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ABSTRACT 

Troposphere delay is one of the main distance-dependent errors in Global Navigation 
Satellite Systems (GNSS) observations. Precise estimation of the troposphere wet delay is 
necessary to aid ambiguity resolution and for positioning in network Real-Time Kinematic (RTK) 
and Precise Point Positioning. Wet tropospheric estimates can also serve as a source of 
atmospheric information to facilitate weather forecasting. Interpolation of the troposphere wet delay 
is thus required when its estimation is interrupted for short periods or when data are processed at 
higher intervals from that of available data. The objective of this research is to compare the 
performance of several interpolation methods that can be used in order to suggest the most 
appropriate technique. Six interpolation models were considered. The models ranged from the 
easy-to-implement linear model, to the more sophisticated Kriging model. Other models considered 
are the cubic spline interpolation, cubic Hermite polynomial interpolation, Lagrange polynomial 
interpolation, and Fast Fourier transform interpolation. The performance of these methods was 
assessed by comparing their results with actual troposphere wet delay data collected at the station 
Onsala (ONSA) in Sweden. As the number of observations used to generate the interpolation 
process affects the determination of the model coefficients; the use of different lengths of 
observations was investigated. The number of missing wet delay values considered for 
interpolation during testing ranged from one to four in a row.  

Test results showed that the linear interpolation, the cubic Hermite polynomial and fast 
Fourier transform models produce better estimates than splines and ordinary Kriging. The 
Lagrange polynomials method was the poorest performer. The paper provides explanation of the 
interpolation results achieved by linking them with autocorrelation of the troposphere wet delays.  
 
KEYWORDS: 1. GNSS    2. Precise Positioning   2. Troposphere wet Delay   4. Interpolation 
 

1 INTRODUCTION 

Signal delays induced by the troposphere are generally known as tropospheric refractions or 
tropospheric delays. A tropospheric delay can be divided into hydrostatic (dry) and wet 
components. In GNSS data processing at a specific site, instead of dealing with multiple 
tropospheric delays along line-of-sights between the receiver and each satellite, these delays are 
usually mapped to a single value along the zenith direction using a mapping function. The zenith 
hydrostatic delay (ZHD) can be estimated with external models to within a millimetre in accuracy 
(e.g., Saastamoinen, 1972), and be subtracted from the estimated tropospheric delay, leaving 
behind the zenith wet delay (ZWD) component, which is mostly due to the atmospheric water 
vapour. The ZWD can then be used to determine the precipitable water vapour (PWV) for a given 
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site. A receiver at a nearby location can also make use of this ZWD estimates for accurate 
positioning. 

Although the wet delay accounts for only 10% of the total delay, it is far more difficult to 
model or remove due to the lack of knowledge regarding the distribution of the water vapour in the 
atmosphere. The temporal and spatial variability of the water vapour ensures that the wet delay 
cannot be consistently modelled with millimetre precision by any existing tropospheric model. The 
Global Navigation Satellite System (GNSS) and water vapour radiometers (WVRs) are two of the 
most effective tools in estimating atmospheric ZWD. Both techniques are able to estimate the ZWD 
to within 10 mm or  less than 2 mm in PWV (e.g., Haefele et al., 2004; Liu et al., 2005; Mattioli et 
al., 2005; Wang et al., 2007). Once estimated, the ZWD can be applied in other GNSS-related 
areas such as near real-time or real-time kinematic (RTK) GNSS applications. If a network of 
reference stations (or a single reference station) is able to provide accurate and precise ZWD 
estimates in a timely manner, these estimates can then be used by a mobile or static user at an 
unknown location to improve ambiguity resolution, and ultimately, the position solutions. 

The benefits of good tropospheric solutions can also extend to aiding Numerical Weather 
Prediction (NWP) models to provide better weather forecasts. The impact of GNSS PWV estimates 
on weather forecasting is well documented (e.g., Kuo et al., 1996; Vedel and Huang, 2003; 
Gutman et al., 2004; Vedel and Huang, 2004; Smith et al., 2006; Macpherson et al., 2007). These 
studies reported improvements in the humidity and precipitation forecasts when GNSS PWV 
estimates are assimilated into NWP models. Comparisons between the estimates from a NWP 
model with and without GNSS PWV estimates assimilation were made and the improvement in 
relative humidity (RH) forecasts lead to a 40% reduction of forecast errors (Gutman and Benjamin, 
2001). The impact of GNSS PWV estimates was further emphasised by a multi-year experiment 
over the period from 1999-2004 by Smith et al. (2006), whereby improvements were evident in the 
6-h and 12-h RH forecasts.  

A well-defined statistical description for the GNSS-derived tropospheric estimates is 
important for NWP modelling. The autocorrelations describe the temporal correlations between 
pairs of GNSS tropospheric estimates in a time series (TS), as a function of time differences (Borre 
and Tiberius, 2000). These correlations need to be defined for the eventual assimilation of the 
GNSS tropospheric estimates into NWP model, especially for the weighting of past data in a bias 
reduction scheme (e.g., Stoew et al., 2007). Furthermore, the autocorrelation time length can be 
used in recursive data processing procedures such as GM Kalman filtering (KF) with state vector 
augmentation (e.g., Borre and Tiberius, 2000). Studying the autocorrelation of ZWD can also help 
in selection of the proper model for its interpolation at a specific instance between known values in 
the time domain.  

2 AUTOCORRELATION OF ZENITH WET DELAY 

To better understand the temporal correlations that exist among the tropospheric delay estimates, 
autocorrelation analysis of the ZWD values estimated from WVR is performed over station ONSA 
in Sweden, which is also an International GNSS Service (IGS) station. The WVR at ONSA was 
appropriate for this study as it provided ZWD data at a high frequency (every 8 seconds). In this 
autocorrelation study, WVR ZWD were sampled every hour and at every 10-min interval. These 
data were analysed with a 12-h time interval and over three different days on September 10th, 13th 
and 16th in 2003. A 12-h window ensures a first-order stationarity in the Time Series (TS) of data. 
Stationary TS refers to a process whose parameters, such as the mean and variance, remain fairly 
constant over time and space (Wei, 2006). Hence, the corresponding autocorrelation of a 
stationary TS value can then be deemed constant in any time interval within the 12-h window. The 
autocorrelation plots are given by Figures 1-3. In these figures, autocorrelation values that lie 
between the red dotted lines, which represent a 95% confidence interval, are deemed insignificant. 
Each unit of lag for the left-sided figures represents a 1 hour period and for the right-sided figures 
the unit lag is a 10-min period. The summary statistics for both the 1-h ZWD and 10-min ZWD data 
sets are given in Table 1. The results of the autocorrelation analysis between the ZWDs, sampled 
at different rates, were then compared and summarised in Table 2. 
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Table 1  Mean and standard deviation (cm) of the WVR ZWD sampled at different time intervals 

Sampling 
Rate 

Mean and Standard Deviation (cm) 

Sep-10 Sep-13 Sep-16 

10-min 13.5 (1.3) 10.4 (1.0) 13.0 (2.8) 

1-h 13.6 (1.5) 10.4 (1.0) 13.1 (3.1) 

 
 

Table 2  Comparison between the time lengths for significant autocorrelation of the 
WVR ZWD sampled at different time intervals 

Sampling 
Rate 

Time length with Significant Autocorrelation 

Sep-10 Sep-13 Sep-16 

10-min 1-h 30-min 1-h 50-min 2-h 

1-h 1-h 1-h 2-h 
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Figure 1: Autocorrelation plot of WVR ZWDs, sampled hourly (left) and at every  

10-min interval (right), over ONSA on Sept 10 
 
 

Lag

A
u
to
c
o
rr
e
la
t
io
n

654321

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u
to
c
o
rr
e
la
t
io
n

35302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

 
Figure 2: Autocorrelation plot of WVR ZWDs, sampled hourly (left) and at every  

10-min interval (right), over ONSA on Sept 13 
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Figure 3: Autocorrelation plot of WVR ZWDs, sampled hourly (left) and at every  

10-min interval (right), over ONSA on Sept 16 
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Although the analysis of 10-min WVR ZWDs involved a greater number of observations than 
the hourly ZWDs (72 total observations as compared to 12), there are minimal differences between 
the means and standard deviations of the two sets of data (Table 1). Comparison between Figures 
1-3 also shows that the shape of the autocorrelation plots are maintained even when greater 
number of observations is sampled within the same period. Similarities between the time lengths 
for significant correlation are also observed for both sets of data in Table 2. On Sept 10th and 13th, 
both data sets agreed that the autocorrelations are insignificant when the lag is greater than 2-h. 
However, the 10-min ZWD data set appeared to provide a more precise estimate of the 
autocorrelation time lag due to the higher sampling rate.  

The results above show that the existence of autocorrelations among the tropospheric 
estimates is evident. The autocorrelations are generally significant for estimates that are within the 
1-h to 2-h lag. An average lag value of 1.7 hours is observed at ONSA. Based on these 
autocorrelation results, the following sections will investigate several possible interpolation 
methods for ZWD estimates.  

 

3 INTERPOLATION OF ZENITH WET DELAYS 

Six models are considered in this study for interpolation of ZWDs. The descriptions of these 
models are outlined briefly in the following sub-sections. The models range from the easy-to-
implement linear interpolant, to an ordinary linear Kriging model. For the purpose of this 
investigation, the actual and estimated ZWD at time it  (where i = 0, 1, …, n) are denoted as 

( )itZWD  and ( )itDŴZ , respectively, where (n+1) is the total number of ZWD values. A set of (n+1) 

ZWD observations is denoted by ( ){ }n
0iitZWD = ; kt  denotes the time at which it is required to 

interpolate a value for ZWD. 
 

3.1 Linear Interpolation 

The linear interpolation (LI) method fits a linear function between each pair of ZWD points 

( ){ ,tZWD i ( )}1itZWD +  and returns the values of the estimated ZWD, ( )ktDŴZ , at a specified value 

of time kt , where 1iki ttt +<< (e.g., Benesty et al., 2004). The estimated ZWD can be formulated as: 

 

( ) ( ) ( )iikk tZWDttmtDŴZ +−=   (1) 

 
where 

( ) ( )
i1i

i1i

tt

tZWDtZWD
m

−
−

=
+

+    (2) 

 
3.2 Cubic Spline Interpolation 

For a set of ( ){ }n
0iitZWD =  observations, a cubic spline (CS) ZWD interpolant, ( )ktDŴZ , 

between the time interval [ ,t i ]1it +  can be given as (e.g., Burden and Faires, 2004): 

 

,)tt(d)tt(c)tt(ba)t(DŴZ 3

iki

2

ikiikiik −+−+−+=  for 1n...,,1,0i −=    (3) 

 
where, 

( )ii tZWDa = ; ;
3

)cc2(h

h

)aa(
b 1iii

i

i1i
i

++ +
−

−
=  ;

h3

)cc(
d

i

i1i
i

−
= +  i1ii tth −= +   (4) 
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The coefficients { } 1n

0ii
c

−

=  are determined by solving a linear system of equations given by: 

 

1i

1ii

i

i1i
1iiii1i1i1i h

)aa(3

h

)aa(3
chc)hh(2ch

−

−+
+−−−

−
−

−
=++ ,  for 1n...,,1,0i −=       (5) 

 
To implement the CS interpolation a minimum of three ZWD observations are needed. 
 
3.3 Cubic Hermite Polynomial Interpolation 

For any pair of epochs [ ,t i ]1it + , the cubic Hermite polynomial (CHP) interpolant, )t(DŴZ k , 

between the given points can be estimated as (e.g., Burden and Faires, 2004): 
 

( ) ( ) ( ) ( ) ( )1ik

2

ik3

2

ik2ik1ik ttttfttfttftZWD)t(DŴZ +−−+−+−+=    (6) 
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   (7) 

 
3.4 Lagrange Polynomial Interpolation 

For a set of ( ){ }n
0iitZWD =  observations there exists a unique polynomial )t(P of a degree n≤

such that (Burden and Faires, 2004): 
   

 ( ) ( )kk tPtDŴZ =  for each i = 0, 1, …, n-1   (8) 

 
The Lagrange polynomial (LP) is given by: 
 

 ( ) ( ) ( )∑=++=
=

n

0i
ki,nikn,nnk0,n0k )t(LtZWD)t(LtZWD)t(LtZWD)t(P L   (9) 

where 

∏
−

−
=

−−−−−
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=
≠
=+−
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n

ij
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ki,n

)tt(

)tt(

)tt()tt)(tt()tt)(tt(
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LL
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3.5 Fast Fourier Transform Interpolation 

To use the fast Fourier transform (FFT) method for the interpolation of the ZWDs, a vector of 

ZWD observations [ ] ( ){ }n
1iitZWDZWD ==  of length n (sampled at equally spaced points) is firstly 

transformed to the discrete Fourier transform vector ZWDF using the algorithm  given by (Frigo and 

Johnson, 1998): 
 

( ) ( )( )∑
=

−−=
n

1i

1t1i
niZWD vtZWDF   (11) 

 

where nv is the complex n
th root of unity (with 1j −= ) defined by: 

 

n
j2

n ev
π−

=    (12) 
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The next step of the process is to calculate the inverse Fourier transform vector 

[ ] ( ){ } ,tDŴZDŴZ
N

1ii ==  i.e. the interpolated value) by using the following expression for a user-

specified value of N: 
 

[ ] ( )( )∑
=

−−−







=

N

1i

1t1i
NZWDvF

N

1
DŴZ    (13) 

 
If Nn < , the vector ZWDF  is padded with trailing zeros to a length of ,N  prior to applying the 

inverse transformation defined by Eq. (13). If Nn > , ZWDF  is truncated to the specified length. In this 

investigation, N is given as: 
 

×= nN (number of interpolated observations)   (14) 
 

3.6 Ordinary One-dimension Kriging Interpolation 

Kriging’s method is known as a best linear unbiased estimator as it estimates the value of a 
random function at a point as a linear combination of the values at the sample points whilst 
minimizing the error variance. The method assumes that the closer the input parameters are, the 
more correlated the observations are. With this concept, it is then worthwhile exploring whether 
Kriging is appropriate as ZWD interpolator whereby time t is the input parameter. More precisely, 
the use of ordinary Kriging is investigated in its simplest one-dimensional form to determine its 
usefulness for interpolating ZWD.  

Ordinary Kriging interpolation is performed by using a two-component predictor. The first 
component can be viewed as the generalised least-squares (LS) estimate while the second 
component is treated as the realisation of a Gaussian process. The ZWD can be modelled  at time 
(t) as (Sacks et al., 1989): 

( ) ∑
=

+β=
p

1j
jj )t(Z)t(htZWD    (15) 

where hj’s are the pre-determined functions of time; p is the number of unknown parameter; jβ ’s 

are unknown coefficients to be estimated. The Gaussian process, Z(t) , is assumed to have zero 
mean and a covariance that can be estimated as: 

 
( ) ( )2i1i

2
2i1it t,tRt,tCovV σ==    (16) 

between times 1it  and 2it ; 
2σ  is the a-priori variance of the model in Eq. (16), and ( )2i1i t,tR  is the 

correlation, whose form can be given by: 

( ) ( )q2i1i tt

2i1it et,tRR −θ−==    2q0 ≤<    (17) 

In this study, the variable q is selected to equal two to indicate Euclidian norm, whilst the 
unknown parameter θ  is to be estimated. Additionally, the first component of Eq. (15) can be 
simplified as an unknown coefficient µ̂ , and the ordinary Kriging model can be formulated as 
(Morris et al, 1995): 

 

( ) ( )tZˆtDŴZ +µ=    (18) 

The use of µ̂ , instead of  ∑
=

β
p

1j
jj )t(h , will result in less computational effort with no significant model 

degradation (Sacks et al., 1989).  



431 

 

 
Given a set of times { ,tt 0= ,t2 ..., }nt  and the corresponding (n+1) vector of ZWD estimates,

( ) ( ){ ,tZWDtZWD 0= ( ),tZWD 2 ...,  ( )}TntZWD , the best linear unbiased predictor (BLUP) at time kt

can be written as (Sacks et al., 1989): 

( ) ( )( )µ−+µ= − ˆHtZWDVvˆtDŴZ 1
t

T
tk k

  (19) 

 

where 

( ) [ ),t(ZCovV iijt =  ])t(Z j , [{ ,)t(ZCovv k
T
tk
= ])t(Z 1 ...., [ ),t(ZCov k ]})t(Z n  

 ( )( ) ( )tZWDVHVHHˆ T1T −
=µ    (20) 

 

and H  being a (n+1) vector of ones. In general, 
2σ  and θ  in Eqs. (17) and (18) are unknowns. 

They can be estimated by a method equivalent to the empirical Bayes approach (Koehler and 
Owen, 1996), which finds the parameters that are most consistent with the observed data. Since 

( )tZ  is Gaussian, the maximum likelihood estimation (MLE) method can be used to estimate 2σ  

and θ  (Koehler and Owen, 1996). The MLE of 2σ is given as: 
 

( )( ) ( )( )
1n

HˆtZWDRHˆtZWD
ˆ

1
t

T

2

+

µ−µ−
=σ

−

  (21) 

The maximum likelihood estimation of θ is a one-dimensional optimisation problem of the form: 

( ) ( ) ( )( )[ ]t
2

R
Rdetlnˆlnn2/1max

1
+σ−

∈θ
,          

subject to ∞≤θ≤0                                   (22) 

A nonlinear optimisation subroutine can usually solve Eq. (22) with respect to the parameter 
θ (Koehler and Owen, 1996). Once the optimal value of θ  is obtained, it can then be substituted 
back into Eq. (17), and be used to determine tV and µ̂ . The predictor ( )ktZWD  in Eq. (19) can 

then be completely determined. 
 

4 TESTING AND ANALYSIS OF METHODS FOR ESTIMATING MISSING ZENITH WET 
DELAY OBSERVATIONS 

4.1 Test Description  

 The purpose of this section is to identify the best method of interpolating ZWD data for 
missing periods or when processing data at a different interval from which ZWD are available. The 
performances of all the aforementioned interpolation methods given in Sections 3.1-3.6 are 
assessed and inter-comparisons between the models are made using the ONSA ZWD data for the 
period September 10-22, 2004. The ZWD data is determined from a solution of GNSS data of a 
baseline between the IGS stations Onsala- Wettzell (ONSA-WZTR). The baseline length between 
the two stations is approximately 920km, which allows the “absolute” tropospheric estimation to be 
determined. The two stations were constrained to within 0.0001m. The data were collected for a 3-
hr window session with sampling interval of the data was 5 minutes. The data were processed with 
the Bernese GNSS software package (Hugentobler et al., 2001). Data included in the processing 
also comprises the IGS products concerning the monitoring stations, satellite ephemerides, Earth 
Orientation Parameters, coordinates and velocity of ground stations, antenna phase centre offsets 
and variations. During processing, satellite and receiver clock offsets and the tropospheric zenith 
delay were estimated. The processing parameters include a cut-off elevation angle of 15 degrees, 
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the use of Niell mapping functions (Niell, 1996) and the Saastamoinen tropospheric model 
(Saastamoinen, 1972), which was employed to provide a-priori ZTD estimates. The observations 
were weighted using the elevation-angle dependent model. The ionosphere-free linear combination 
was implemented to mitigate the ionospheric residual errors. The final GNSS solution produced 
ZWD with RMSE of 12 mm. Figure 4 shows the time sequence of the ZWD data used in this study.  
 
 

 
Figure 4: GNSS ZWD estimates at ONSA 

 
The number of ZWD observations used to generate the interpolation models impacts the 

determination of the model coefficients, and consequently the accuracy of the interpolated ZWD 
observations. Thus, in this investigation, different sets of observations were used to construct the 
tested models. The number of pre-determined data points, ZWDm , used to generate these models 

ranged from 4 to 48, i.e. {4mZWD ∈ , 6, 8, 12, 18, 24, 30, 36, 40, 44, }48 .  Additionally, in each of 
these runs, the tested models were used to estimate one, two-consecutive, three-consecutive and 

four-consecutive missing observations, i.e. 4k1 mis ≤≤ . The models were generated and analysed 

using the following procedure: 
 

• Assuming a total of n  observations in the data set, let misk  be the pre-determined number 

of missing data points, where the interpolation is assumed performed to recover missing 
data, and ZWDm  the number of data points used to generate the model.  

• Set 
2

m
i ZWD= . 

• Let ( ) { ,ttZWD jmis = ( )} miski

1ijjtZWD
+

+=
be the consecutively selected missed ZWD data set.  

• Let ZWDobs ( ){ ,tZWD 1ki mis +−=  ( ),tZWD i  ( ),tZWD 1ki mis ++ ...,  ( )}
miski2tZWD +  be the selected data 

set used to generate the models. 
• Generate the IM or LS model based on the data set ZWDobs and estimate the wet delay 

( )jtDŴZ  for { } miski

1ijj
t

+

+=
. 

• To assess the model used at any epoch, the difference between the known ZWD at station 

ONSA, assumed as “truth”, and the estimated ZWD, i.e. ( ) ( ) ( ),tZWDtDŴZtZWD misdiff −=∆  

is computed.  
• Similarly, the next missing data points are estimated by shifting one position in time, i.e. 

{ ,t 1j+ ( )}1jtZWD +  becomes { ,
j
t ( )} 1ki

2ij1j
mistZWD

++

+=+ , until the last missing data point has been 

reached.  
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The above procedure places the set of missing ZWD observations, ( )tZWDmis , in the centre 

of the modelling data set, ( )tZWDobs . The first set of missing data begins at time { ,t 1i+ ,K }
miskit +  

and the last set finishes at time { ,t 1kin mis +−− ,L }int − . In all, a total of ( )misZWD kmn −−  missing 

data sets are considered. Given that there are misk  missing observations in each of these sets, the 

total number of comparisons is therefore, ( )misZWDmis kmnk −− . When all cases of missing data 

sets for a given model have been considered, the RMSE of the ( )misZWDmis kmnk −−  ZWD 

differences are then calculated by: 
 

( )[ ]
( )

( )misZWDmis

kmnk

1j

2

jdiff

I kmnk

tZWD
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 Models with low RMSEs were considered as the most ideal interpolation models. For these 
models, a repeated-measures ANOVA (e.g. Walpole et al., 2007) was implemented as a follow-up 
test to determine whether there is a significant difference among them. For the repeated-measures 
ANOVA test, a p-value of less than 0.05 indicates a significant difference among the models. 

 
 

4.2  Comparisons Between the Interpolation Models 

 

In an effort to determine a suitable model for the purpose of estimating missing ZWDs, the 
interpolation models outlined in Section 3, were tested. The RMSEs, calculated via Eq. (23), of 
these models for {4mZWD ∈ , 6, 8, 12, 18, 24, 30, 36, 40, 44, }48  are summarised in Tables 3-6. 

The results show that the Lagrange polynomials (LP) method is the poorest performer. As the 
number of data points increases, the LP exhibits what is known as Runge’s phenomenon (Runge, 
1901; Fornberg and Zuev, 2007), and thus produces poor outcomes. Runge’s phenomenon is an 
error problem for a high-order polynomial interpolant on equidistant intervals, whereby the 
polynomial oscillates towards the end of the interval, as shown in Figure 5, resulting in poor ZWD 
estimation between the intervals. This effect was more prominent when estimating two, three and 
four missing ZWD observations. 

 
 

 
 

Figure 5  Runge’s phenomenon (Fornberg and Zuev, 2007) 
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Table 3  RMSEs (cm) of the interpolated ZWDs for the case of a single missing observation 

Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.27 1.39 1.30 1.35 1.39 1.27 

6 1.27 1.45 1.30 1.36 1.49 1.35 

8 1.27 1.47 1.30 1.36 1.56 1.40 

12 1.27 1.47 1.30 1.35 1.65 1.37 

18 1.27 1.47 1.30 1.33 1.72 1.40 

24 1.27 1.47 1.30 1.32 1.76 1.41 

30 1.27 1.47 1.30 1.32 1.78 1.41 

36 1.27 1.47 1.30 1.32 1.81 1.43 

40 1.27 1.47 1.30 1.32 1.82 1.43 

44 1.27 1.47 1.30 1.32 1.84 1.42 

48 1.27 1.47 1.30 1.32 1.85 1.42 

 
 

Table 4  RMSEs (cm) of the interpolated ZWDs for the case of two-successive missing observations 
Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.41 1.66 1.46 1.48 1.66 1.41 

6 1.41 1.79 1.46 1.51 1.96 1.58 

8 1.41 1.87 1.46 1.52 2.28 1.54 

12 1.41 1.89 1.46 1.54 2.88 1.58 

18 1.41 1.89 1.46 1.54 3.65 1.59 

24 1.41 1.89 1.46 1.54 4.26 1.65 

30 1.41 1.89 1.46 1.54 4.78 1.68 

36 1.41 1.89 1.46 1.54 5.22 1.71 

40 1.41 1.89 1.46 1.54 5.48 1.73 

44 1.41 1.89 1.46 1.54 5.73 1.75 

48 1.41 1.89 1.46 1.53 5.97 1.75 

 
 

Table 5  RMSEs (cm) of the interpolated ZWDs for the case of three-successive missing observations 
Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.50 1.76 1.53 1.55 1.76 1.54 

6 1.50 1.88 1.53 1.55 2.12 1.53 

8 1.50 1.94 1.53 1.55 2.54 1.55 

12 1.50 1.96 1.53 1.55 3.59 1.66 

18 1.50 1.96 1.53 1.54 5.57 1.72 

24 1.50 1.96 1.53 1.54 7.76 1.82 

30 1.50 1.96 1.53 1.54 10.01 1.88 

36 1.50 1.96 1.53 1.54 12.29 1.93 

40 1.50 1.96 1.53 1.54 13.81 1.95 

44 1.50 1.96 1.53 1.54 15.31 1.98 

48 1.50 1.96 1.53 1.54 16.81 1.99 
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Table 6  RMSEs (cm) of the interpolated ZWDs for the case of four-successive missing observations 
Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.62 2.12 1.68 1.68 2.12 1.65 

6 1.62 2.35 1.68 1.70 2.99 1.71 

8 1.62 2.48 1.68 1.71 4.02 1.73 

12 1.62 2.51 1.68 1.71 6.45 1.81 

18 1.62 2.51 1.68 1.71 11.03 1.87 

24 1.62 2.51 1.68 1.70 16.62 1.98 

30 1.62 2.51 1.68 1.70 23.04 2.06 

36 1.62 2.51 1.68 1.71 30.20 2.10 

40 1.62 2.51 1.68 1.71 35.42 2.13 

44 1.62 2.51 1.68 1.70 41.04 2.16 

48 1.62 2.51 1.68 1.70 47.04 2.17 

 
 
 
Tables 3-6 also indicate that the linear interpolation (LI), the cubic Hermite polynomial (CHP) 

and fast Fourier transform (FFT) models (interpolants that are dependent only on the most recent 
pair of data points) produce better estimates than splines and ordinary Kriging, which estimate the 
missing data points by giving greater weights to more recent data points, and lesser weights to 
those that are further away. Kriging did, however, produce comparable results to these models 
when the number of modelling data is low. The LI model, which was the simplest of all to use, 
produced the best results across all scenarios. The LI provided, on average, ZWD estimates to 
within 1.3 cm to 1.6 cm from the actual ZWD data, which corresponds to a PWV error of about 2 
mm to 2.5 mm. This level of discrepancy is comparable to many GNSS PWV studies (e.g., Basili et 
al., 2002; Snajdrova et al., 2006; Wang et al., 2007). Note that both LI and CHP are methods that 
utilise the two most recent observations, with one on either side of the missing data set.  

The favourable results for the LI, CHP and FFT models can be explained by the 
autocorrelation study in Section 2, whereby significant correlations occur among the estimates 
within a 1h to 2-h period. Successive 1-h ZWD estimates have an autocorrelation value as high as 
0.8 h. Inclusion of several data points that are, time-wise, distant from the estimation time may 
have introduced noise into the splines and ordinary Kriging models. 

Although the LI models appears to be best interpolation method based on its RMSE value, a 
repeated-measures ANOVA test was necessary for investigating whether it is statistical superior to 
the CHP and FFT methods. The results of the ANOVA test are given in Table 7. The table shows 
that the p-values for all the cases considered here were significantly greater than 0.05, which 
strongly suggest that there is no statistical difference in the performances among the LI, CHP and 
FFT interpolation models. Hence, the overall RMSE and the ANOVA results summarise that the LI 
is marginally, but not statistically, better than the CHP and FFT models. 
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Table 7  P-values of repeated-measure ANOVA test for LI, CHP and FFT interpolation methods 

Number of data 
points used 

Number of Missing Observations 

One Two Three Four 

4 0.772 0.893 0.869 0.973 

6 0.752 0.832 0.896 0.999 

8 0.806 0.866 0.913 0.999 

12 0.806 0.863 0.922 0.998 

18 0.824 0.866 0.925 0.997 

24 0.823 0.87 0.925 0.997 

30 0.824 0.87 0.926 0.997 

36 0.824 0.873 0.927 0.996 

40 0.824 0.873 0.927 0.996 

44 0.825 0.874 0.927 0.996 

48 0.825 0.875 0.927 0.996 
 

5 CONCLUSIONS 

In the efforts to determine the most appropriate models for the interpolation and prediction of 
ZWD estimates, an autocorrelation analysis of the tropospheric estimates time series was initially 
carried out on the WVR ZWD estimates at ONSA. The autocorrelation study was restricted to a 12-
h time period to ensure a degree of stationarity in the time series. It was found that the time lag for 
significant autocorrelation was observed within 2 hours. If a Gauss Markov model is assumed, this 
value can be of significant help in dynamic modelling of ZWD in recursive techniques such as 
Kalman Filtering.  

An investigation into the performance of several modelling techniques was carried out to 
determine the best approach for estimating missing data points for a set of ZWD observations. 
Such interpolation processes are needed for post processing applications. For the investigated 
data set, the RMSE results indicate that the LI model generated the best interpolation results and 
thus no complex models are needed for the interpolation of ZWD. The favourable results for the LI 
model, which only depends on the two most recent data points, were reflected in the 
autocorrelation plot of the ZWD estimates, whereby significant autocorrelation values were 
observed for up to 2-h only. Although a follow-up ANOVA test indicate that there is no statistical 
difference in the performances of the LI model in comparison to the CHP and FFT models, the 
ease-of-use of the LI model ensures that it is still the recommended interpolation method. 
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