise the total error probability for each decision. We will 

call the decision separating PSK2 (subset A) and BPSK DS-SS and QPSK DS-SS (subset 

B) decision 1. Decision 2 separates subset A (FSK2, FSK4, CPM) and subset B (FH SS) 

and decision 3 distinguishes TDMA (subset A) from FH SS (subset B). Finally, we define 

decision 4 as the classification of BPSK DS-SS (subset A) and QPSK DS-SS (subset B). 

We can see from Table 7 .3 that the key features that have been chosen minimise the total 

error probability (shown in bold) for each decision for the SNR range of 20dB to -5dB. The 

structure of the NN classifier is discussed in the next section. 

Table 7.3. Total minimum error probability for Decisions 1 -4 for combined SNR range of 

20dB to-5dB (threshold values are shown in brackets). 

Key Total Minimum Total Minimum Total Minimum Total Minimum 

Feature Error Probability Error Probability Error Probability Error Probability 

(Decision 1) (Decision 2) (Decision 3) (Decision 4) 

YmaxJ 0.3333 (-85.7) 0.2500 (3.2) 0.0286 (19 .3) 0.2140 (-24.28) 

/1,dp 0.2000 (0.8) 0.2500 (100) 0.1393 (37) 0.0313 (0.1) 

lt2,I 0.3450 (1.76) 0.2020 (0.93) 0 (0.5) 0.4640 (3.1) 

lt40 1 
0.3335 (0.085) 0.2500 (0) 0.0085 (0.0266) 0.3420 (1.69) 

O'Jn 0.3333 (0.1) 0.4000 (0.8) 0.1000 (1.8) 0.5000 (0) 

O'ap 0.0196 (0.95) 0.2500 (0) 0.2000 (14.8) 0.0002 (0.76) 

Ymin 0.0027 (-30.5) 0.0158 (-32.3) 0.2000 (-13) 0.0950 (-24.3) 

7.5 Neural Network Classifier 

A neural network classifier is proposed that is based on the DT classifier described in 

section 7.3. This NN classifier is capable of recognising the same twelve signals (ASK2, 
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ASK4, PSK2, PSK4, FSK2, FSK4, CPM, BPSK OS-SS, QPSK OS-SS, FH SS, and 

TOMA) that are discriminated by the OT classifier. The same key features used in the 

decision-theoretic algorithm are used as inputs to the NN algorithm. These key features are 

Uap, Ymaxf, f./,dp, lc2,I • Ymin, O'Jn, and lc4ol · 

The key features are normalised to the range -1 to 1, then passed to the neural network. 

The NN structure will be described in subsection 7.5.1 and the training of the network is 

discussed in subsection 7.5.2. 

7.5.1 Neural Network Structure 

The neural network is a hierarchical structure based on the decision tree in 

Figure 7. 7. It is found that this hierarchical structure results in better performance because 

it is made up of smaller networks. This is in contrast to one large network that is higher in 

complexity and takes longer to train. The accuracy of the classification will be poorer 

because the NN will have to classify all twelve signals at the same time. Smaller networks, 

however, have less output neurons and therefore generally perform better because the 

probability of discrimination is higher with a smaller number of signals. 

The first network separates the signals with frequency information (ASK2, ASK4, PSK2, 

PSK4, BPSK OS-SS, and QPSK OS-SS) from those signals that do not possess any 

frequency information (FSK2, FSK4, CPM, FH SS, and TOMA). There are two inputs 

corresponding to the two key features Ymaxf and Ymin and two output neurons assigned to the 

two sets of signals. Three network structures are tested with the simplest structure having 

one hidden layer consisting of two neurons. The performance of this network is good but 

the second network gives better results. The latter has two hidden layers with four neurons 

in each layer. However, a third tested structure is chosen as the optimum network for its 

simplicity as well as superior performance. This structure has one hidden layer comprising 

four neurons and performs as well as the more complex structure with two hidden layers. 

The second network classifies ASK, PSK2, PSK4, BPSK OS-SS, and QPSK OS-SS 

signals. This network has five input neurons corresponding to the key features Uap, f./,dp, 
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lc21I • Ymin, and lc4ol · There are also five output neurons representing the five signal types. 

Two neural network structures are tested with the first structure having two hidden layers 

with four neurons in each layer. The performance of this network is mediocre. The second 

network structure that is tested has good performance and consists of one hidden layer with 

fifteen neurons. This network is chosen for its better results and twenty versions of this 

structure are tested to find the one that gives the optimum performance. 

The third network in the hierarchy has two inputs corresponding to the key features Ymaxf 

and Ymin and three output neurons corresponding to the remaining five signals: FSK/CPM, 

FH SS, and TOMA. The network structure that is chosen has one hidden layer with seven 

neurons. Twenty versions of this structure are tested to find the optimum performance. 

For the classification of ASK2 and ASK4, the chosen network structure has one input 

corresponding to the key feature /J.dp, and two output neurons corresponding to ASK2 and 

ASK4 signals. There is one hidden layer with ten neurons, and twenty versions of this 

network structure are tested to find the optimum performance. 

The network to classify FSK2, FSK4, and CPM has two inputs corresponding to the 

features O'Jn and Ymaxf and three output neurons corresponding to the three types of signals. 

There is one hidden layer with twelve neurons, and twenty versions of this network 

structure are tested to find the optimum performance. 

The hidden layers in all network structures use the nonlinear tan-sigmoid (hyperbolic 

tangent) activation function and the output layer uses the log-sigmoid activation function as 

explained in the previous chapters. 

The full network structure is shown in Figure 7.12. In general it is found that the smaller 

structures are the optimum choice for the following reasons [Arulampalam, 1999]: 

• The small structures are the least complex and therefore are the fastest to train since 

they contain the least number of synapses. 
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• Smaller structures also minimize the danger of overfitting and loss of generalization 

ability since they have the least "memory". 

• The larger networks have lower success rate due to their poorer generalization 

ability. 

These reasons affirm that the hierarchical structure is the best choice for the neural network 

implementation of the modulation classifier. 

7.5.2 Training the Network 

The same procedure used in the previous chapters is implemented to train the networks. 

The Levenberg-Marquardt (LM) algorithm using 200 samples from each modulation type is 

applied and the network is also tested and validated using a separate set of 200 samples 

from each modulation type. Training is carried out with data of SNR range 20dB to -5dB. 

7 .6 Performance Analysis 

The performance results are derived from 200 realisations of each modulation type. The 

carrier frequency, sampling rate and the symbol rate are given values of 150kHz, 1200kHz 

and 12.5kHz, respectively. The digital symbol sequence is randomly generated and the first 

Gold code sequence in Table 7 .1 is used as the spreading sequence. The TOMA signal 

consists of an ASK2 signal, a PSK2 signal, and FSK2 signal and an MSK signal. Each 

signal has duration of 512 samples per frame and each frame is 2048 samples long. The 

DT classifier results are discussed in subsection 7 .6.1. The NN performance is discussed in 

subsection 7 .6.2 and a comparison with the DT classifier is included. 

7 .6.1 DT Classifier Results 

The simulation results for the test set for the modulation recogniser based on 200 

realisations are shown in Figure 7.13 - Figure 7.18, for SNR 20dB to -5dB, respectively. 

The results of the NN classifier presented in the next section are also shown for comparison 

as well as the 95% confidence interval. The confusion matrices for the DT classifier are 

presented in Appendix C, Table C.1 - Table C.6. These results indicate that all types of the 

digital modulation schemes considered can be correctly classified with more than 98% 

success rate for SNR greater than or equal to lOdB. Seven of the eleven signals can be 

correctly classified with nearly 100% accuracy even at SNR of 5dB, however the 
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performance drops for SNR values of OdB and -5dB as can be expected. Despite the drop 

in performance for lower SNR, the accuracy is still greater than 50%. 
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Figure 7.12. Neural network structure for modulation classifier. 

7.6.2 Neural Network Classifier Results 

The results outlining the NN and DT classifier performances are shown in Figure 7.13 -

Figure 7.18 for SNR of 20dB to -5dB, respectively. It can be observed that the 

performances of both classifiers are very good for SNR greater than or equal to lOdB. For 

SNR of 5dB, the performance drops a little, but is still very good. For lower SNR, the 

performance drops more and it can be seen that the NN outperforms the DT classifier for 

SNR of OdB and -5dB. This is probably because the NN can derive a non-linear decision 

boundary with many key features whereas the DT classifier is restricted by a linear decision 
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boundary with one key feature per decision. The confusion matrices are shown in 

Appendix C, Table C.7 - Table C.12, for the SNR range of 20dB to -5dB inclusive. 
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Figure 7.13. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at 20dB SNR. 
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Figure 7.14. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at 15dB SNR. 
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Figure 7.15. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at lOdB SNR. 
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Figure 7.16. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at 5dB SNR. 

149 



laDToNN I 

~ 100 er 
UI 90 
XI BO 
8 70 
:::, ..... 60 
"' ;f. 50 c --0 40 

- ~ .- • - ii- - '"~ - .-~ 

f -~~ fi i 

- .. -
- - - 1 

,_ - - ~ -
-

~ ro 
:E 20 
:! 10 
III O 
O ASK2 ASl(4 PSK2 PSK4 FSK2 FSK4 CPM BPSK· OPSK· FH·SS TOMA 

--, 
-

... 
SS SS 

Modulation Type 

Figure 7.17. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at Od.B SNR. 
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Figure 7.18. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at -5d.B SNR. 

A compaiison of the overall success rates for the DT and NN classifiers is shown in Table 

7 .4, including the 95% confidence intervals. A graphical comparison of the overall 

success rates for the DT and NN classifiers is shown in Figure 7.19 which also has the 95% 

confidence intervals included. It can be inferred that the NN perf01mance is generally 

similar to the performance of the DT algorithm for SNR greater than or equal to 5dB. For 

lower SNR, the NN classifier outperforms the DT classifier considerably. This may be due 

to the fact that the DT approach has hard decisions, meaning the thresholds are linear. On 
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the other hand, the NN classifier may have threshold regions which are not necessarily 

linear and therefore the signals are separated more effectively. Once the key features have 

been identified, the NN is able to learn the classifications directly from the training data. In 

contrast to the DT approach, there is no need to determine a classification algorithm or 

threshold values. The hierarchical approach to the neural network structure allows the 

formation of smaller networks, which have faster training times because the number of 

output classes within the network is small. This in turn produces higher success rates, 

which indicates that the neural network approach can accommodate even more signals if 

necessary without sacrificing performance. 

SNR 

20dB 

15dB 

lOdB 

5dB 

OdB 

-5dB 

Overall 

Table 7.4. DT and NN classifier accuracy and 95% confidence intervals. 

Accuracy 

99.70% 

99.36% 

98.20% 

94.07% 

73.14% 

55.59% 

86.68% 

DT Classifier NN Classifier 

95% Confidence Interval Accuracy 95% Confidence Interval 

[99.54, 99.86] 99.05% [98.76, 99.33] 

[99.13, 99.60] 99.32% [99.08, 99.56] 

[97.81, 98.60] 98.05% [97.64, 98.45] 

[93.37, 94.77] 93.87% [93.16, 94.57] 
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Figure 7.19. The overall classification accuracy of the NN and DT classifiers versus the 

SNR. 
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7. 7 Conclusions 

In this chapter, multiple access signals have been introduced and included as part of the 

modulation classifiers' recognisable signals. The multiple access signals used were BPSK 

DS-SS, QPSK DS-SS, FH SS, and TOMA. A new key feature, Ymin was introduced and this 

particular key feature was used to identify the BPSK DS-SS, QPSK DS-SS, FH SS, and 

TOMA signals. The QPSK DS-SS signal was differentiated from the BPSK DS-SS signal 

using the key feature CTap, which was first introduced in [Azzouz and Nandi, 1996]. Suitable 

threshold values were calculated for the DT classifier and the results presented showed that 

the spread spectrum signals could be classified with approximately 100% success rate even 

at SNR as low as 5dB. The NN classifier was based on a hierarchical structure, which was 

found to give better results because the networks were smaller and gave better accuracy. 

The results of the DT and NN classifiers were compared and it was found that both 

classifiers performed comparatively equally, except for SNR below 5dB where the NN 

outperformed the DT classifier. This was possibly due to the NN's better generalisation 

capabilities and non-linear decision boundaries. 
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CHAPTERS 

Classification of PSK8, FSK8 and QAM 
Signals 

8.1 Introduction 

In this chapter, PSK8, FSK8, QAM8, and QAM16 signals are added to the modulation 

classifiers. These modulation classification algorithms employ the decision-theoretic and 

neural network approaches. This results in two types of modulation classifiers that are 

capable of distinguishing a very wide range of digitally modulated signals. The results for 

the DT and NN classifiers are presented and compared for SNR ranging from 20dB to 

-5dB. The performance is also tested for signals undergoing Rayleigh fading. 

The structure of this chapter is as follows. In section 8.2 we describe the signals that are 

added to the modulation classifiers as well as their useful features. In section 8.3 we 

discuss the DT classifier implementation including the tree structure and threshold 

determination. Section 8.4 outlines the NN classifier implementation with the addition of 

the new signals. The results for both classifiers are presented in section 8.5 and a 

comparison between the performance of the DT and NN classifiers is made. Finally, we 

present concluding remarks in section 8.6. 

8.2 Signal Representation 

The signals that are added to the modulation classifiers discussed in Chapter 8 are described 

in this section. These signals are QAM8, QAM16, PSK8, and FSK8. The key features 

associated with these signals are also described 

A well-known technique to reduce the bandwidth of a signal is to employ M-ary phase shift 

keying (MPSK) modulation. Instead of transmitting one bit of information per channel 

symbol period, k = log2M bits are sent during each symbol period. The use of M-ary 
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symbols allows the data rate to be increased k times within the same bandwidth. Therefore 

for a fixed data rate, the use of M-ary PSK reduces the required bandwidth by a factor k 

[Sklar, 1988]. The representation of PSK signals has been shown in Chapter 5 and some 

useful features of PSK8 signals are shown in Figure 8.1. A QPSK signal consists of two 

independent amplitude modulated signals that are 90 degrees out of phase. The signal has 

amplitude levels of ±1. QAM is a logical extension of QPSK in that the signal also consists 

of two independently amplitude modulated signals. The only difference is that the signal 

can have k-bit symbols instead of amplitude levels of just + 1 and -1. Therefore QAM 

signals can be viewed as combined amplitude and phase modulation. 

The corresponding signal can be expressed as 

s(t)x(t)cosmct - y(t)sinmc1, (8.1) 

where x(t) and y(t) are the information bearing signal amplitudes of the quadrature carriers. 

The complex envelope is given by [Couch, 2001] 

a(t) = x(t )+ jy(t) = R(t)eiO(t) (8.2) 

The instantaneous amplitude and phase are 

a(t) = IR(t)I (8.3) 

f/J(t) = tan-1 [y(t )! x(t )] (8.4) 

These features are shown in Figure 8.2 and Figure 8.3 for QAM8 and QAM16 modulation. 

The representations FSK signals have been described in Chapter 5 and some useful features 

of FSK8 signals are shown in Figure 8.4. 
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Figure 8.1. Useful features of PSK8 modulation. 
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8.3 DT Classification Procedure 

This section outlines the procedure for digital signal classification that is based on the 

method outlined in Chapters 5-7. Firstly, the key features are derived from the 

instantaneous amplitude, the instantaneous phase, the instantaneous frequency, the 

smoothed power spectral density, and the fourth order cumulants of the intercepted signal. 

A description of the threshold values is presented followed by a discussion of how the key 

feature selection is dependent on the minimum error probability. A flowchart depicting the 

classification procedure for all digital modulation schemes is shown in Figure 8.5. 

The first decision in the tree separates the signals with frequency information (right side of 

the tree) from signals with little or no frequency information (left side of the tree). The 

signals with frequency information are further divided into multiple access signals (FH SS 

and TOMA) and FSK/CPM signals. The signals with no frequency information are divided 

into signals with phase information (PSK and BPSK/QPSK DS SS) and signals with little 

or no phase information (ASK and QAM). The signals with phase information are split 

into multiple access signals (BPSK/QPSK DS SS) and PSK signals (PSK2, PSK4, PSK8). 

Finally, QAM signals are separated from ASK signals. 

8.3.1 Derivation of Key Features 

To derive the appropriate key features, the new signals (PSK8, FSK8, QAM8, and 

QAM16) are passed through the existing classifier and each signal is classified as a 

modulation type already defined in the tree. To find the actual modulation type of a 

particular signal, a decision node is added to the tree to distinguish between the modulation 

type that the signal is classified as and the actual modulation type of the new signal. 
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8.3.1.1 QAM8 Signal Classifu:ation 

To derive the appropriate key feature for classification, the QAM signal (namely a QAM8 

signal) is classified by the existing tree in Chapter 7. The QAM8 signal is classified 76.5% 

as an ASK2 signal, 20% as a PSK4 signal, and 3.5% as a PSK2 signal. These results are 

not sufficient to add the QAM8 signal to the existing tree as it is. In other words, the key 

feature lc21 I is not adequate for classification of QAM signals; therefore, the tree structure 

has to be modified slightly. The key feature lt21 I is replaced by the key feature (J'dp which is 

the standard deviation of the direct value of the non-linear component of the instantaneous 

phase, evaluated over the non-weak segments of the received signals and is defined in 

[Azzouz and Nandi, 1996]. This key feature is used to separate signals with phase 

information (PSK signals) from those with no phase information (ASK signals). A 

suitable threshold for Udp is determined using the previous methods and is outlined in 

subsection 8.3.2. After the addition of this new key feature, the QAM8 signal is passed 

through the classifier again. This time the signal is classified 100% as an ASK2 signal so 

we know the decision has to be made between QAM8 and ASK2 signals. By observing the 

instantaneous phase plots for both signals, it can be seen that QAM8 signals possess some 

phase information since they are a combination of amplitude and phase modulation. 

Therefore the existing key feature Ji,dp is used to separate QAM8 and ASK2 signals. 

8.3.1.2 QAM16 Signal Classification 

The QAM16 signal is classified by the tree after the QAM8 signal has been added. It is 

found that the QAM16 signal is classified as an ASK4 signal. Since the decision is now to 

be made between QAM16 and ASK4 signals, we observe from Figure 5.2 and Figure 8.3 

that the instantaneous phase values for ASK4 signals lie around zero and the instantaneous 

phase values for the QAM 16 signal lie around -1. Therefore the key feature Ji,dp can be 

used to differentiate between these two modulation types. 
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8.3.1.3 PSK8 Signal Classification 

To derive the appropriate key feature for classification, the PSK8 signal is classified by the 

existing tree after the addition of the QAM signal. The PSK8 signal is classified as a PSK4 

signal, therefore we know the decision has to be made between the PSK8 signal and a 

PSK4 signal. To discriminate between these two signals, the existing key feature lc401 is 

used. By referring to Table I in [Swami and Sadler, 2000], it can be seen that the 

theoretical values of the fourth order cumulants for PSK4 signals are 1.0 and the values of 

the fourth order cumulants for PSK( > 4) are around 0.0. Therefore we can use the key 

feature lc401 to separate PSK4 and PSK8 signals. Another advantage of this key feature is 

that it is not affected by phase offsets. 

8.3.1.4 FSK8 Signal Classification 

The FSK8 signal is classified by the existing tree after the addition of the PSK8 and QAM 

signals, to obtain an appropriate key feature for classification. The signal is classified as 

FSK4; therefore we know the decision has to be made between FSK8 and FSK4 signals. 

The bandlimiting of the signals causes the FSK8 and FSK4 signals to have very similar 

characteristics and the separation of theses two signals becomes almost impossible using 

the methods used in previous chapters. The key feature Ldiff can be used to separate FSK4 

and FSK8 to some degree but the performance is not satisfactory. Therefore, we increase 

the bandwidth of the FSK signals from lOOkHz to 200kHz. This greatly improves the 

results of the classifier. However by increasing the bandwidth of the signals, the threshold 

value for the key feature O'fa to differentiate FSK2 (subset A) and FSK4 and CPM (subset 

B) must be modified and this modification is outlined in the next section. 

8.3.2 Threshold Determination 

As explained in previous chapters, the key feature thresholds are chosen so that the 

probability of a correct decision is obtained from 400 realisations of each modulation type 

at the SNR range of 20dB to -5dB. A set of modulation types is separated into two non­

overlapping subsets (A and B). The optimum threshold is chosen so that the Bayes error is 

minimised as discussed in Chapter 3. 
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The total error probability for groups A and B are plotted and the threshold is chosen where 

the minimum error occurs. The total error probability for the key feature O'dp is shown in 

Figure 8.6 for subset A (ASK2, ASK4, QAM8, and QAM16) and subset B (PSK2, PSK4, 

PSK8, BPSK DS-SS, and QPSK DS-SS). It can be seen that an appropriate value for the 

threshold tO'dp is 1.1 where the total minimum error is 0.000166 for the SNR range of 20dB 

to 5dB. For the SNR of OdB and -5dB, the total minimum error is 0.057 at the same 

threshold value. 
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Figure 8.6. Total error probability for the key feature O'dp, at SNR range of 20dB to -5dB, 

for ASK2, ASK4, QAM8, and QAM16 (subset A) and PSK2, PSK4, PSK8, BPSK DS-SS, 

and QPSK DS-SS (subset B). 

The total error probability for the key feature IC40 1 to separate subset A (PSK4) and subset 

B (PSK8) is shown in Figure 8.7. By observation, an appropriate value for the threshold 

tlC40 l2 is chosen to be 0.59 where the total minimum error probability is 0.0775 for the 

SNR range of 20dB to 5dB. For lower SNR of OdB and -5dB, the total minimum error is 

0.4652 at the same threshold value. 

The ROC curves for the key feature IC40 1 that separates PSK4 (subset A) from PSK8 

(subset B) are shown in Figure 8.8 for SNR range of 20dB to -5dB. The curves show the 

detection probability of subset A (PSK4) and false alarm probability of subset B (PSK8). 
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By examining the ROC curves for SNR ~ lOdB, we can see that the chosen threshold value, 

tl<\0 12 (indicated by 'x') has a detection probability (Pv) of 0.9075 and false alarm 

probability (PFA) of 0.0325 at lOdB SNR. 
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Figure 8.7. Total error probability for the key feature le 401, at SNR range of 20dB to -5dB, 

for PSK4 (subset A) and PSK8 (subset B). 
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Figure 8.8. ROC curves for the key feature lc40 1 to separate PSK4 (subset A) and PSK8 

(subset B) signals for SNR range of 20dB to -5dB. 

For the separation of ASK2 from QAM8, the key feature /1,dp is used. The total error 

probability for the key feature /1,dp is shown in Figure 8.9 for subset A (ASK4) and subset B 
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(QAM8). From this figure we can infer that an appropriate choice for the threshold tf.J,dp2 is 

0.19 where the total minimum error probability is 0.0035 for the SNR range of 20dB to 

-5dB. 
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Figure 8.9. Total error probability for the key feature f.J,dp, at SNR range of 20dB to -5dB, 

for ASK2 (subset A) and QAM8 (subset B). 

Similarly, to find the threshold value tf.J,dpJ to separate QAM16 and ASK4, we examine the 

total error probability plot in Figure 8.10. It can be seen that at the threshold value of 

-0.46, the minimum error is O for the SNR range of 20dB to 5dB. For the SNR values of 

OdB and-5dB, the minimum error is 0.0056 at the same threshold value. 
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Figure 8.10. Total error probability for the key feature f.J,dp, at SNR range of 20dB to -5dB, 

for ASK4 (subset A) and QAM16 (subset B). 
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The threshold value for the key feature ~iff is found from the total error probability plotted 

in Figure 8.11 for subset A (FSK8) and subset B (FSK4). When the bandwidth of the FSK 

signals is lOOkHz, an appropriate choice for the threshold value tLdiff2 is 0.3 where the 

minimum error is 0.2096 for the SNR range of 20dB to 5dB. 

The ROC curves for the key feature Ldiff that separates FSK8 (subset A) from FSK4 (subset 

B) are shown in Figure 8.12 for SNRs 20dB, 15dB and lOdB. The curves show the 

detection probability of subset A (FSK8) and false alarm probability of subset B (FSK4). 

The bandwidth of the FSK signals is lOOkHz. It can be observed that the ROC curves are 

not of a desirable form because the detection probability (Po) is not very high for low false 

alarm probability (PFA). Therefore, it is necessary to increase the bandwidth of the FSK 

signals to 200kHz to improve performance. 
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Figure 8.11. Total error probability for the key feature ~iff, at SNR range of 20dB to -5dB, 

for FSK8 (subset A) and FSK4 (subset B) bandlimited to lOOkHz. 

The total error probability for the key feature Ldiff is shown in Figure 8.13 for subset A 

(FSK4) and subset B (FSK8). The total minimum error probability is 0.1004 and occurs at 

the threshold value tLdiff2 = -7.1 for the SNR range of 20dB to 5dB when the bandwidth of 

the FSK signals is increased to 200kHz. 
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Figure 8.12. ROC curves for the key feature Ldiff to separate FSK8 (subset A) and FSK4 

(subset B) signals (bandlimited to lOOkHz) for SNRs 20dB, 15dB and lOdB. 

The ROC curves for the key feature Ldiff that separates FSK8 (subset A) from FSK4 (subset 

B) are shown in Figure 8.14 for the SNR range of 20dB to -5dB. The curves show the 

detection probability of subset A (FSK8) and false alarm probability of subset B (FSK4). 

By observing the ROC curves for SNR ~ 5dB, we can see that the chosen threshold value 

tLdiff2 (indicated by 'x') has a minimum detection probability (Pv) of 0.9688 and false alarm 

probability (PFA) of 0.1825 at 5dB SNR. 
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Figure 8.13. Total error probability for the key feature Ldiff, at SNR range of 20dB to -5dB, 

for FSK4 (subset A) and FSK8 (subset B) bandlimited to 200kHz. 

165 



0 
~0.6 / 

/ 

JS I 
GI I 

~ 0.4 
I 

/' 

a. I 

c 
~ 0.2 
G) 

Q) 
0 0 

0 0.2 

----------
---/ 

// 

0.4 0.6 
False Alarm Probability 

------

0.8 

- 20dB 
--· 15dB 
-·- .. 10dB 
··· ·· 5dB 
-OdB 
--- -5dB 
II Threshold value = -7 .1 
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(subset B) signals (bandlimited to 200:kHz) for SNR range of 20dB to -5dB. 

The new threshold value (taftz) that separates subset A (FSK2) and subset B (FSK4, FSK8, 

and CPM) is found in Figure 8.15 from the plotted total error probability. The appropriate 

choice for taftz is 3.2 when the bandwidth of the FSK signals is increased to 200:kHz. This 

gives a minimum error probability of 0.0225 for the SNR range of 20dB to 5dB. For SNR 

of OdB and -5dB, the minimum error probability is 0.236 at the same threshold value. 

The corresponding ROC curves for the key feature O"ftz that separates FSK2 (subset A) from 

FSK4, FSK8, and CPM (subset B) are shown in Figure 8.16 for the SNR range of 20dB to 

-5dB. The curves show the detection probability of subset A (FSK2) and false alarm 

probability of subset B (FSK4, FSK8, and CPM). By examining the ROC curves for SNR 

~ 5dB, we can see that the chosen threshold value taftz (indicated by 'x') has a detection 

probability of 0.94 and false alarm probability of 0.0058 when the bandwidth of the FSK 

signals is increased to 200kHz at 5dB SNR. 
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Note that for all the ROC curves in this chapter, both classes are equally important and we 

are not trying to bias one class against the other. The optimum threshold is only dependent 

on the total minimum error probability for the SNR range of 20dB to -5dB. 
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Figure 8.15. Total error probability for the key feature afn, at SNR range of 20dB to -5dB, 

for FSK4, FSK8, and CPM (subset B) and FSK2 (subset A) bandlimited to 200kHz. 
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A summary of the key feature values and their relevant thresholds for the SNR range of 

20dB to -5dB is shown in Table 8.1. The final threshold values are tadp = 1.1, tlC40 l 2 = 

0.59, t/J,dp2 = 0.19, t/J,dp1 = -0.46, tLdiff2 = -7.1, and tafa = 3.2. 

Table 8.1. Summary of key feature thresholds and error probabilities. 

Key Feature SNR 20dB to 5dB SNR OdB to -5dB 

Threshold Optimum Minimum Error Optimum Minimum Error 

Threshold Probability Threshold Probability 

tO"dp 1.1 0.000166 1.34 0.0077 

tlc4ol 2 
0.59 0.0775 1.16 0.4350 

t/J,dp2 0.19 0 0.19 0.0088 

t/J,dp3 -0.46 0 -0.46 0.0056 

tLdift'2 -7.1 0.1004 -2.3 0.3094 

tO"fa 3.2 0.0225 3.3 0.2090 

8.3.3 Dependency of key feature selection on minimum probability of error 

The reason why the key features in the previous section are chosen over the other existing 

key features is because they minimise the total error probability for each decision. We will 

call the decision separating ASK2, ASK4, and QAM (subset A) and PSK2, PSK4, PSK8, 

BPSK DS-SS, and QPSK DS-SS (subset B) decision 1. Decision 2 separates PSK4 (subset 

A) and PSK8 (subset B) and decision 3 distinguishes ASK2 (subset A) from QAM8 (subset 

B). Decision 4 is defined as the classification of ASK4 (subset A) and QAM16 (subset B) 

and finally, Decision 5 separates FSK4 (subset A) and FSK8 (subset B). 

We can see from Table 8.2 that the key features that have been chosen minimise the total 

error probability for each decision for the SNR range of 20dB to -5dB. 
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8.4 NN Classifier 

This section introduces a NN classifier that can recognise the same fifteen signals as the DT 

classifier described in section 8.3. The input datasets for the NN are the same key features 

used in the DT algorithm. These key features are: Ymaxr, Ymin, O"ap, O"dp, Orn, /Jop, Ldiff, !c21 ! , 
and If 40 1. All key features are normalised to the range -1 to 1, then passed to the neural 

network. This section will describe the NN structure followed by a description of how the 

NN and its subnets are trained. 

Table 8.2. Total minimum error probability for Decisions 1 - 5 for combined SNR range of 

20dB to -5dB (threshold values are shown in brackets). 

Key Total Total Total Total Total 

Feature Minimum Minimum Minimum Minimum Minimum 

Error Error Error Error Error 

Probability Probability Probability Probability Probability 

(Decision 1) (Decision 2) (Decision 3) (Decision 4) (Decision 5) 

YmaxJ 0.3640 (-104) 0.5000 (-92) 0.435(-108.3) 0.428(-109.3) 0.4132 (26) 

/Jdp 0.2504 (0) 0.4088 0.0035 (0.19) 0.0022 0.4875 (-28) 

(0.044) (-0.46) 

lt21I 0.0962 (0.94) 0.4968 ( 4.2) 0.2748 (0.7) 0.2717 (0.65) 0.4830 (1.0) 

lc4ol 0.2208 0.2325 (0.59) 0.2145 (0.58) 0.2495 (0.4) 0.483 (0.02) 

(l.448) 

O"Jn 0.2600 (0) 0.5000 (0) 0.4989 (0) 0.4680 (0) 0.3277 (2.76) 

O"ap 0.1560 (0.52) 0.4305 (0.91) 0.2655 (0.26) 0.2285 (0.28) 0.4925 (410) 

Yminf 0.3003 (-32) 0.4284 (-43) 0.4150 (-50) 0.4231 (-45) 0.4509 

(-45.7) 

Lc!iff 0.278 (-0.37) 0.4910 (1.0) 0.3855 (-5.0) 0.3855 (-5) 0.2602 (-7.1) 

O"ap 0.0229 (1.1) 0.4769 (l.85) 0.303 (0.226) 0.303 (0.226) 0.4931 (410) 
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8.4.1 Neural Network Structure 

The developed network is based on a seven-network structure. Each network is a 

feedforward network, commonly referred to as a multi-layer perceptron (MLP). The first 

network has two inputs corresponding to the two key features Ymin and YmaxJ and two output 

neurons corresponding to two groups of signals, which are: 

1. FSK2, FSK4, FSK8, FH SS, TOMA, and CPM 

2. QPSK-SS, BPSK-SS, PSK2, PSK4, PSK8, QAM8, QAM16, ASK2 and ASK4. 

It is found that by dividing the signals into these two groups initially, results in optimum 

performance. Three structures are tested and it is found that the simplest structure giving 

the best performance has one hidden layer consisting of four neurons. Twenty versions of 

this structure are tested to find the one that gives the best performance. After the initial first 

network structure is designed, the other network structures can be derived from the decision 

tree to separate the signals. In all the networks described, all hidden layer use the nonlinear 

tan-sigmoid (hyperbolic tangent) function and the output layers are linear activation 

functions. Also, twenty versions of each network structure are examined to find the one 

that gives the best performance. 

The second network separates the signals into two groups and therefore this network has 

two output neurons. The first group consists of signals with little or no phase information 

(ASK2, ASK4, QAM8, and QAM16 signals) and the second group consists of signals with 

phase information (PSK2, PSK4, PSK8, BPSK-SS, and QPSK-SS signals). The network 

has three input neurons corresponding to the key features (jdp, Uap, and 1c40I · It is found that 

the simplest structure that gives the best performance has one hidden layer with ten 

neurons. 

The third network has one input corresponding to the key feature ~P and three output 

neurons corresponding to ASK2 and ASK4 signals (as one group) QAM8, and QAM16 

signals. Three networks are tested and the structure that gives the best performance has one 

hidden layer with four neurons. 
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The fourth tested network classifies PSK2, PSK4, PSK8, BPSK DS-SS, and QPSK DS-SS 

signals. This network has four input neurons corresponding to the key features Ymin, O'ap, 

O'dp, and IC40 1, and five output neurons corresponding to the five modulation types. It is 

found that the optimum structure in terms of simplicity and performance has two hidden 

layers with seven neurons in the first layer and four neurons in the second layer. 

The fifth network has one input neuron corresponding to the key feature ~P and two output 

neurons representing ASK2 and ASK4 signals respectively. The optimum structure is 

found to have one hidden layer with ten neurons. The sixth network classifies TDMA, FH 

SS, CPM, and FSK signals. Therefore, there are four output neurons and four input 

neurons corresponding to the key features: Ymaxr, Ymin, Orn, and, lc21 1. The simplest structure 

giving the best performance has one hidden layer with four neurons. 

The final network classifies FSK2, FSK4, and FSK8 signals and consists of three output 

neurons and three input neurons corresponding to the key features Ymaxr, Orn, and Ldiff, The 

network structure giving the best performance has one hidden layer with ten neurons. 

The full network structure is shown in Figure 8.17 and it has been shown in Chapter 7 that 

smaller network structures give better performance. This is why the hierarchical layout is a 

better choice than one large network that must discriminate between all fifteen signals 

simultaneously. 

8.4.2 Training the Network 

All networks are trained using the Levenberg-Marquardt (LM) algorithm using 200 

samples from each modulation type except Network 1, which is trained using the conjugate 

gradient function. Each network is also tested and validated using a separate set of 200 

samples of each modulation type as described in previous chapters. The training data is a 

mix of samples with SNR ranging from 20dB to -5dB. 
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Figure 8 .17. Neural network structure for digital modulation classification. 
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8.5 Performance Analysis of DT and NN Classifiers in the Presence of 

White Gaussian Noise 

In this section, we first present the results for the DT classifier, followed by the results of 

the NN classifier in the presence of Gaussian noise. A comparison is made between the 

accuracy of these two types of classifiers and the 95% confidence interval is also included. 

8.5.1 Performance Results for DT Classifier 

The results for the DT classifier are derived from 200 realisations of each modulation type. 

The carrier frequency, sampling rate and the symbol rate are given values of 150kHz, 

1200kHz and 12.5kHz, respectively. The digital symbol sequence is randomly generated. 

The simulation results for the test set of the digital modulation recogniser for all signals 

based on 200 realisations are given in Appendix D, Table D.1 - Table D.6, for the SNR 

range of 20dB to -5dB, respectively. It can be seen that the performance of the classifier 

for SNR less than 5dB is much poorer for most signals. However for SNR values greater 

than or equal to 5dB, the results indicate that all types of the digital modulation schemes 

considered can be correctly classified with greater than 93% overall success. 

The graphical representation of the performance of the modulation classifier for all 

modulation types is shown in Figure 8.19 - Figure 8.24 for an SNR range of 20dB to -5dB. 

The results are compared with the results from the NN classifier, discussed in the section. 

8.5.2 Performance Results of NN Classifier 

The performance results of the NN classifier for the SNR range of 20dB to -5dB are given 

in Figure 8.19 - Figure 8.24 inclusive. The results for the DT classifier are also shown for 

comparison with the 95% confidence interval. It can be observed that the NN has good 

performance with a success rate of over 93% for the SNR range of 20dB to 5dB. The 

classifier still performs very well for SNR of OdB at nearly 84% overall accuracy. This is 

because the network is trained with data of SNR range of 20dB to -5dB. A tabular 

comparison between the results from the DT approach and the NN approach is shown in 

Table 8.3. A graphical comparison between the overall success rates of both classifiers 
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over the SNR range of 20dB to -5dB is also shown in Figure 8.18. In general, the overall 

classifier accuracies for the DT and NN algorithms are similar for SNR values greater than 

or equal to 5dB. However, the NN classifier outperforms the DT classifier considerably at 

SNR OdB and -5dB. This is probably due to the fact that the DT classifier has a linear 

decision boundary based on one key feature whereas the NN has the option of having non­

linear decision boundaries based on more than one key feature. The confusion matrices are 

shown in Appendix D, Table D.7 -Table D.12, for the SNR range of20dB to-5dB. 

The NN approach is dependent on the DT approach in terms of key feature selection and 

hierarchical network selection. By referring to the decision tree in Figure 8.5, it can be 

seen that the neural network structure in Figure 8.17 is based on the decision tree. The key 

features relevant to a particular section of the decision tree serve as inputs to the 

corresponding network. For example, by referring to Network 3, the signals of interest are 

ASK, QAM8, and QAM16. If we observe the decision tree we can determine that the 

relevant key feature is f./,dp and this is the input to Network 3. 

Table 8.3. DT and NN classifier accuracy and 95% confidence intervals. 

SNR DT Classifier NN Classifier 

Accuracy 95% Confidence Interval Accuracy 95% Confidence Interval 

20dB 97.02% [96.57, 97.45] 97.84% [97.47, 98.21] 

15dB 96.87% [96.43, 97.31] 97.94% [97.58, 98.30] 

lOdB 96.72% [96.27, 97 .17] 97.27% [96.86, 97 .68] 

5dB 93.80% [93.19, 94.41] 93.67% [93.05, 94.29] 

OdB 74.98% [73.89, 76.08] 83.90% [82.97, 84.83] 

-5dB 47.37% [46.10, 48.63] 73.58% [72.46, 74.69] 

Overall 84.46% [84.08, 84.83] 90.70% [90.40, 91.00] 
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The next chapter outlines the performance of the DT and NN classifiers with signals 

affected by Rayleigh fading. The classifiers are modified to accommodate fading and the 

performance of these modified classifiers are compared to the classification performance of 

signals in an A WGN channel. 
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CHAPTER9 

Classification of Digitally Modulated 

Signals in the Presence of Rayleigh 

Fading 

9.1 Introduction 

In this chapter, the performance of the DT and NN classifiers described in Chapter 8 will be 

evaluated under the conditions of a Rayleigh fading channel. The classifiers will be 

modified so that they can perform optimally whether fading is present or not. In section 9.2 

we discuss the classification of digitally modulated signals in the presence of Rayleigh 

fading beginning with an introduction to Rayleigh fading channels. The modifications in 

the decision tree to accommodate fading are discussed in section 9.3. Similarly, the 

modifications to the NN classifier in the presence of fading are outlined in section 9.4. 

The performance of both classifiers in the presence of fading are discussed in section 9 .5 

and a comparison between the performance in an A WGN channel and a fading channel is 

made. 

9.2 Classification in the Presence of Rayleigh Fading Channels 

The DT and NN classifiers described in Chapter 8 will be tested under the conditions of a 

Rayleigh fading channel. An introduction to fading channels will first be presented, 

followed by the results of the classification performance in a fading environment. 

9.2.1 Introduction to Fading Channels 

In the 1920s, experiments were carried out with mobile communications at VHF 

frequencies. From the results of these experiments (carried out at about SOMHz) it was 

found that there was a very hostile propagation environment, particularly in urban centers. 
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Moving the vehicle over a few metres resulted in dramatic changes to the received signal's 

strength. The signal varied from excellent quality to no signal. The mobile or indoor radio 

channel is characterised by multipath reception. The received signal is a summation of the 

direct line of sight radio wave as well as a large number of reflected radio waves. These 

reflected waves interfere with the direct wave, which causes significant degradation in the 

strength of the signal. 

In most communication systems, the channel is modelled as a linear time-invariant system. 

This model consists of a delay term proportional to the propagation delay between the 

channel modulator and channel demodulator. The transfer function consists of a frequency 

independent magnitude less than one that is proportional to the propagation loss. The 

channel is usually considered to be corrupted by A WGN which is adequate for deep space 

communication channels. However for many radio channels such as high-frequency (HF) 

long-distance communications via the ionosphere, microwave communications and mobile 

communications, the A WGN channel is an oversimplified model. In these three channels, 

the received signal has been shown experimentally to undergo fading. In addition, there are 

other types of fading channels such as very high frequency (VHF) communication channels 

between an aircraft and a synchronous satellite relay [Bond and Meyer, 1966] and line of 

sight (LOS) microwave links [Jakes, 1978], which undergo fading due to the formation of 

tropospheric inversion layers. This allows multiple transmission paths between the 

transmitter and receiver. 

9.2.2 Characterisation of Fading Multipath Channels 

If an impulse is sent over a time-varying multipath channel, the received signal might 

appear as a train of pulses. Thus one characteristic of a multipath channel is the time 

spread introduced in the transmitted signal. A second characteristic is due to the time 

variations in the structure of the medium and as a result, the nature of the multipath varies 

with time. Thus if an impulse is sent over a channel, over and over again, we would 

observe changes in the received pulse train, such as changes in the size of individual pulses, 

changes in the relative delays among the pulses and changes in the number of pulses in the 
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pulse train [Bond and Meyer, 1966]. We can examine the effects of the channel on a 

transmitted signal represented by: 

s(t) = Re[s
1 
(t)ej2tf,,] (9.1) 

Assuming that there are multiple propagation paths, there is a propagation delay and an 

attenuation factor. Thus the received bandpass signal may be expressed as: 

x( t) = Lan(t)s(t- i-n(t )) (9.2) 
n 

where a,,(t) is the attenuation factor for the signal received on the nth path and Tn(t) is the 

propagation delay for the nth path. The equivalent lowpass received signal is: 

n 

The equivalent lowpass channel is described by the time-variant impulse response 

c(i-;t) = Ian (t )e- jZ1ifcT.(t)8(i- - Tn (t )) 
n 

(9.3) 

(9.4) 

When there are a large number of paths, the central limit theorem can be applied. Thus, the 

received signal r1(t) can be modelled as a complex valued Gaussian random process which 

implies that the impulse response c( T,t) is also a complex-valued Gaussian random process 

in the t variable. 

Rayleigh fading occurs when the impulse response c( T,t) is modelled as a zero-mean 

complex-valued Gaussian process. The envelope I c( T,t)I at any instant t is Rayleigh 

distributed. Ricean fading occurs when there are fixed scatterers or signal reflectors in the 

medium as well as randomly moving scatterers. The mean of the impulse response will not 

be zero and the envelope I c( T,t)I will have a Ricean distribution. 

9.2.3 Rayleigh Fading 

Rayleigh fading occurs on time varying multipath channels such as when the medium is 

time varying as in under-sea acoustic transmission. It can also occur with radio 

transmission through the upper atmosphere, mobile radio where the receiver and transmitter 

are in motion and indoor radio transmission where moving people cast shadows. In the case 

of mobile radio, the distances along the multiple propagation paths are changing and the 
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receiver observes the Doppler shifted versions of the transmitted signal. We can model the 

reception as [Lee and Messerschmidt, 1988]: 

(9.5) 

where the amplitudes An vary slowly with time and hence they are considered to be fixed. 

The phases are varying rapidly because if there are vehicles on the move involved (as is 

often the case), the vehicle motions are large with respect to the transmitting wavelength. 

The phase can be modelled as: 

(9.6) 

where <l>,i are fixed random phases uniformly distributed from O to 2n and the frequency 

offset Cqz is the Doppler frequency shift due to the motion of the vehicle. The Doppler shift 

for a wave incident in the direction of motion is 

21l 
{J) =-V 

n A 

where A is the wavelength and vis the velocity of the vehicle. 

(9.7) 

If equation (9.5) is written in terms of the real and imaginary parts of the complex 

exponentials, the resulting expression, in terms of quadrature components, is 

E(t) = C(t )cos mc1- S(t )sin mc1 

N N 

C(t) = L ~ cos(wnt + </Jn ), S(t) = L~ sin(wnt + </JJ 
n=I n=I 

(9.8) 

(9.9) 

Since the terms in the summation are independent random variables, the baseband random 

processes C(t) and S(t) are approximately Gaussian according to the central limit theorem. 

The approximation becomes more accurate as the number of interferers N becomes large. 

Thus E(t) is Gaussian and the envelope is: 

(9.10) 

which has a Rayleigh distribution, 
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(9.11) 

9.2.4 DT Performance in Rayleigh Fading Conditions 

Simulations are carried out in Matlab in a similar fashion to the simulations for the 

Gaussian channel. A Rayleigh fading channel is introduced instead of the Gaussian 

channel. The effect of the fading channel on the modulation classifiers is investigated for 

the DT and NN approaches. 

The modulation classifier performance is evaluated for a Doppler spread of 120Hz. The 

key features and their corresponding threshold values for all signals do not change. The 

results for the 120Hz Doppler spread for SNR of 20dB are presented in Figure 9.1. The 

Doppler spread is chosen to be 120Hz as this is a reasonable value for mobile 

communications; in [Oon and Steele, 1997] Doppler frequencies of 150Hz were used. 
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Figure 9.1. Modulation classifier performance in the presence of Rayleigh fading for SNR 

20dB. 

It can be seen from Figure 9.1 that the rate of classification is very bad for PSK2, PSK4, 

FSK2 and FSK4 signals with 120Hz Doppler spread. The performance also drops for the 

TOMA signal. Therefore, the decision tree is modified to accommodate signals undergoing 

fading. 
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9.3 Decision Tree Modifications for Rayleigh Fading 

The decision tree in Figure 8.5. has key features based on cumulants to classify the PSK 

and TDMA signals. These cumulants are calculated using the complex envelopes of the 

signals. When fading is present, the envelope of the signal also diminishes in amplitude. 

Therefore, the features based on cumulants suffer performance degradation. To combat this 

limitation, new key features are introduced to classify the PSK and TDMA signals. This 

will be outlined in subsections 9.3.1 and 9.3.2, respectively. 

The Doppler frequency also causes frequency shifts in the signal and this affects the 

classification of FSK signals. Therefore, the tree is modified with an additional key feature 

to improve the performance of classification of FSK signals in the presence of Rayleigh 

fading. This will be presented in subsection 9.3.3. The relevant threshold derivation is 

shown in subsection 9 .3 .4 and a discussion of the dependency of key feature selection on 

the minimum error probability is presented in subsection 9.3.5. 

9.3.1 PSK, BPSK DS-SS, and QPSK DS-SS Signal Classification 

In the presence of Rayleigh fading, it is not possible to distinguish sufficiently between 

PSK2, BPSK DS-SS, and QPSK DS-SS signals as one group and PSK4 and PSK8 signals 

as another group, with the current tree structure. Therefore, the decision tree is modified to 

separate the spread spectrum signals from the PSK signals and then separate PSK2 from 

PSK4 and PSK8. To classify the spread spectrum signals, the key feature Yminf is used. The 

feature Yminf is used because it can distinguish between signals with more frequency 

information (such as spread spectrum signals) from signals with little or no frequency 

information (PSK signals). 

To distinguish between PSK2 signals as one group and PSK4 and PSK8 signals as another 

group in the presence of Rayleigh fading, the key feature O'ap is used. Rayleigh fading also 

introduces phase shifts to the signal. However, it is found that the effect on the overall 

instantaneous phase is not substantial because the faded signal gradually shifts alternately 

out of phase and then back in phase. Therefore, although this feature is based on phase, the 

phase offsets introduced by the fading should not affect the classification performance 
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drastically. The feature <:Tap is used because it can distinguish between signals with absolute 

phase information (PSK4 and PSK8) from signals without absolute phase information 

(PSK2). 

To discriminate between PSK4 and PSK8 signals, the phase histogram is used. The 

histogram is formed using 50 bins and the value of the histogram at the 28th bin is found 

which corresponds to a phase of n/4. PSK4 signals use four phases (±7t/2 and ±n) to 

transmit information and PSK8 signals use eight phases (±7t/4, ±7t/2 ±3n/4 and ±7t). The 

28th bin should contain no values for a signal with only four phases. Hence this feature P min 

is used to separate PSK4 and PSK8 signals. 

9.3.2 TDMA Classification 

To separate TOMA signals from FH SS signals, the key feature YmaxJ is used. This feature 

is found to be suitable because in Chapter 7 it gave an overall error probability of 0.0286 

for the SNR range of 20dB to -5dB for the threshold value of 19 .3. This feature is also less 

susceptible to fading because it is not amplitude dependent. 

9.3.3 FSK Signal Classification 

To distinguish between FSK2 as one group and FSK4, FSK8, and CPM as another group, 

the existing key feature Lctiff is used. This is because when fading is present, the key feature 

CTJn is not sufficient to separate these signals due to the frequency shifts. However, since the 

same key feature is used to separate FSK4 and FSK8 signals when there is no fading 

present, another key feature must be used simultaneously. This is to ensure that the feature 

Lctiff is only used when fading is present to separate FSK2 as one group and FSK4 and 

FSK8 as the other group. It is found that when the FSK signals undergo Rayleigh fading at 

120Hz Doppler frequency, the feature CTJn is able to determine whether fading is present. 

The key feature YmaxJ is used to separate FSK4 and FSK8 signals when Rayleigh fading is 

present. This is because FSK8 signals have the same maximum instantaneous frequency 

values as FSK4 but they also have four other frequency values which are smaller due to the 
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eight frequency levels implemented in FSK8. Therefore, the values of Yma.xJ should in 

general be greater for FSK4 signals than for FSK8 signals. 

9.3.4 Threshold Determination 

The total error probability for the key feature Yminf for subset A (BPSK DS-SS and QPSK 

DS-SS) and subset B (PSK2, PSK4, PSK8) is shown in Figure 9.2. It can be seen that the 

appropriate value for the threshold tYminf3 is -29.9 where the total minimum error 

probability is 0.0009 for the SNR range of 20dB to -5dB. 
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Figure 9.2. Total Error probability for the key feature Yminf. at SNR range of 20dB to -5dB, 

for BPSK DS-SS and QPSK DS-SS (subset A) and PSK2, PSK4, and PSK8 (subset B) with 

fading and 120Hz Doppler shift. 

The total error probability for the key feature <Yap is shown in Figure 9.3 for subset A 

(PSK2) and subset B (PSK4 and PSK8). It can be observed from the figure that a good 

choice for the threshold taapZ is 1.08 where the total minimum error is 0.0106 for the SNR 

range of 20dB to 5dB and 0.2784 for the SNR of OdB and -5dB. It is found that the feature 

Gap is not affected by Rayleigh fading. Therefore this feature is sufficient to discriminate 

PSK2, PSK4 and PSK8 even in a Gaussian channel. This is demonstrated in Figure 9.4 

where the optimum threshold is also 1.08. The minimum error probability for SNR range 

of 20dB to 5dB is 0.0063. The minimum error probability for SNR of OdB and -5dB at the 

same threshold is 0.28. 
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The ROC curves for this key feature are shown in Figure 9.5 for the SNR range of 20dB to 

-5dB. The curves show the detection probability of subset A (PSK2) and false alarm 

probability of subset B (PSK4 and PSK8). By examining the ROC curves for SNR ~ 5dB, 

we can see that the chosen threshold value tO"ap2 (indicated by 'x') has a detection 

probability (Pv) of 0.9875 and false alarm probability (PFA) of 0.0113 at 5dB SNR. 
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Figure 9.3. Total error probability for the key feature D"ap, at SNR range of 20dB to -5dB, 

for PSK2 (subset A) and PSK4 and PSK8 (subset B) with fading and 120Hz Doppler shift. 
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Figure 9.4. Total error probability for the key feature D"ap. at SNR range of 20dB to -5dB, 

for PSK2 (subset A) and PSK4 and PSK8 (subset B) in a Gaussian channel. 
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Figure 9.5. ROC curves for the key feature aap to separate PSK2 (subset A) and PSK4 and 

PSK8 (subset B) signals with fading and 120Hz Doppler shift for SNR range of 20dB to 

-5dB. 

The threshold value tPmin is found from the total minimum error probability for the key 

feature Pmin· The total error probability is plotted in Figure 9.6 for PSK8 (subset A) and 

PSK4 (subset B) signals. It can be observed from the figure that a good choice for the 

threshold tPmin is 26 where the minimum error is 0.1329 for the SNR range of 20dB to 5dB 

and 0.4744 for SNR of OdB and -5dB. The ROC curves for this key feature are shown in 

Figure 9.7 for the SNR range of 20dB to -5dB. The curves show the detection probability 

of subset A (PSK8) and false alarm probability of subset B (PSK4). By examining the 

ROC curves for SNR ~ lOdB, we can see that the chosen threshold value tPmin (indicated 

by 'x') has a detection probability (PD) of 0.7950 and false alarm probability (PFA) of 0.02 

at lOdB SNR. 
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Figure 9.6. Total error probability for the key feature Pmin, at SNR range of 20dB to -5dB, 

for PSK8 (subset A) and PSK4 (subset B) with fading and 120Hz Doppler shift. 
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Figure 9.7. ROC curves for the key feature Pmin to separate PSK8 (subset A) and PSK4 

(subset B) signals with fading and 120Hz Doppler shift. 

To separate FH SS signals from TDMA signals when fading is present, the key feature Ymaxf 

is used. The total error probability for the SNR range of 20dB to -5dB is shown in Figure 

9.8. It is found that the optimum threshold value Ymaxf3 is 44, which gives a minimum error 

probability of O for the SNR range of 20dB to -5dB. 
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Figure 9.8. Total error probability for the key feature Ymaxf. at SNR range of 20dB to -5dB, 

for TOMA (subset A) and FH SS (subset B) with fading and 120Hz Doppler shift. 

To determine whether fading is present for FSK signals, the key feature O'fa is used. The 

total error probability for subset A (FSK2, FSK4, and FSK8 when fading is not present) 

and subset B (FSK2, FSK4, and FSK8 when fading is present) is shown in Figure 9.9. The 

optimum threshold occurs at tO'fa2 = 2.4 where the total minimum error probability is 0.0629 

for the SNR range of 20dB to 5dB. 
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Figure 9.9. Total error probability for the key feature O'fa, at SNR range of 20dB to -5dB, 

for FSK2, FSK4, FSK8, and CPM with no fading (subset A) and FSK2, FSK4, FSK8, and 

CPM (subset B) with fading and 120Hz Doppler shift. 
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The total error probability for the key feature Ldiff is shown in Figure 9 .10 for subset A 

(FSK2) and subset B (FSK4 and FSK8). It is found that the optimum threshold tLdiff3 is - 7 

where the minimum error probability is 0.0592 for the SNR range of 20dB to 5dB and 

0.4440 for SNR of OdB and -5dB. 
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Figure 9.10. Total error probability for the key feature Ldiff, at SNR range of 20dB to -5dB, 

for FSK2 (subset A) and FSK4, FSK8, and CPM (subset B) with fading and 120Hz 

Doppler shift. 
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Figure 9.11. ROC curves for the key feature Ldiff to separate FSK2 (subset A) and FSK4, 

FSK8, and CPM (subset B) signals with fading and 120Hz Doppler shift for SNR range of 

20dB to -5dB. 

The ROC curves for the key feature Ldiff are shown in Figure 9 .11 for the SNR range of 

20dB to -5dB. The curves show the detection probability of FSK2 (subset A) and the false 
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alarm probability of FSK4, FSK8, and CPM (subset B). By examining the ROC curves for 

SNR ~ lOdB, we can see that the chosen threshold value tLdiff3 (indicated by 'x') has a 

detection probability (Pv) of 1.0 and false alarm probability (PFA) of 0.0917 at 1 OdB SNR. 

To classify FSK4 (subset A) and FSK8 (subset B) signals, the threshold value, tymaxf4, is 

determined from the total error probability shown in Figure 9.12. The minimum error 

probability is 0.3942 for the SNR range of 20dB to 5dB, corresponding to a threshold value 

of tymax14 = 20. When fading is present, it becomes much harder to separate FSK signals as 

can be seen from the total error probability in Figure 9.12. The ROC curves for the key 

feature YmaxJare shown in Figure 9.13 for the SNR range of 20dB to -5dB. The ROC curves 

show the difficulty in separating FSK4 and FSK8 signals since the probability of detection 

(Pv) of FSK4 (subset A) is not so high for low probability of false alarm (PFA) of FSK8 

(subset B). By examining the curves for SNR ~ lOdB, we can see that the chosen threshold 

value tYmaxJ4 (indicated by 'x') has a detection probability (Pv) of 0.81 and false alarm 

probability (PFA) of 0.5125 at lOdB SNR. 
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Figure 9.12. Total error probability for the key feature Ymaxt. at SNR range of 20dB to -5dB, 

for FSK4 (subset A) and FSK8 (subset B) with fading and 120Hz Doppler shift. 
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Figure 9.13. ROC curves for the key feature YmaxJ to separate FSK4 (subset A) and FSK8 

(subset B) signals with fading and 120Hz Doppler shift for SNR range of 20dB to -5dB. 

A summary of the key features for the modified decision tree to accommodate Rayleigh 

fading is shown in Table 9.1. The total minimum error probabilities and corresponding 

optimum thresholds for the SNR ranges of 20dB to 5dB and OdB to -5dB are also shown. 

Table 9.1. Summary of key feature thresholds and error probabilities. 

Key Feature SNR 20dB to 5dB SNR OdB to -5dB 

Threshold Optimum Minimum Error Optimum Minimum Error 

Threshold Probability Threshold Probability 

tYminf3 -33 0 -29 0.0014 

tPmin 26 0.1329 41 0.4294 

tO"fa2 2.4 0.0629 3.1 0.3140 

trmaxJ4 20 0.3942 19 0.4713 

tLdiff3 -7 0.0592 -2 0.2584 

t rl1Ul.\j3 44 0 44 0 

tO"ap2 1.08 0.0106 0.98 0.0925 

Therefore the optimum threshold values are: tO"ap2 = 1.08, tPmin = 26, tO"fa2 = 2.4, tYmaxf3 = 
44, tLdiff3 = -7, tYminf 3 = -29.9, and tYmax/4 =20. 
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9.3.5 Dependency of Key Feature Selection on Minimum Probability of Error 

The reason why the key features in the previous section are chosen over the other existing 

key features is that they minimise the total error probability for each decision. We will call 

the decision separating BPSK DS-SS, and QPSK DS-SS (subset A) from PSK2, PSK4 and 

PSK8, (subset B) decision 1. Decision 2 separates subset A (PSK8) and subset B (PSK4) 

and decision 3 distinguishes between fading being present for FSK2, FSK4, FSK8, and 

CPM (subset A) and fading not being present for the same signals (subset B). Decision 4 is 

defined as the classification of FSK2 (subset A) and FSK4, FSK8, and CPM (subset B) and 

Decision 5 separates FSK4 (subset A) and FSK8 (subset B). Decision 6 is defined as the 

classification of TOMA (subset A) and FH-SS (subset B) and decision 7 is the 

classification of PSK2 (subset A) and PSK4 and PSK8 (subset B). We can see from Table 

9 .2 and Table 9 .3 that the key features that have been chosen minimise the total error 

probability for each decision for the SNR range of 20dB to -5dB. 

It can be seen in decision 5, that the feature Ldiff has the smallest error probability. 

However, this feature is not chosen because it is very sensitive to fading for this particular 

decision and will vary for different Doppler frequencies. Therefore, the feature YmaxJ is 

chosen for this decision instead because it is unaffected by fading. The modified decision 

tree to accommodate signals undergoing Rayleigh fading with Doppler spread of 120Hz is 

shown in 

Figure 9.14. The first modification to the tree occurs where FH SS and TOMA are 

separated by the key feature YmaxJ if fading is present. The second modification occurs 

where the feature O'Jn is used to determine if fading is present for FSK signals. If fading is 

present the feature Ldiff separates FSK2 from FSK4, FSK8, and CPM. The third change to 

the decision tree is where the feature O'ap separates PSK2 from PSK4 and PSK8 when 

fading is present. Similarly, the feature Pmin is used instead of !c40 1 to separate PSK4 from 

PSK8 in a fading channel. The final change in the tree occurs where FSK4 and FSK8 are 

separated by the feature YmaxJ in the presence of fading. The NN classifier modifications to 

accommodate fading are presented in the next section. 
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9.4 NN Classifier Modifications for Rayleigh Fading 

The modulation classifier performance using the NN approach is investigated for a Doppler 

spread of 120Hz. The neural network structure shown in Figure 8.17 is slightly modified to 

accommodate fading signals. The modified structure is described in subsection 9.4.1. 

Subsection 9.4.2 describes how the NN classification works when the channel is unknown. 

This network structure is trained for modulation types with SNR range 20dB to -5dB. 

9.4.1 Modified Neural Network Structure to Accommodate Rayleigh Fading 

The neural network structure shown in Figure 9.15 has some modifications within the sub­

nets. All of the modified networks have been trained with signals undergoing Rayleigh 

fading with Doppler spread 120Hz and SNR range of 20dB to -5dB. Network four is 

modified to have the input key feature Pmin instead of the feature O'dp· Network six is 

retrained with data of SNR range of 20dB to -5dB that has been affected by Rayleigh 

fading. The structure giving the optimum performance is modified to have one hidden 

layer with seven neurons. The remaining sub-nets remain the same. 

9.4.2 Neural Network Classifier for A WGN and Rayleigh Fading Channel 

When a signal is intercepted and the channel is unknown, the signal can be simultaneously 

passed through the networks in 8.17 and Figure 9.15. The classification can be achieved by 

choosing the signal with the highest success rate from the two networks. The results of the 

DT and NN classifiers in the presence of fading will be discussed in the next section. 

9.5 Performance Analysis of DT and NN Classifiers in the Presence of 

Rayleigh Fading 

A graphical comparison between the overall classification accuracy of the DT and NN 

classifiers in the presence of fading is shown in Figure 9.16. It can be inferred that the NN 

implementation generally performs better than the DT algorithm. The performance results 

for the classification of each modulation type using the DT and NN approaches are shown 

in Figure 9.17 - Figure 9.22, for the SNR range of 20dB to -5dB, respectively. It can be 

seen that most of the signals can be classified with success rates greater than 80% for SNR 

greater than or equal to 5dB with the exception of FSK8 signals. 
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Table 9.2. Total minimum error probability for Decisions 1- 3 for combined SNR range of 

20dB to-5dB (threshold values are shown in brackets). 

Key Total Minimum Error Total Minimum Error Total Minimum Error 

Feature Probability (Decision 1) Probability (Decision 2) Probability (Decision 3) 

Ymaxt 0.2953 (-102.6) 0.5000 (-92) 0.2724 (24.2) 

/1,dp 0.3938 (0.34) 0.4053 (0.08) 0.4502 (44) 

lc\11 0.1786 (0.96) 0.4762 (0.6) 0.2385 (0.9) 

lt401 0.0378 (1.07) 0.2667 (0.1) 0.4267 (0.02) 

O"fa 0.3748 (0) 0.5000 (0) 0.2378 (2.4) 

O"ap 0.1823 (0.82) 0.4342 (0.91) 0.3892 (435) 

Yminf 0.0009 (-29) 0.4133 (-45.4) 0.4206 (-39) 

Lwff 0.3221 (-2.02) 0.4787 (-2.9) 0.4173 (-5.0) 

D"dp 0.4466 (1.57) 0.4700 (l.91) 0.3866 (435) 

Pmin 0.2015 (13.72) 0.2515 (26) 0.4821 (12) 

It can also be observed that the DT classifier performs better than the NN classifier for 

some signals such as FSK signals when a fading channel is present. With the DT classifier, 

the performance of the FSK4 signal gets worse while the FSK8 classification performance 

gets better with decreasing SNR. This is because the values of the key feature Ymaxf are very 

similar for FSK4 and FSK8 signals and therefore it is harder to separate these two signals 

in the presence of fading, so if the performance of one signal is good, the performance of 

the other suffers. 

The NN classifier performs better than the DT classifier for signals such as PSK2, BPSK­

SS, and QPSK-SS signals. For all other signals, the results for the NN classifier and the DT 

classifier are comparable when fading is present. By referring to the results for the 

Gaussian channel in Chapter 8, it can be seen that both the NN and DT classifier 

performances suffer in the presence of Rayleigh fading. 
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Table 9.3. Total minimum error probability for Decisions 4- 7 for combined SNR range of 

20dB to-5dB (threshold values are shown in brackets). 

Key Total Minimum Total Minimum Total Minimum Total Minimum 

Feature Error Probability Error Probability Error Probability Error Probability 

(Decision 4) (Decision 5) (Decision 6) (Decision 7) 

YmaxJ 0.2451 (23) 0.4325 (20) 0 (44) 0.2562 (-98.7) 

/1,dp 0.2500 (100) 0.4635 (-1.0) 0.0002 (455) 0.2255 (0.57) 

lc2,I 0.2500 (0.35) 0.4373 (0.8) 0.3028 (0.98) 0.3813 (1.4) 

lc40 1 
0.3332 (0.4) 0.5000 (0) 0.0539 (0.16) 0.2587 (0.38) 

O'Jn 0.2500 (4) 0.4443 (1.7) 0 (9.5) 0.2532 (0) 

O'ap 0.2500 (200) 0.4902 (460) 0 (250) 0.0893 (1.08) 

Yminf 0.2500 (-32) 0.4650 (-44) 0.1440 (-14) 0.3333 (-30) 

Ldiff 0.1325 (-7) 0.3762 (-1.0) 0.0011 (-4.434) 0.3333 (10) 

O'dp 0.2500 (100) 0.4900 (465) 0 (250) 0.3150 (2) 

Pmin 0.2500 (175) 0.4900 (70) 0.2300 (20) 0.3333 (357) 

A tabular comparison of the overall performance of the DT and NN classifiers is shown in 

Table 9.4. It can be seen that the NN classifier performs on par with the DT classifier for 

SNR greater than 5dB. However, for lower SNR, the NN classifier outperforms the DT 

classifier considerably. The confusion matrices showing the results for the DT classifier 

are in Appendix E, Table E.1 - Table E.6, and the results for the NN classifier are in Table 

E.7 -Table E.12 for the SNR range of 20dB to-5dB respectively. 

A graphical comparison between the NN and DT classifiers in both A WGN and fading 

environments is shown in Figure 9.23. In general, it can be observed that the NN classifiers 

perform slightly better than the DT classifiers for both A WGN and fading channels. Also, 

the performance of both classifiers degrades in the presence of fading. 
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Figure 9.14. Modified decision tree to accommodate signals in the presence of Rayleigh 

fading. Refer to section 9.3.5 for an explanation of the modifications to the tree. 
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Table 9.4. DT and NN classifier accuracy and 95% confidence intervals in the presence of 

Rayleigh fading. 

SNR DT Classifier NN Classifier 

Accuracy 95% Confidence Interval Accuracy 95% Confidence Interval 

20dB 91.97% [91.28, 92.65] 93.8% [93.19, 94.41] 

15dB 92.13% [91.45, 92.81] 94.98% [94.42, 95.53] 

lOdB 91.5% [90.79, 92.21] 93.81 % [93.20, 94.42] 

5dB 84.1% [83.17, 85.03] 89.93% [89.17, 90.69] 

OdB 75.42% [74.33, 76.51] 81.35% [80.36, 82.34] 

-5dB 50.43% [ 49.17, 51. 70] 70.19% [69.03, 71.34] 

Overall 80.93% [80.52, 81.33] 87.34% [87 .00, 87 .69] 

9.6 Conclusions 

The classifiers presented in Chapter 8 were tested in the presence of Rayleigh fading. It 

was found that the classifiers had to be modified slightly to accommodate fading channels. 

The performance of the DT modulation classifier suffered significantly for some signals 

(namely PSK and FSK) with a Doppler spread of 120Hz. This resulted in some 

modifications to the existing decision tree with the addition of new key features. The 

performance of the DT classifier with signals undergoing fading was good for SNR down 

to lOdB. However the classification of FSK8 signals was poor. For SNR of 5dB, the 

performance dropped significantly for PSK4, FSK2, and FSK8 signals. 

The neural network classifier was tested with a Doppler spread of 120Hz. Certain sub-net 

structures were retrained with modified structures and inputs to improve classification 

performance. The performance was good for SNR greater than lOdB, however for lower 

SNR, the results were only marginally satisfactory. The results were compared to the DT 

classifier and it was found that for certain signals, the NN outperforms the DT classifier 

whereas for other signals, the DT classifier gives better results. However, the NN has 
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better overall performance than the DT approach over the SNR range of 20dB to -5dB. 

The classifiers' performances in a fading environment were also compared to the 

performances in an A WGN channel. It was found that the presence of fading causes the 

classification performance to suffer significantly more than in an environment where fading 

is not present. 
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Figure 9.16. Graphical comparison of overall performance between the NN-based and DT­

based classifiers for Rayleigh fading. 
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Figure 9.20. Classification accuracy of DT classifier (dark bars) and NN classifier (light 

bars) for signals at 5d.B SNR and 120Hz Doppler shift. 
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CHAPTER 10 

Conclusion 

10.1 Introduction 

A framework has been presented in this thesis for the classification of digital modulation 

schemes of communications signals. The focus has been on decision theoretic and neural 

network implementations of modulation classifiers. New key features have been proposed 

to classify the signals and for the first time, fifteen different digital modulation types can be 

classified by one type of modulation classifier. These modulation schemes have been 

added to the modulation classifiers gradually in Chapters 5, 6, 7 and 8. The fifteen 

modulation types are: ASK2, ASK4, PSK2, PSK4, PSK8, FSK2, FSK4, FSK8, CPM, 

BPSK DS-SS, QPSK DS-SS, FH-SS, TOMA, QAM8, and QAM16. It has been shown that 

these signals can be classified with accuracies greater than 95% for SNR greater than or 

equal to lOdB. For lower SNR values the performance drops as can be expected. It is 

found that as more modulation types are added to the classifiers, the classification of 

signals becomes increasingly difficult, particularly with signals belonging to the same 

family (eg FSK2, FSK4, and FSK8 signals). For NN classifiers, it is found that a 

hierarchical network structure gives better results as more signals are added to the 

classifier. The overall accuracy of the NN classifier, over the combined SNR range of 20 to 

-5dB, is 90.7% compared to 84.56% for the DT classifier. 

The performance of the DT and NN classifiers were also tested in the presence of Rayleigh 

fading with 120Hz Doppler shift. It was found that fading mainly affects key features 

which are dependent on the complex envelope of the signal or power spectral density. 

Some modifications to the classifiers had to be made so that they were capable of 

classifying signals in both an A WGN environment and Rayleigh fading environment. The 
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performance is generally slightly worse for fading channels compared to A WGN channels. 

With the modifications, the overall accuracy of the NN classifier, over the combined SNR 

range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT 

classifier. 

A point to consider is that the classification accuracy is based on a single segment of the 

intercepted signal. In a real life situation, the decision will be based on a number of 

segments and therefore we expect the classification accuracy to improve; a signal 

classification accuracy of over 50% (from all the segments) will probably guarantee the 

correct recognition of the modulation type. 

There are many factors which have not been addressed with regards to modulation 

classification in this thesis. There is also room for improvement with the classification 

techniques that have been discussed in this thesis. These issues are outlined in the next 

section. 

10.2 Suggestions for Further Work 

This thesis is a first attempt at classifying a large range of digital modulation schemes and 

therefore leaves much room for improvement. Some suggestions for further research and 

improvement are listed below in no particular order: 

1. Investigation into making threshold values dynamically changing with varying SNR 

would greatly improve the performance of the DT classifier. 

2. The former point follows on from the suggestion of finding methods to determine 

the SNR of the unknown signal so that more accurate threshold values can be used 

to classify the signal. 

3. Investigation into making key features more robust against varying SNR would 

improve the performance of classification of signals with very low SNR. 

4. For the classification of FSK signals, the bandlimitation greatly hinders the 

classification performance. Therefore, further research into finding features that are 

not greatly affected by bandwidth would help improve performance. 
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5. It is found that features that are robust against phase offsets (such as features based 

on cumulants) are sensitive to fading channels. The converse also applies with 

features such as CTap that are robust in the presence of fading, are affected by phase 

offsets and variations. Therefore, further investigation into feature extraction and 

robustness under different conditions should be carried out to improve performance. 

6. The effects of signal delay have not been examined and more work can be carried 

out regarding phase and frequency offsets and variations. 

7. More research into the effects of Rayleigh fading channels with different Doppler 

frequencies can be made. Different types of fading, e.g. Ricean fading, can also be 

examined as well as other channel environments that would affect classification. 

8. Investigation into NN structures to give better performance should also be made. 

Factors such as: training algorithms, number of training epochs, minimum error, 

number of layers and number of neurons in each layer, input features, outputs, and 

hierarchical structures should all be examined further. New NN technologies can 

also be researched further to improve performance. 

9. Research into finding more features that can be extracted from communication 

signals should be done. Features such as wavelets, for example, can be investigated 

further to improve classification performance. 

10. Analog communications signals can also be added to the classifiers discussed in this 

thesis. Azzouz and Nandi have designed a classifier incorporating a limited number 

of analog and digital signals in [Azzound and Nandi, 1996] and this is a good 

starting point. 

Finally, it is hoped that the methods developed in this thesis can be extended to other 

applications, such as the design of a universal receiver. 
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Appendix A 
This appendix presents the results of the DT and NN classifiers described in Chapter 5. 

A.1 Confusion Matrices for DT Classifier 
Table A.1. DT classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 100% - - - - -
ASK4 - 100% - - - -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 97.5% 2.5% 
FSK4 - - - - 0.5% 99.5% 

Table A.2. DT classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 98.5% 1.5% - - - -
ASK4 - 100% - - - -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 95.5% 4.5% 
FSK4 - - - - 1% 99% 

Table A.3. DT classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 89.75% 10.25% - - - -
ASK4 1.5% 98.5% - - - -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 92.75% 7.25% 
FSK4 - - - - 0.75% 99.25% 
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Table A.4. DT classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 71.25% 27% - 1.75% - -
ASK4 12% 87.75% - 0.5% - -
PSK2 - - 98.75% 1.25% - -
PSK4 - - - 100% - -
FSK2 - - - - 94.75% 5.25% 
FSK4 - - - - 13.25% 86.75% 

Table A.5. DT classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 26.5% 11% 0.75% 61.75% - -
ASK4 17% 40.5% - 42.5% - -
PSK2 - - 81.25% 18.75% - -
PSK4 - - 25.5% 74.5% - -
FSK2 - - - - 99.75% 0.25% 
FSK4 - - - - 96.25% 3.75% 

Table A.6. DT classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 0.25% 0.25% 38.5% 61% - -
ASK4 - 0% 31% 69% - -
PSK2 - - 92.25% 7.75% - -
PSK4 - - 92% 8% - -
FSK2 - - - - 100% -
FSK4 - - - - 100% -
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A.2 Confusion Matrices for NN Classifier 

Table A.7. NN classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 100% - - - - -
ASK4 - 100% - - - -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 100% -
FSK4 - - - - 1% 99% 

Table A.8. NN classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 100% - - - - -
ASK4 0.5% 99.5% - - - -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 99% 1% 
FSK4 - - - - 0.5% 99.5% 

Table A.9. NN classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 96.5% 3.5% - - - -
ASK4 5% 95% - - - -
PSK2 - - 100% - - -
PSK4 - - - 100% - -
FSK2 - - - - 95% 5% 
FSK4 - - - - 1% 99% 
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Table A.10. NN classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 82.29% 17.46% 0.25% - - -
ASK4 21.45% 78.3% 0.25% - - -
PSK2 - - 100% - - -
PSK4 2% - - 98% - -
FSK2 - - - - 91% 9% 
FSK4 - - - - 4.5% 95.5% 

Table A.11. NN classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 59.44% 38.81% 1% 0.75% - -
ASK4 41.26% 56.98% 1% 0.75% - -
PSK2 - - 71% 19.5% - -
PSK4 1.5% - 7.5% 91% - -
FSK2 - - - - 85.5% 14.5% 
FSK4 - - - - 45% 55% 

Table A.12. NN classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 

ASK2 51.15% 45.36% 2.75% 0.75% - -
ASK4 54.04% 42.46% 2.75% 0.75% - -
PSK2 - - 53% 38.5% - 8.5% 
PSK4 - - 27% 66.5% 0.5% 6% 
FSK2 - - - - 91.5% 8.5% 
FSK4 - - - - 88.5% 11.5% 
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Appendix B 
This Appendix presents the results of the DT and NN classifiers described in Chapter 6. 

B.1 Confusion Matrices for DT Classifier 

B.1.1 Classification of CPM Signals 

Table B.l. DT classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 100% - - - - - -
ASK4 - 100% - - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 97.5% 2.5% -
FSK4 - - - - 0.5% 99.5% -
CPM - - - - - - 100% 

Table B.2. DT classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 98.5% 1.5% - - - - -
ASK4 - 100% - - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 95.5% 4.5% -
FSK4 - - - - 1% 99% -
CPM - - - - - - 100% 
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Table B.3. DT classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 89.75% 10.25% - - - - -
ASK4 1.5% 98.5% - - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 92.75% 7.25% -
FSK4 - - - - 0.75% 99.25% -
CPM - - - - - - 100% 

Table B.4. DT classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 71.25% 27% - 1.75% - - -
ASK4 12% 87.75% - 0.5% - - -
PSK2 - - 97.5% 2.5% - - -
PSK4 - - 3% 97% - - -
FSK2 - - - - 94.75% 5.25% -
FSK4 - - - - 13.25% 85.25% 1.25% 
CPM - - - - - - 100% 

Table B.5. DT classifier confusion matrix for signals at SNR = OdB (test set) 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 26.5% 11% 0.75% 61.75% - - -
ASK4 17% 40.5% - 42.5% - - -
PSK2 - - 83% 17% - - -
PSK4 - - 30% 70% - - -
FSK2 - - - - 99.75% 0.25% -
FSK4 - - - - 96.25% 2.75% 1% 
CPM - - - - - 4.25% 95.75% 
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Table B.6. DT classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 0.25% 0.25% 38.5% 61% - - 40.5% 
ASK4 - 0% 31% 69% - - 31% 
PSK2 - - 92.25% 7.75% - - -
PSK4 - - 92% 8% - - -
FSK2 - - - - 100% - -
FSK4 - - - - 100% - -
CPM - - - - 0.25% 26.75% 73% 

B.1.2 Classification of Signals within the CPM Signal Class 

Table B. 7. DT classifier confusion matrix for signals at SNR = 20dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 91.5% 8.5% -
CPM (L=l) 

Partial Response 31.33% 68.67% -
CPM (L=2) 

GMSK - - 100% 

Table B.8. DT classifier confusion matrix for signals at SNR = 15dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 90.83% 8.5% -
CPM (L=l) 

Partial Response 36% 64% -
CPM (L=2) 

GMSK - - 100% 
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Table B.9. DT classifier confusion matrix for signals at SNR = lOdB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM(L=2) 

Full Response 78.17% 21.83% -
CPM (L=l) 

Partial Response 30.17% 69.83% -
CPM (L=2) 

GMSK - - 100% 

Table B.10. DT classifier confusion matrix for signals at SNR = 5dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 100% - -
CPM (L=l) 

Partial Response 100% - -
CPM (L=2) 

GMSK 4% - 96% 

Table B.11. DT classifier confusion matrix for signals at SNR = OdB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 100% - -
CPM (L=l) 

Partial Response 100% - -
CPM (L=2) 

GMSK 21.5% - 78.5% 
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Table B.12. DT classifier confusion matrix for signals at SNR = -5dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 100% - -
CPM (L=l) 

Partial Response 100% - -
CPM (L=2) 

GMSK 49.75% - 50.25% 

B.2 Confusion Matrices for NN Classifier 

B.2.1 NN Classification of CPM Signals 

Table B.13. NN classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 100% - - - - - -
ASK4 - 100% - - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 100% - -
FSK4 - - - - 2.5 96.5% 1% 
CPM - - - - - - 100% 

Table B.14. NN classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 99.75% - 0.25% - - - -
ASK4 0.5% 99.25% 0.25% - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 100% - -
FSK4 - - - - 2% 96% 2% 
CPM - - - - - - 100% 
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Table B.15. NN classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 96.5% 3.5% - - - -
ASK4 5% 95% - - - - -
PSK2 - - 100% - - - -
PSK4 - - - 100% - - -
FSK2 - - - - 94.5% 5.5% -
FSK4 - - - - 1% 99% -
CPM - - - - - - 100% 

Table B.16. NN classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 82.29% 17.46% 0.25% - - - -
ASK4 21.45% 78.3% 0.25% - - - -
PSK2 - 0.5% 99.5% - - - -
PSK4 - 0.5% - 99.5% - - -
FSK2 - - - - 88.5% 11.5% -
FSK4 - - - - 3.5% 96.5% -
CPM - - - - - - 100% 

Table B.17. NN classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 57.63% 37.62% 1.25% 3.5% - - -
ASK4 40% 55.24% 1.25% 3.5% - - -
PSK2 - 9% 75.5% 15.5% - - -
PSK4 - 6% 9.5% 84.5% - - -
FSK2 - - - - 84.5% 15.5% -
FSK4 - - - - 54% 46% -
CPM - - - - - - 100% 
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Table B.18. NN classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM 

ASK2 51.15% 45.36% 2.75% 0.75% - - -
ASK4 54.04% 42.46% 2.75% 0.75% - - -
PSK2 - - 57% 43% - - -
PSK4 - - 32.5% 67.5% - - -
FSK2 - - - - 67.5% 32.5% -
FSK4 - - - - 69% 31% -
CPM - - - - - 9.5% 90.5% 

B.2.2 NN Classification of Signals Within the CPM Class 

Table B.19. Neural network 1 confusion matrix for signals at SNR = 20dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 88.83% 11.17% -
CPM (L=l) 

Partial Response 3.83% 96.17% -
CPM (L=2) 

GMSK - - 100% 

Table B.20. Neural network 1 confusion matrix for signals at SNR = 15dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 91.5% 8.5% -
CPM (L=l) 

Partial Response 20.83% 79% 0.17 
CPM (L=2) 

GMSK - - 100% 
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Table B.21. Neural network 1 confusion matrix for signals at SNR = lOdB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 79% 20.5% 0.5% 
CPM (L=l) 

Partial Response 25.17% 70% 4.83% 
CPM (L=2) 

GMSK 0.5% 13% 86.5% 

Table B.22. Neural network 1 confusion matrix for signals at SNR = 5dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 99.67% 0.33% -
CPM (L=l) 

Partial Response 97.85% 2.17% -
CPM (L=2) 

GMSK 97.5% 2.5% 0% 

Table B.23. Neural network 1 confusion matrix for signals at SNR = OdB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 85.5% 13.8% 0.67% 
CPM (L=l) 

Partial Response 87.5% 12.5% -
CPM (L=2) 

GMSK 86.5% 13% 0.5% 
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Table B.24. Neural network 1 confusion matrix for signals at SNR = -5dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 41.17% 45.33% 13.5% 
CPM (L=l) 

Partial Response 46% 40.17% 13.83% 
CPM (L=2) 

GMSK 53.5% 35% 11.5% 

Table B.25. Neural network 2 confusion matrix for signals at SNR = 20dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 95.5% 4.5% -
CPM (L=l) 

Partial Response 2% 98% -
CPM (L=2) 

GMSK - - 100% 

Table B.26. Neural network 2 confusion matrix for signals at SNR = 15dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 87% 13% -
CPM (L=l) 

Partial Response 5.5% 94.5% -
CPM (L=2) 

GMSK - - 100% 
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Table B.27. Neural network 2 confusion matrix for signals at SNR = lOdB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 75% 24.67% 0.33% 
CPM (L=l) 

Partial Response 20.5% 75.83% 3.67% 
CPM (L=2) 

GMSK 1% 8.5% 90.5% 

Table B.28. Neural network 2 confusion matrix for signals at SNR = 5dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 99.67% 0.33% -
CPM (L=l) 

Partial Response 0.5% 33.5% 66% 
CPM (L=2) 

GMSK - 15% 85% 

Table B.29. Neural network 2 confusion matrix for signals at SNR = OdB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 100% - -
CPM (L=l) 

Partial Response - 1.07% 98.33% 
CPM (L=2) 

GMSK - 0.5% 99.5% 
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Table B.30. Neural network 2 confusion matrix for signals at SNR = -5dB. 

Simulated Deduced Modulation Type 
Modulation Type 

Full Response CPM Partial Response GMSK 
(L=l) CPM (L=2) 

Full Response 100% - -
CPM (L=l) 

Partial Response 100% - -
CPM (L=2) 

GMSK - - 100% 
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Appendix C 
This Appendix presents the results of the DT and NN classifiers described in Chapter 7. 

C.1 Confusion Matrices for DT Classifier 

Table C.1. DT classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 100% - - - - - - - - - -
ASK4 - 100% - - - - - - - - -
PSK2 - - 100% - - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 97.5% 2.5% - - - - -
FSK4 - - - - 0.5% 99.5% - - - - -
CPM - - - - - - 100% - - - -

BP SK-SS - - - - - - - 100% - - -
QPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - 0.25% - - - - 99.75% 
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Table C.2. DT classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Tvoe 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 98.5% 1.5% - - - - - - - - -
ASK4 - 100% - - - - - - - - -
PSK2 - - 100% - - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 95.5% 4.5% - - - - -
FSK4 - - - - 1% 99% - - - - -
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
OPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100% 
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Table C.3. DT classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TOMA 

ASK2 89.75% 10.25% - - - - - - - - -
ASK4 1.5% 98.5% - - - - - - - - -
PSK2 - - 100% - - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 92.75% 7.25% - - - - -
FSK4 - - - - 0.75% 99.25% - - - - -
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
QPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TOMA - - - - - - - - - - 100% 
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Table C.4. DT classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 71.25% 27% - 1.75% - - - - - - -
ASK4 12% 87.75% - 0.5% - - - - - - -
PSK2 - - 98.75% 1.25% - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 94.25% 5.25% - - - - 0.5% 
FSK4 - - - - 13.25% 85% 1.5% - - - 0.25% 
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
OPSK-SS - - 0.25% 1.75% - - - - 98% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100% 



Table C.5. DT classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TOMA 

ASK2 26.5% 11% 0.75% 61.75% - - - - - - -
ASK4 17% 40.5% - 42.5% - - - - - - -
PSK2 - - 81.25% 18% - - - - 0.75% - -
PSK4 - - 25% 74.5% - - - 0.25% 0.25% - -
FSK2 - - - - 98% 0.25% - - - - 1.75% 
FSK4 - - - - 92.5% 2.75% 1% - - - 3.75% 
CPM - - - - - 4.25% 95.75% - - - -

BPSK-SS - - - 0.75% - - - 99.25% - - -
QPSK-SS - - - 14% - - - - 86% - -

FH-SS - - - - - - - - - 100% -
TOMA - - - - - - - - - - 100% 
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Table C.6. DT classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TOMA 

ASK2 0.25% 0.25% 38.5% 61% - - 40.5% - - - -
ASK4 - 0% 31% 69% - - 31% - - - -
PSK2 - - 84% 8% - - - - 8% - -
PSK4 - - 85% 8.25% - - - - 6.75% - -
FSK2 - - - - 85.25% - - - - - 14.75% 
FSK4 - - - - 83.25% - - - - - 16.75% 
CPM - - - - 0.25% 24% 65.75% - - - 10% 

BPSK-SS - - - 18.25% - - - 81.5% 0.25% - -
QPSK-SS - - - 21.5% - - - - 78.5% - -

FH-SS - - - - - - - - - 100% -
TOMA - - - - - - - - - - 100% 



C.2 Confusion Matrices for NN Classifier 

Table C.7. NN classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 99.5% 0.5% - - - - - - - - -
ASK4 - 100% - - - - - - - - -
PSK2 - - 100% - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 100% - - - - - -
FSK4 - - - - 2.5% 97.5% - - - - -
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
OPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100% 
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Table C.8. NN classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 99% - 1% - - - - - - - -
ASK4 - 100% - - - - - - - - -
PSK2 - - 100% - - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 100% - - - - - -
FSK4 - - - - 0.5% 99.5% - - - - -
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
QPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100% 
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Table C.9. NN classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 98.5% - 1.5% - - - - - - - -
ASK4 0.5% 99.5% - - - - - - - - -
PSK2 - - 100% - - - - - - - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 99.5% 0.5% - - - - -
FSK4 - - - - 1% 98.5% 0.5% - - - -
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
QPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 99.5% 0.5% 
TDMA - - - - - - - - - - 100% 
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Table C.10. NN classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 94% - 1% 4.5% - - - 05% - - -
ASK4 0.5% 99.5% - - - - - - - - -
PSK2 - - 87% 8% - - - 0.5% 4.5% - -
PSK4 - - - 100% - - - - - - -
FSK2 - - - - 99% 0.5% - - - - 0.5% 
FSK4 - - - - 2% 92.5% 4% - - - 1.5% 
CPM - - - - - - 100% - - - -

BPSK-SS - - - - - - - 100% - - -
QPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100% 



Table C.11. NN classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TDMA 

ASK2 38% - - 55% - - - 7% - - -
ASK4 0.5% 99.5% - - - - - - - - -
PSK2 - - 2% 94.5% - - - - 3.5% - -
PSK4 - - - 99.5% - - - - 0.5% - -
FSK2 - - - - 98.5% - - - - - 1.5% 
FSK4 - - - - 1% 75% 18.5% - - - 5.5% 
CPM - - - - - 2% 97.5% - - 0.5% -

BPSK-SS - - - - - - - 100% - - -
QPSK-SS - - - - - - - 42.5% 57.5% - -

FH-SS - - - - - - - - - 100% -
TDMA - - - - - - - - - - 100% 

237 



Table C.12. NN classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Tvoe 
ASK2 ASK4 PSK2 PSK4 FSK2 FSK4 CPM BPSK-SS QPSK-SS FH-SS TOMA 

ASK2 0% - 1% 86.5% - - - 3% 95% - -
ASK4 2.5% 97.5% - - - - - - - - -
PSK2 - - 55% 1.5% - - - - 43.5% - -
PSK4 - 0.5% 1.5% 55% - - - - 43% - -
FSK2 - - - - 89% - - - - - 11% 
FSK4 - - - - 2% 68% 9.5% - - 1.5% 19% 
CPM - - - - - 20% 65% - - 11.5% 3.5% 

BPSK-SS - - - - - - - - 100% - -
OPSK-SS - - - - - - - - 100% - -

FH-SS - - - - - - - - - 100% -
TOMA - - - - - - - - - - 100% 
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Appendix D 

This Appendix presents the results of the DT and NN classifiers described in Chapter 8. 

D.1 Confusion Matrices for DT Classifier 
Table D.1. DT classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 100% - - - - - - - - - - - - - -
ASK4 - 100% - - - - - - - - - - - - -
PSK2 - - 100% - - - - - - - - - - - -
PSK4 - - - 90.75% 9.25% - - - - - - - - - -
PSK8 - - - 1.25% 98.75% - - - - - - - - - -
FSK2 - - - - - 99.5% 0.5% - ·- - - - - - -
FSK4 - - - - - 9% 91% - - - - - - - -
FSK8 - - - - - - 25.25% 75.75% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 99.75% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table D.2. DT classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TOMA QAM8 QAMH 

SS SS 
ASK2 985% 15% - - - - - - - - - - - - -
ASK4 - 100% - - - - - - - - - - - - -
PSK2 0.25% - 99.75% - - - - - - - - - - - -
PSK4 0.25% - - 90% 9.75% - - - - - - - - - -
PSK8 - - - 2.25% 97.75% - - - - - - - - - -
FSK2 - - - - - 97.75% 2.25% - - - - - - - -
FSK4 - - - - - 7.25% 92.75% - - - - - - - -
FSK8 - - - - - - 23.5% 76.5% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 



Table D.3. DT classifier confusion matrix for signals at SNR = lOdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TOMA QAM8 QAM16 

SS SS 
ASK2 89.75% 10.25% - - - - - - - - - - - - -
ASK4 1.5% 98.5% - - - - - - - - - - - - -
PSK2 - - 100% - - - - - - - - - - - -
PSK4 0.25% - - 89.75% 10% - - - - - - - - - -
PSK8 - - - 3.25% 96.75% - - - - - - - - - -
FSK2 - - - - - 98.5% 1.5% - - - - - - - -
FSK4 - - - - - 5.25% 94.75% - - - - - - - -
FSK8 - - - - - - 17% 82.75% - - - - 0.25% - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - -- - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table D.4. DT classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 73% Zl% - - - - - - - - - - - - -
ASK4 12% 88% - - - - - - - - - - - - -
PSK2 - 0.25% 98.5% - 1.25% - - - - - - - - - -
PSK4 - - - 84.5% 15.5% - - - - - - - - - -
PSK8 - - - 7.25% 92.75% - - - - - - - - - -
FSK2 - - - - - 95.5% 2.5% 0.75% - - - - - - -
FSK4 - - - - - 4% 79.75% 16.25% - - - - - - -
FSK8 - - - - - 0.25% 2.5% 96% - - - - 1.25% - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
OPSK-SS - - - 1% - - - - - - 99% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - -- - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 



Table D.5. DT classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Tvoe 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAMHi 

SS SS 
ASK2 645% 355% - - - - - - - - - - - - -
ASK4 30.75% 69.25% - - - - - - - - - - - - -
PSK2 - - 81.25% 1.25% 16.75% - - - - - 0.75% - - - -
PSK.4 - - 25% 54% 20.5% - - - - - 0.5% - - - -
PSK8 - - 9.25% 55.25% 35.5% - - - - - - - - - -
FSK2 - - - - - 90% - - - - - - 10% - -
FSK4 - - - - - 71.5% 0% 22.5% - - - - 6% - -
FSK8 - - - - - 38.75% - 52.5% - - - - 8.75% - -
CPM - - - - - - - 6% 93.75% - - - 0.25% - -

BPSK-SS - - - 0.75% - - - - - 99.25% - - - - -
QPSK-SS - - - 15.25% - - - - - - 84.75% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - -- - - - - - - - - - - 100% -
QAM16 - - - - - - - - - - - - - - 100% 
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Table D.6. DT classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 165% 13.25% - - - - - - - - - - - - -
ASK4 22.25% 32% 10.5% 15.25% 19.5% - - - - 0.25% - - - - 0.25% 
PSK2 - - 84% 1% 7% - - - - - 8% - - - -
PSK4 - - 85% 6.5% 1.75% - - - - - 6.75% - - - -
PSK8 - - 83% 8.5% 1.25% - - - - 7.25% - - - - -
FSK2 - - - - - 72% - - - - - - 28% - -
FSK4 - - - - - 78.5% 0% - - - - - 28% - -
FSK8 - - - - - 74.75% - 0% - - - - 25.25% - -
CPM - - - - - - - 21% 68.75% - - - 10.25% - -

BPSK-SS - - - 16.75% 1.5% - - - - 81.75% - - - - -
QPSK-SS - - - 17.75% 6.25% - - - - - 76% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - 38.75% 9.25% 2.75% - - - - 2.25% - - - 47% -

QAM16 - - 55.25% 15% 3.75% - - - - - 1.25% - - - 24.75% 
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D.2 Confusion Matrices for NN Classifier 

Table D.7. NN classifier confusion matrix for signals at SNR = 20dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TOMA QAM8 QAM16 

SS SS 
ASK2 100% - - - - - - - - - - - - - -
ASK4 - 100% - - - - - - - - - - - - -
PSK2 0.7% - 99.3% - - - - - - - - - - - -
PSK4 0.7% - - 94.83% 4.97% - - - - - - - - - -
PSK8 0.7% - - 3.48% 95.82% - - - - - - - - - -
FSK2 - - - - - 99% 1% - - - - - - - -
FSK4 - - - - - 6.5% 93% 0.5% - - - - - - -
FSK8 - - - - - - 13% 87% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.7% - - - - - - - - 99.3% - - - - -
QPSK-SS 0.7% - - - - - - - - - 99.3% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 

245 



Table D.8. NN classifier confusion matrix for signals at SNR = 15dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 100% - - - - - - - - - - - - - -
ASK4 0.5% 99.5% - - - - - - - - - - - - -
PSK2 0.7% - 98.31 % 0.5% 0.5% - - - - - - - - - -
PSK4 0.7% - - 93.34% 5.96% - - - - - - - - - -
PSK8 0.7% - - 3.97% 95.33% - - - - - - - - - -
FSK2 - - - - - 98.5% 1.5% - - - - - - - -
FSK4 - - - - - 3.5% 95% 1.5% - - - - - - -
FSK8 - - - - - - 9.5% 90.5% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.7% - - - - - - - - 99.3% - - - - -
QPSK-SS 0.7% - - - - - - - - - 99.3% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 



Table D.9 NN classifier confusion matrix for signals at SNR = lOclB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 965% 35% - - - - - - - - - - - - -
ASK4 5% 95% - - - - - - - - - - - - -
PSK2 0.4% - 99.1% - 0.5% - - - - - - - - - -
PSK4 0.4% - - 93.62% 5.98% - - - - - - - - - -
PSK8 0.4% - - 9.96% 89.64% - - - - - - - - - -
FSK2 - - - - - 96% 4% - - - - - - - -
FSK4 - - - - - 0.5% 94.5% 5% - - - - - - -
FSK8 - - - - - - 4.5% 95.5% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.4% - - - - - - - - 99.6% - - - - -
QPSK-SS 0.4% - - - - - - - - - 99.6% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table D.10. NN classifier confusion matrix for signals at SNR = 5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TOMA QAM8 QAMH 

SS SS 
ASK2 825% 175% - - - - - - - - - - - - -
ASK4 21.5% 78.5% - - - - - - - - - - - - -
PSK2 0.2% - 98.3% - 1.5% - - - - - - - - - -
PSK4 0.2% - - 86.83% 13% - - - - - - - - - -
PSK8 0.2% - - 15% 84.83% - - - - - - - - - -
FSK2 - - - - - 89% 11% - - - - - - - -
FSK4 - - - - - - 88% 12% - - - - - - -
FSK8 - - - - - - 2.5% 97.5% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.2% - - - - - - - - 99.8% - - - - -
QPSK-SS 0.2% - - - - - - - - - 99.8% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table D.11. NN classifier confusion matrix for signals at SNR = OdB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 RAM16 

SS SS 
ASK2 ffi35% 39.4% - - - - - - - - - - - - 025% 
ASK4 41.89% 57.86% - - - - - - - - - - - - 0.25% 
PSK2 0.3% - 95.71% 1.5% 1% - - - - - 1.5% - - - -
PSK4 0.3% - 2.5% 68.29% 28.5% - - - - - 0.5% - - - -
PSK8 0.3% - 2.5% 59.32% 37.39% - - - - - 0.5% - - - -
FSK2 - - - - - 79.5% 20.5% - - - - - - - -
FSK4 - - - - - 9.5% 73% 17.5% - - - - - - -
FSK8 - - - - - 0.5% 12.5% 87% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.3% - - - - - - - - 99.7% - - - - -
QPSK-SS 0.3% - - - - - - - - - 99.7% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table D.12. NN classifier confusion matrix for signals at SNR = -5dB (test set). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 50.8% 45.1% 3.6% - - - - - - - - - - - 05% 
ASK4 53.7% 42.2% 3.6% - - - - - - - - - - - 0.5% 
PSK2 0.1% - 72.4% 13.5% 10% - - - - - 4% - - - -
PSK.4 0.1% - 4.5% 65.9% 26.97% - - - - - 2.5% - - - -
PSK8 0.1% - 5% 59.94% 32% - - - - - 3% - - - -
FSK2 - - - - - 79.5% 20.5% - - - - - - - -
FSK4 - - - - - 9.5% 73% 17.5% - - - - - - -
FSK8 - - - - - 0.5% 12.5% 87% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.1% - - - - - - - - 99.9% - - - - -
QPSK-SS 0.1% - 2.5% 5.5% - - - - - - 91.9% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
OAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 



Appendix E 
This Appendix presents the results of the DT and NN classifiers described in Chapter 9. 

E.1 Confusion Matrices for DT Classifier (Rayleigh Fading) 

Table E.1 DT classifier confusion matrix for signals at SNR = 20dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 100% - - - - - - - - - - - - - -
ASK4 - 100% - - - - - - - - - - - - -
PSK2 0.25% - 99.75% - - - - - - - - - - - -
PSK4 - - - 99.75% 0.25% - - - - - - - - - -
PSK8 - - - 6.75% 93.25% - - - - - - - - - -
FSK2 - - - - - 100% - - - - - - - - -
FSK4 - - - - - 16.25% 79.5% 4.25% - - - - - - -
FSK8 - - - - - 6.5% 78.5% 15% - - - - - - -
CPM - - - - - 7.75% - - 92.25% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.2. DT classifier confusion matrix for signals at SNR = 15dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Tvoe 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 9()% 1% - - - - - - - - - - - - -
ASK4 - 100% - - - - - - - - - - - - -
PSK2 0.25% - 99.75% - - - - - - - - - - - -
PSK4 0.5% 0.25% - 99.25% - - - - - - - - - - -
PSK8 0.25% - - 9.75% 89% - - - - - - - - 1% -
FSK2 - - - - - 100% - - - - - - - - -
FSK4 - - - - - 16.25% 74.5% 9% 0.25% - - - - - -
FSK8 - - - - - 5% 69.5% 25.5% - - - - - - -
CPM - - - - - 5% - - 95% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.3. DT classifier confusion matrix for signals at SNR = lOdB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TOMA QAM8 QAMH 

SS SS 
ASK2 89.25% 16.75% - - - - - - - - - - - - -
ASK4 2% 98% - - - - - - - - - - - - -
PSK2 0.5% - 99.5% - - - - - - - - - - - -
PSK4 - - - 98% 2% - - - - - - - - - -
PSK8 - - - 19% 80.5% - - - - - - - - - 0.5% 
FSK2 - - - - - 100% - - - - - - - - -
FSK4 - - - - - 13.5% 67.75% 18.75% - - - - - - -
FSK8 - - - - - 7.5% 46.75% 45.25% 0.5% - - - - - -
CPM - - - - - 5.5% - - 94.5% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - 0.25% - - - - - - 99.75% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.4. DT classifier confusion matrix for signals at SNR = 5dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAMH 

SS SS 
ASK2 71.75% 28.25% - - - - - - - - - - - - -
ASK4 12.75% 87.25% - - - - - - - - - - - - -
PSK2 - - 100% - - - - - - - - - - - -
PSK.4 - - - 65.25% 34.75% - - - - - - - - - -
PSK8 - - - 20.5% 79.5% - - - - - - - - - 0.5% 
FSK2 - - - - - 46% 50.25% 3.25% - - - - 0.5% - -
FSK4 - - - - - 8.25% 52% 38.5% - - - - - - -
FSK8 - - - - - 5.25% 32.25% 60.25% 2.25% - - - - - -
CPM - - - - - 0.5% - - 99.5% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.5. DT classifier confusion matrix for signals at SNR = OdB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 ({i25% 33.75% - - - - - - - - - - - - -
ASK4 30.25% 69.75% - - - - - - - - - - - - -
PSK2 0.25% - 99.75% - - - - - - - - - - - -
PSK4 - - - 21.25% 78.75% - - - - - - - - - -
PSK8 - - - 16.25% 83.5% - - - - - 0.25% - - - -
FSK2 - - - - - 7.5% 20.5% 70.5% 0.25% - - - 1.25% - -
FSK4 - - - - - 1.25% 1.25% 96% - - - - 1.25% - -
FSK8 - - - - - 1.25% 2% 94% - - - - 2.75% - -
CPM - - - - - - - 5.5% 94.5% - - - - - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 0.25% - - - - - - - - - - - - 99.5% -

QAM16 0.5% - - 0.25% 0.25% - - - - - - - - - 99% 
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Table E.6. DT classifier confusion matrix for signals at SNR = -5dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 IQAM16 

SS SS 
ASK2 15% 6.75% - 77.25% - - - - - - - - - 0.75% 025% 
ASK4 28.25% 23% - 48.25% - - - - - - 0.5% - - - -
PSK2 - - 0% 6% 32.25% - - - - - 1.75% - - - -
PSK4 - - - 62.75% 36% - - - - - 1.25% - - - -
PSK8 - - - 64.5% 35.25% - - - - - 0.25% - - - -
FSK2 - - - - - 89.5% - 0.25% - - - - 10.25% - -
FSK4 - - - - - 88% - - - - - - 12% - -
FSK8 - - - - - 86.75% - 0% - - - - 13.25% - -
CPM - - - - - - 0.25% 22.25% 75% - - - 2.5% - -

BPSK-SS - - - - - - - - - 100% - - - - -
OPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 1.25% - - 24.25% 38.5% - - - - 0.25% - - - 35.75% -

OAM16 - 2.25% - 36.5% 41% - - - - - - - - - 20.25% 
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E.4 Confusion Matrices for NN Classifier (Rayleigh Fading) 

Table E.7. NN classifier confusion matrix for signals at SNR = 20dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 ~AM16 

SS SS 
ASK2 100% - - - - - - - - - - - - - -
ASK4 - 100% - - - - - - - - - - - - -
PSK2 2.7% - 90.98% 2.92% 3.41% - - - - - - - - - -
PSK4 2.7% - - 91.46% 5.84% - - - - - - - - - -
PSK8 2.7% - 2.92% 1.46% 91.95% - - - - 0.97% - - - - -
FSK2 - - - - - 100% - - - - - - - - -
FSK4 - - - - - 5% 70% 25% - - - - - - -
FSK8 - - - - - 2% 30% 68% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 2.7% - - - - - - - - 97.3% - - - - -
QPSK-SS 2.7% - - - - - - - - - 97.3% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.8. NN classifier confusion matrix for signals at SNR = 15dB (Doppler spread = 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 ~AM16 

SS SS 
ASK2 100% - - - - - - - - - - - - - -
ASK4 0.5% 99.5% - - - - - - - - - - - - -
PSK2 1.9% - 94.18% 2.45% 1.47% - - - - - - - - - -
PSK4 1.9% - - 96.14% 1.96% - - - - - - - - - -
PSK8 1.9% - - 2.45% 95.65% - - - - - - - - - -
FSK2 - - - - - 100% - - - - - - - - -
FSK4 - - - - - 5.5% 77% 17.5% - - - - - - -
FSK8 - - - - - 1% 33% 66% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 1.9% - - - - - - - - 98.1% - - - - -
QPSK-SS 1.9% - - - - - - - - - 98.1% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 



Table E.9. NN classifier confusion matrix for signals at SNR = lOdB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAMH 

SS SS 
ASK2 965% 35% - - - - - - - - - - - - -
ASK4 5% 95% - - - - - - - - - - - - -
PSK2 0.8% - 96.72% 1.49% 0.99% - - - - - - - - - -
PSK4 0.8% - - 93.25% 5.95% - - - - - - - - - -
PSK8 0.8% - 0.5% 5.46% 93.25% - - - - - - - - - -
FSK2 - - - - - 99.5% 0.5% - - - - - - - -
FSK4 - - - - - 6% 84% 10% - - - - - - -
FSK8 - - - - - 3.5% 46% 50.5% - - - - - - -
CPM - - - - - - - - 100% - - - - - -

BPSK-SS 0.8% - - - - - - - - 99.2% - - - - -
QPSK-SS 0.8% - - - - - - - - - 99.2% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.10. NN classifier confusion matrix for signals at SNR = 5dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TOMA QAM8 QAMHi 

SS SS 
ASK2 825% 175% - - - - - - - - - - - - -
ASK4 21.5% 78.5% - - - - - - - - - - - - -
PSK2 - - 98.5% 0.5% 1% - - - - - - - - - -
PSK4 - - 0.5% 79% 20.5% - - - - - - - - - -
PSK8 - - 1% 6% 93% - - - - - - - - - -
FSK2 - - - - - 98.5% 1.5% - - - - - - - -
FSK4 - - - - - 7% 53% 40% - - - - - - -
FSK8 - - - - - 6.5% 27% 66.5% - - - - - - -
CPM - - - - - - - - 99.5% - - - 0.5% - -

BPSK-SS - - - - - - - - - 100% - - - - -
QPSK-SS - - - - - - - - - - 100% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 - - - - - - - - - - - - - 100% -

QAM16 - - - - - - - - - - - - - - 100% 
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Table E.11. NN classifier confusion matrix for signals at SNR = OdB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK2 ASK4 PSK2 PSK4 PSK8 FSK2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 605% 395% - - - - - - - - - - - - -
ASK4 42% 58% - - - - - - - - - - - - -
PSK2 0.3% - 93.72% 2% 3.99% - - - - - - - - - -
PSK4 0.3% - 3.49% 58.32% 37.89% - - - - - - - - - -
PSK8 0.3% - 3.49% 30.91% 65.3% - - - - - - - - - -
FSK2 - - - - - 95% 4% 1% - - - - - - -
FSK4 - - - - - 21.5% 54% 24.5% - - - - - - -
FSK8 - - - - - 15% 45.5% 39.5% - - - - - - -
CPM - - - - - - - - 99% - - - 1% - -

BPSK-SS 0.3% - - - - - - - - 99.7% - - - - -
OPSK-SS 0.3% - - - - - - - - - 99.7% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TOMA - - - - - - - - - - - - 100% - -
QAM8 2% - - - - - - - - - - - - 98% -

QAM16 - 0.5% - - - - - - - - - - - - 99.5% 
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Table E.12. NN classifier confusion matrix for signals at SNR = -5dB (Doppler spread= 120 Hz). 

Simulated Deduced Modulation Type 
Modulation 

Type 
ASK.2 ASK4 PSK2 PSK4 PSK8 FSK.2 FSK4 FSK8 CPM BPSK- QPSK- FH-SS TDMA QAM8 QAM16 

SS SS 
ASK2 462% 533% - - - - - - - - - - - 05% -
ASK4 61.1% 38.4% - - - - - - - - - - - 0.5% -
PSK2 0.1% - 63.4% 14.49% 21.98% - - - - - - - - - -
PSK4 0.1% - 7.99% 56.9% 34.47% - - - - 0.5% - - - - -
PSK8 0.1% - 11.99% 47.45% 39.5% - - - - 1% - - - - -
FSK.2 - - - - - 79.5% 19.5% 1% - - - - - - -
FSK4 - - - - - 35.5% 39.5% 25% - - - - - - -
FSK8 - - - - - 32% 31.5% 36.5% - - - - - - -
CPM - - - - - - - - 97.5% - - - 2.5% - -

BPSK-SS 0.1% - - - 0.5% - - - - 99.4% - - - - -
QPSK-SS 0.1% - 1% - - - - - - - 98.9% - - - -

FH-SS - - - - - - - - - - - 100% - - -
TDMA - - - - - - - - - - - - 100% - -
QAM8 11% - - - - - - - - - - - - 89% -

QAM16 - 11% - - - - - - - - - - - - 89% 
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